1
|
Condon E, Grecco S, Marandino A, Aldaz J, Enciso J, Alfaro L, Bucafusco D, Pérez R, Panzera Y. Development of an accurate and rapid method for whole genome characterization of canine parvovirus. J Virol Methods 2024; 325:114870. [PMID: 38086433 DOI: 10.1016/j.jviromet.2023.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
Canine parvovirus is a highly contagious pathogen affecting domestic dogs and other carnivores globally. Monitoring CPV through continuous genomic surveillance is crucial for mapping variability and developing effective control measures. Here, we developed a method using multiplex-PCR-next-generation sequencing to obtain full-length CPV genomes directly from clinical samples. This approach utilizes tiling and tailed amplicons to amplify overlapping fragments of roughly 250 base pairs. This enables the creation of Illumina libraries by conducting two PCR reaction runs. We tested the assay in 10 fecal samples from dogs diagnosed with CPV and one CPV-2 vaccine strain. Furthermore, we applied it to a feline sample previously diagnosed with the feline panleukopenia virus. The assay provided 100 % genome coverage and high sequencing depth across all 12 samples. It successfully provided the sequence of the coding regions and the left and right non-translated regions, including tandem and terminal repeats. The assay effectively amplified viral variants from divergent evolutionary groups, including the antigenic variants (2a, 2b, and 2c) and the ancestral CPV-2 strain included in vaccine formulations. Moreover, it successfully amplified the entire genome of the feline panleukopenia virus found in cat feces. This method is cost-effective, time-efficient, and does not require lab expertise in Illumina library preparation. The multiplex-PCR-next-generation methodology facilitates large-scale genomic sequencing, expanding the limited number of complete genomes currently available in databases and enabling real-time genomic surveillance. Furthermore, the method helps identify and track emerging CPV viral variants, facilitating molecular epidemiology and control. Adopting this approach can enhance our understanding of the evolution and genetic diversity of Protoparvovirus carnivoran1.
Collapse
Affiliation(s)
- Emma Condon
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Sofía Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Jaime Aldaz
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Estatal de Bolívar, Av. Ernesto Che Guevara s/n, Guaranda, Ecuador
| | - Javier Enciso
- Universidad Científica del Sur, Lima, Perú and Clínica Veterinaria Enciso, Peru
| | - Luis Alfaro
- Universidad Científica del Sur, Lima, Perú and Clínica Veterinaria Enciso, Peru
| | - Danilo Bucafusco
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Argentina
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
2
|
Hu X, Jia C, Wu J, Zhang J, Jiang Z, Ma K. Towards the Antiviral Agents and Nanotechnology-Enabled Approaches Against Parvovirus B19. Front Cell Infect Microbiol 2022; 12:916012. [PMID: 35795188 PMCID: PMC9250997 DOI: 10.3389/fcimb.2022.916012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Parvovirus B19 (B19V) as a human pathogenic virus, would cause a wide range of clinical manifestations. Besides the supportive and symptomatic treatments, the only FDA-approved antiviral drug for the treatment of B19V is intravenous immunoglobulins, which however, have limited efficacy and high cost. By far, there are still no virus-specific therapeutics clinically available to treat B19V infection. Therefore, exploiting the potential targets with a deep understanding of the life cycle of B19V, are pivotal to the development of B19V-tailored effective antiviral approaches. This review will introduce antiviral agents via blocking viral invasion, inhibiting the enzymes or regulatory proteins involved in DNA synthesis, and so on. Moreover, nanotechnology-enabled approaches against B19V will also be outlined and discussed through a multidisciplinary perspective involving virology, nanotechnology, medicine, pharmaceutics, chemistry, materials science, and other fields. Lastly, the prospects of the antiviral agents and nanosystems in terms of fabrication, clinical translation and potential breakthroughs will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianyong Wu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Jiang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kuifen Ma
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Qian Z, Peng Y, Zhi-Juan L, Fei-Fei D, Shun K, Li-Juan L, Jiang S, Zhi-Jing X. Nucleotide sequences of the infectious DNA clones of two mink enteritis virus isolates exhibit the diversity of the terminal palindromic sequences and predicted secondary structures. Virus Res 2021; 305:198574. [PMID: 34555438 DOI: 10.1016/j.virusres.2021.198574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/18/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
In this study, the infectious RF-DNA clones of two mink enteritis viruses, MEV-SD1 and MEV-SD7, were constructed, which generated progeny virions and seemed to contain an almost or completely full-length genome. The genomes of MEV-SD1 and MEV-SD7 were 5162 bp and 5113 bp in length, respectively. The genomic organizations of MEV-SD1 and MEV-SD7 were similar to that of the other carnivore parvoviruses. The 3'-UTR of the virion strand of MEV-SD1 and MEV-SD7 were 311 bp and 313 bp in length, respectively, containing a 208 bp palindromic sequence assuming Y-shaped configurations. Interestingly, the difference of the 3' palindromic sequences between MEV-SD1 and MEV-SD7 resulted in the orientation inversion of the hairpin ears. And the 5'-UTRs of MEV-SD1 and MEV-SD7 were 582 bp and 531 bp, respectively, containing a 198 bp palindromic sequence assuming U-shaped configurations, a triplet mismatch (5'-TAC-3') in the center of the duplex stem and a triplet mismatch (5'-AGA-3') forming a small asymmetric bubble. The findings demonstrated that the genomic termini of the carnivore parvoviruses showed the diversity in length, base composition, and predicted secondary structure.
Collapse
Affiliation(s)
- Zhu Qian
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuan Peng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Li Zhi-Juan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Diao Fei-Fei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Kang Shun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Li Li-Juan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Shijin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xie Zhi-Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
4
|
Naturally-occurring right terminal hairpin mutations in three genotypes of canine parvovirus (CPV-2a, CPV-2b and CPV-2c) have no effect on their growth characteristics. Virus Res 2018; 261:31-36. [PMID: 30557578 DOI: 10.1016/j.virusres.2018.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/20/2022]
Abstract
We have isolated 4 naturally-occurring strains of CPV in mainland China and have identified them as CPV-2, 2a, 2b and 2c genotypes according to their VP2 sequences which also revealed substitutions within their right terminal regions. To determine if these substitutions affected the growth characteristics of the 4 strains, we constructed plasmids based on their genomic sequences minus their right terminal sequences, with the latter replaced by a single right terminal region. Analysis of rescued recombinants showed that the substitutions within their natural right termini had no significant effect on their growth characteristics.
Collapse
|
5
|
Leuchs B, Roscher M, Müller M, Kürschner K, Rommelaere J. Standardized large-scale H-1PV production process with efficient quality and quantity monitoring. J Virol Methods 2015; 229:48-59. [PMID: 26658622 DOI: 10.1016/j.jviromet.2015.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
Abstract
The promising anticancer properties of rodent protoparvoviruses, notably H-1PV, have led to their clinical testing. This makes it necessary to produce highly pure, well-characterized virus batches in sufficient quantity. The present work focused on developing standardized production, purification, and characterization procedures as a basis for exploiting H-1PV both preclinically and in clinical trials for anticancer virotherapy. Two infection and two virus purification strategies were tested and the resulting virus preparations compared for their purity and full-, infectious-, and empty-particle contents. The adopted production process, which involves culturing and infecting NB-324K cells in 10-layer CellSTACK(®) chambers (1×10(3) infectious units per infected cell), is simple, scalable, and reproducible. Downstream processing to eliminate contaminating DNA and protein includes DNAse treatment, filtration, and two Iodixanol density-gradient centrifugations, the first gradient being a step gradient and the second, either a step (1×10(10) PFU/ml) or a continuous gradient (3×10(11) PFU/ml). A procedure was also developed for obtaining infectious particle-free preparations of empty virions for research purposes: cesium chloride density gradient centrifugation followed by UV irradiation (1×10(14) physical particles/ml). For quick, sensitive determination of physical particles (and hence, particle-to-infectivity ratios), a "Capsid-ELISA" was developed, based on a novel monoclonal antibody that specifically targets assembled capsids.
Collapse
Affiliation(s)
- Barbara Leuchs
- German Cancer Research Center (DKFZ), Tumor Virology F010, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Mandy Roscher
- German Cancer Research Center (DKFZ), Tumor Virology F010, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marcus Müller
- German Cancer Research Center (DKFZ), Tumor Virology F010, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kathrin Kürschner
- German Cancer Research Center (DKFZ), Tumor Virology F010, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jean Rommelaere
- German Cancer Research Center (DKFZ), Tumor Virology F010, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Han SC, Guo HC, Sun SQ, Shu L, Wei YQ, Sun DH, Cao SZ, Peng GN, Liu XT. Full-length genomic characterizations of two canine parvoviruses prevalent in Northwest China. Arch Microbiol 2015; 197:621-6. [PMID: 25690604 DOI: 10.1007/s00203-015-1093-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/19/2015] [Accepted: 02/09/2015] [Indexed: 11/27/2022]
Abstract
Canine parvovirus (CPV) can cause acute hemorrhagic diarrhea and fatal myocarditis in young dogs. Currently, most studies have focused on the evolution of the VP2 gene, whereas the full-length genome of CPV has been rarely reported. In this study, the whole genomes of CPV-LZ1 and CPV-LZ2 strains prevalent in Northwest China were determined and analyzed in comparison with those of the reference CPVs. The genome sequences of both LZ strains consisted of 5053 nucleotides. CPV-LZ1 and CPV-LZ2 strains were designated as new CPV-2a and CPV-2b, respectively. Sequence alignment analysis results revealed that these two new strains underwent specific unique variations during the process of local adaption. The left non-translated regions of these strains formed a Y-shaped hairpin structure, whereas the right non-translated regions lacked the reiteration of DNA sequence. A phylogenetic tree constructed from 33 whole coding regions of CPVs showed a strong spatial clustering, and these two strains belonged to the Chinese strain cluster lineage. This study provides a method to obtain the full-length genome of CPV. The isolation and characterization of these viruses adds incrementally to the knowledge of the full-length genome of CPV. The results from this study also provide insight into the molecular epidemiology and genetic diversity of the CPV field isolates from Northwest China and can be useful in preventing and controlling CPV infection in this region.
Collapse
Affiliation(s)
- Shi-Chong Han
- State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Maintenance of the flip sequence orientation of the ears in the parvoviral left-end hairpin is a nonessential consequence of the critical asymmetry in the hairpin stem. J Virol 2012; 86:12187-97. [PMID: 22933276 DOI: 10.1128/jvi.01450-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Parvoviral terminal hairpins are essential for viral DNA amplification but are also implicated in multiple additional steps in the viral life cycle. The palindromes at the two ends of the minute virus of mice (MVM) genome are dissimilar and are processed by different resolution mechanisms that selectively direct encapsidation of predominantly negative-sense progeny genomes and conserve a single Flip sequence orientation at the 3' (left) end of such progeny. The sequence and predicted structure of these 3' hairpins are highly conserved within the genus Parvovirus, exemplified by the 121-nucleotide left-end sequence of MVM, which folds into a Y-shaped hairpin containing small internal palindromes that form the "ears" of the Y. To explore the potential role(s) of this hairpin in the viral life cycle, we constructed infectious clones with the ear sequences either inverted, to give the antiparallel Flop orientation, or with multiple transversions, conserving their base composition but changing their sequence. These were compared with a "bubble" mutant, designed to activate the normally silent origin in the inboard arm of the hairpin, thus potentially rendering symmetric the otherwise asymmetric junction resolution mechanism that drives maintenance of Flip. This mutant exhibited a major defect in viral duplex and single-strand DNA replication, characterized by the accumulation of covalently closed turnaround forms of the left end, and was rapidly supplanted by revertants that restored asymmetry. In contrast, both sequence and orientation changes in the hairpin ears were tolerated, suggesting that maintaining the Flip orientation of these structures is a consequence of, but not the reason for, asymmetric left-end processing.
Collapse
|
8
|
A novel bocavirus associated with acute gastroenteritis in Australian children. PLoS Pathog 2009; 5:e1000391. [PMID: 19381259 PMCID: PMC2663820 DOI: 10.1371/journal.ppat.1000391] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/20/2009] [Indexed: 01/11/2023] Open
Abstract
Acute gastroenteritis (AGE) is a common illness affecting all age groups worldwide, causing an estimated three million deaths annually. Viruses such as rotavirus, adenovirus, and caliciviruses are a major cause of AGE, but in many patients a causal agent cannot be found despite extensive diagnostic testing. Proposing that novel viruses are the reason for this diagnostic gap, we used molecular screening to investigate a cluster of undiagnosed cases that were part of a larger case control study into the etiology of pediatric AGE. Degenerate oligonucleotide primed (DOP) PCR was used to non-specifically amplify viral DNA from fecal specimens. The amplified DNA was then cloned and sequenced for analysis. A novel virus was detected. Elucidation and analysis of the genome indicates it is a member of the Bocavirus genus of the Parvovirinae, 23% variant at the nucleotide level from its closest formally recognized relative, the Human Bocavirus (HBoV), and similar to the very recently proposed second species of Bocavirus (HBoV2). Fecal samples collected from case control pairs during 2001 for the AGE study were tested with a bocavirus-specific PCR, and HBoV2 (sequence confirmed) was detected in 32 of 186 cases with AGE (prevalence 17.2%) compared with only 15 controls (8.1%). In this same group of children, HBoV2 prevalence was exceeded only by rotavirus (39.2%) and astrovirus (21.5%) and was more prevalent than norovirus genogroup 2 (13.4%) and adenovirus (4.8%). In a univariate analysis of the matched pairs (McNemar's Test), the odds ratio for the association of AGE with HBoV2 infection was 2.6 (95% confidence interval 1.2–5.7); P = 0.007. During the course of this screening, a second novel bocavirus was detected which we have designated HBoV species 3 (HBoV3). The prevalence of HBoV3 was low (2.7%), and it was not associated with AGE. HBoV2 and HBoV3 are newly discovered bocaviruses, of which HBoV2 is the thirdmost-prevalent virus, after rotavirus and astrovirus, associated with pediatric AGE in this study. Acute gastroenteritis (AGE) is a common illness affecting all age groups worldwide, causing an estimated three million deaths annually. However, in many patients a causal agent cannot be found despite extensive diagnostic testing. Proposing that novel viruses are the reason for this diagnostic gap, we screened fecal samples from symptomatic children using a molecular degenerate amplification technique and detected the presence of a novel parvovirus, Human Bocavirus species 2 (HBoV2). The genome of HBoV2 is 23% variant from its closest relative, the human bocavirus, a member of the Bocavirus genus of the Parvovirinae. Using specific amplification assays, we then found HBoV2 was the thirdmost-prevalent virus detected in samples from symptomatic children in a case control study of AGE. Further, we found virus presence was associated with symptoms. During this screening, we detected a second related parvovirus, which we have named Human Bocavirus species 3 (HBoV3), but the prevalence was low and not associated with symptoms. The discovery of HBoV2 has reduced the diagnostic gap, but more studies are required to further investigate its role in AGE.
Collapse
|
9
|
Paglino J, Burnett E, Tattersall P. Exploring the contribution of distal P4 promoter elements to the oncoselectivity of Minute Virus of Mice. Virology 2006; 361:174-84. [PMID: 17175002 PMCID: PMC1853334 DOI: 10.1016/j.virol.2006.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 10/13/2006] [Accepted: 11/03/2006] [Indexed: 11/20/2022]
Abstract
Minute Virus of Mice (MVM) shares inherent oncotropic properties with other members of the genus Parvovirus. Two elements responsible, at least in part, for this oncoselectivity have been mapped to an Ets1 binding site adjacent to the P4 TATA box of the initiating promoter, P4, and to a more distal cyclic AMP responsive element (CRE), located within the telomeric hairpin stem. Here the CRE overlaps one half-site for the binding of parvoviral initiation factor (PIF), which is essential for viral DNA replication. We used a degenerate oligonucleotide selection approach to show that CRE binding protein (CREB) selects the sequence ACGTCAC within this context, rather than its more generally accepted palindromic TGACGTCA recognition site. We have developed strategies for manipulating these sequences directly within the left-end palindrome of the MVM infectious clone and used them to clone mutants whose CRE either matches the symmetric consensus sequence or is scrambled, or in which the PIF binding site is incrementally weakened with respect to the CRE. The panel of mutants were tested for fitness relative to wildtype in normal murine fibroblasts A9 or transformed human fibroblasts 324 K, through multiple rounds of growth in co-infected cultures, using a differential real-time quantitative PCR assay. We confirmed that inactivating the CRE substantially abrogates oncoselectivity, but found that improving its fit to the palindromic consensus is somewhat debilitating in either cell type. We also confirmed that reducing the PIF half-site spacing by one basepair enhances oncoselectivity, but found that a further basepair deletion significantly reduces this effect.
Collapse
Affiliation(s)
- Justin Paglino
- Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA
- Graduate Program in Investigative Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA
| | - Erik Burnett
- Department of Laboratory Genetics, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA
| | - Peter Tattersall
- Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA
- Department of Laboratory Genetics, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA
- * Corresponding author. Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 067510, USA. Fax: +1 203 688 7340. E-mail address: (P. Tattersall)
| |
Collapse
|