1
|
Rosenfeld AB, Shen EQL, Melendez M, Mishra N, Lipkin WI, Racaniello VR. Cross-Reactive Antibody Responses against Nonpoliovirus Enteroviruses. mBio 2022; 13:e0366021. [PMID: 35038922 PMCID: PMC8764532 DOI: 10.1128/mbio.03660-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Enteroviruses are among the most common human viral pathogens. Infection with members of a subgroup of viruses within this genus, the nonpoliovirus enteroviruses (NPEVs), can result in a broad spectrum of serious illnesses, including acute flaccid myelitis (AFM), a polio-like childhood paralysis; neonatal sepsis; aseptic meningitis; myocarditis; and hand-foot-mouth disease. Despite the diverse primary sites of virus infection, including the respiratory and alimentary tracts, and an array of diseases associated with these infections, there is significant genetic and antigenic similarity among NPEVs. This conservation results in the induction of cross-reactive antibodies that are either able to bind and neutralize or bind but not neutralize multiple NPEVs. Using plaque reduction and enzyme-linked immunosorbent assay (ELISA)-based binding assays, we define the antigenic relationship among poliovirus and NPEVs, including multiple isolates of EV-D68, EV-A71, EV-D70, EV-94, EV-111, Coxsackievirus A24v, and rhinovirus. The results reveal extensive cross-reactivity among EVs that cannot be predicted from phylogenetic analysis. Determining the immunologic relationship among EVs is critical to understanding the humoral response elicited during homologous and heterologous virus infections. IMPORTANCE Enteroviruses (EVs) are common human pathogens. Although infection with EVs leads to cross-reactive antibodies, the clinical relevance of these antibodies is unclear given the estimated incidence of EV infections in the general population of one per year. The hypothesis that anti-EV cross-reactive antibodies can bind and neutralize heterologous EVs was investigated using polyclonal sera collected from animals immunized with individual EVs. Both binding and neutralization activities against heterologous EVs was observed in these sera, and we speculate that cross-reactive antibodies may modulate infection and disease severity. Defining the antigenic relationship among EVs may provide insights into the epidemiology and pathogenesis of enterovirus infections.
Collapse
Affiliation(s)
- Amy B. Rosenfeld
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Edmund Qian Long Shen
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Michaela Melendez
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Nischay Mishra
- Center for Infection and Immunity, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - W. Ian Lipkin
- Center for Infection and Immunity, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Vincent R. Racaniello
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Saeed M, Kapell S, Hertz NT, Wu X, Bell K, Ashbrook AW, Mark MT, Zebroski HA, Neal ML, Flodström-Tullberg M, MacDonald MR, Aitchison JD, Molina H, Rice CM. Defining the proteolytic landscape during enterovirus infection. PLoS Pathog 2020; 16:e1008927. [PMID: 32997711 PMCID: PMC7549765 DOI: 10.1371/journal.ppat.1008927] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/12/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses cleave cellular proteins to remodel the host proteome. The study of these cleavages has revealed mechanisms of immune evasion, resource exploitation, and pathogenesis. However, the full extent of virus-induced proteolysis in infected cells is unknown, mainly because until recently the technology for a global view of proteolysis within cells was lacking. Here, we report the first comprehensive catalog of proteins cleaved upon enterovirus infection and identify the sites within proteins where the cleavages occur. We employed multiple strategies to confirm protein cleavages and assigned them to one of the two enteroviral proteases. Detailed characterization of one substrate, LSM14A, a p body protein with a role in antiviral immunity, showed that cleavage of this protein disrupts its antiviral function. This study yields a new depth of information about the host interface with a group of viruses that are both important biological tools and significant agents of disease.
Collapse
Affiliation(s)
- Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States of America
| | - Sebastian Kapell
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States of America
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Nicholas T. Hertz
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY, United States of America
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Xianfang Wu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Kierstin Bell
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Milica Tesic Mark
- Proteomics Resource Center, The Rockefeller University, New York, NY, United States of America
| | - Henry A. Zebroski
- Proteomics Resource Center, The Rockefeller University, New York, NY, United States of America
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Malin Flodström-Tullberg
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States of America
- Departments of Pediatrics and Biochemistry, University of Washington, Seattle, WA, United States of America
- Institute for Systems Biology, Seattle, WA, United States of America
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| |
Collapse
|
3
|
Abstract
Enterovirus 70 (EV70) is an emerging viral pathogen that remains viable in final treated effluent. Solar irradiation is, therefore, explored as a low-cost natural disinfection strategy to mitigate potential concerns. EV70 was exposed to simulated sunlight for 24 h at a fluence rate of 28.67 J/cm2/h in three different water matrices, namely, phosphate-buffered saline (PBS), treated wastewater effluent, and chlorinated effluent. In the presence of sunlight, EV70 decreased in infectivity by 1.7 log, 1.0 log, and 1.3 log in PBS, effluent, and chlorinated effluent, respectively. Irradiated EV70 was further introduced to host cell lines and was unable to infect the cell lines. In contrast, EV70 in dark microcosms replicated to titers 13.5, 3.3, and 4.2 times the initial inoculum. The reduction in EV70 infectivity was accompanied by a reduction in viral binding capacity to Vero cells. In addition, genome sequencing analysis revealed five nonsynonymous nucleotide substitutions in irradiated viruses after 10 days of infection in Vero cells, resulting in amino acid substitutions: Lys14Glu in the VP4 protein, Ala201Val in VP2, Gly71Ser in VP3, Glu50Gln in VP1, and Ile47Leu in 3Cpro. Overall, solar irradiation resulted in EV70 inactivation and an inhibition of viral activity in all parameters studied.
Collapse
|
4
|
Smura T, Natri O, Ylipaasto P, Hellman M, Al-Hello H, Piemonti L, Roivainen M. Enterovirus strain and type-specific differences in growth kinetics and virus-induced cell destruction in human pancreatic duct epithelial HPDE cells. Virus Res 2015; 210:188-97. [DOI: 10.1016/j.virusres.2015.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
|
5
|
Sialic acid-dependent cell entry of human enterovirus D68. Nat Commun 2015; 6:8865. [PMID: 26563423 PMCID: PMC4660200 DOI: 10.1038/ncomms9865] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/09/2015] [Indexed: 01/30/2023] Open
Abstract
Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon' on the virus surface. The sialic acid receptor induces a cascade of conformational changes in the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Thus, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry. The human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory infections, but despite its prevalence the exact mechanism mediating its cell entry have not been fully established. Here, the authors show how EV-D68 binds to sialic acid on the cell surface to initiate infection.
Collapse
|
6
|
Paananen A, Ylipaasto P, Smura T, Lempinen M, Galama J, Roivainen M. A single amino acid substitution in viral VP1 protein alters the lytic potential of clone-derived variants of echovirus 9 DM strain in human pancreatic islets. J Med Virol 2013; 85:1267-73. [PMID: 23595636 DOI: 10.1002/jmv.23574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 12/15/2022]
Abstract
In vitro studies with primary human pancreatic islets suggest that several enterovirus serotypes are able to infect and replicate in beta cells. Some enterovirus strains are highly cytolytic in vitro whereas others show virus replication with no apparent islet destruction. The capability to induce islet destruction is determined only partially by the virus serotype, since strain specific differences have been detected within some serotypes including echovirus 9 (E-9). In this study, the viral genetic factors determining the outcome of islet infection (i.e., destructive vs. benign) were investigated by constructing parallel infectious clones of lytic E-9-DM strain that was isolated from a small child at the clinical onset of type 1 diabetes. The capabilities of these clone-derived viruses to induce islet destruction were monitored and the lytic potential of clones was modified by site-directed mutagenesis. The lytic capabilities of these clone-derived viruses in human pancreatic islets were modified by a single amino acid substitution (T81A) in the capsid protein VP1. The data presented outline the importance of amino acid point mutations in the pathogenetic process leading to islet necrosis. However, although the amino acid substitution (T81A) modifies the lytic capabilities of E-9-DM strain-derived microvariant strains, it is likely that additional viral genetic determinants of pancreatic islet pathogenicity exist in other E-9 strains.
Collapse
Affiliation(s)
- A Paananen
- Intestinal Viruses Unit, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
7
|
The crystal structure of a coxsackievirus B3-RD variant and a refined 9-angstrom cryo-electron microscopy reconstruction of the virus complexed with decay-accelerating factor (DAF) provide a new footprint of DAF on the virus surface. J Virol 2012; 86:12571-81. [PMID: 22973031 DOI: 10.1128/jvi.01592-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coxsackievirus-adenovirus receptor (CAR) and decay-accelerating factor (DAF) have been identified as cellular receptors for coxsackievirus B3 (CVB3). The first described DAF-binding isolate was obtained during passage of the prototype strain, Nancy, on rhabdomyosarcoma (RD) cells, which express DAF but very little CAR. Here, the structure of the resulting variant, CVB3-RD, has been solved by X-ray crystallography to 2.74 Å, and a cryo-electron microscopy reconstruction of CVB3-RD complexed with DAF has been refined to 9.0 Å. This new high-resolution structure permits us to correct an error in our previous view of DAF-virus interactions, providing a new footprint of DAF that bridges two adjacent protomers. The contact sites between the virus and DAF clearly encompass CVB3-RD residues recently shown to be required for binding to DAF; these residues interact with DAF short consensus repeat 2 (SCR2), which is known to be essential for virus binding. Based on the new structure, the mode of the DAF interaction with CVB3 differs significantly from the mode reported previously for DAF binding to echoviruses.
Collapse
|
8
|
Abstract
Several new enterovirus serotypes and a new human rhinovirus species have been characterized in the Enterovirus genus recently, raising a question about the origin of the new viruses. In this article we attempt to outline the general patterns of enterovirus evolution, ultimately leading to the emergence of new serotypes or species. Different evolutionary and epidemiological patterns can be deduced between different enterovirus species, between entero- and rhino-viruses and between different serotypes within a species. This article presents a hypothesis that the divergent evolution leading to a new serotype is likely to involve adaptation to a new ecological niche either within a single host species or due to interspecies transmission. By contrast, evolution within a serotype appears to occur primarily by genetic drift.
Collapse
Affiliation(s)
| | - Carita Savolainen-Kopra
- National Institute for Health and Welfare (THL), Division of Health Protection, Department of Infectious Disease Surveillance & Control, Intestinal Viruses Unit, P.O. Box 30, FI-00271 Helsinki, Finland; National Institute for Health & Welfare (THL), PO Box 30, FI-00271 Helsinki, Finland
| | - Merja Roivainen
- National Institute for Health and Welfare (THL), Division of Health Protection, Department of Infectious Disease Surveillance & Control, Intestinal Viruses Unit, P.O. Box 30, FI-00271 Helsinki, Finland; National Institute for Health & Welfare (THL), PO Box 30, FI-00271 Helsinki, Finland
| |
Collapse
|
9
|
Identification of amino acid residues of Ljungan virus VP0 and VP1 associated with cytolytic replication in cultured cells. Arch Virol 2009; 154:1271-84. [DOI: 10.1007/s00705-009-0417-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 05/29/2009] [Indexed: 12/18/2022]
|
10
|
Morrison JM, Racaniello VR. Proteinase 2Apro is essential for enterovirus replication in type I interferon-treated cells. J Virol 2009; 83:4412-22. [PMID: 19211759 PMCID: PMC2668472 DOI: 10.1128/jvi.02177-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 02/03/2009] [Indexed: 12/24/2022] Open
Abstract
The Picornaviridae family comprises a diverse group of small RNA viruses that cause a variety of human and animal diseases. Some of these viruses are known to induce cleavage of components of the innate immune system and to inhibit steps in the interferon pathway that lead to the production of type I interferon. There has been no study of the effect of picornaviral infection on the events that occur after interferons have been produced. To determine whether members of the Enterovirus genus can antagonize the antiviral activity of interferon-stimulated genes (ISGs), we pretreated cells with alpha interferon (IFN-alpha) and then infected the cells with poliovirus type 1, 2, or 3; enterovirus type 70; or human rhinovirus type 16. We found that these viruses were able to replicate in IFN-alpha-pretreated cells but that replication of vesicular stomatitis virus, a Rhabdovirus, and encephalomyocarditis virus (EMCV), a picornavirus of the Cardiovirus genus, was completely inhibited. Although EMCV is sensitive to IFN-alpha, coinfection of cells with poliovirus and EMCV leads to EMCV replication in IFN-alpha-pretreated cells. The enteroviral 2A proteinase (2A(pro)) is essential for replication in cells pretreated with interferon, because amino acid changes in this protein render poliovirus sensitive to IFN-alpha. The addition of the poliovirus 2A(pro) gene to the EMCV genome allowed EMCV to replicate in IFN-alpha-pretreated cells. These results support an inhibitory role for 2A(pro) in the most downstream event in interferon signaling, the antiviral activities of ISGs.
Collapse
Affiliation(s)
- Juliet M Morrison
- Department of Microbiology, Columbia University College of Physicians, New York, NY 10032, USA.
| | | |
Collapse
|
11
|
Guy M, Chilmonczyk S, Crucière C, Eloit M, Bakkali-Kassimi L. Efficient infection of buffalo rat liver-resistant cells by encephalomyocarditis virus requires binding to cell surface sialic acids. J Gen Virol 2009; 90:187-96. [PMID: 19088288 DOI: 10.1099/vir.0.004655-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In contrast to the production of virus and cell lysis seen in baby hamster kidney cells (BHK-21) infected with the strain 1086C of encephalomyocarditis virus (EMCV), in buffalo rat liver cells (BRL) neither virus replication nor cytopathic effects were observed. After 29 passages in BRL cells, each alternating with boosts of the recovered virus in BHK-21 cells, the virus acquired the ability to replicate effectively in BRL cells, attaining virus titres comparable to those in BHK-21 cells and producing complete cell destruction. The binding of virus on BRL cells was increased after adaptation and was similar to that observed on BHK-21 cells. Treatment of BRL cells with sialidase resulted in an 87 % reduction in virus binding and inhibition of infection. Sequence analyses revealed three mutations in the VP1 amino acid sequence of the adapted virus at positions 49 (Lys-->Glu), 142 (Leu-->Phe) and 180 (Ile-->Ala). The residue 49 is exposed at the surface of the capsid and is known to be part of a neutralization epitope. These results suggest that the adaptation of EMCV to BRL cells may have occurred through a mutation in a neutralizing site that confers to the virus a capacity to interact with cell surface sialic acid residues. Taken together, these data suggest a link between virus neutralization site, receptor binding and cell permissivity to infection.
Collapse
Affiliation(s)
- Monique Guy
- UMR 1161 INRA, AFSSA, ENVA, Ecole Nationale Vétérinaire, 7 Avenue Général de Gaulle, 94704 Maisons-Alfort Cedex, France
| | | | | | | | | |
Collapse
|
12
|
Bibliography. Current world literature. Genetics and epidemiology. Curr Opin Allergy Clin Immunol 2008; 8:489-93. [PMID: 18769207 DOI: 10.1097/aci.0b013e32830f1c83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Role of class I human leukocyte antigen molecules in early steps of echovirus infection of rhabdomyosarcoma cells. Virology 2008; 381:203-14. [PMID: 18823925 DOI: 10.1016/j.virol.2008.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/23/2008] [Accepted: 08/04/2008] [Indexed: 11/20/2022]
Abstract
Several echoviruses use decay accelerating factor (DAF) as a cell surface receptor. However, most of them require additional cell surface coreceptors. We investigated the respective roles of DAF and class I human leukocyte antigen (HLA) molecules in the early steps of the echovirus 11 (EV11) lifecycle in rhabdomyosarcoma (RD) cells. EV11 infection was inhibited at an early stage by anti-beta2-microglobulin (beta2m) and anti-HLA monoclonal antibodies and by a soluble monochain HLA class I molecule. Expression of class I HLA molecules restored the early steps of the EV11 lifecycle, but its expression was not sufficient for EV11 replication and particle production. Expression of HLA class I molecules was associated with leukocyte cell line permissiveness to EV11 infection. In conclusion, HLA class I molecules are involved in the early steps of EV11 infection of RD cells and appear to participate in a complex interplay of surface molecules acting as coreceptors, including DAF.
Collapse
|