1
|
Li D, Cai Y, Liu K, Lv D, Zeng M, Wen L, Lv C, Guo J, Xu K, Ding N, Li Y, Xu J. MicroEpitope: an atlas of immune epitopes derived from cancer microbiomes. Nucleic Acids Res 2025; 53:D1435-D1442. [PMID: 39380496 PMCID: PMC11701614 DOI: 10.1093/nar/gkae877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
The majority of human cancers harbor molecular evidence of intratumoral microbiota. Microbiota-derived epitopes as molecular mimics of tumor antigens can bind human leukocyte antigen (HLA), thereby modulating host immunity. However, many questions remain regarding the mechanisms underlying the interactions between microbiota and the host's immune system in cancer. Here, MicroEpitope (http://bio-bigdata.hrbmu.edu.cn/MicroEpitope) was developed to provide and analyze the atlas of microbiota-derived epitopes in cancer. We manually collected available mass spectrometry (MS)-based HLA immunopeptidomes of 1190 samples across 24 cancer types. Alignment was performed against an in-house constructed theoretical library of human and intratumor microbiome encoded proteins, including 1298 bacterial and 124 viral species. Currently, MicroEpitope contains 51 497 bacteria and 767 virus-derived epitopes, mainly originating from Bacillus subtilis, Buchnera aphidicola and human cytomegalovirus. The common immunogenic features of epitopes were calculated, as well as their biochemical properties and the clinical relevance of corresponding bacteria and viruses across cancers. MicroEpitope also provides five analytical tools, and multiple visualization methods to facilitate understanding of the roles of microbiota-derived epitopes in cancer immunity. In summary, MicroEpitope represents a vital resource for investigating HLA-presented immunopeptidomes derived from cancer microbiomes, and could further enable rich insight in tumor antigen prioritization strategies.
Collapse
Affiliation(s)
- Donghao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Yangyang Cai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Kefan Liu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Dezhong Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Mengqian Zeng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Luan Wen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Chongwen Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Jiyu Guo
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Kang Xu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| |
Collapse
|
2
|
Hick TAH, Geertsema C, Nguyen W, Bishop CR, van Oosten L, Abbo SR, Dumenil T, van Kuppeveld FJM, Langereis MA, Rawle DJ, Tang B, Yan K, van Oers MM, Suhrbier A, Pijlman GP. Safety concern of recombination between self-amplifying mRNA vaccines and viruses is mitigated in vivo. Mol Ther 2024; 32:2519-2534. [PMID: 38894543 PMCID: PMC11405153 DOI: 10.1016/j.ymthe.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.
Collapse
Affiliation(s)
- Tessy A H Hick
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Linda van Oosten
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Martijn A Langereis
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Daniel J Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Pociupany M, Snoeck R, Dierickx D, Andrei G. Treatment of Epstein-Barr Virus infection in immunocompromised patients. Biochem Pharmacol 2024; 225:116270. [PMID: 38734316 DOI: 10.1016/j.bcp.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Epstein-Barr Virus (EBV), is a ubiquitous γ-Herpesvirus that infects over 95% of the human population and can establish a life-long infection without causing any clinical symptoms in healthy individuals by residing in memory B-cells. Primary infection occurs in childhood and is mostly asymptomatic, however in some young adults it can result in infectious mononucleosis (IM). In immunocompromised individuals however, EBV infection has been associated with many different malignancies. Since EBV can infect both epithelial and B-cells and very rarely NK cells and T-cells, it is associated with both epithelial cancers like nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC), with lymphomas including Burkitt Lymphoma (BL) or Post-transplant Lymphoproliferative Disorder (PTLD) and rarely with NK/T-cell lymphomas. Currently there are no approved antivirals active in PTLD nor in any other malignancy. Moreover, lytic phase disease almost never requires antiviral treatment. Although many novel therapies against EBV have been described, the management and/or prevention of EBV primary infections or reactivations remains difficult. In this review, we discuss EBV infection, therapies targeting EBV in both lytic and latent state with novel therapeutics developed that show anti-EBV activity as well as EBV-associated malignancies both, epithelial and lymphoproliferative malignancies and emerging therapies targeting the EBV-infected cells.
Collapse
Affiliation(s)
- Martyna Pociupany
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Daan Dierickx
- Laboratory of Experimental Hematology, Department of Oncology, KU Leuven, Leuven, Belgium; Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Eckert S, Jakimovski D, Zivadinov R, Hicar M, Weinstock-Guttman B. How to and should we target EBV in MS? Expert Rev Clin Immunol 2024; 20:703-714. [PMID: 38477887 DOI: 10.1080/1744666x.2024.2328739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION The etiology of multiple sclerosis (MS) remains unknown. Pathogenesis likely relies on a complex interaction between multiple environmental, genetic, and behavioral risk factors. However, a growing body of literature supports the role of a preceding Epstein-Barr virus (EBV) infection in the majority of cases. AREAS COVERED In this narrative review, we summarize the latest findings regarding the potential role of EBV as a predisposing event inducing new onset of MS. EBV interactions with the genetic background and other infectious agents such as human endogenous retrovirus are explored. Additional data regarding the role of EBV regarding the rate of mid- and long-term disease progression is also discussed. Lastly, the effect of currently approved disease-modifying therapies (DMT) for MS treatment on the EBV-based molecular mechanisms and the development of new EBV-specific therapies are further reviewed. EXPERT OPINION Recent strong epidemiological findings support that EBV may be the primary inducing event in certain individuals that shortly thereafter develop MS. More studies are needed in order to better understand the significant variability in susceptibility based on environmental factors such as EBV exposure. Future investigations should focus on determining the specific EBV-related risk antigen(s) and phenotyping people with likely EBV-induced MS. Targeting EBV via several different avenues, including development of an EBV vaccine, may become the mainstay of MS treatment in the future.
Collapse
Affiliation(s)
- Svetlana Eckert
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Hicar
- Department of Pediatrics Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
5
|
Green M, Squires JE, Chinnock RE, Comoli P, Danziger-Isakov L, Dulek DE, Esquivel CO, Höcker B, L'Huillier AG, Mazariegos GV, Visner GA, Bollard CM, Dipchand AI, Ferry JA, Gross TG, Hayashi R, Maecker-Kolhoff B, Marks S, Martinez OM, Metes DM, Michaels MG, Preiksaitis J, Smets F, Swerdlow SH, Trappe RU, Wilkinson JD, Allen U, Webber SA, Dharnidharka VR. The IPTA Nashville consensus conference on Post-Transplant lymphoproliferative disorders after solid organ transplantation in children: II-consensus guidelines for prevention. Pediatr Transplant 2024; 28:e14350. [PMID: 36369745 DOI: 10.1111/petr.14350] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022]
Abstract
The International Pediatric Transplant Association (IPTA) convened an expert consensus conference to assess current evidence and develop recommendations for various aspects of care relating to post-transplant lymphoproliferative disorder after solid organ transplantation in children. In this report from the Prevention Working Group, we reviewed the existing literature regarding immunoprophylaxis and chemoprophylaxis, and pre-emptive strategies. While the group made a strong recommendation for pre-emptive reduction of immunosuppression at the time of EBV DNAemia (low to moderate evidence), no recommendations for use could be made for any prophylactic strategy or alternate pre-emptive strategy, largely due to insufficient or conflicting evidence. Current gaps and future research priorities are highlighted.
Collapse
Affiliation(s)
- Michael Green
- Division of Pediatric Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James E Squires
- Division of Gastroenterology, Hepatology and Nutrition, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Patrizia Comoli
- Cell Factory & Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy
| | - Lara Danziger-Isakov
- Division of Infectious Disease, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daniel E Dulek
- Division of Pediatric Infectious Diseases, Monroe Carell Jr. Children's Hospital at Vanderbilt and Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Britta Höcker
- Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Arnaud G L'Huillier
- Pediatric Infectious Diseases Unit and Laboratory of Virology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - George Vincent Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gary A Visner
- Division of Pulmonary Medicine, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, The George Washington University, Washington, District of Columbia, USA
| | - Anne I Dipchand
- Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Judith A Ferry
- Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas G Gross
- Center for Cancer and Blood Diseases, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Robert Hayashi
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | | | - Stephen Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Olivia M Martinez
- Department of Surgery and Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Diana M Metes
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marian G Michaels
- Division of Pediatric Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jutta Preiksaitis
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Françoise Smets
- Pediatric Gastroenterology and Hepatology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Stephen H Swerdlow
- Division of Hematopathology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ralf U Trappe
- Department of Hematology and Oncology, DIAKO Ev. Diakonie-Krankenhaus Bremen, Bremen, Germany and Department of Internal Medicine II: Hematology and Oncology, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - James D Wilkinson
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Upton Allen
- Division of Infectious Diseases and the Transplant and Regenerative Medicine Center, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Steven A Webber
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Vikas R Dharnidharka
- Department of Pediatrics, Division of Pediatric Nephrology, Hypertension & Pheresis, Washington University School of Medicine & St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC. Precision medicine in nasopharyngeal carcinoma: comprehensive review of past, present, and future prospect. J Transl Med 2023; 21:786. [PMID: 37932756 PMCID: PMC10629096 DOI: 10.1186/s12967-023-04673-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high propensity for lymphatic spread and distant metastasis. It is prominent as an endemic malignancy in Southern China and Southeast Asia regions. Studies on NPC pathogenesis mechanism in the past decades such as through Epstein Barr Virus (EBV) infection and oncogenic molecular aberrations have explored several potential targets for therapy and diagnosis. The EBV infection introduces oncoviral proteins that consequently hyperactivate many promitotic pathways and block cell-death inducers. EBV infection is so prevalent in NPC patients such that EBV serological tests were used to diagnose and screen NPC patients. On the other hand, as the downstream effectors of oncogenic mechanisms, the promitotic pathways can potentially be exploited therapeutically. With the apparent heterogeneity and distinct molecular aberrations of NPC tumor, the focus has turned into a more personalized treatment in NPC. Herein in this comprehensive review, we depict the current status of screening, diagnosis, treatment, and prevention in NPC. Subsequently, based on the limitations on those aspects, we look at their potential improvements in moving towards the path of precision medicine. The importance of recent advances on the key molecular aberration involved in pathogenesis of NPC for precision medicine progression has also been reported in the present review. Besides, the challenge and future outlook of NPC management will also be highlighted.
Collapse
Affiliation(s)
- Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Win Sen Heng
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Sharon Siew Hoon Teoh
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
7
|
Buonaguro L, Cavalluzzo B, Mauriello A, Ragone C, Tornesello AL, Buonaguro FM, Tornesello ML, Tagliamonte M. Microorganisms-derived antigens for preventive anti-cancer vaccines. Mol Aspects Med 2023; 92:101192. [PMID: 37295175 DOI: 10.1016/j.mam.2023.101192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Cancer prevention is one of the aim with the highest priority in order to reduce the burden of cancer diagnosis and treatment on individuals as well as on healthcare systems. To this aim, vaccines represent the most efficient primary cancer prevention strategy. Indeed, anti-cancer immunological memory elicited by preventive vaccines might promptly expand and prevent tumor from progressing. Antigens derived from microorganisms (MoAs), represent the obvious target for developing highly effective preventive vaccines for virus-induced cancers. In this respect, the drastic reduction in cancer incidence following HBV and HPV preventive vaccines are the paradigmatic example of such evidence. More recently, experimental evidences suggest that MoAs may represent a "natural" anti-cancer preventive vaccination or can be exploited for developing vaccines to prevent cancers presenting highly homologous tumor-associated antigens (TAAs) (e.g. molecular mimicry). The present review describes the different preventive anti-cancer vaccines based on antigens derived from pathogens at the different stages of development.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
| |
Collapse
|
8
|
Andersen O, Ernberg I, Hedström AK. Treatment Options for Epstein-Barr Virus-Related Disorders of the Central Nervous System. Infect Drug Resist 2023; 16:4599-4620. [PMID: 37465179 PMCID: PMC10351589 DOI: 10.2147/idr.s375624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
Epstein-Barr virus (EBV), a causative agent for several types of lymphomas and mucosal cancers, is a human lymphotropic herpesvirus with the capacity to establish lifelong latent infection. More than 90% of the human population worldwide is infected. The primary infection is usually asymptomatic in childhood, whereas infectious mononucleosis (IM) is common when the infection occurs in adolescence. Primary EBV infection, with or without IM, or reactivation of latent infection in immunocompromised individuals have been associated with a wide range of neurologic conditions, such as encephalitis, meningitis, acute disseminated encephalomyelitis, and cerebellitis. EBV is also involved in malignant lymphomas in the brain. An increasing number of reports on EBV-related disorders of the central nervous system (CNS) including the convincing association with multiple sclerosis (MS) have put in focus EBV-related conditions beyond its established link to malignancies. In this review, we present the clinical manifestations of EBV-related CNS-disorders, put them in the context of known EBV biology and focus on available treatment options and future therapeutic approaches.
Collapse
Affiliation(s)
- Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Biomedicum Q8C, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Liu M, Wang R, Xie Z. T cell-mediated immunity during Epstein-Barr virus infections in children. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105443. [PMID: 37201619 DOI: 10.1016/j.meegid.2023.105443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Epstein-Barr virus (EBV) infection is extremely common worldwide, with approximately 90% of adults testing positive for EBV antibodies. Human are susceptible to EBV infection, and primary EBV infection typically occurs early in life. EBV infection can cause infectious mononucleosis (IM) as well as some severe non-neoplastic diseases, such as chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which can have a heavy disease burden. After primary EBV infection, individuals develop robust EBV-specific T cell immune responses, with EBV-specific CD8+ and part of CD4+ T cells functioning as cytotoxic T cells, defending against virus. Different proteins expressed during EBV's lytic replication and latent proliferation can cause varying degrees of cellular immune responses. Strong T cell immunity plays a key role in controlling infection by decreasing viral load and eliminating infected cells. However, the virus persists as latent infection in EBV healthy carriers even with robust T cell immune response. When reactivated, it undergoes lytic replication and then transmits virions to a new host. Currently, the relationship between the pathogenesis of lymphoproliferative diseases and the adaptive immune system is still not fully clarified and needs to be explored in the future. Investigating the T cell immune responses evoked by EBV and utilizing this knowledge to design promising prophylactic vaccines are urgent issues for future research due to the importance of T cell immunity.
Collapse
Affiliation(s)
- Mengjia Liu
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
10
|
Mazumder L, Shahab M, Islam S, Begum M, Oliveira JIN, Begum S, Akter S. An immunoinformatics approach to epitope-based vaccine design against PspA in Streptococcus pneumoniae. J Genet Eng Biotechnol 2023; 21:57. [PMID: 37166683 PMCID: PMC10173237 DOI: 10.1186/s43141-023-00506-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Streptococcus pneumoniae (SPN) is the agent responsible for causing respiratory diseases, including pneumonia, which causes severe health hazards and child deaths globally. Antibiotics are used to treat SPN as a first-line treatment, but nowadays, SPN is showing resistance to several antibiotics. A vaccine can overcome this global problem by preventing this deadly pathogen. The conventional methods of wet-laboratory vaccine design and development are an intense, lengthy, and costly procedure. In contrast, epitope-based in silico vaccine designing can save time, money, and energy. In this study, pneumococcal surface protein A (PspA), one of the major virulence factors of SPN, is used to design a multi-epitope vaccine. METHODS For designing the vaccine, the sequence of PspA was retrieved, and then, phylogenetic analysis was performed. Several CTL epitopes, HTL epitopes, and LBL epitopes of PspA were all predicted by using several bioinformatics tools. After checking the antigenicity, allergenicity, and toxicity scores, the best epitopes were selected for the vaccine construction, and then, physicochemical and immunological properties were analyzed. Subsequently, vaccine 3D structure prediction, refinement, and validation were performed. Molecular docking, molecular dynamic simulation, and immune simulation were performed to ensure the binding between HLA and TLR4. Finally, codon adaptation and in silico cloning were performed to transfer into a suitable vector. RESULTS The constructed multi-epitope vaccine showed a strong binding affinity with the receptor molecule TLR4. Analysis of molecular dynamic simulation, C-immune simulation, codon adaptation, and in silico cloning validated that our designed vaccine is a suitable candidate against SPN. CONCLUSION The in silico analysis has proven the vaccine as an alternative medication to combat against S. pneumoniae. The designated vaccine can be further tested in the wet lab, and a novel vaccine can be developed.
Collapse
Affiliation(s)
- Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, 1100, Bangladesh
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, 1100, Bangladesh
| | - Mahmuda Begum
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Jonas Ivan Nobre Oliveira
- Departamento de Biof ́ısica E Farmacologia, Universidade Federal Do Rio Grande doNorte, Natal, RN, 59072-970, Brazil
| | - Shamima Begum
- Department of Microbiology, Jagannath University, Dhaka, 1100, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, 1205, Bangladesh.
| |
Collapse
|
11
|
Assessing the Efficacy of VLP-Based Vaccine against Epstein-Barr Virus Using a Rabbit Model. Vaccines (Basel) 2023; 11:vaccines11030540. [PMID: 36992124 DOI: 10.3390/vaccines11030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
Epstein–Barr virus (EBV) is etiologically associated with a number of malignant and non-malignant conditions. Thus, a prophylactic vaccine against this virus could help to reduce the burden of many EBV-associated diseases. Previously, we reported that an EBV virus-like particle (VLP) vaccine was highly immunogenic and produced a strong humoral response in mice. However, since EBV does not infect mice, the efficacy of the VLP in preventing EBV infection could not be addressed. Here we examined, for the first time, the efficacy of the EBV-VLP vaccine using a novel rabbit model of EBV infection. Animals vaccinated with two doses of VLP elicited higher antibody responses to total EBV antigens compared to animals receiving one dose. Vaccinated animals also elicited both IgM and IgG to EBV-specific antigens, VCA and EBNA1. Analysis of peripheral blood and spleen for EBV copy number indicated that the viral load in both of these compartments was lower in animals receiving a 2-dose vaccine. However, the VLP vaccine was ineffective in preventing EBV infection. With several other EBV vaccine candidates currently at various stages of development and testing, we believe that the rabbit model of EBV infection could be a great platform for evaluating potential candidates.
Collapse
|
12
|
Li W, Duan X, Chen X, Zhan M, Peng H, Meng Y, Li X, Li XY, Pang G, Dou X. Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma. Front Immunol 2023; 13:1079515. [PMID: 36713430 PMCID: PMC9875085 DOI: 10.3389/fimmu.2022.1079515] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Epstein-Barr virus (EBV) was the first tumor virus in humans. Nasopharyngeal carcinoma (NPC) accounts for approximately 60% of the 200,000 new tumor cases caused by EBV infection worldwide each year. NPC has an insidious onset and is highly malignant, with more than 70% of patients having intermediate to advanced disease at the time of initial diagnosis, and is strongly implicated in epithelial cancers as well as malignant lymphoid and natural killer/T cell lymphomas. Over 90% of patients with confirmed undifferentiated NPC are infected with EBV. In recent decades, much progress has been made in understanding the molecular mechanisms of NPC and developing therapeutic approaches. Radiotherapy and chemotherapy are the main treatment options for NPC; however, they have a limited efficacy in patients with locally advanced or distant metastatic tumors. Tumor immunotherapy, including vaccination, adoptive cell therapy, and immune checkpoint blockade, represents a promising therapeutic approach for NPC. Significant breakthroughs have recently been made in the application of immunotherapy for patients with recurrent or metastatic NPC (RM-NPC), indicating a broad prospect for NPC immunotherapy. Here, we review important research findings regarding immunotherapy for NPC patients and provide insights for future research.
Collapse
Affiliation(s)
- Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xiaobing Duan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xingxing Chen
- Department of Urology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Haichuan Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xian-Yang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Department of R&D, OriCell Therapeutics Co. Ltd, Pudong, Shanghai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| | - Guofu Pang
- Department of Urology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| | - Xiaohui Dou
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Health Management Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| |
Collapse
|
13
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
14
|
Zhong L, Krummenacher C, Zhang W, Hong J, Feng Q, Chen Y, Zhao Q, Zeng MS, Zeng YX, Xu M, Zhang X. Urgency and necessity of Epstein-Barr virus prophylactic vaccines. NPJ Vaccines 2022; 7:159. [PMID: 36494369 PMCID: PMC9734748 DOI: 10.1038/s41541-022-00587-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV), a γ-herpesvirus, is the first identified oncogenic virus, which establishes permanent infection in humans. EBV causes infectious mononucleosis and is also tightly linked to many malignant diseases. Various vaccine formulations underwent testing in different animals or in humans. However, none of them was able to prevent EBV infection and no vaccine has been approved to date. Current efforts focus on antigen selection, combination, and design to improve the efficacy of vaccines. EBV glycoproteins such as gH/gL, gp42, and gB show excellent immunogenicity in preclinical studies compared to the previously favored gp350 antigen. Combinations of multiple EBV proteins in various vaccine designs become more attractive approaches considering the complex life cycle and complicated infection mechanisms of EBV. Besides, rationally designed vaccines such as virus-like particles (VLPs) and protein scaffold-based vaccines elicited more potent immune responses than soluble antigens. In addition, humanized mice, rabbits, as well as nonhuman primates that can be infected by EBV significantly aid vaccine development. Innovative vaccine design approaches, including polymer-based nanoparticles, the development of effective adjuvants, and antibody-guided vaccine design, will further enhance the immunogenicity of vaccine candidates. In this review, we will summarize (i) the disease burden caused by EBV and the necessity of developing an EBV vaccine; (ii) previous EBV vaccine studies and available animal models; (iii) future trends of EBV vaccines, including activation of cellular immune responses, novel immunogen design, heterologous prime-boost approach, induction of mucosal immunity, application of nanoparticle delivery system, and modern adjuvant development.
Collapse
Affiliation(s)
- Ling Zhong
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Claude Krummenacher
- grid.262671.60000 0000 8828 4546Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ USA
| | - Wanlin Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Junping Hong
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qisheng Feng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yixin Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qinjian Zhao
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Mu-Sheng Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yi-Xin Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Miao Xu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Xiao Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China ,grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
15
|
Campos DMDO, Silva MKD, Barbosa ED, Leow CY, Fulco UL, Oliveira JIN. Exploiting reverse vaccinology approach for the design of a multiepitope subunit vaccine against the major SARS-CoV-2 variants. Comput Biol Chem 2022; 101:107754. [PMID: 36037724 PMCID: PMC9385604 DOI: 10.1016/j.compbiolchem.2022.107754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
The current COVID-19 pandemic, an infectious disease caused by the novel coronavirus (SARS-CoV-2), poses a threat to global health because of its high rate of spread and death. Currently, vaccination is the most effective method to prevent the spread of this disease. In the present study, we developed a novel multiepitope vaccine against SARS-CoV-2 containing Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (BA.1) variants. To this end, we performed a robust immunoinformatics approach based on multiple epitopes of the four structural proteins of SARS-CoV-2 (S, M, N, and E) from 475 SARS-CoV-2 genomes sequenced from the regions with the highest number of registered cases, namely the United States, India, Brazil, France, Germany, and the United Kingdom. To investigate the best immunogenic epitopes for linear B cells, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL), we evaluated antigenicity, allergenicity, conservation, immunogenicity, toxicity, human population coverage, IFN-inducing, post-translational modifications, and physicochemical properties. The tertiary structure of a vaccine prototype was predicted, refined, and validated. Through docking experiments, we evaluated its molecular coupling to the key immune receptor Toll-Like Receptor 3 (TLR3). To improve the quality of docking calculations, quantum mechanics/molecular mechanics calculations (QM/MM) were used, with the QM part of the simulations performed using the density functional theory formalism (DFT). Cloning and codon optimization were performed for the successful expression of the vaccine in E. coli. Finally, we investigated the immunogenic properties and immune response of our SARS-CoV-2 multiepitope vaccine. The results of the simulations show that administering our prototype three times significantly increases the antibody response and decreases the amount of antigens. The proposed vaccine candidate should therefore be tested in clinical trials for its efficacy in neutralizing SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Melo de Oliveira Campos
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Maria Karolaynne da Silva
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Emmanuel Duarte Barbosa
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | | | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| |
Collapse
|
16
|
Omoboyede V, Ibrahim O, Umar HI, Bello T, Adedeji AA, Khalid A, Fayojegbe ES, Ayomide AB, Chukwuemeka PO. Designing a vaccine-based therapy against Epstein-Barr virus-associated tumors using immunoinformatics approach. Comput Biol Med 2022; 150:106128. [PMID: 36179514 DOI: 10.1016/j.compbiomed.2022.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/05/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
Abstract
Epstein-Barr virus (EBV) is widely known due to its role in the etiology of infectious mononucleosis. However, it is the first oncovirus that was identified and has been implicated in the etiology of several types of cancers. Globally, EBV infection is associated with more than 200, 000 new cancer cases and 150, 000 deaths yearly. A prophylactic or therapeutic vaccine targeting tumors associated with EBV infection is currently lacking. Therefore, this study aimed to develop a multiepitope-based polyvalent vaccine against EBV-associated tumors using immunoinformatics approach. The latency-associated proteins (LAP) of three strains of the virus were used in this study. Potential epitopes predicted from the proteins were analyzed and selected based on several predicted properties. Thirty viable B-cell and T-cell epitopes were selected and conjugated using various linkers alongside beta-defensin 3 as an adjuvant and pan HLA DR-binding epitope (PADRE) sequence to improve the immunogenicity of the vaccine construct. Molecular docking studies of the vaccine construct against toll-like receptors (TLRs) showed it is capable of inducing immune response via recognition by TLRs while immune simulation studies showed it could induce both cellular and humoral immune responses. Furthermore, molecular dynamics study of the complex formed by the vaccine candidate and TLR-4 showed that the complex was stable. Ultimately, the designed vaccine showed desirable properties based on in silico evaluation; however, experimental studies are needed to validate the efficacy of the vaccine against EBV-associated tumors.
Collapse
Affiliation(s)
- Victor Omoboyede
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics Laboratory (CATL) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Ochapa Ibrahim
- Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - Haruna Isiyaku Umar
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Taye Bello
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Nigeria.
| | - Ayodeji Adeola Adedeji
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Aqsa Khalid
- Research Center for Modelling and Simulation (RCMS), National University of Science and Technology (NUST), Islamabad, Pakistan.
| | | | - Adunola Blessing Ayomide
- Computer Aided Therapeutics Laboratory (CATL) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Prosper Obed Chukwuemeka
- Computer Aided Therapeutics Laboratory (CATL) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| |
Collapse
|
17
|
Bi J, Zheng Y, Wang C, Ding Y. An Attention Based Bidirectional LSTM Method to Predict the Binding of TCR and Epitope. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3272-3280. [PMID: 34559661 DOI: 10.1109/tcbb.2021.3115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The T-cell epitope prediction has always been a long-term challenge in immunoinformatics and bioinformatics. Studying the specific recognition between T-cell receptor (TCR) and peptide-major histocompatibility complex (p-MHC) complexes can help us better understand the immune mechanism, it's also make a signification contribution in developing vaccines and targeted drugs. Meanwhile, more advanced methods are needed for distinguishing TCRs binding from different epitopes. In this paper, we introduce a hybrid model composed of bidirectional long short-term memory networks (BiLSTM), attention and convolutional neural networks (CNN) that can identified the binding of TCRs to epitopes. The BiLSTM can more completely extract amino acid forward and backward information in the sequence, and attention mechanism can focus on amino acids at certain positions from complex sequences to capture the most important feature, then CNN was used to further extract salient features to predict the binding of TCR-epitope. In McPAS dataset, the AUC value (the area under ROC curve) of naive TCR-epitope binding is 0.974 and specific TCR-epitope binding is 0.887. The model has achieved better prediction results than other existing models (TCRGP, ERGO, NetTCR), and some experiments are used to analyze the advantages of our model. The algorithm is available at https://github.com/bijingshu/BiAttCNN.git.
Collapse
|
18
|
Abstract
Epstein-Barr virus (EBV) is a lymphotropic virus responsible for numerous epithelial and lymphoid cell malignancies, including gastric carcinoma, Hodgkin's lymphoma, nasopharyngeal carcinoma, and Burkitt lymphoma. Hundreds of thousands of people worldwide get infected with this virus, and in most cases, this viral infection leads to cancer. Although researchers are trying to develop potential vaccines and drug therapeutics, there is still no effective vaccine to combat this virus. In this study, the immunoinformatics approach was utilized to develop a potential multiepitope subunit vaccine against the two most common subtypes of EBV, targeting three of their virulent envelope glycoproteins. Eleven cytotoxic T lymphocyte (CTL) epitopes, 11 helper T lymphocyte (HTL) epitopes, and 10 B-cell lymphocyte (BCL) epitopes were predicted to be antigenic, nonallergenic, nontoxic, and fully conserved among the two subtypes, and nonhuman homologs were used for constructing the vaccine after much analysis. Later, further validation experiments, including molecular docking with different immune receptors (e.g., Toll-like receptors [TLRs]), molecular dynamics simulation analyses (including root means square deviation [RMSD], root mean square fluctuation [RMSF], radius of gyration [Rg], principal-component analysis [PCA], dynamic cross-correlation [DCC], definition of the secondary structure of proteins [DSSP], and Molecular Mechanics Poisson-Boltzmann Surface Area [MM-PBSA]), and immune simulation analyses generated promising results, ensuring the safe and stable response of the vaccine with specific immune receptors after potential administration within the human body. The vaccine's high binding affinity with TLRs was revealed in the docking study, and a very stable interaction throughout the simulation proved the potential high efficacy of the proposed vaccine. Further, in silico cloning was also conducted to design an efficient mass production strategy for future bulk industrial vaccine production. IMPORTANCE Epstein-Barr virus (EBV) vaccines have been developing for over 30 years, but polyphyletic and therapeutic vaccines have failed to get licensed. Our vaccine surpasses the limitations of many such vaccines and remains very promising, which is crucial because the infection rate is higher than most viral infections, affecting a whopping 90% of the adult population. One of the major identifications covers a holistic analysis of populations worldwide, giving us crucial information about its effectiveness for everyone's unique immunological system. We targeted three glycoproteins that enhance the virulence of the virus to design an epitope-based polyvalent vaccine against two different strains of EBV, type 1 and 2. Our methodology in this study is nonconventional yet swift to show effective results while designing vaccines.
Collapse
|
19
|
Bakker KM, Eisenberg MC, Woods RJ, Martinez ME. Identifying optimal vaccination scenarios to reduce varicella zoster virus transmission and reactivation. BMC Med 2022; 20:387. [PMID: 36209074 PMCID: PMC9548166 DOI: 10.1186/s12916-022-02534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Varicella zoster virus (VZV) is one of the eight known human herpesviruses. Initial VZV infection results in chickenpox, while viral reactivation following a period of latency manifests as shingles. Separate vaccines exist to protect against both initial infection and subsequent reactivation. Controversy regarding chickenpox vaccination is contentious with most countries not including the vaccine in their childhood immunization schedule due to the hypothesized negative impact on immune-boosting, where VZV reactivation is suppressed through exogenous boosting of VZV antibodies from exposure to natural chickenpox infections. METHODS Population-level chickenpox and shingles notifications from Thailand, a country that does not vaccinate against either disease, were previously fitted with mathematical models to estimate rates of VZV transmission and reactivation. Here, multiple chickenpox and shingles vaccination scenarios were simulated and compared to a model lacking any vaccination to analyze the long-term impacts of VZV vaccination. RESULTS As expected, simulations suggested that an introduction of the chickenpox vaccine, at any coverage level, would reduce chickenpox incidence. However, chickenpox vaccine coverage levels above 35% would increase shingles incidence under realistic estimates of shingles coverage with the current length of protective immunity from the vaccine. A trade-off between chickenpox and shingles vaccination coverage was discovered, where mid-level chickenpox coverage levels were identified as the optimal target to minimize total zoster burden. Only in scenarios where shingles vaccine provided lifelong immunity or coverage exceeded current levels could large reductions in both chickenpox and shingles be achieved. CONCLUSIONS The complicated nature of VZV makes it impossible to select a single vaccination scenario as universal policy. Strategies focused on reducing both chickenpox and shingles incidence, but prioritizing the latter should maximize efforts towards shingles vaccination, while slowly incorporating chickenpox vaccination. Alternatively, countries may wish to minimize VZV complications of both chickenpox and shingles, which would lead to maximizing vaccine coverage levels across both diseases. Balancing the consequences of vaccination to overall health impacts, including understanding the impact of an altered mean age of infection for both chickenpox and shingles, would need to be considered prior to any vaccine introduction.
Collapse
Affiliation(s)
- Kevin M Bakker
- Department of Epidemiology, University of Michigan, 48109, Ann Arbor, MI, USA.
| | - Marisa C Eisenberg
- Department of Epidemiology, University of Michigan, 48109, Ann Arbor, MI, USA
- Department of Mathematics, University of Michigan, 48109, Ann Arbor, MI, USA
| | - Robert J Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, 48109, Ann Arbor, MI, USA
| | - Micaela E Martinez
- Population Biology, Ecology and Evolution, Emory University, 30322, Atlanta, GA, USA
- University of Surrey, Faculty of Health and Medical Sciences, Guildford, UK
| |
Collapse
|
20
|
Khan MT, Mahmud A, Hasan M, Azim KF, Begum MK, Rolin MH, Akter A, Mondal SI. Proteome Exploration of Legionella pneumophila To Identify Novel Therapeutics: a Hierarchical Subtractive Genomics and Reverse Vaccinology Approach. Microbiol Spectr 2022; 10:e0037322. [PMID: 35863001 PMCID: PMC9430848 DOI: 10.1128/spectrum.00373-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is the causative agent of a severe type of pneumonia (lung infection) called Legionnaires' disease. It is emerging as an antibiotic-resistant strain day by day. Hence, identifying novel drug targets and vaccine candidates is essential to fight against this pathogen. Here, attempts were taken through a subtractive genomics approach on the complete proteome of L. pneumophila to address the challenges of multidrug resistance. A total of 2,930 proteins from L. pneumophila proteome were investigated through diverse subtractive proteomics approaches, e.g., identification of human nonhomologous and pathogen-specific essential proteins, druggability and "anti-target" analysis, subcellular localization prediction, human microbiome nonhomology screening, and protein-protein interaction studies to find out effective drug and vaccine targets. Only three fulfilled these criteria and were proposed as novel drug targets against L. pneumophila. Furthermore, outer membrane protein TolB was identified as a potential vaccine target with a better antigenicity score. Antigenicity and transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis, and a molecular docking approach were adopted to generate the most potent epitopes. The final vaccine was constructed by the combination of highly immunogenic epitopes, along with suitable adjuvant and linkers. The designed vaccine construct showed higher binding interaction with different major histocompatibility complex (MHC) molecules and human immune TLR-2 receptors with minimum deformability at the molecular level. The present study aids the development of novel therapeutics and vaccine candidates for efficient treatment and prevention of L. pneumophila infections. However, further wet-lab-based phenotypic and genomic investigations and in vivo trials are highly recommended to validate our prediction experimentally. IMPORTANCE Legionella pneumophila is a human pathogen distributed worldwide, causing Legionnaires' disease (LD), a severe form of pneumonia and respiratory tract infection. L. pneumophila is emerging as an antibiotic-resistant strain, and controlling LD is now difficult. Hence, developing novel drugs and vaccines against L. pneumophila is a major research priority. Here, the complete proteome of L. pneumophila was considered for subtractive genomics approaches to address the challenge of antimicrobial resistance. Our subtractive proteomics approach identified three potential drug targets that are promising for future application. Furthermore, a possible vaccine candidate, "outer membrane protein TolB," was proposed using reverse vaccinology analysis. The constructed vaccine candidate showed higher binding interaction with MHC molecules and human immune TLR-2 receptors at the molecular level. Overall, the present study aids in developing novel therapeutics and vaccine candidates for efficient treatment of the infections caused by L. pneumophila.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Musammat Kulsuma Begum
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohimenul Haque Rolin
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Arzuba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shakhinur Islam Mondal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
21
|
Farzanehpour M, Fard AM, Ghaleh HE. A brief overview of the Epstein Barr virus and its association with Burkitt's lymphoma. ROMANIAN JOURNAL OF MILITARY MEDICINE 2022. [DOI: 10.55453/rjmm.2022.125.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Epstein Barr virus (EBV) is known as an oncovirus and associates with several human malignancies such as Burkitt's lymphoma, other non-Hodgkin lymphomas, nasopharyngeal carcinoma, Hodgkin's disease, gastric adenocarcinoma, etc. in Burkitt's lymphoma, and the key event is the translocation of MYC gene, that increase of cell survival and aberrant expression of MYC gene. The biology of EBV and its function in the development of Burkitt's lymphoma are discussed in this review
Collapse
|
22
|
Rozman M, Korać P, Jambrosic K, Židovec Lepej S. Progress in Prophylactic and Therapeutic EBV Vaccine Development Based on Molecular Characteristics of EBV Target Antigens. Pathogens 2022; 11:pathogens11080864. [PMID: 36014985 PMCID: PMC9414479 DOI: 10.3390/pathogens11080864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Epstein–Barr virus (EBV) was discovered in 1964 in the cell line of Burkitt lymphoma and became first known human oncogenic virus. EBV belongs to the Herpesviridae family, and is present worldwide as it infects 95% of people. Infection with EBV usually happens during childhood when it remains asymptomatic; however, in adults, it can cause an acute infection known as infectious mononucleosis. In addition, EBV can cause wide range of tumors with origins in B lymphocytes, T lymphocytes, and NK cells. Its oncogenicity and wide distribution indicated the need for vaccine development. Research on mice and cultured cells as well as human clinical trials have been in progress for a few decades for both prophylactic and therapeutic EBV vaccines. The main targets of the vaccines are EBV envelope glycoproteins such as gp350 and EBV latent genes. The long wait for the EBV vaccine is due to the complexity of the EBV replication cycle and the wide range of its host cells. Although some strategies such as the use of dendritic cells and recombinant Vaccinia viral vectors have shown success, ongoing clinical trials using mRNA-based vaccines as well as new delivery systems as nanoparticles are yet to show the best choice of vaccine target and its production strategy.
Collapse
Affiliation(s)
- Marija Rozman
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases Zagreb, Zagreb 10000, Croatia;
| | - Petra Korać
- Division of Biology, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia;
| | - Karlo Jambrosic
- Laboratory for Analytical Chemistry and Biogeochemistry of Organic Compounds, Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, Croatia;
| | - Snjezana Židovec Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases Zagreb, Zagreb 10000, Croatia;
- Correspondence:
| |
Collapse
|
23
|
Maple PA, Ascherio A, Cohen JI, Cutter G, Giovannoni G, Shannon-Lowe C, Tanasescu R, Gran B. The Potential for EBV Vaccines to Prevent Multiple Sclerosis. Front Neurol 2022; 13:887794. [PMID: 35812097 PMCID: PMC9263514 DOI: 10.3389/fneur.2022.887794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 01/22/2023] Open
Abstract
There is increasing evidence suggesting that Epstein-Barr virus infection is a causative factor of multiple sclerosis (MS). Epstein-Barr virus (EBV) is a human herpesvirus, Human Gammaherpesvirus 4. EBV infection shows two peaks: firstly, during early childhood and, secondly during the teenage years. Approximately, 90-95% of adults have been infected with EBV and for many this will have been a subclinical event. EBV infection can be associated with significant morbidity and mortality; for example, primary infection in older children or adults is the leading cause of infectious mononucleosis (IM). A disrupted immune response either iatrogenically induced or through genetic defects can result in lymphoproliferative disease. Finally, EBV is oncogenic and is associated with several malignancies. For these reasons, vaccination to prevent the damaging aspects of EBV infection is an attractive intervention. No EBV vaccines have been licensed and the prophylactic vaccine furthest along in clinical trials contains the major virus glycoprotein gp350. In a phase 2 study, the vaccine reduced the rate of IM by 78% but did not prevent EBV infection. An EBV vaccine to prevent IM in adolescence or young adulthood is the most likely population-based vaccine strategy to be tested and adopted. National registry studies will need to be done to track the incidence of MS in EBV-vaccinated and unvaccinated people to see an effect of the vaccine on MS. Assessment of vaccine efficacy with MS being a delayed consequence of EBV infection with the average age of onset being approximately 30 years of age represents multiple challenges.
Collapse
Affiliation(s)
- Peter A. Maple
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham, United Kingdom,Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Alberto Ascherio
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States,Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Jeffrey I. Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gary Cutter
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gavin Giovannoni
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, The University of Birmingham, Birmingham, United Kingdom
| | - Radu Tanasescu
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom,Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom,Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, United Kingdom,*Correspondence: Bruno Gran
| |
Collapse
|
24
|
Attar R, Alatawi EA, Aba Alkhayl FF, Alharbi KN, Allemailem KS, Almatroudi A. Immunoinformatics and Biophysics Approaches to Design a Novel Multi-Epitopes Vaccine Design against Staphylococcus auricularis. Vaccines (Basel) 2022; 10:637. [PMID: 35632394 PMCID: PMC9146471 DOI: 10.3390/vaccines10050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the misuse of antibiotics in our daily lives, antimicrobial resistance (AMR) has become a major health problem. Penicillin, the first antibiotic, was used in the 1930s and led to the emergence of AMR. Due to alterations in the microbe's genome and the evolution of new resistance mechanisms, antibiotics are losing efficacy against microbes. There are high rates of mortality and morbidity due to antibiotic resistance, so addressing this major health issue requires new approaches. Staphylococcus auricularis is a Gram-positive cocci and is capable of causing opportunistic infections and sepsis. S. auricularis is resistant to several antibiotics and does not currently have a licensed vaccine. In this study, we used bacterial pan-genome analysis (BPGA) to study S. auricularis pan-genome and applied a reverse immunology approach to prioritize vaccine targets against S. auricularis. A total of 15,444 core proteins were identified by BPGA analysis, which were then used to identify good vaccine candidates considering potential vaccine filters. Two vaccine candidates were evaluated for epitope prediction including the superoxide dismutase and gamma-glutamyl transferase protein. The epitope prediction phase involved the prediction of a variety of B-Cell and T-cell epitopes, and the epitopes that met certain criteria, such as antigenicity, immunogenicity, non-allergenicity, and non-toxicity were chosen. A multi-epitopes vaccine construct was then constructed from all the predicted epitopes, and a cholera toxin B-subunit adjuvant was also added to increase vaccine antigenicity. Three-dimensional models of the vaccine were used for downward analyses. Using the best-modeled structure, binding potency was tested with MHC-I, MHC-II and TLR-4 immune cells receptors, proving that the vaccine binds strongly with the receptors. Further, molecular dynamics simulations interpreted strong intermolecular binding between the vaccine and receptors and confirmed the vaccine epitopes exposed to the host immune system. The results support that the vaccine candidate may be capable of eliciting a protective immune response against S. auricularis and may be a promising candidate for experimental in vitro and in vivo studies.
Collapse
Affiliation(s)
- Roba Attar
- Department of Biology, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Faris F. Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah 51418, Saudi Arabia
| | - Khloud Nawaf Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
| |
Collapse
|
25
|
Abstract
The complex interplay between host and EBV has made it difficult to elaborate useful vaccines protecting against EBV diseases. It is encouraging to see that EBV vaccine programs have started to incorporate different arms of the immune system. An array of argument calls for a realistic goal for vaccine strategies which should be preventing EBV diseases, rather than EBV infection. EBV is the primary cause of infectious mononucleosis and is associated with epithelial cell carcinomas, as well as lymphoid malignancies. Parallel to this need, one could propose priorities for future research: (i) identification of surrogate predictive markers for the development of EBV diseases (ii) determination of immune correlates of protection in animal models and humans.
Collapse
|
26
|
Dowell AC, Haigh TA, Ryan GB, Turner JE, Long HM, Taylor GS. Cytotoxic CD4+ T-cells specific for EBV capsid antigen BORF1 are maintained in long-term latently infected healthy donors. PLoS Pathog 2021; 17:e1010137. [PMID: 34882759 PMCID: PMC8691624 DOI: 10.1371/journal.ppat.1010137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/21/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Epstein Barr Virus (EBV) infects more than 95% of the population whereupon it establishes a latent infection of B-cells that persists for life under immune control. Primary EBV infection can cause infectious mononucleosis (IM) and long-term viral carriage is associated with several malignancies and certain autoimmune diseases. Current efforts developing EBV prophylactic vaccination have focussed on neutralising antibodies. An alternative strategy, that could enhance the efficacy of such vaccines or be used alone, is to generate T-cell responses capable of recognising and eliminating newly EBV-infected cells before the virus initiates its growth transformation program. T-cell responses against the EBV structural proteins, brought into the newly infected cell by the incoming virion, are prime candidates for such responses. Here we show the structural EBV capsid proteins BcLF1, BDLF1 and BORF1 are frequent targets of T-cell responses in EBV infected people, identify new CD8+ and CD4+ T-cell epitopes and map their HLA restricting alleles. Using T-cell clones we demonstrate that CD4+ but not CD8+ T-cell clones specific for the capsid proteins can recognise newly EBV-infected B-cells and control B-cell outgrowth via cytotoxicity. Using MHC-II tetramers we show a CD4+ T-cell response to an epitope within the BORF1 capsid protein epitope is present during acute EBV infection and in long-term viral carriage. In common with other EBV-specific CD4+ T-cell responses the BORF1-specific CD4+ T-cells in IM patients expressed perforin and granzyme-B. Unexpectedly, perforin and granzyme-B expression was sustained over time even when the donor had entered the long-term infected state. These data further our understanding of EBV structural proteins as targets of T-cell responses and how CD4+ T-cell responses to EBV change from acute disease into convalescence. They also identify new targets for prophylactic EBV vaccine development. Epstein-Barr virus is a widespread herpesvirus carried by most individuals. Whilst infection is usually asymptomatic, development of a prophylactic vaccine against EBV is desirable because of the virus’s association with infectious mononucleosis in primary infection and several cancers and autoimmune diseases during long-term virus carriage. Identifying T-cell responses that can recognise newly infected B-cells at very early stages of infection may provide novel targets for T-cell vaccination. Here we characterise T-cell responses against three virus proteins, BcLF1, BDLF1 and BORF1 that, as structural proteins of the virus particle, are delivered into the cell by the infecting virus. We find that all three proteins are recognised by T-cells from infected individuals. Moreover, isolated structural antigen-specific CD4+ T-cells rapidly recognise newly infected B-cells and prevent their outgrowth in vitro. As reported for CD4+ T-cells against other EBV proteins, structural antigen-specific CD4+ T-cells induced by primary EBV infection have cytotoxic function. However, we also demonstrate that, unusually, this cytotoxic function is retained in memory T-cells present in long-term infected individuals. Structural antigens may therefore represent useful targets for prophylactic EBV vaccine development to induce CD4+ T-cells able to rapidly eliminate virus-infected cells.
Collapse
Affiliation(s)
- Alexander C. Dowell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tracey A. Haigh
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gordon B. Ryan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Claverton Down, Bath, United Kingdom
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Zhu QY, Zhao GX, Li Y, Talakatta G, Mai HQ, Le QT, Young LS, Zeng MS. Advances in pathogenesis and precision medicine for nasopharyngeal carcinoma. MedComm (Beijing) 2021; 2:175-206. [PMID: 34766141 PMCID: PMC8491203 DOI: 10.1002/mco2.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous carcinoma with apparent geographical and racial distribution, mostly prevalent in East and Southeast Asia, particularly concentrated in southern China. The epidemiological trend over the past decades has suggested a substantial reduction in the incidence rate and mortality rate due to NPC. These results may reflect changes in lifestyle and environment, and more importantly, a deeper comprehension of the pathogenic mechanism of NPC, leading to much progress in the preventing, screening, and treating for this cancer. Herein, we present the recent advances on the key signal pathways involved in pathogenesis of NPC, the mechanism of Epstein‐Barr virus (EBV) entry into the cell, and the progress of EBV vaccine and screening biomarkers. We will also discuss in depth the development of various therapeutic approaches including radiotherapy, chemotherapy, surgery, targeted therapy, and immunotherapy. These research advancements have led to a new era of precision medicine in NPC.
Collapse
Affiliation(s)
- Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Girish Talakatta
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Quynh-Thu Le
- Department of Radiation Oncology Stanford California
| | - Lawrence S Young
- Warwick Medical School University of Warwick Coventry United Kingdom
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| |
Collapse
|
28
|
Cai J, Zhang B, Li Y, Zhu W, Akihisa T, Li W, Kikuchi T, Liu W, Feng F, Zhang J. Prophylactic and Therapeutic EBV Vaccines: Major Scientific Obstacles, Historical Progress, and Future Direction. Vaccines (Basel) 2021; 9:vaccines9111290. [PMID: 34835222 PMCID: PMC8623587 DOI: 10.3390/vaccines9111290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is associated with various malignant tumors and immune diseases, imparting a huge disease burden on the human population. Available EBV vaccines are imminent. Prophylactic vaccines can effectively prevent the spread of infection, whereas therapeutic vaccines mainly stimulate cell-mediated immunity and kill infected cells, thus curbing the development of malignant tumors. Nevertheless, there are still no approved EBV vaccines after decades of effort. The complexity of the EBV life cycle, the lack of appropriate animal models, and the limited reports on adjuvant selection and immune responses are gravely impeding progress in EBV vaccines. The soluble gp350 vaccine could reduce the incidence of infectious mononucleosis (IM), which seemed to offer hope, but could not prevent EBV infection. Continuous research and vaccine trials provide deep insights into the structural biology of viruses, the designs for immunogenicity, and the evolving vaccine platforms. Moreover, the new vaccine candidates are expected to achieve further success via combined immunization to elicit both a dual protection of B cells and epithelial cells, and sustainable immunization against infected cells at several phases of infection.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Bodou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Yuqi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Wanfang Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Correspondence:
| |
Collapse
|
29
|
Jean-Pierre V, Lupo J, Buisson M, Morand P, Germi R. Main Targets of Interest for the Development of a Prophylactic or Therapeutic Epstein-Barr Virus Vaccine. Front Microbiol 2021; 12:701611. [PMID: 34239514 PMCID: PMC8258399 DOI: 10.3389/fmicb.2021.701611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV) is one of the most widespread viruses in the world; more than 90% of the planet's adult population is infected. Symptomatic primary infection by this Herpesviridae corresponds to infectious mononucleosis (IM), which is generally a benign disease. While virus persistence is often asymptomatic, it is responsible for 1.5% of cancers worldwide, mainly B cell lymphomas and carcinomas. EBV may also be associated with autoimmune and/or inflammatory diseases. However, no effective treatment or anti-EBV vaccine is currently available. Knowledge of the proteins and mechanisms involved in the different steps of the viral cycle is essential to the development of effective vaccines. The present review describes the main actors in the entry of the virus into B cells and epithelial cells, which are targets of interest in the development of prophylactic vaccines aimed at preventing viral infection. This review also summarizes the first vaccinal approaches tested in humans, all of which are based on the gp350/220 glycoprotein; while they have reduced the risk of IM, they have yet to prevent EBV infection. The main proteins involved in the EBV latency cycle and some of the proteins involved in the lytic cycle have essential roles in the oncogenesis of EBV. For that reason, these proteins are of interest for the development of therapeutic vaccines of which the objective is the stimulation of T cell immunity against EBV-associated cancers. New strategies aimed at broadening the antigenic spectrum, are currently being studied and will contribute to the targeting of the essential steps of the viral cycle, the objective being to prevent or treat the diseases associated with EBV.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| | - Julien Lupo
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| | - Marlyse Buisson
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
- Institut de Biologie Structurale, UMR 5075, CEA, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Patrice Morand
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| | - Raphaële Germi
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| |
Collapse
|
30
|
Sun C, Chen XC, Kang YF, Zeng MS. The Status and Prospects of Epstein-Barr Virus Prophylactic Vaccine Development. Front Immunol 2021; 12:677027. [PMID: 34168649 PMCID: PMC8218244 DOI: 10.3389/fimmu.2021.677027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Epstein–Barr virus (EBV) is a human herpesvirus that is common among the global population, causing an enormous disease burden. EBV can directly cause infectious mononucleosis and is also associated with various malignancies and autoimmune diseases. In order to prevent primary infection and subsequent chronic disease, efforts have been made to develop a prophylactic vaccine against EBV in recent years, but there is still no vaccine in clinical use. The outbreak of the COVID-19 pandemic and the global cooperation in vaccine development against SARS-CoV-2 provide insights for next-generation antiviral vaccine design and opportunities for developing an effective prophylactic EBV vaccine. With improvements in antigen selection, vaccine platforms, formulation and evaluation systems, novel vaccines against EBV are expected to elicit dual protection against infection of both B lymphocytes and epithelial cells. This would provide sustainable immunity against EBV-associated malignancies, finally enabling the control of worldwide EBV infection and management of EBV-associated diseases.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Xin-Chun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Olotu FA, Soliman MES. Immunoinformatics prediction of potential B-cell and T-cell epitopes as effective vaccine candidates for eliciting immunogenic responses against Epstein-Barr virus. Biomed J 2021; 44:317-337. [PMID: 34154948 PMCID: PMC8358216 DOI: 10.1016/j.bj.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ongoing search for viable treatment options to curtail Epstein Barr Virus (EBV) pathogenicity has necessitated a paradigmatic shift towards the design of peptide-based vaccines. Potential B-cell and T-cell epitopes were predicted for nine antigenic EBV proteins that mediate epithelial cell-attachment and spread, capsid self-assembly, DNA replication and processivity. METHODS Predictive algorithms incorporated in the Immune Epitope Database (IEDB) resources were used to determine potential B-cell epitopes based on their physicochemical attributes. These were combined with a string-kernel method and an antigenicity predictive AlgPred tool to enhance accuracy in the end-point selection of highly potential antigenic EBV B-cell epitopes. NetCTL 1.2 algorithms enabled the prediction of probable T-cell epitopes which were structurally modeled and subjected to blind peptide-protein docking with HLA-A*02:01. All-atom molecular dynamics (MD) simulation and Molecular Mechanics Generalized-Born Surface Area methods were used to investigate interaction dynamics and affinities of predicted T-cell peptide-protein complexes. RESULTS Computational predictions and sequence overlapping analysis yielded 18 linear (continuous) and discontinuous (conformational) subunit epitopes from the antigenic proteins with characteristic surface accessibility, flexibility and antigenicity, and predictive scores above the threshold value (1) set. A novel site was identified on HLA-A*02:01 with preferential affinity binding for modeled BMRF2, BXLF1 and BGLF4 T-cell epitopes. Interaction dynamics and energies were also computed in addition to crucial residues that mediated complex formation and stability. CONCLUSION This study implemented an integrative meta-analytical approach to model highly probable B-cell and T-cell epitopes as potential peptide-vaccine candidates for the treatment of EBV-related diseases.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
32
|
Ahmed EH, Brooks E, Sloan S, Schlotter S, Jeney F, Hale C, Mao C, Zhang X, McLaughlin E, Shindiapina P, Shire S, Das M, Prouty A, Lozanski G, Mamuye AT, Abebe T, Alinari L, Caligiuri MA, Baiocchi RA. Targeted Delivery of BZLF1 to DEC205 Drives EBV-Protective Immunity in a Spontaneous Model of EBV-Driven Lymphoproliferative Disease. Vaccines (Basel) 2021; 9:555. [PMID: 34073261 PMCID: PMC8228306 DOI: 10.3390/vaccines9060555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpes virus that infects over 90% of the world's population and is linked to development of cancer. In immune-competent individuals, EBV infection is mitigated by a highly efficient virus-specific memory T-cell response. Risk of EBV-driven cancers increases with immune suppression (IS). EBV-seronegative recipients of solid organ transplants are at high risk of developing post-transplant lymphoproliferative disease (PTLD) due to iatrogenic IS. While reducing the level of IS may improve EBV-specific immunity and regression of PTLD, patients are at high risk for allograft rejection and need for immune-chemotherapy. Strategies to prevent PTLD in this vulnerable patient population represents an unmet need. We have previously shown that BZLF1-specific cytotoxic T-cell (CTL) expansion following reduced IS correlated with immune-mediated PTLD regression and improved patient survival. We have developed a vaccine to bolster EBV-specific immunity to the BZLF1 protein and show that co-culture of dendritic cells (DCs) loaded with a αDEC205-BZLF1 fusion protein with peripheral blood mononuclear cells (PMBCs) leads to expansion and increased cytotoxic activity of central-effector memory CTLs against EBV-transformed B-cells. Human-murine chimeric Hu-PBL-SCID mice were vaccinated with DCs loaded with αDEC205-BZLF1 or control to assess prevention of fatal human EBV lymphoproliferative disease. Despite a profoundly immunosuppressive environment, vaccination with αDEC205-BZLF1 stimulated clonal expansion of antigen-specific T-cells that produced abundant IFNγ and significantly prolonged survival. These results support preclinical and clinical development of vaccine approaches using BZLF1 as an immunogen to harness adaptive cellular responses and prevent PTLD in vulnerable patient populations.
Collapse
Affiliation(s)
- Elshafa Hassan Ahmed
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.)
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Eric Brooks
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Shelby Sloan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.)
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Sarah Schlotter
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Frankie Jeney
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Claire Hale
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Charlene Mao
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Xiaoli Zhang
- Department of Biomedical Informatics/Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA; (X.Z.); (E.M.)
| | - Eric McLaughlin
- Department of Biomedical Informatics/Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA; (X.Z.); (E.M.)
| | - Polina Shindiapina
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Salma Shire
- College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA;
| | - Manjusri Das
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Alexander Prouty
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA;
| | - Admasu T. Mamuye
- Department of Internal Medicine, Black Lion Hospital, Addis Ababa University, Addis Ababa 3614, Ethiopia;
| | - Tamrat Abebe
- Department of Microbiology, Black Lion Hospital, Addis Ababa University, Addis Ababa 3614, Ethiopia;
| | - Lapo Alinari
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Robert A. Baiocchi
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Kolla HB, Tirumalasetty C, Sreerama K, Ayyagari VS. An immunoinformatics approach for the design of a multi-epitope vaccine targeting super antigen TSST-1 of Staphylococcus aureus. J Genet Eng Biotechnol 2021; 19:69. [PMID: 33974183 PMCID: PMC8112219 DOI: 10.1186/s43141-021-00160-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/05/2021] [Indexed: 11/10/2022]
Abstract
Background TSST-1 is a secretory and pyrogenic superantigen that is being responsible for staphylococcal mediated food poisoning and associated clinical manifestations. It is one of the main targets for the construction of vaccine candidates against Staphylococcus aureus. Most of the vaccines have met failure due to adverse reactions and toxicity reported during late clinical studies. To overcome this, an immunoinformatics approach is being used in the present study for the design of a multi-epitope vaccine to circumvent the problems related to toxicity and allergenicity. Results In this study, a multi-epitope vaccine against Staphylococcus aureus targeting TSST-1 was designed through an immunoinformatics approach. B cell and T cell epitopes were predicted in silico and mapped with linkers to avoid junctional immunogenicity and to ensure the efficient presentation of exposed epitopes through HLA. β-defensin and PADRE were adjusted at the N-terminal end of the final vaccine as adjuvants. Physiochemical parameters, antigenicity, and allergenicity of the vaccine construct were determined with the help of online servers. The three-dimensional structure of the vaccine protein was predicted and validated with various tools. The affinity of the vaccine with TLR-3 was studied through molecular docking studies and the interactions of two proteins were visualized using LigPlot+. The vaccine was successfully cloned in silico into pET-28a (+) for efficient expression in E. coli K12 system. Population coverage analysis had shown that the vaccine construct can cover 83.15% of the global population. Immune simulation studies showed an increase in the antibody levels, IL-2, IFN-γ, TGF-β, B cell, and T cell populations and induced primary, secondary, and tertiary immune responses. Conclusion Multi-epitope vaccine designed through a computational approach is a non-allergic and non-toxic antigen. Preliminary in silico reports have shown that this vaccine could elicit both B cell and T cell responses in the host as desired.
Collapse
Affiliation(s)
- Harish Babu Kolla
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur - District, Andhra Pradesh, 522 213, India
| | - Chakradhar Tirumalasetty
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur - District, Andhra Pradesh, 522 213, India
| | - Krupanidhi Sreerama
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur - District, Andhra Pradesh, 522 213, India
| | - Vijaya Sai Ayyagari
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur - District, Andhra Pradesh, 522 213, India.
| |
Collapse
|
34
|
Votaw NL, Collier L, Curvino EJ, Wu Y, Fries CN, Ojeda MT, Collier JH. Randomized peptide assemblies for enhancing immune responses to nanomaterials. Biomaterials 2021; 273:120825. [PMID: 33901731 DOI: 10.1016/j.biomaterials.2021.120825] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials capable of inducing immune responses with minimal associated inflammation are of interest in applications ranging from tissue repair to vaccines. Here we report the design of self-assembling randomized polypeptide nanomaterials inspired by glatiramoids, an immunomodulatory class of linear random copolymers. We hypothesized that peptide self-assemblies bearing similar randomized polypeptides would similarly raise responses skewed toward Type 2 immunity and TH2 T-cell responses, additionally strengthening responses to co-assembled peptide epitopes in the absence of adjuvant. We developed a method for synthesizing self-assembling peptides terminated with libraries of randomized polypeptides (termed KEYA) with good batch-to-batch reproducibility. These peptides formed regular nanofibers and raised strong antibody responses without adjuvants. KEYA modifications dramatically improved uptake of peptide nanofibers in vitro by antigen presenting cells, and served as strong B-cell and T-cell epitopes in vivo, enhancing immune responses against epitopes relevant to influenza and chronic inflammation while inducing a KEYA-specific Type 2/TH2/IL-4 phenotype. KEYA modifications also increased IL-4 production by T cells, extended the residence time of nanofibers, induced no measurable swelling in footpad injections, and decreased overall T cell expansion compared to unmodified nanofibers, further suggesting a TH2 T-cell response with minimal inflammation. Collectively, this work introduces a biomaterial capable of raising strong Type 2/TH2/IL-4 immune responses, with potential applications ranging from vaccination to tissue repair.
Collapse
Affiliation(s)
- Nicole L Votaw
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Lauren Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Elizabeth J Curvino
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Chelsea N Fries
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Madison T Ojeda
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
35
|
A Pentavalent Epstein-Barr Virus-Like Particle Vaccine Elicits High Titers of Neutralizing Antibodies against Epstein-Barr Virus Infection in Immunized Rabbits. Vaccines (Basel) 2020; 8:vaccines8020169. [PMID: 32268575 PMCID: PMC7349562 DOI: 10.3390/vaccines8020169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Primary infection with Epstein-Barr virus (EBV) is associated with acute infectious mononucleosis, whereas persistent infection is associated with chronic diseases such as autoimmune diseases and various types of cancer. Indeed, approximately 2% of all new cancer cases occurring annually worldwide are EBV-associated. Currently, there is no licensed EBV prophylactic vaccine. Selection of appropriate viral protein subunits is critical for development of an effective vaccine. Although the major EBV surface glycoprotein gp350/220 (gp350) has been proposed as an important prophylactic vaccine target, attempts to develop a potent vaccine based on gp350 alone have shown limited success in the clinic. We provide data showing that five EBV glycoproteins (gp350, gB, gp42, gH, and gL) involved in viral entry and infection can successfully be incorporated on the surface of EBV-like particles (EBV-LPs). These EBV-LPs, when administered together with aluminum hydroxide and monophosphoryl lipid A as adjuvants to New Zealand white rabbits, elicited EBV glycoprotein-specific antibodies capable of neutralizing viral infection in vitro in both B cells and epithelial cells, better than soluble gp350 ectodomain. Our findings suggest that a pentavalent EBV-LP formulation might be an ideal candidate for development as a safe and immunogenic EBV vaccine.
Collapse
|
36
|
Cytomegalovirus and Epstein-Barr Virus Associations with Neurological Diseases and the Need for Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8010035. [PMID: 31968673 PMCID: PMC7157723 DOI: 10.3390/vaccines8010035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Herpesviruses have been isolated from a wide range of hosts including humans—for which, nine species have been designated. The human herpesviruses are highly host adapted and possess the capacity for latency, allowing them to survive in the host for life, effectively hidden from the immune system. This ability of human herpesviruses to modulate the host immune response poses particular challenges for vaccine development but at the same time proves attractive for the application of human herpesvirus vaccines to certain spheres of medicine. In this review, congenital cytomegalovirus (CMV) infection and hearing loss will be described followed by a comment on the status of current vaccine development. Secondly, the association of Epstein–Barr virus (EBV) infection with multiple sclerosis (MS) and how EBV vaccination may be of benefit will then be discussed. Prevention of congenital CMV by vaccination is an attractive proposition and several vaccines have been evaluated for potential use. Particularly challenging for the development of CMV vaccines are the needs to prevent primary infection, reinfection, and reactivation at the same time as overcoming the capacity of the virus to generate highly sophisticated immunomodulatory mechanisms. Cost and the practicalities of administering potential vaccines are also significant issues, particularly for low- and middle-income countries, where the burden of disease is greatest. An effective EBV vaccine that could prevent the 200,000 new EBV-associated malignancies which occur globally each year is not currently available. There is increasing interest in developing EBV vaccines to prevent MS and, in view of the association of infectious mononucleosis with MS, reducing childhood infectious mononucleosis is a potential intervention. Currently, there is no licensed EBV vaccine and, in order to progress the development of EBV vaccines for preventing MS, a greater understanding of the association of EBV with MS is required.
Collapse
|
37
|
Abstract
The application of the fields of pharmacogenomics and pharmacogenetics to vaccine design, profoundly combined with bioinformatics, has been recently termed "vaccinomics." The enormous amount of information generated by whole genome sequencing projects and the rise of bioinformatics has triggered the birth of a new era of vaccine research and development, leading to a "third generation" of vaccines, which are based on the application of vaccinomics science to vaccinology. The first example of such an approach is reverse vaccinology. Reverse vaccinology reduces the period of vaccine target detection and evaluation to 1-2 years. This approach targets the genomic sequence and predicts those antigens that are most likely to be vaccine candidates. This approach allows not only the identification of all the antigens obtained by the previous methods but also the discovery of new antigens that work on a totally different paradigm. Hence this method helps in the discovery of novel mechanisms of immune intervention. Epitope-based immune-derived vaccines (IDV) are generally considered to be safe when compared to other vectored or attenuated live vaccines. Epitope-based IDV may also provide essential T-cell help for antibody-directed vaccines. Such vaccines may have a significant advantage over earlier vaccine design approaches, as the cautious assortment of the components may diminish.
Collapse
|
38
|
The promise of a prophylactic Epstein-Barr virus vaccine. Pediatr Res 2020; 87:345-352. [PMID: 31641280 PMCID: PMC8938943 DOI: 10.1038/s41390-019-0591-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/01/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023]
Abstract
The worldwide burden of disease due to Epstein-Barr virus (EBV) infection is enormous. Diseases include endemic Burkitt lymphoma, infectious mononucleosis, cancers after transplantation, Hodgkin lymphoma, and nasopharyngeal carcinoma. A prophylactic EBV vaccine has the potential to significantly reduce the incidence and/or the severity of all these diseases. Infectious mononucleosis can be nasty and prolonged with a median duration of 17 days. Patients, especially children, undergoing bone marrow or solid organ transplantation may develop post-transplant lymphoproliferative disorder (PTLD). Preventing or modifying primary EBV infection could reduce the incidence PTLD, and also certain lymphomas and nasopharyngeal carcinoma. EBV is a major environmental risk factor for multiple sclerosis (MS). Contracting EBV is essential to getting MS, and having a childhood case of infectious mononucleosis increases that risk. Vaccinating against EBV could be vaccinating against MS.
Collapse
|
39
|
Herpes Virus Infections Other than Cytomegalovirus in the Recipients of Hematopoietic Stem Cell Transplantation. Infect Dis Clin North Am 2019; 33:467-484. [PMID: 31005137 DOI: 10.1016/j.idc.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review discusses the epidemiologic and clinical aspects of herpes viruses other than cytomegalovirus in patients who have undergone hematopoietic stem cell transplantation.
Collapse
|
40
|
Lawler C, Simas JP, Stevenson PG. Vaccine protection against murid herpesvirus-4 is maintained when the priming virus lacks known latency genes. Immunol Cell Biol 2019; 98:67-78. [PMID: 31630452 DOI: 10.1111/imcb.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022]
Abstract
γ-Herpesviruses establish latent infections of lymphocytes and drive their proliferation, causing cancers and motivating a search for vaccines. Effective vaccination against murid herpesvirus-4 (MuHV-4)-driven lymphoproliferation by latency-impaired mutant viruses suggests that lytic access to the latency reservoir is a viable target for control. However, the vaccines retained the immunogenic MuHV-4 M2 latency gene. Here, a strong reduction in challenge virus load was maintained when the challenge virus lacked the main latency-associated CD8+ T-cell epitope of M2, or when the vaccine virus lacked M2 entirely. This protection was maintained also when the vaccine virus lacked both episome maintenance and the genomic region encompassing M1, M2, M3, M4 and ORF4. Therefore, protection did not require immunity to known MuHV-4 latency genes. As the remaining vaccine virus genes have clear homologs in human γ-herpesviruses, this approach of deleting viral latency genes could also be applied to them, to generate safe and effective vaccines against human disease.
Collapse
Affiliation(s)
- Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - João Pedro Simas
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.,Royal Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
41
|
Syomin BV, Ilyin YV. Virus-Like Particles as an Instrument of Vaccine Production. Mol Biol 2019; 53:323-334. [PMID: 32214478 PMCID: PMC7088979 DOI: 10.1134/s0026893319030154] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022]
Abstract
The paper discusses the techniques which are currently implemented for vaccine production based on virus-like particles (VLPs). The factors which determine the characteristics of VLP monomers assembly are provided in detail. Analysis of the literature demonstrates that the development of the techniques of VLP production and immobilization of target antigens on their surface have led to the development of universal platforms which make it possible for virtually any known antigen to be exposed on the particle surface in a highly concentrated form. As a result, the focus of attention has shifted from the approaches to VLP production to the development of a precise interface between the organism's immune system and the peptides inducing a strong immune response to pathogens or the organism's own pathological cells. Immunome-specified methods for vaccine design and the prospects of immunoprophylaxis are discussed. Certain examples of vaccines against viral diseases and cancers are considered.
Collapse
Affiliation(s)
- B. V. Syomin
- Institute for Statistical Studies and Economics of Knowledge (ISSEK),
National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Y. V. Ilyin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
42
|
Thakkar N, Bailey-Kellogg C. Balancing sensitivity and specificity in distinguishing TCR groups by CDR sequence similarity. BMC Bioinformatics 2019; 20:241. [PMID: 31092185 PMCID: PMC6521430 DOI: 10.1186/s12859-019-2864-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background Repertoire sequencing is enabling deep explorations into the cellular immune response, including the characterization of commonalities and differences among T cell receptor (TCR) repertoires from different individuals, pathologies, and antigen specificities. In seeking to understand the generality of patterns observed in different groups of TCRs, it is necessary to balance how well each pattern represents the diversity among TCRs from one group (sensitivity) vs. how many TCRs from other groups it also represents (specificity). The variable complementarity determining regions (CDRs), particularly the third CDRs (CDR3s) interact with major histocompatibility complex (MHC)-presented epitopes from putative antigens, and thus encode the determinants of recognition. Results We here systematically characterize the predictive power that can be obtained from CDR3 sequences, using representative, readily interpretable methods for evaluating CDR sequence similarity and then clustering and classifying sequences based on similarity. An initial analysis of CDR3s of known structure, clustered by structural similarity, helps calibrate the limits of sequence diversity among CDRs that might have a common mode of interaction with presented epitopes. Subsequent analyses demonstrate that this same range of sequence similarity strikes a favorable specificity/sensitivity balance in distinguishing twins from non-twins based on overall CDR3 repertoires, classifying CDR3 repertoires by antigen specificity, and distinguishing general pathologies. Conclusion We conclude that within a fairly broad range of sequence similarity, matching CDR3 sequences are likely to share specificities. Electronic supplementary material The online version of this article (10.1186/s12859-019-2864-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neerja Thakkar
- Department of Computer Science, Dartmouth, Hanover, NH, USA
| | | |
Collapse
|
43
|
Dasari V, Sinha D, Neller MA, Smith C, Khanna R. Prophylactic and therapeutic strategies for Epstein-Barr virus-associated diseases: emerging strategies for clinical development. Expert Rev Vaccines 2019; 18:457-474. [PMID: 30987475 DOI: 10.1080/14760584.2019.1605906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Epstein-Barr virus (EBV) infects more than 95% of the world's population and is associated with infectious mononucleosis as well as a number of cancers in various geographical locations. Despite its significant health burden, no licenced prophylactic or therapeutic vaccines are available. Areas covered: Over the last two decades, our understanding of the role of EBV infection in the pathogenesis and immune regulation of EBV-associated diseases has provided new lines of research to conceptualize various novel prophylactic and therapeutic approaches to control EBV-associated disease. In this review, we evaluate the prophylactic and therapeutic vaccine approaches against EBV and various immunotherapeutic strategies against a number of EBV-associated malignancies. This review also describes the existing and future prospects of improved EBV-targeted therapeutic strategies. Expert opinion: It is anticipated that these emerging strategies will provide answers for the major challenges in EBV vaccine development and help improve the efficacy of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vijayendra Dasari
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Debottam Sinha
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Michelle A Neller
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Corey Smith
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Rajiv Khanna
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| |
Collapse
|
44
|
Sharma S, Rouce RH. Are we there yet? The never-ending quest for an Epstein-Barr virus vaccine. J Clin Invest 2019; 129:1836-1838. [PMID: 30985295 DOI: 10.1172/jci128370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Epstein-Barr virus (EBV) is estimated to infect a large part of the population and is associated with a variety of human tumors; therefore, EBV is an important target for vaccine development. In this issue of the JCI, Rühl et al. developed a promising heterologous prime-boost vaccination strategy for EBV-associated malignancies and symptomatic primary infection. The authors show that two prime-boost regimens, using either dendritic cells or an adenovirus approach targeting nuclear antigen EBNA1 followed by a modified vaccinia virus Ankara (MVA) booster, induced significant T cell-mediated, EBV-specific immune control and Ab production. These findings suggest that administration of heterologous prime-boost vaccinations targeting EBNA1 may result in potent CD4+ and CD8+ T cell-mediated EBV immune control and may be a promising clinical approach.
Collapse
|
45
|
Narang P, Dangi M, Sharma D, Khichi A, Chhillar AK. An Integrated Chikungunya Virus Database to Facilitate Therapeutic Analysis: ChkVDb. Curr Bioinform 2019. [DOI: 10.2174/1574893613666181029124848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background:
Chikungunya infection flare-ups have manifested in nations of Africa,
Asia, and Europe including Indian and Pacific seas. It causes fever and different side effects
include muscle torment, migraine, sickness, exhaustion and rash. It has turned into another,
startling general medical issue in numerous tropical African and Asian countries and is presently
being viewed as a genuine risk. No antiviral treatment or vaccine is yet available for this ailment.
The current treatment is centered just on mitigating its side effects.
Objective:
The objective was to encourage the study on this viral pathogen, by the development of
a database dedicated to Chikungunya Virus, that annotates and unifies the related data from
various resources.
associations while known disease-lncRNA associations are required only.
Method:
It undertook a consolidated approach for Chikungunya Virus genomic, proteomic,
phylogenetics and therapeutic learning, involving the entire genome sequences and their
annotation utilizing different in silico tools. Annotation included the information for CpG Island,
usage bias, codon context and phylogenetic analysis at both the genome and proteome levels.
Results:
This database incorporates information of 41 strains of virus causing Chikungunya
infection that can be accessed conveniently as well as downloaded effortlessly. Therapeutics
section of this database contains data about B and T cell Epitopes, siRNAs and miRNAs that can
be used as potential therapeutic targets.
Conclusion:
This database can be explored by specialists and established researchers around the
world to assist their research on this non-treatable virus. It is a public database available from
“www.chkv.in”.</P>
Collapse
Affiliation(s)
- Priya Narang
- Centre for Bioinformatics, M.D. University, Rohtak, India
| | - Mehak Dangi
- Centre for Bioinformatics, M.D. University, Rohtak, India
| | - Deepak Sharma
- Centre for Bioinformatics, M.D. University, Rohtak, India
| | - Alka Khichi
- Centre for Bioinformatics, M.D. University, Rohtak, India
| | | |
Collapse
|
46
|
van Zyl DG, Mautner J, Delecluse HJ. Progress in EBV Vaccines. Front Oncol 2019; 9:104. [PMID: 30859093 PMCID: PMC6398348 DOI: 10.3389/fonc.2019.00104] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/04/2019] [Indexed: 12/26/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous pathogen that imparts a significant burden of disease on the human population. EBV is the primary cause of infectious mononucleosis and is etiologically linked to the development of numerous malignancies. In recent years, evidence has also been amassed that strongly implicate EBV in the development of several autoimmune diseases, including multiple sclerosis. Prophylactic and therapeutic vaccination has been touted as a possible means of preventing EBV infection and controlling EBV-associated diseases. However, despite several decades of research, no licensed EBV vaccine is available. The majority of EBV vaccination studies over the last two decades have focused on the major envelope protein gp350, culminating in a phase II clinical trial that showed soluble gp350 reduced the incidence of IM, although it was unable to protect against EBV infection. Recently, novel vaccine candidates with increased structural complexity and antigenic content have been developed. The ability of next generation vaccines to safeguard against B-cell and epithelial cell infection, as well as to target infected cells during all phases of infection, is likely to decrease the negative impact of EBV infection on the human population.
Collapse
Affiliation(s)
- Dwain G. van Zyl
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Josef Mautner
- German Center for Infection Research (DZIF), Heidelberg, Germany
- Children's Hospital, Technische Universität München, and Helmholtz Zentrum München, Bavaria, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|
47
|
van Zyl DG, Tsai MH, Shumilov A, Schneidt V, Poirey R, Schlehe B, Fluhr H, Mautner J, Delecluse HJ. Immunogenic particles with a broad antigenic spectrum stimulate cytolytic T cells and offer increased protection against EBV infection ex vivo and in mice. PLoS Pathog 2018; 14:e1007464. [PMID: 30521644 PMCID: PMC6298685 DOI: 10.1371/journal.ppat.1007464] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/18/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
The ubiquitous Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and is etiologically linked to the development of several malignancies and autoimmune diseases. EBV has a multifaceted life cycle that comprises virus lytic replication and latency programs. Considering EBV infection holistically, we rationalized that prophylactic EBV vaccines should ideally prime the immune system against lytic and latent proteins. To this end, we generated highly immunogenic particles that contain antigens from both these cycles. In addition to stimulating EBV-specific T cells that recognize lytic or latent proteins, we show that the immunogenic particles enable the ex vivo expansion of cytolytic EBV-specific T cells that efficiently control EBV-infected B cells, preventing their outgrowth. Lastly, we show that immunogenic particles containing the latent protein EBNA1 afford significant protection against wild-type EBV in a humanized mouse model. Vaccines that include antigens which predominate throughout the EBV life cycle are likely to enhance their ability to protect against EBV infection. Human herpesviruses are tremendously successful pathogens that establish lifelong infection in a substantial proportion of the population. The oncogenic γ-herpesvirus EBV, like other herpesviruses, expresses a plethora of open-reading frames throughout its multifaceted life cycle. We have developed a prophylactic vaccine candidate in the form of immunogenic particles that contain several EBV antigens. This is in stark contrast to the vast majority of EBV vaccines candidates that contain only one or two EBV antigens. Our immunogenic particles were shown capable of stimulating several EBV-specific T-cell clones in vitro. The immunogenic particles were also capable of expanding cytolytic EBV-specific T cells ex vivo and provided a protective benefit in vivo when used as a prophylactic vaccine.
Collapse
Affiliation(s)
- Dwain G. van Zyl
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Ming-Han Tsai
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Anatoliy Shumilov
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Viktor Schneidt
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Rémy Poirey
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Bettina Schlehe
- Frauenklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Herbert Fluhr
- Frauenklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Josef Mautner
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Children’s Hospital, Technische Universität München, & Helmholtz Zentrum München, Munich, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- * E-mail:
| |
Collapse
|
48
|
Zhan B, Arumugam S, Kennedy MW, Tricoche N, Lian LY, Asojo OA, Bennuru S, Bottazzi ME, Hotez PJ, Lustigman S, Klei TR. Ligand binding properties of two Brugia malayi fatty acid and retinol (FAR) binding proteins and their vaccine efficacies against challenge infection in gerbils. PLoS Negl Trop Dis 2018; 12:e0006772. [PMID: 30296268 PMCID: PMC6193737 DOI: 10.1371/journal.pntd.0006772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/18/2018] [Accepted: 08/21/2018] [Indexed: 11/19/2022] Open
Abstract
Parasitic nematodes produce an unusual class of fatty acid and retinol (FAR)-binding proteins that may scavenge host fatty acids and retinoids. Two FARs from Brugia malayi (Bm-FAR-1 and Bm-FAR-2) were expressed as recombinant proteins, and their ligand binding, structural characteristics, and immunogenicities examined. Circular dichroism showed that rBm-FAR-1 and rBm-FAR-2 are similarly rich in α-helix structure. Unexpectedly, however, their lipid binding activities were found to be readily differentiated. Both FARs bound retinol and cis-parinaric acid similarly, but, while rBm-FAR-1 induced a dramatic increase in fluorescence emission and blue shift in peak emission by the fluorophore-tagged fatty acid (dansyl-undecanoic acid), rBm-FAR-2 did not. Recombinant forms of the related proteins from Onchocerca volvulus, rOv-FAR-1 and rOv-FAR-2, were found to be similarly distinguishable. This is the first FAR-2 protein from parasitic nematodes that is being characterized. The relative protein abundance of Bm-FAR-1 was higher than Bm-FAR-2 in the lysates of different developmental stages of B. malayi. Both FAR proteins were targets of strong IgG1, IgG3 and IgE antibody in infected individuals and individuals who were classified as endemic normal or putatively immune. In a B. malayi infection model in gerbils, immunization with rBm-FAR-1 and rBm-FAR-2 formulated in a water-in-oil-emulsion (®Montanide-720) or alum elicited high titers of antigen-specific IgG, but only gerbils immunized with rBm-FAR-1 formulated with the former produced a statistically significant reduction in adult worms (68%) following challenge with B. malayi infective larvae. These results suggest that FAR proteins may play important roles in the survival of filarial nematodes in the host, and represent potential candidates for vaccine development against lymphatic filariasis and related filarial infections.
Collapse
Affiliation(s)
- Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Sridhar Arumugam
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States of America
| | - Malcolm W. Kennedy
- Institute of Biodiversity Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, Scotland, UK
| | - Nancy Tricoche
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States of America
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, University of Liverpool, Crown Street, Liverpool, United Kingdom
| | - Oluwatoyin A. Asojo
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States of America
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States of America
| | - Thomas R. Klei
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
49
|
Paci JT, Paci I. The time has come for a Phase 3 trial of an Epstein-Barr virus vaccine. Vaccine 2018; 36:5999-6000. [DOI: 10.1016/j.vaccine.2018.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 11/26/2022]
|
50
|
Gammaherpesvirus Colonization of the Spleen Requires Lytic Replication in B Cells. J Virol 2018; 92:JVI.02199-17. [PMID: 29343572 DOI: 10.1128/jvi.02199-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses infect lymphocytes and cause lymphocytic cancers. Murid herpesvirus-4 (MuHV-4), Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus all infect B cells. Latent infection can spread by B cell recirculation and proliferation, but whether this alone achieves systemic infection is unclear. To test the need of MuHV-4 for lytic infection in B cells, we flanked its essential ORF50 lytic transactivator with loxP sites and then infected mice expressing B cell-specific Cre (CD19-Cre). The floxed virus replicated normally in Cre- mice. In CD19-Cre mice, nasal and lymph node infections were maintained; but there was little splenomegaly, and splenic virus loads remained low. Cre-mediated removal of other essential lytic genes gave a similar phenotype. CD19-Cre spleen infection by intraperitoneal virus was also impaired. Therefore, MuHV-4 had to emerge lytically from B cells to colonize the spleen. An important role for B cell lytic infection in host colonization is consistent with the large CD8+ T cell responses made to gammaherpesvirus lytic antigens during infectious mononucleosis and suggests that vaccine-induced immunity capable of suppressing B cell lytic infection might reduce long-term virus loads.IMPORTANCE Gammaherpesviruses cause B cell cancers. Most models of host colonization derive from cell cultures with continuous, virus-driven B cell proliferation. However, vaccines based on these models have worked poorly. To test whether proliferating B cells suffice for host colonization, we inactivated the capacity of MuHV-4, a gammaherpesvirus of mice, to reemerge from B cells. The modified virus was able to colonize a first wave of B cells in lymph nodes but spread poorly to B cells in secondary sites such as the spleen. Consequently, viral loads remained low. These results were consistent with virus-driven B cell proliferation exploiting normal host pathways and thus having to transfer lytically to new B cells for new proliferation. We conclude that viral lytic infection is a potential target to reduce B cell proliferation.
Collapse
|