1
|
Wang YG, Liu AQ, Khan Y, Zhang Y, Wang CC, Song YL, Du JH, Sima YH, Qiu JF, Xu SQ. The JNK signalling pathway gene BmJun is involved in the regulation of egg quality and production in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2025; 34:335-346. [PMID: 39539200 DOI: 10.1111/imb.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The Jun N-terminal kinase (JNK) signalling pathway has a key role in tissue remodelling during insect metamorphosis by regulating programmed cell death. However, multiple members of the JNK pathway in Lepidoptera remain uncharacterized. In this study, two key genes of the JNK pathway, BmJun and BmFos, were cloned from the silkworm Bombyx mori, a lepidopteran model insect, and their effects on reproductive development were investigated. BmJun and BmFos encode 239 and 380 amino acids, respectively. Both proteins have typical basic leucine zipper domains and form a BmJUN-BmFOS dimer activator protein to exert transcriptional regulation. During the wandering stage of silkworm development, interference in BmJun expression had no effect on pupation, whereas B. mori vitellogenin (BmVg) expression, which is essential for egg development, was suppressed in the fat body and egg laying was significantly reduced. Additionally, numerous eggs appeared shrivelled and deformed, suggesting that they were nutritionally stunted. Inhibition of the JNK pathway caused abnormal pupal metamorphosis, an increase in shrivelled, unfertilized eggs, a decrease in fat body synthesis, and accumulation of BmVg in the ovaries of female B. mori. The results indicated that BmJUN and BmFOS can form an AP-1 dimer. Interfering with BmJun or inhibiting the phosphorylation of BmJUN leads to a reduction in the synthesis of BmVg in the fat body and its accumulation in the ovaries, thereby affecting the quality and production of the progeny eggs. These findings suggest that regulating Jun in the JNK pathway could be a potential way to inhibit female reproduction in Lepidoptera.
Collapse
Affiliation(s)
- Yu-Guo Wang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - An-Qi Liu
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yasir Khan
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yi Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Chen-Chen Wang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yao-Le Song
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jiang-Han Du
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yang-Hu Sima
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jian-Feng Qiu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Shi-Qing Xu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| |
Collapse
|
2
|
Lin H, Yao R, Wei S, Zhang W, Wang H, Wei B, Ye Y, Liao Z, Yan X, Wang W, Guo B. Physiological analysis and transcriptome sequencing revealed that HSPA1 was involved in response to heat stress in thick-shell mussels, Mytilus coruscus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101449. [PMID: 40056693 DOI: 10.1016/j.cbd.2025.101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/19/2025] [Accepted: 02/16/2025] [Indexed: 03/10/2025]
Abstract
Mytilus coruscus, being sensitive to temperature variations, has developed a protective mechanism against heat stress through the upregulation of genes encoding heat shock proteins. Past research indicates that exposure to heat stress can activate HSPA1 expression for protection, yet the underlying regulatory mechanisms governing this response are not fully clear. Therefore, the emphasis of this study lies on regulating the expression of HSPA1 in mussels under high temperature stress. This study showed that high temperature could cause tissue damage and induce apoptosis in M. coruscus. Overexpression of HSPA1 at high temperature can mitigate damage. Enzyme activity assays also found that after the overexpression of HSPA1 at high temperature, the enzyme activity of SOD, CAT and GSH-PX increased to cope with the stimulation brought by high temperature, which suggests that the HSPA1 gene plays a critical role in the antioxidant response. Transcriptome analysis showed that under high-temperature stress, key genes including HSPA1S, HSP90, HSPA5, DnaJA1, and JUN showed increased expression in HSPA1-knockdown treatments, with differential gene expression enriched in pathways associated with MAPK signaling, endoplasmic reticulum protein processing, TNF signaling, apoptosis, and cell apoptosis pathways. Based on this, we suggested that M. coruscus may counteract damage induced by high-temperature stress via the above key genes and biology processes, highlighting the crucial role of HSPA1 in mitigating cell damage and apoptosis due to high temperature. Overall, our results revealed HSPA1 regulatory relationship in M. coruscus treated with high temperature, and provided new insights for the conservation and environmental adaptive evolution of bivalve species.
Collapse
Affiliation(s)
- Huajian Lin
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Ronghui Yao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Sisi Wei
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Wanliang Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hao Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Bingqi Wei
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yingying Ye
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhi Liao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiaojun Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China; National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Weifeng Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Baoying Guo
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China; National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
3
|
Kokusho R, Katsuma S. Baculoviruses remodel the cytoskeleton of insect hemocytes to breach the host basal lamina. Commun Biol 2025; 8:268. [PMID: 40011612 DOI: 10.1038/s42003-025-07579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Many pathogens and endosymbionts hijack the host's cytoskeleton for efficient propagation and transfer within or between host cells. Once released into the host's circulatory system, however, they have to confront structural barriers without utilizing host cell functions. Many insect viruses and insect-borne viruses can re-enter from the hemolymph into insect tissues despite the barrier of the basal lamina (BL), but the molecular mechanism remains unclear in many cases. Here, we demonstrate that Bombyx mori nucleopolyhedrovirus (BmNPV) remodels host hemocytes to breach the BL. We found that the viral membrane protein actin rearrangement-inducing factor 1 (ARIF-1) induces filopodia-like protrusions and invadosome-like structures in hemocytes, which play a critical role in attaching to the tissue surface, penetrating the tracheal BL and thus facilitating the transport of viral nucleocapsids into host tissues. Our findings clearly show the role of hemocyte infection in viral systemic spread and its molecular basis.
Collapse
Affiliation(s)
- Ryuhei Kokusho
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Tao W, Xu W, Li X, Zhang X, Li C, Guo M. Characterization of c-Jun N-terminal kinase (JNK) gene reveals involvement of immune defense against Vibrio splendidus infection in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109804. [PMID: 39102970 DOI: 10.1016/j.fsi.2024.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The c-Jun N-terminal kinase (JNK) constitutes an evolutionarily conserved family of serine/threonine protein kinases, pivotal in regulating various physiological processes in vertebrates, encompassing apoptosis and antibacterial immunity. Nevertheless, the involvement of JNK in the innate immune response remains largely unexplored in pathogen-induced echinoderms. We isolated and characterized the JNK gene from Apostichopus japonicus (AjJNK) in our investigation. The full-length cDNA sequences of AjJNK spanned 1806 bp, comprising a 1299 bp open reading frame (ORF) encoding 432 amino acids, a 274 bp 5'-untranslated region (UTR), and a 233 bp 3'-UTR. Structural analysis revealed the presence of a classical S_TKc domain (37-335 amino acids) within AjJNK and contains several putative immune-related transcription factor-binding sites, including Elk-1, NF-κB, AP-1, and STAT5. Spatial expression analysis indicated ubiquitous expression of AjJNK across all examined tissues, with the highest expression noted in coelomocytes. The mRNA, protein, and phosphorylation levels of AjJNK were obviously induced in coelomocytes upon V. splendidus challenge and lipopolysaccharide stimulation. Immunofluorescence analysis demonstrated predominant cytoplasmic localization of AjJNK in coelomocytes with subsequent nuclear translocation following the V. splendidus challenge in vivo. Moreover, siRNA-mediated knockdown of AjJNK led to a significant increase in intracellular bacterial load, as well as elevated levels of Ajcaspase 3 and coelomocyte apoptosis post V. splendidus infection. Furthermore, the phosphorylation levels of AjJNK inhibited by its specific inhibitor SP600125 and also significantly suppressed the expression of Ajcaspase 3 and coelomocyte apoptosis during pathogen infection. Collectively, these data underscored the pivotal role of AjJNK in immune defense, specifically in the regulation of coelomocyte apoptosis in V. splendidus-challenged A. japonicus.
Collapse
Affiliation(s)
- Wenjun Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Weijia Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xiumei Zhang
- Yantai Marine Economic Research Institute, Yantai, 265503, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
5
|
Huang DY, Qin JS, Dong RK, Liu SN, Chen N, Yuan DW, Li S, Wang Z, Xia X. Ben-JNK signaling is required for host mortality during Periplaneta fuliginosa densovirus infection. PEST MANAGEMENT SCIENCE 2024; 80:4495-4504. [PMID: 38676657 DOI: 10.1002/ps.8154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Cockroaches are widely acknowledged as significant vectors of pathogenic microorganisms. The Periplaneta fuliginosa densovirus (PfDNV) infects the smoky-brown cockroach P. fuliginosa and causes host mortality, which identifies the PfDNV as a species-specific and environmentally friendly biopesticide. However, although the biochemical characterization of PfDNV has been extensively studied, the immune response against PfDNV remains largely unclear. RESULTS Here, we investigated the replication of PfDNV and its associated pathological phenotype in the foregut and hindgut. Consequently, we dissected and performed transcriptome sequencing on the foregut, midgut, and hindgut separately. We revealed the up-regulation of immune response signaling pathway c-Jun N-terminal kinase (JNK) and apoptosis in response to viral infection. Furthermore, knockdown of the JNK upstream gene Ben resulted in a decrease in virus titer and delayed host mortality. CONCLUSION Taken together, our findings provide evidence that the Ben-JNK signaling plays a crucial role in PfDNV infection, leading to excessive apoptosis in intestinal tissues and ultimately resulting in the death of the host. Our results indicated that the host response to PfDNV fosters viral infection, thereby increasing host lethality. This underscores the potential of PfDNV as a viable, environmentally friendly biopesticide. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan-Yan Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jia-Si Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ren-Ke Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Su-Ning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Zhaowei Wang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Xiaoling Xia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Katsuma S, Matsuda-Imai N. Codon Optimization-based Whole-gene Scanning Identifies Hidden Nucleotides Essential for Bombyx mori Nucleopolyhedrovirus polyhedrin Hyperexpression. J Mol Biol 2024; 436:168595. [PMID: 38724003 DOI: 10.1016/j.jmb.2024.168595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
During the late stage of infection, alphabaculoviruses produce many occlusion bodies (OBs) in the nuclei of the insect host's cells through the hyperexpression of polyhedrin (POLH), a major OB component encoded by polh. The strong polh promoter has been used to develop a baculovirus expression vector system for recombinant protein expression in cultured insect cells and larvae. However, the relationship between POLH accumulation and the polh coding sequence remains largely unelucidated. This study aimed to assess the importance of polh codon usage and/or nucleotide sequences in POLH accumulation by generating a baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) expressing mutant polh (co-polh) optimized according to the codon preference of its host insect. Although the deduced amino acid sequence of CO-POLH was the same as that of wild-type POLH, POLH accumulation was significantly lower in cells infected with the co-polh mutant. This reduction was due to decreased polh mRNA levels rather than translational repression. Analysis of mutant viruses with chimeric polh revealed that a 30 base-pair (bp) 5' proximal polh coding region was necessary for maintaining high polh mRNA levels. Sequence comparison of wild-type polh and co-polh identified five nucleotide differences in this region, indicating that these nucleotides were critical for polh hyperexpression. Furthermore, luciferase reporter assays showed that the 30 bp 5' coding region was sufficient for maintaining the polh promoter-driven high level of polh mRNA. Thus, our whole-gene scanning by codon optimization identified important hidden nucleotides for polh hyperexpression in alphabaculoviruses.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Noriko Matsuda-Imai
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Shahmohammadi N, Esmaeily M, Abdisa E, Mandal E, Kim Y. Enhanced baculoviral virulence by suppressing the degradation of an insect immune resolvin, epoxyoctadecamonoenoic acid, in three lepidopteran insects. J Invertebr Pathol 2024; 204:108095. [PMID: 38499284 DOI: 10.1016/j.jip.2024.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
Epoxyoctadecamonoenoic acids (EpOMEs) are produced from linoleic acid by a cytochrome P450 monooxygenase (CYP) and play a crucial role in terminating excessive and unnecessary immune responses during the late infection stage in insects. This suggests that an increase in the EpOME level may enhance the virulence of insect pathogens against pests. This study tested this hypothesis using a specific inhibitor against soluble epoxide hydrolase (sEH) to degrade EpOMEs, which leads to elevated endogenous EpOME levels. A baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), was used to infect three different lepidopteran insects (Spodoptera exigua, Maruca vitrata, and Plutella xylostella) by oral feeding or hemocoelic injection treatments. Within one hour, the viral infection induced the expression of three different phospholipase A2 (PLA2) genes and, after 12 h, up-regulated the expressions of CYP and sEH genes in Spodopera exigua. As expected, AcMNPV virulence was suppressed by the addition of arachidonic acid (a catalytic product of PLA2) but was enhanced by the addition of either of the EpOME regioisomers. In addition, treatment with a specific sEH inhibitor (AUDA) increased AcMNPV virulence against three different lepidopteran insects, presumably by increasing endogenous EpOME levels. This enhanced effect of EpOMEs on virulence was further supported by specific RNA interference (RNAi), in which RNAi specific to CYP expression decreased AcMNPV virulence while a specific RNAi against sEH expression significantly enhanced virulence. In response to AcMNPV infection, TUNEL assay results showed that S. exigua larvae exhibited apoptosis in the midgut, fat body, and epidermis. Inhibition of apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, significantly increased virulence. Similarly, the addition of AUDA to the viral treatment suppressed the gene expression of five inducible caspases and cytochrome C to suppress apoptosis, which led to a significant increase in the tissue viral titers. These results indicate that EpOMEs play a role in terminating excessive and unnecessary immune responses against viral infection during the late stage by down-regulating antiviral apoptosis in lepidopteran insects.
Collapse
Affiliation(s)
| | - Mojtaba Esmaeily
- Department of Plant Medicals, Andong National University, Andong, 36720, Korea
| | - Eticha Abdisa
- Department of Plant Medicals, Andong National University, Andong, 36720, Korea
| | - Eeshita Mandal
- Department of Plant Medicals, Andong National University, Andong, 36720, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36720, Korea.
| |
Collapse
|
8
|
Tang M, Liu Y, Zhang H, Sun L, Lü P, Chen K. Comprehensive transcriptome sequencing of silkworm Midguts: Uncovering extensive isoform diversity and alternative splicing in BmNPV-Sensitive and BmNPV-resistant strains. J Invertebr Pathol 2024; 204:108104. [PMID: 38608751 DOI: 10.1016/j.jip.2024.108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The silkworm, Bombyx mori, stands out as one of the few economically valuable insects within the realm of model organisms. However, Bombyx mori nucleopolyhedrovirus (BmNPV) poses a significant threat, decreasing the quality and quantity of silkworm cocoons. Over the past few decades, a multitude of researchers has delved into the mechanisms that underlie silkworm resistance to BmNPV, employing diverse methodologies and approaching the problem from various angles. Despite this extensive research, the role of alternative splicing (AS) in the silkworm's response to BmNPV infection has been largely unexplored. This study leveraged both third-generation (Oxford Nanopore Technologies) and second-generation (Illumina) high-throughput sequencing technologies to meticulously identify and analyze AS patterns in the context of BmNPV response, utilizing two distinct silkworm strains-the susceptible strain 306 and the resistant strain NB. Consequently, we identified five crucial genes (Dsclp, LOC692903, LOC101743583, LOC101742498, LOC101743809) that are linked to the response to BmNPV infection through AS and differential expression. Additionally, a thorough comparative analysis was conducted on their diverse transcriptomic expression profiles, including alternative polyadenylation, simple sequence repeats, and transcription factors.
Collapse
Affiliation(s)
- Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
9
|
Yu L, Ling C, Li Y, Guo H, Xu A, Qian H, Li G. The Bombyx mori G protein β subunit 1 (BmGNβ1) gene inhibits BmNPV infection. J Invertebr Pathol 2024; 204:108097. [PMID: 38537687 DOI: 10.1016/j.jip.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
G protein β subunit 1 (GNβ1) has several functions, including cell growth regulation, the control of second messenger levels, and ion channel switching. Previous transcriptome analyses in our laboratory have shown that BmGNβ1 transcription is reduced following infection with Bombyx mori nucleopolyhedrovirus (BmNPV), but it is unknown what role this gene may have in the host response to BmNPV infection. In this study, the BmGNβ1 gene was cloned using the RACE method. After BmNPV infection, BmGNβ1 was downregulated in Baiyu strains in tissues such as the hemolymph and midgut. Indirect immunofluorescence showed that BmGNβ1 was localized to the cytoplasm. We further constructed a BmGNβ1-pIZ/V5-His-mCherry overexpression plasmid and designed siRNA to evaluate the role of BmGNβ1 in host response to infection. The results showed that BmGNβ1 overexpression inhibited BmNPV proliferation, while knockdown of BmGNβ1 was correlated with increased BmNPV proliferation. The siRNA-mediated reduction of BmGNβ1 was correlated with an increase in BmNPV infection of BmN cells, increased BmNPV vp39 transcription, and reduced survival time of BmNPV-infected B. mori. Overexpression of BmGNβ1 in BmN cells was also correlated with apoptosis and a modification in transcript levels of genes involved in host response to BmNPV infection (PI3K, AKT, Bmp53, BmFOXO, Caspase-1, Bmp21, BmPKN and BmCREB), suggesting that BmGNβ1 may influence the apoptotic host response of infected B. mori through the PI3K-AKT pathway. This study provides potential targets and theoretical support for breeding BmNPV-resistant silkworm varieties.
Collapse
Affiliation(s)
- Linyuan Yu
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chenyu Ling
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yizhu Li
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huiduo Guo
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Anying Xu
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, the Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Zhenjiang, China
| | - Heying Qian
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, the Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Zhenjiang, China.
| | - Gang Li
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, the Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Zhenjiang, China.
| |
Collapse
|
10
|
Murray J, Martin DE, Hosking S, Orr-Burks N, Hogan RJ, Tripp RA. Probenecid Inhibits Influenza A(H5N1) and A(H7N9) Viruses In Vitro and in Mice. Viruses 2024; 16:152. [PMID: 38275962 PMCID: PMC10821351 DOI: 10.3390/v16010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Avian influenza (AI) viruses cause infection in birds and humans. Several H5N1 and H7N9 variants are highly pathogenic avian influenza (HPAI) viruses. H5N1 is a highly infectious bird virus infecting primarily poultry, but unlike other AIs, H5N1 also infects mammals and transmits to humans with a case fatality rate above 40%. Similarly, H7N9 can infect humans, with a case fatality rate of over 40%. Since 1996, there have been several HPAI outbreaks affecting humans, emphasizing the need for safe and effective antivirals. We show that probenecid potently inhibits H5N1 and H7N9 replication in prophylactically or therapeutically treated A549 cells and normal human broncho-epithelial (NHBE) cells, and H5N1 replication in VeroE6 cells and mice.
Collapse
Affiliation(s)
- Jackelyn Murray
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | | | - Sarah Hosking
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Nichole Orr-Burks
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Robert J. Hogan
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Ralph A. Tripp
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
- TrippBio, Inc., Jacksonville, FL 32256, USA;
| |
Collapse
|
11
|
Lin M, Qian Y, Chen E, Wang M, Ouyang G, Xu Y, Zhao G, Qian H. The Bmtret1 Gene Family and Its Potential Role in Response to BmNPV Stress in Bombyx mori. Int J Mol Sci 2023; 25:402. [PMID: 38203572 PMCID: PMC10779185 DOI: 10.3390/ijms25010402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Trehalose is a non-reducing disaccharide and participates in physiological activities such as organ formation, energy metabolism, and stress resistance in insects. The Bmtret1 gene family is mainly involved in in the sugar metabolism of silkworm. In the present study, phylogenetic analysis divided 21 Bmtret1 orthologs into three clades. These genes are equally distributed on the nine chromosomes. The cis-elements in the promoter regions of Bmtret1s indicated the possible function of Bmtret1s in response to hormones and environmental stimulus. The qPCR analysis showed the significantly different expression levels of Bmtret1s in different tissues and organs, indicating possible functional divergence. In addition, most Bmtret1s showed disturbed expression levels in response to silkworm nuclear polyhedrosis virus (BmNPV) stresses. Our results provide a clue for further functional dissection of the Tret1s in Bombyx mori and implicate them as potential regulators of antiviral responses.
Collapse
Affiliation(s)
- Mingjun Lin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
| | - Yixuan Qian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
| | - Enxi Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
| | - Mengjiao Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
| | - Gui Ouyang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
| | - Yao Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guodong Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
12
|
Lv JL, Zheng KY, Wang XY, Li MW. Advances in the extracellular signal-regulated kinase signaling pathway in silkworms, Bombyx mori (Lepidoptera). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22054. [PMID: 37700521 DOI: 10.1002/arch.22054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Signaling pathways regulate the transmission of signals during organism growth and development, promoting the smooth and accurate completion of numerous physiological and biochemical reactions. The extracellular signal-regulated kinase (ERK) signaling pathway is an essential pathway involved in regulating various physiological processes, such as cell proliferation, differentiation, adhesion, migration, and more. This pathway also contributes to several important physiological processes in silkworms, including protein synthesis, reproduction, and immune defense against pathogens. Organizing related studies on the ERK signaling pathway in silkworms can provide a better understanding of its mechanism in Lepidopterans and develop a theoretical foundation for improving cocoon production and new strategies for pest biological control.
Collapse
Affiliation(s)
- Jun-Li Lv
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Kai-Yi Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Sericultural Research Institute, Chinese Academy of Agricultural Science, Ministry of Agriculture and Rural Affairs, Zhenjiang, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Sericultural Research Institute, Chinese Academy of Agricultural Science, Ministry of Agriculture and Rural Affairs, Zhenjiang, China
| |
Collapse
|
13
|
Zhang J, Zafar J, Kong J, Wang F, Shao X, Zhang R, Pang R, Xu H, Xu X, Jin F. MicroRNA-Mediated Host Immune Genes Manipulation Benefits AcMNPV Proliferation in Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71. [PMID: 37917564 PMCID: PMC10655178 DOI: 10.1021/acs.jafc.3c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Spodoptera frugiperda is a highly destructive migratory pest that threatens various crops globally. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an effective biocontrol agent against lepidopteran pests. Here, we explored the molecular mechanisms underlying the immune response to AcMNPV infection in S. frugiperda. RNA-seq and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses identified the Toll, IMD, and apoptosis pathways as primary immune responses. Investigation into AcMNPV-induced apoptosis in the S. frugiperda cell line (Sf9) revealed that the Toll pathway activated the JNK via the TRAF6 (TNF receptor-associated factor 6) adapter. In addition, AcMNPV-induced the differential expression of several host-encoded microRNAs (miRNAs), with significant negative regulatory effects, on S. frugiperda antiviral immune genes. RNAi and miRNA-mimic mediated silencing of these genes resulted in increased AcMNPV proliferation. Our findings reinforce the potential of AcMNPV as a potent biocontrol agent and further our understanding of developing biotechnology-based targeted pest control agents.
Collapse
Affiliation(s)
- Jie Zhang
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junaid Zafar
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jinrong Kong
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fei Wang
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xuehua Shao
- Institute
of Fruit Tree Research, Guangdong Academy of Agricultural Sciences,
Key Laboratory of South Subtropical Fruit Biology and Genetic Resource
Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and
Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Ruonan Zhang
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rui Pang
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Katsuma S, Matsuda-Imai N. A seamless connection from the burst sequence to the start codon is essential for polyhedrin hyperexpression in alphabaculoviruses. Biochem Biophys Res Commun 2023; 679:1-5. [PMID: 37651871 DOI: 10.1016/j.bbrc.2023.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Alphabaculoviruses produce a large number of occlusion bodies (OBs) in host cells during the late stage of infection. OBs are mainly composed of polyhedrin (POLH), and high-level transcription of the polh gene has been exploited to express foreign proteins in insect cells. While making Bombyx mori nucleopolyhedrovirus (BmNPV) polh mutants using a conventional transfer vector-based method, we noticed that a virus with a short sequence insertion just before the polh start codon produces fewer very small OBs. Detailed analysis of several BmNPV mutants revealed that insertions between the burst sequence and start codon markedly decrease POLH accumulation and polh transcription. We further confirmed this decrease using recombinant viruses expressing a reporter gene driven by the polh promoter. These findings underscore the critical importance of a seamless connection from the burst sequence to the start codon for baculovirus polh hyperexpression.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Noriko Matsuda-Imai
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
15
|
Zhao P, Rensing C, Wang D. Symbiotic Bacteria Modulate Lymantria dispar Immunity by Altering Community Proportions after Infection with LdMNPV. Int J Mol Sci 2023; 24:9694. [PMID: 37298643 PMCID: PMC10254028 DOI: 10.3390/ijms24119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The symbiotic bacteria-insect interaction is considered to be associated with immunity and drug resistance. However, the wide variety of insect species and habitats is thought to have a significant impact on the symbiotic community, leading to disparate results. Here, we demonstrated that symbiotic bacteria regulated the immune response by changing the proportion of the Gram-positive and the Gram-negative bacterial community in Lymantria dispar (L. dispar) after infection with its viral pathogen, L. dispar Nucleopolyhedrovirus (LdMNPV). After oral infection, the immune deficiency pathway was activated immediately, and the expression of Relish was up-regulated to promote the secretion of antimicrobial peptides. Meanwhile, the abundance of the Gram-negative bacterial community increased at the same time. Moreover, the Toll pathway was not regulated in the same way as the Imd pathway was after infection. However, the change in the Toll pathway's expression remained positively correlated to the abundance of Gram-positive bacteria. This finding implied that the ratio of Gram-negative to Gram-positive bacteria in the LdMNPV infected larvae had an effect on the immune response. Our findings revealed that the immune regulation of L. dispar was regulated by the relative abundance of its symbiotic bacteria at different infection times with LdMNPV, which provides a new way to understand symbiotic bacteria-insect interactions.
Collapse
Affiliation(s)
- Peixu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China;
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
16
|
Zhang Y, Li BX, Mao QZ, Zhuo JC, Huang HJ, Lu JB, Zhang CX, Li JM, Chen JP, Lu G. The JAK-STAT pathway promotes persistent viral infection by activating apoptosis in insect vectors. PLoS Pathog 2023; 19:e1011266. [PMID: 36928081 PMCID: PMC10069781 DOI: 10.1371/journal.ppat.1011266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/03/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved signaling pathway that can regulate various biological processes. However, the role of JAK-STAT pathway in the persistent viral infection in insect vectors has rarely been investigated. Here, using a system that comprised two different plant viruses, Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), as well as their insect vector small brown planthopper, we elucidated the regulatory mechanism of JAK-STAT pathway in persistent viral infection. Both RSV and RBSDV infection activated the JAK-STAT pathway and promoted the accumulation of suppressor of cytokine signaling 5 (SOCS5), an E3 ubiquitin ligase regulated by the transcription factor STAT5B. Interestingly, the virus-induced SOCS5 directly interacted with the anti-apoptotic B-cell lymphoma-2 (BCL2) to accelerate the BCL2 degradation through the 26S proteasome pathway. As a result, the activation of apoptosis facilitated persistent viral infection in their vector. Furthermore, STAT5B activation promoted virus amplification, whereas STAT5B suppression inhibited apoptosis and reduced virus accumulation. In summary, our results reveal that virus-induced JAK-STAT pathway regulates apoptosis to promote viral infection, and uncover a new regulatory mechanism of the JAK-STAT pathway in the persistent plant virus transmission by arthropod vectors.
Collapse
Affiliation(s)
- Yan Zhang
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bo-Xue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian-Ping Chen
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (J-PC); (GL)
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (J-PC); (GL)
| |
Collapse
|
17
|
Liu YX, Yang JY, Sun JL, Wang AC, Wang XY, Zhu LB, Cao HH, Huang ZH, Liu SH, Xu JP. Reactive oxygen species-mediated phosphorylation of JNK is involved in the regulation of BmFerHCH on Bombyx mori nucleopolyhedrovirus proliferation. Int J Biol Macromol 2023; 235:123834. [PMID: 36842745 DOI: 10.1016/j.ijbiomac.2023.123834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
c-Jun N-terminal kinase (JNK) phosphorylation is widely observed during virus infection, modulating various aspects of the virus-host interaction. In our previous research, we have proved that B. mori ferritin heavy-chain homolog (BmFerHCH), an inhibitor of reactive oxygen species (ROS), facilitates B. mori nucleopolyhedrovirus (BmNPV) proliferation. However, one question remains: Which downstream signaling pathways does BmFerHCH regulate by inhibiting ROS? Here, we first determined that silencing BmFerHCH inhibits BmNPV proliferation, and this inhibition depends on ROS. Then, we substantiated that BmNPV infection activates the JNK signaling pathway. Interestingly, the JNK phosphorylation during BmNPV infection is activated by ROS. Further, we found that the enhanced nuclear translocation of phospho-JNK induced by BmNPV infection was dramatically reduced by pretreatment with the antioxidant N-acetylcysteine (NAC), whereas there was more detectable phospho-JNK in the cytoplasm. Next, we investigated how changes in BmFerHCH expression affect JNK phosphorylation. BmFerHCH overexpression suppressed the phosphorylation of JNK and nuclear translocation of phospho-JNK during BmNPV infection, whereas BmFerHCH knockdown facilitated phosphorylation of JNK and nuclear translocation of phospho-JNK. By measuring the viral load, we found the inhibitory effect of BmFerHCH knockdown on BmNPV infection depends on phosphorylated JNK. In addition, the JNK signaling pathway was involved in BmNPV-triggered apoptosis. Hence, we hypothesize that ROS-mediated JNK phosphorylation is involved in the regulation of BmFerHCH on BmNPV proliferation. These results elucidate the molecular mechanisms and signaling pathways of BmFerHCH-mediated response to BmNPV infection.
Collapse
Affiliation(s)
- Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China; National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Jia-Yue Yang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jun-Long Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - An-Cheng Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Xing-Ya Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Zhi-Hao Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Shi-Huo Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China.
| |
Collapse
|
18
|
Hu Z, Zhu F, Chen K. The Mechanisms of Silkworm Resistance to the Baculovirus and Antiviral Breeding. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:381-399. [PMID: 36689303 DOI: 10.1146/annurev-ento-120220-112317] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silkworm (Bombyx mori) is not only an economic insect but also a model organism for life science research. Bombyx mori nucleopolyhedrovirus (BmNPV) disease is a major infectious disease in the world's sericulture industry. The cocoon loss caused by this disease accounts for more than 60% of the total loss caused by all silkworm diseases. To date, there has been no effective solution for preventing and treating this disease. The most effective measure is to breed disease-resistant varieties. The quickest way to breed disease-resistant varieties is to apply genetic modification. However, this requires that we obtain disease resistance genes and know the mechanism of disease resistance. Since the discovery of disease-resistant resources in 1989, scholars in the sericulture industry around the world have been inspired to search for resistance genes. In the past two decades, with the help of multi-omics technologies, screening of resistance genes, gene localization, protein modification, virus-host interactions, etc., researchers have found some candidate genes that have been proposed to function at the cellular or individual level. Several disease-resistant varieties have been obtained and used in production through hybrid breeding, RNA interference, and genetic modification. This article summarizes and reviews the discovery of and research advances related to silkworm resistance to BmNPV. It is anticipated that the review will inspire scientific researchers to continue searching for disease resistance genes, clarify the molecular mechanism of silkworm disease resistance, and promote disease-resistant silkworm breeding.
Collapse
Affiliation(s)
- Zhaoyang Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| |
Collapse
|
19
|
Katsuma S. Mutations in the polyhedrin NLS affect the assembly and polyhedral shape of alphabaculovirus occlusion bodies. Biochem Biophys Res Commun 2022; 622:15-21. [PMID: 35841769 DOI: 10.1016/j.bbrc.2022.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Alphabaculoviruses produce occlusion bodies (OBs) in the nucleus of the infected cells at the late stage of infection. OBs are mainly composed of a single viral protein called polyhedrin (POLH). Autographa californica multiple nucleopolyhedrovirus (AcMNPV) POLH possesses a monopartite nuclear localization signal sequence (NLS), KRKK, from 32nd to 35th residues. However, the functions of POLH NLS of other alphabaculoviruses remain unknown. Here, POLH NLS mutants of Bombyx mori nucleopolyhedrovirus (BmNPV) were generated and NLS function as well as the relationship between NLS and OB localization or morphology was investigated. Deletion or mutation of BmNPV POLH NLS severely affected POLH and OB intracellular localization. Additionally, viruses in which the arginine residue at the 33rd position of POLH was mutated produced a lower number of OBs, which was presumably due to decreased POLH accumulation in the infected cells. Furthermore, cytoplasmic OBs were morphologically aberrant, even though nuclear OB morphology was normal in the same cell. These results indicate that NLS is required for nuclear localization and efficient accumulation of BmNPV POLH, which heavily affect the number and morphology of OBs.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
20
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
21
|
Guo Z, Kang S, Wu Q, Wang S, Crickmore N, Zhou X, Bravo A, Soberón M, Zhang Y. The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host. PLoS Pathog 2021; 17:e1009917. [PMID: 34495986 PMCID: PMC8452011 DOI: 10.1371/journal.ppat.1009917] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/20/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans-regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in P. xylostella to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK "road map", where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in P. xylostella midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZG); (YZ)
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZG); (YZ)
| |
Collapse
|
22
|
Comparative Transcriptome Analysis of Bombyx mori (Lepidoptera) Larval Hemolymph in Response to Autographa californica Nucleopolyhedrovirus in Differentially Resistant Strains. Processes (Basel) 2021. [DOI: 10.3390/pr9081401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a kind of pathogen that causes huge economic losses to silkworm production. Although Autographa californica nucleopolyhedrovirus (AcMNPV) and BmNPV are both baculoviruses, the host domains of these two viruses have almost no intersection in nature. Recently, it has been found that some silkworms could be infected by recombinant AcMNPV through a puncture, which provided valuable material for studying the infection mechanism of baculovirus to silkworm. In this study, comparative transcriptomics was used to analyse the hemolymph of two differentially resistant strains following AcMNPV inoculation. There were 678 DEGs in p50 and 515 DEGs in C108 following viral infection. Among them, the upregulation and downregulation of DEGs were similar in p50; however, the upregulated DEGs were nearly twice as numerous as the downregulated DEGs in C108. The DEGs in different resistant strains differed by GO enrichment. Based on KEGG enrichment, DEGs were mainly enriched in metabolic pathways in p50 and the apoptosis pathway in C108. Moreover, 13 genes involved in metabolic pathways and 11 genes involved in the apoptosis pathway were analysed. Among the DEGs involved in apoptosis, the function of BmTex261 in viral infection was analysed. The BmTex261 showed the highest expression in hemolymph and a significant response to viral infection in the hemolymph of C108, indicating that it is involved in anti-AcMNPV infection. This was further validated by the significantly decreased expression of viral gene lef3 after overexpression of BmTex261 in BmN cells. The results provide a theoretical reference for the molecular mechanism of resistance to BmNPV in silkworms.
Collapse
|
23
|
Huang Y, Nie XM, Zhu ZJ, Zhang X, Li BZ, Ge JC, Ren Q. A novel JNK induces innate immune response by activating the expression of antimicrobial peptides in Chinese mitten crab Eriocheir sinensis. Mol Immunol 2021; 138:76-86. [PMID: 34364075 DOI: 10.1016/j.molimm.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
c-Jun NH2-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) that participates in the regulation of various physiological and pathological processes. In this study, we identified a novel JNK (EsJNK) and determined the cDNA sequence of its isoform (EsJNK-a) from the Chinese mitten crab Eriocheir sinensis. The open reading frame (ORF) of EsJNK was predicted to encode 421 peptides with a serine/threonine protein kinase, a catalytic (S_TKc) domain, and a low complexity region. The ORF of EsJNK-a was 1380 bp encoding a protein with 459 amino acids, which was 38 amino acids more than that of EsJNK. The predicted tertiary structure of EsJNK was conserved and contained 15 α-helices and 10 β-sheets. Phylogenetic tree analysis revealed that EsJNK was clustered with the JNK homologs of other crustaceans. Quantitative real-time PCR assays showed that EsJNK was expressed in all the tissues examined, but it was relatively higher in hemocytes, muscles, and intestines. The expression of EsJNK mRNA in the hemocytes was upregulated by lipopolysaccharides and peptidoglycans, as well as by Staphylococcus aureus or Vibrio parahaemolyticus challenge. Functionally, after silencing EsJNK by siRNA in crabs, the expression levels of two antimicrobial peptides (AMPs), namely, anti-lipopolysaccharide factor and crustin, were significantly inhibited. The purified recombinant EsJNK protein with His-tag accelerated the elimination of the aforementioned bacteria in vivo. However, knockdown of EsJNK had an opposite effect. These findings suggested that EsJNK might be involved in the antibacterial immune defense of crabs by regulating the transcription of AMPs.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Xi-Mei Nie
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zheng-Jie Zhu
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Bing-Zhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jia-Chun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
24
|
Xu PZ, Zhang MR, Wang XY, Wu YC. Precocious Metamorphosis of Silkworm Larvae Infected by BmNPV in the Latter Half of the Fifth Instar. Front Physiol 2021; 12:650972. [PMID: 34040541 PMCID: PMC8141865 DOI: 10.3389/fphys.2021.650972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
The mulberry silkworm (Bombyx mori) is a model organism, and BmNPV is a typical baculovirus. Together, these organisms form a useful model to investigate host-baculovirus interactions. Prothoracic glands (PGs) are also model organs, used to investigate the regulatory effect of synthetic ecdysone on insect growth and development. In this study, day-4 fifth instar silkworm larvae were infected with BmNPV. Wandering silkworms appeared in the infected groups 12 h earlier than in the control groups, and the ecdysone titer in infected larvae was significantly higher than that of the control larvae. We then used RNA sequencing (RNA-seq) to analyze silkworm PGs 48 h after BmNPV infection. We identified 15 differentially expressed genes (DEGs) that were classified as mainly being involved in metabolic processes and pathways. All 15 DEGs were expressed in the PGs, of which Novel01674, BmJing, and BmAryl were specifically expressed in the PGs. The transcripts of BmNGDN, BmTrypsin-1, BmACSS3, and BmJing were significantly increased, and BmPyd3, BmTitin, BmIGc2, Novel01674, and BmAryl were significantly decreased from 24 to 72 h in the PGs after BmNPV infection. The changes in the transcription of these nine genes were generally consistent with the transcriptome data. The upregulation of BmTrypsin-1 and BmACSS3 indicate that these DEGs may be involved in the maturation process in the latter half of the fifth instar of silkworm larvae. These findings further our understanding of silkworm larval development, the interaction between BmNPV infection and the host developmental response, and host-baculovirus interactions in general.
Collapse
Affiliation(s)
- Ping-Zhen Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Mei-Rong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yang-Chun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
25
|
Yu YL, Zhang MT, Huo Y, Tang JL, Liu Q, Chen XY, Fang RX, Zhang LL. Laodelphax striatellus Atg8 facilitates Rice stripe virus infection in an autophagy-independent manner. INSECT SCIENCE 2021; 28:315-329. [PMID: 32108430 DOI: 10.1111/1744-7917.12771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Rice stripe virus (RSV) is the causative agent of rice stripe disease and is completely dependent on insect vectors for its plant-to-plant transmission. Laodelphax striatellus is the major insect vector for RSV. In this study, we explored the interactions between RSV infection and L. striatellus autophagy, a potential intrinsic antiviral mechanism in insects. We found that L. striatellus autophagic activity did not affect RSV infection; however, the autophagy-related-8 (Atg8) gene significantly enhanced virus infection. During RSV initial infection within the L. striatellus midgut, silencing of Atg8 expression significantly decreased the phosphorylation of c-Jun N-terminal kinase (p-JNK); however, when RSV infection is absent, silencing of Atg8 did not alter p-JNK levels. These results indicated that Atg8 might activate the JNK machinery by allowing more virus infection into cells. We further revealed that Atg8-deficiency significantly decreased RSV accumulation on the surface of the insect midgut epithelial cells, suggesting a receptor trafficking function of the γ-aminobutyric acid receptor-associated protein family. Using the RSV ovary entry as a model, in which vitellogenin receptor (VgR) mediates RSV cell entry, we clarified that Atg8-deficiency decreased the abundance of VgR localizing on the cytomembrane and disturbed the attachment of RSV in the germarium zones. Collectively, these results revealed an autophagy-independent function of L. striatellus Atg8 that enhances RSV initial infection by increasing virus attachment on the infection sites.
Collapse
Affiliation(s)
- Yuan-Ling Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Science, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Meng-Ting Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Science, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yan Huo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Science, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Qing Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Science, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Rong-Xiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Science, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - Li-Li Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Science, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Kokusho R, Katsuma S. Loss of p24 from the Bombyx mori nucleopolyhedrovirus genome results in the formation of cuboidal occlusion bodies. Virology 2021; 559:173-181. [PMID: 33930820 DOI: 10.1016/j.virol.2021.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/30/2022]
Abstract
Some insect viruses produce the occlusion body (OB), a large crystalline particle comprising a viral protein that occludes virions to protect them from harsh environments. The shapes and sizes of OBs are diverse depending on baculovirus species, but the detailed molecular mechanism determining them has yet to be totally clarified yet. Here we generated Bombyx mori nucleopolyhedrovirus (BmNPV) mutants of the p24 gene that encodes a viral capsid protein and found that p24-mutated BmNPVs produced cuboidal OBs with a slightly larger size than typical truncated octahedral OBs produced by wild-type BmNPVs. Meanwhile, p24 disruption has no significant impact on progeny virus production and viral pathogenicity. In addition, we experimentally demonstrated that a single amino acid substitution found in the P24 protein of the BmNPV Cubic isolate caused cuboidal OB production. These results suggest that p24 has a crucial role in generating the typical shape of OBs.
Collapse
Affiliation(s)
- Ryuhei Kokusho
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
27
|
Jiang L. Insights Into the Antiviral Pathways of the Silkworm Bombyx mori. Front Immunol 2021; 12:639092. [PMID: 33643323 PMCID: PMC7904692 DOI: 10.3389/fimmu.2021.639092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The lepidopteran model silkworm, Bombyx mori, is an important economic insect. Viruses cause serious economic losses in sericulture; thus, the economic importance of these viruses heightens the need to understand the antiviral pathways of silkworm to develop antiviral strategies. Insect innate immunity pathways play a critical role in the outcome of infection. The RNA interference (RNAi), NF-kB-mediated, immune deficiency (Imd), and stimulator of interferon gene (STING) pathways, and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway are the major antiviral defense mechanisms, and these have been shown to play important roles in the antiviral immunity of silkworms. In contrast, viruses can modulate the prophenol oxidase (PPO), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the extracellular signal-regulated kinase (ERK) signaling pathways of the host to elevate their proliferation in silkworms. In this review, we present an overview of the current understanding of the main immune pathways in response to viruses and the signaling pathways modulated by viruses in silkworms. Elucidation of these pathways involved in the antiviral mechanism of silkworms furnishes a theoretical basis for the enhancement of virus resistance in economic insects, such as upregulating antiviral immune pathways through transgenic overexpression, RNAi of virus genes, and targeting these virus-modulated pathways by gene editing or inhibitors.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Zhang S, Shen M, Yin H, Huang H, Li T, Zhao W, Guo X, Wu P. Expression profile analysis of circular RNAs in BmN cells (Bombyx mori) upon BmNPV infection. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21735. [PMID: 32881053 DOI: 10.1002/arch.21735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
The disease caused by Bombyx mori nucleopolyhedrovirus (BmNPV) has always been difficult to control, resulting in tremendous economic losses in the sericulture industry. Although much has been learned about the impact of noncoding RNAs on pathogenesis, the role of circular RNA (circRNA) in insect immunity remains unclear. To explore circRNA regulation involved in BmNPV infection, we used transcriptome analysis of BmN cells with or without BmNPV infection to generate circRNA data set. A total of 444 novel circRNAs were identified in BmN cells, with 198 pervasively distributed both in the control group and BmNPV-infection group. The host genes were enriched inMAPK signaling pathway, dorso-ventral axis formation, and ECM-receptor interaction, which were required for the normal larval growth. A total of 75 circRNAs were differentially expressed (DE) on BmNPV infection. Six downregulated circRNAs were validated by Sanger sequencing and qRT-PCR. DEcircRNA-miRNA-DEmRNA network was constructed based on the six validated circRNAs. Pathway analysis indicated that the predicted target genes were mainly enriched in the metabolic pathway and immune-related signaling pathway. Our results may provide a basis for further studies on circRNA function in BmN cells challenged by BmNPV infection and offer an insight into the molecular mechanism on silkworm-virus interaction.
Collapse
Affiliation(s)
- Shaolun Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Manman Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Haotong Yin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Haoling Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xijie Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
29
|
Katsuma S. Hsp90 function is required for stable transcription of the baculovirus transactivator ie-1 gene. Virus Res 2020; 291:198200. [PMID: 33080246 DOI: 10.1016/j.virusres.2020.198200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
A molecular chaperone heat shock protein 90 (Hsp90) is required for efficient infection by several viruses. Hsp90 has been recently implicated in baculovirus infection, but its exact role remains obscure. This study investigated the effect of 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), an Hsp90-specific inhibitor, on Bombyx mori nucleopolyhedrovirus (BmNPV) infection. The 17-AAG treatment significantly decreased the production of budded viruses and occlusion bodies in BmNPV-infected Bombyx mori cultured cells. Immunoblot and SDS-PAGE analyses showed that the expression of early and delayed early gene products, DBP and BRO, was delayed and dysregulated, and the very late gene product POLH was almost completely diminished. RT-qPCR experiments revealed that 17-AAG treatment did not affect initiation of the immediate early gene ie-1 expression, but the expression decreased by ∼50 % during the late stage of infection. 17-AAG treatment also decreased ie-1 promoter activity by ∼50 %. In addition, the expression of delayed early and late genes was dysregulated and inhibited, respectively. These results indicated that Hsp90 function is required for stable ie-1 transcription. Inhibiting Hsp90 function negatively affects ie-1 expression, resulting in dysregulation of delayed early genes and a severe decrease in late and very late gene expression.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
30
|
Ismail S, Tulsi Naik KS, Rajam MV, Mishra RK. Targeting genes involved in nucleopolyhedrovirus DNA multiplication through RNA interference technology to induce resistance against the virus in silkworms. Mol Biol Rep 2020; 47:5333-5342. [PMID: 32617957 DOI: 10.1007/s11033-020-05615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
RNA interference (RNAi) has become an efficient tool for inducing resistance to viruses in many organisms. In this study, Escherichia coli cells were engineered to produce stable double-stranded RNA (dsRNA) against the nucleopolyhedrosis virus to elicit RNAi in silkworms. The immediate-early-1 (ie-1) and late expression factor-1 (lef-1) genes of the Bombyx mori nucleopolyhedrovirus (BmNPV) involved in viral DNA multiplication were cloned in the plasmid L4440 under the influence of the double T7 promoter and transformed to E. coli HT115 DE3 host cells. On induction with isopropyl β-D-thiogalactopyranoside, these cells efficiently produced dsRNA of the cloned genes. The B. mori larvae were fed with 50 µL of E. coli cells expressing ie-1 and lef-1 dsRNAs (each approximately 25 µg) to elicit RNAi. The semi-quantitative and quantitative PCR analysis of RNA from the midgut of the dsRNA-fed larvae revealed a significant reduction in the expression of the target genes involved in BmNPV multiplication, which restricted virus copy numbers to 100 compared with 1.9 × 105 in the infected controls. Furthermore, the dsRNA-fed infected larvae showed > 50% increased survivability compared with the infected controls. The study revealed the successful use of bacteria as vectors for efficiently delivering dsRNA to elicit RNAi against BmNPV in silkworms.
Collapse
Affiliation(s)
- Sahar Ismail
- Seri Biotech Research Laboratory, Central Silk Board, Kodathi, Bengaluru, Karnataka, 560035, India
| | - K S Tulsi Naik
- Seri Biotech Research Laboratory, Central Silk Board, Kodathi, Bengaluru, Karnataka, 560035, India.
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi, Benito Juarez Marg, South Campus, New Delhi, 110021, India
| | - Rakesh Kumar Mishra
- Seri Biotech Research Laboratory, Central Silk Board, Kodathi, Bengaluru, Karnataka, 560035, India
| |
Collapse
|
31
|
Increased expression of Suppressor of cytokine signaling 2 (BmSOCS2) is correlated with suppression of Bombyx mori nucleopolyhedrovirus replication in silkworm larval tissues and cells. J Invertebr Pathol 2020; 174:107419. [PMID: 32535001 DOI: 10.1016/j.jip.2020.107419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The resistance of silkworm to infection by Bombyx mori nuclear polyhedrosis virus (BmNPV) is a main focus of sericultural research. Previously, a BmNPV-resistant strain, NB, was identified among a collection of Chinese silkworm strains in our lab. To better understand the molecular mechanism of NB strain resistance, the patterns of host immune response gene transcription in resistant (NB) and susceptible (306) strains were examined. Quantative real-time PCR (qRT-PCR) revealed that multiple insect innate immune signaling pathways (Toll, Imd and JAK/STAT) were strongly activated upon infection with BmNPV. Notably, Suppressor of cytokine signaling 2 (BmSOCS2) mRNA expression was significantly up-regulated in midgut tissues of the resistant NB strain, suggesting that the BmSOCS2 gene product may be involved in host immune defense against BmNPV infection. A significant inhibition of BmNPV replication was also observed in BmN cells transfected with a vector encoding BmSOCS2. The results suggest that BmSOCS2 is a key gene involved in the resistance of the NB silkworm strain to BmNPV infection.
Collapse
|
32
|
Qu F, Xu W, Deng Z, Xie Y, Tang J, Chen Z, Luo W, Xiong D, Zhao D, Fang J, Zhou Z, Liu Z. Fish c-Jun N-Terminal Kinase (JNK) Pathway Is Involved in Bacterial MDP-Induced Intestinal Inflammation. Front Immunol 2020; 11:459. [PMID: 32292404 PMCID: PMC7134542 DOI: 10.3389/fimmu.2020.00459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Abstract
The c-Jun NH2-terminal kinases (JNKs) are an evolutionarily conserved family of serine/threonine protein kinases that play critical roles in the pathological process in species ranging from insects to mammals. However, the function of JNKs in bacteria-induced intestinal inflammation is still poorly understood. In this study, a fish JNK (CiJNK) pathway was identified, and its potential roles in bacterial muramyl dipeptide (MDP)-induced intestinal inflammation were investigated in Ctenopharyngodon idella. The present CiJNK was found to possess a conserved dual phosphorylation motif (TPY) in a serine/threonine protein kinase (S_TKc) domain and to contain several potential immune-related transcription factor binding sites, including nuclear factor kappa B (NF-κB), activating protein 1 (AP-1), and signal transducer and activator of downstream transcription 3 (STAT3), in its 5′ flanking regions. Quantitative real-time PCR results revealed that the mRNA levels of the JNK pathway genes in the intestine were significantly upregulated after challenge with a bacterial pathogen (Aeromonas hydrophila) and MDP in a time-dependent manner. Additionally, the JNK pathway was found to be involved in regulating the MDP-induced expression levels of inflammatory cytokines (IL-6, IL-8, and TNF-α) in the intestine of grass carp. Moreover, the nutritional dipeptide carnosine and Ala–Gln could effectively alleviate MDP-induced intestinal inflammation by regulating the intestinal expression of JNK pathway genes and inflammatory cytokines in grass carp. Finally, fluorescence microscopy and dual-reporter assays indicated that CiJNK could associate with CiMKK4 and CiMKK7 involved in the regulation of the AP-1 signaling pathway. Overall, these results provide the first experimental demonstration that the JNK signaling pathway is involved in the intestinal immune response to MDP challenge in C. idella, which may provide new insight into the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhangren Deng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yifang Xie
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhiguo Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenjie Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Ding Xiong
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Dafang Zhao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jiamei Fang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China.,Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Chen Y, Guo L, Wan N, Ji X, Zhang H, Jiang J. Transcriptomic analysis of the interactions between the Spodoptera exigua midgut and nucleopolyhedrovirus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:241-253. [PMID: 31973864 DOI: 10.1016/j.pestbp.2019.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Spodoptera exigua nucleopolyhedrovirus (SeNPV) has been successfully applied as a bioinsecticide against S. exigua, one of the most devastating pests worldwide. However, due to limited information, the molecular mechanisms underlying interactions between S. exigua and SeNPV remain to be elucidated. In this study, RNA-Seq and differentially expressed gene (DEG) analysis of the S. exigua larva midgut were performed to explore molecular responses to SeNPV infection. A total of 1785 DEGs, including 935 upregulated and 850 downregulated genes, were identified in the midgut of SeNPV-infected S. exigua larvae. Ultrastructural observations showed that after SeNPV infection, the peritrophic matrix (PM) became a loose and highly porous surface with many clear ruptures; these changes were most likely associated with upregulation of chitin deacetylases. In addition, 124 putative innate immunity-related DEGs were identified and divided into several groups, including pattern recognition proteins, signaling pathways, signal modulation, antimicrobial peptides and detoxification. Interestingly, upregulation of some pattern recognition proteins, induction of the JAK/STAT signaling pathway and promotion of REPAT synthesis might be the main innate immunity responses occurring in the S. exigua larva midgut after SeNPV infection. According to quantitative real-time PCR, the expression profiles of 19 random DEGs were consistent with those obtained by RNA-Seq. These findings provide important basic information for understanding the molecular mechanisms of SeNPV invasion and the anti-SeNPV responses of the S. exigua midgut, promoting the utility of SeNPV as a bioinsecticide for the effective control of S. exigua and related pests.
Collapse
Affiliation(s)
- Yijuan Chen
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China
| | - Ling Guo
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China
| | - Nianfeng Wan
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China
| | - Xiangyun Ji
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China..
| | - Hao Zhang
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China..
| | - Jiexian Jiang
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China..
| |
Collapse
|
34
|
Guo H, Sun Q, Wang B, Wang Y, Xie E, Xia Q, Jiang L. Spry is downregulated by multiple viruses to elevate ERK signaling and ensure viral reproduction in silkworm. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:1-5. [PMID: 30965060 DOI: 10.1016/j.dci.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases of silkworm are mainly caused by Bombyx mori nucleopolyhedrovirus (BmNPV), B. mori cytoplasmic polyhedrosis virus (BmCPV) and B. mori bidensovirus (BmBDV). The virus alters host cellular pathways to facilitate its proliferation. It is still unclear whether the three silkworm viruses regulate a certain host pathway. Spry is a negative regulator upstream of ERK. In this study, we found that BmSpry was decreased and p-ERK was increased in silkworm after infection with each virus. A transgenic RNAi vector of BmSpry was constructed and used for embryo microinjection to generate the transgenic line Spry-I. The expression of BmSpry was significantly reduced in Spry-I compared to that in non-transgenic silkworm. The viral content and mortality in Spry-I were significantly higher than those in non-transgenic larvae after infection with the three viruses. p-ERK was increased in Spry-I compared to that in non-transgenic control after virus infection. These results suggest that BmSpry is downregulated by multiple different classes of viruses to elevate p-ERK and ensure viral reproduction in the silkworm.
Collapse
Affiliation(s)
- Huizhen Guo
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Qiang Sun
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Bingbing Wang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Yumei Wang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Enyu Xie
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China.
| | - Liang Jiang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China.
| |
Collapse
|
35
|
Ling XD, Dong WT, Zhang Y, Hu JJ, Zhang WD, Wu JT, Liu JX, Zhao XX. Baculoviral infection reduces the expression of four allergen proteins of silkworm pupa. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21539. [PMID: 30790339 DOI: 10.1002/arch.21539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Silkworm (Bombyx mori) larvae are widely used to express exogenous proteins. Moreover, some silkworm pupal proteins can be used as drug-loading materials for selfexpressed oral tolerance drugs. However, several proteins expressed in silkworm pupae cause severe allergic reactions in humans and animals. Interestingly, some baculovirus vectors have been shown to alter the host gene and its expression in insect cells, but this has not been confirmed in silkworm. Here, we analyzed the effects of infection with an empty B. mori baculovirus (BmNPV) vector on silkworm pupal protein expression. Using a proteomics approach, the allergens thiol peroxiredoxin (Jafrac1), 27-kDa glycoprotein (p27k), arginine kinase, and paramyosin as well as 32 additional differentially expressed proteins were identified. Downregulation of the messenger RNA expression of the four known allergens was observed after BmNPV infection; subsequent changes in protein expression were confirmed by the western blot analysis using polyclonal antibodies prepared with recombinant proteins of the four allergens. Collectively, these data indicate that the four known allergens of silkworm pupae can be reduced by infection ith an empty BmNPV vector to increase the safety of silkworm pupa-based exogenous protein expression and drug delivery of oral pharmaceuticals. In addition, the four recombinant allergen proteins may contribute to the diagnosis of allergic diseases of silkworm pupa.
Collapse
Affiliation(s)
- Xiao-Dong Ling
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wei-Tao Dong
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun-Jie Hu
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wang-Dong Zhang
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jin-Tang Wu
- Product R&D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, China
| | - Ji-Xing Liu
- Product R&D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, China
| | - Xing-Xu Zhao
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
36
|
Sun L, Liu P, Sun S, Yan S, Cao C. Transcriptomic analysis of interactions between Hyphantria cunea larvae and nucleopolyhedrovirus. PEST MANAGEMENT SCIENCE 2019; 75:1024-1033. [PMID: 30230189 DOI: 10.1002/ps.5212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Hyphantria cunea is a destructive forest pest. To utilise H. cunea nucleopolyhedrovirus (HcNPV) for biological control, understanding insect-virus interactions is essential. RESULTS Four cDNA libraries were constructed from H. cunea larvae (two HcNPV-infected and two uninfected groups) and 76 004 expressed genes were obtained by next-generation sequencing. Compared with controls, 272 differentially expressed genes (DEGs) were identified in infected groups, including 162 up-regulated and 110 down-regulated genes. Transcription levels of 20 random DEGs were consistent with the Solexa expression profiles obtained by quantitative real-time PCR. DEGs associated with innate immunity were grouped into several categories, including pattern recognition proteins, heat-shock proteins, UDP-glycosyltransferases, cytochrome P450s, antimicrobial peptides and hormonal signalling proteins. Interestingly, up-regulated host genes included farnesoic acid O-methyltransferase, two juvenile hormone (JH) binding proteins, and a circadian clock-controlled protein related to JH regulation. Pathway enrichment analysis indicates that mitogen-activated protein kinase (MAPK) signalling pathways, key candidate genes and important biological pathways may be associated with molecular modification in H. cunea larvae in response to virus stress. CONCLUSION These findings provide insight for future research on the molecular mechanisms of HcNPV invasion and anti-HcNPV mechanisms in H. cunea. A better understanding of gene regulation following HcNPV invasion could help to develop the virus as a bio-insecticide. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lili Sun
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Peng Liu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Shouhui Sun
- Department of Forest Protection, College of Forestry, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Shanchun Yan
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Chuanwang Cao
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
37
|
Screening of PI3K-Akt-targeting Drugs for Silkworm against Bombyx mori Nucleopolyhedrovirus. Molecules 2019; 24:molecules24071260. [PMID: 30939726 PMCID: PMC6480691 DOI: 10.3390/molecules24071260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 11/17/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is the most prevalent threat to silkworms. Hence, there is a need for antiviral agents in sericulture. The PI3K-Akt pathway is essential for the efficient replication of the baculovirus. In an attempt to screen antiviral drugs against BmNPV, we summarized the commercial compounds targeting PI3K-Akt and selected the following seven oral drugs for further analyses: afuresertib, AZD8835, AMG319, HS173, AS605240, GDC0941, and BEZ235. Cell viability assay revealed that the cytotoxicity of these drugs at 10 µM concentration was not strong. Viral fluorescence observation and qPCR analysis showed that these candidate drugs significantly inhibited BmNPV in BmE cells. Only AMG319 and AZD8835 inhibited viral proliferation in silkworm larvae. The mortality of AZD8835-treated silkworms was lower than that of the control silkworms. Western blotting showed that AMG319 and AZD8835 decreased p-Akt expression after BmNPV infection. These results suggest that AZD8835 has application potential in sericulture.
Collapse
|
38
|
An amino acid duplication/insertion in the Bm126 gene of Bombyx mori nucleopolyhedrovirus alters viral gene expression as shown by differential gene expression analysis. Arch Virol 2019; 164:831-838. [PMID: 30675648 DOI: 10.1007/s00705-018-04144-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Open reading frame (ORF) 126 (Bm126) of Bombyx mori nucleopolyhedrovirus (BmNPV) is not essential for viral replication, and two subtypes of this gene have been identified in China. The Bm126-SX subtype encodes a protein with a simple amino acid duplication/insertion relative to the Bm126-GD subtype; however, significant differences in the cytopathic effect and infectivity of viruses carrying these variant genes have been observed. To elucidate the cause of these differences, differential gene expression analysis was performed at the early stage of infection with viruses harbouring variants of Bm126. Differential expression was observed for 103, 209, and 313 host genes and 9, 44, and 67 viral genes in vGD126 samples relative to the control samples (vSX126) at 6, 12, and 24 h postinfection, respectively. These results indicated that the duplication/insertion in Bm126 altered the viral expression pattern. The differentially expressed host genes were found to be related to ribosome, spliceosome, and proteasome pathways, and several factors involved in signal transduction were also identified. The differential expression of these viral and host genes was confirmed by qPCR. This study indicates that the amino acid duplication/insertion in the Bm126 gene has a biological function related to the regulation of viral gene expression and serves as a basis for further characterization of Bm126 gene function.
Collapse
|
39
|
Wei W, Kong W. Identification of key genes and signaling pathways during Sendai virus infection in vitro. Braz J Microbiol 2019; 50:13-22. [PMID: 30637656 DOI: 10.1007/s42770-018-0021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
Sendai virus (SeV) has been used as a model strain to reveal molecular features of paramyxovirus biology. In this study, we comprehensively analyzed the gene profiling of murine macrophages and airway epithelial cells in response to SeV using gene expression data. The significantly differentially expressed genes (DEGs) were screened by GEO2R. Gene ontology (GO) and pathway enrichment analyses were performed by DAVID. The protein-protein interaction (PPI) map of DEGs was constructed by STRING. The modules of PPI network are produced by molecular complex detection (MCODE) plug-in of Cytoscape. In total, 241 up- and 83 downregulated DEGs were identified in airway epithelial cells while 130 up- and 148 downregulated in macrophage. Particularly, Tmem119 and Colla2 are significantly downregulated in airway epithelial cells and macrophages, respectively. Functional enrichment analysis showed that upregulated DEGs are clustered in innate immunity and inflammatory response in both cell types, whereas downregulated DEGs are involved in host metabolic pathway in airway epithelial cells. PI3K-AKT signaling pathway is downregulated in macrophages. PPI network analysis indicated that some high degree of nodes exist in both cell types, such as Stat1, Tnf, and Cxcl10. In conclusion, SeV infection can induce different host cell responses in airway epithelial cells and macrophages.
Collapse
Affiliation(s)
- Wenqiang Wei
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China. .,Department of Physiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
| | - Wanting Kong
- Department of Physiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
40
|
Zhang CN, Rahimnejad S, Lu KL, Zhou WH, Zhang JL. Molecular characterization of p38 MAPK from blunt snout bream (Megalobrama amblycephala) and its expression after ammonia stress, and lipopolysaccharide and bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 84:848-856. [PMID: 30381267 DOI: 10.1016/j.fsi.2018.10.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
p38 mitogen-activated protein kinase (MAPK) is an important protein which plays a key role in regulating the innate immunity, so exploring its molecular characterization is helpful in understanding the resistance against microbial infections in cultured fish. Here, a full-length cDNA of p38 MAPK was cloned from liver of blunt snout bream (Megalobrama amblycephala) which covered 2419 bp with an open reading frame of 1086 bp encoding 361 amino acids. p38 MAPK contained the characteristic structures of Thr-Gly-Tyr (TGY) motif and substrate binding site Ala-Thr-Arg-Trp (ATRW), which are conserved in MAPK family. To investigate p38 MAPK functions, two in vivo experiments were carried out to examine its expression following ammonia exposure and bacterial challenge. Also, an in vitro experiment was conducted to assess the role of p38 MAPK in inflammation of primary hepatocytes induced by lipopolysaccharide (LPS). The results showed the ubiquitous expression of p38 MAPK in all the tested tissues with varying levels. p38 MAPK mRNA expression was significantly up-regulated by ammonia stress and Aeromonas hydrophila challenge, and altered in a time-dependent manner. Moreover, the results indicated that the inflammatory response induced by LPS in hepatocytes is p38 MAPK dependent as knockdown of p38 MAPK using siRNA technology depressed the expression of IL-1β and IL-6. The findings in this study showed that p38 MAPK has anti-stress property, and plays key role in protection against bacterial infection and inflammation in blunt snout bream.
Collapse
Affiliation(s)
- Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Samad Rahimnejad
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, 361021, China; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Kang-Le Lu
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Wen-Hao Zhou
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ji-Liang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
41
|
Sun J, Li Y, Li M, Liu Y, Qu C, Wang L, Song L. A novel JNK is involved in immune response by regulating IL expression in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 79:93-101. [PMID: 29751034 DOI: 10.1016/j.fsi.2018.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
The c-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPK) highly conserved from yeast to mammals and participates in regulating many physiological and pathological processes. In the present study, a novel JNK was identified from oyster Crassostrea gigas (designated as CgJNK) and its biological functions were investigated in response against lipopolysaccharide (LPS) stimulation. The CgJNK consists of 415 amino acids, which includes a serine/threonine protein kinase (S_TKc) domain with a conserved Thr-Pro-Tyr (TPY) motif. Phylogenetic analysis revealed that CgJNK shared high similarity with other members of the JNK subfamily. CgJNK mRNA was detected in all the tested tissues and CgJNK mRNA expression levels in hemocytes were significantly up-regulated from 6 to 72 h after LPS stimulation and reached the highest level (16.1-fold, p < 0.01) at 24 h. The phosphorylation level of CgJNK in C. gigas hemocytes was increased at 2 h after LPS stimulation. The subcellular localization of CgJNK phosphorylation in hemocytes was analyzed after LPS stimulation, and CgJNK phosphorylation could be detected in both cytoplasm and nucleus of oyster hemocytes at 2 h post LPS stimulation. Additionally, the interleukins (CgILs) were detected in hemocytes of CgJNK-knockdown oysters. CgIL17-1, CgIL17-2, CgIL17-4 and CgIL17-6 transcripts were decreased significantly in CgJNK-knockdown oysters at 24 h post LPS stimulation. In summary, these results suggested that CgJNK played an important role in the immune response of oysters by regulating IL expression.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
42
|
Jin S, Cheng T, Guo Y, Lin P, Zhao P, Liu C, Kusakabe T, Xia Q. Bombyx mori epidermal growth factor receptor is required for nucleopolyhedrovirus replication. INSECT MOLECULAR BIOLOGY 2018; 27:464-477. [PMID: 29603500 DOI: 10.1111/imb.12386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Baculovirus-host interactions are important models for studying the biological control of lepidopteran pests. Research on baculovirus-host interactions has focussed on baculovirus manipulation of cellular signalling pathways, including the extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinases/protein kinase B (PI3K/Akt) signalling pathways. However, the mechanism underlying ERK and PI3K/Akt activation and function in response to baculovirus infection remains poorly understood. Here, we demonstrated that baculovirus activated the Bombyx mori ERK and PI3K/Akt signalling pathways via the B. mori epidermal growth factor receptor (BmEGFR). To further characterize the function of the BmEGFR/ERK signalling pathway in baculovirus replication, we calculated genome-wide changes in kinase-chromatin interactions for ERK after baculovirus infection using chromatin immunoprecipitation followed by high-throughput sequencing. A Gene Ontology analysis showed that virus infection had effects on the biological regulation, cellular process and metabolic process pathways. Moreover, ERK was shown to regulate the transcription of late viral genes. Taken together, our results suggest that baculoviruses manipulate components of the host cell machinery for replication via modulation of the BmEGFR signalling pathway.
Collapse
Affiliation(s)
- S Jin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - T Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Y Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - P Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - P Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - C Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - T Kusakabe
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki, Fukuoka, Japan
| | - Q Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| |
Collapse
|
43
|
Wei J, Jia D, Mao Q, Zhang X, Chen Q, Wu W, Chen H, Wei T. Complex interactions between insect-borne rice viruses and their vectors. Curr Opin Virol 2018; 33:18-23. [PMID: 30031984 DOI: 10.1016/j.coviro.2018.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023]
Abstract
Insect-borne rice viral diseases are widespread and economically important in many rice-growing countries. Long-term associations between rice viruses and their insect vectors result in evolutionary trade-offs that maintain a balance between the fitness cost of the viral infection of insects and the persistent transmission of the virus by the insect. To promote optimal replication, rice viruses activate innate immune responses, such as autophagy, apoptosis, and stress-regulated signaling pathways in the vector; meanwhile, a conserved insect small interfering RNA antiviral pathway is activated to control excessive viral replication, guaranteeing persistent virus transmission. Furthermore, growing evidence has shown that rice viruses can manipulate their vectors either directly or by inducing changes in host plants to promote the spread of viral pathogens. Thus, understanding the plant-virus-insect relationships offers important insights into how disease epidemics occur and facilitates the design of powerful new strategies for disease control.
Collapse
Affiliation(s)
- Jing Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianzhuo Mao
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
44
|
Lyupina YV, Erokhov PA, Kravchuk OI, Finoshin AD, Abaturova SB, Orlova OV, Beljelarskaya SN, Kostyuchenko MV, Mikhailov VS. Essential function of VCP/p97 in infection cycle of the nucleopolyhedrovirus AcMNPV in Spodoptera frugiperda Sf9 cells. Virus Res 2018; 253:68-76. [PMID: 29890203 DOI: 10.1016/j.virusres.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
The protein VCP/p97 (also named CDC48 and TER94) belongs to a type II subfamily of the AAA+ATPases and controls cellular proteostasis by acting upstream of proteasomes in the ubiquitin-proteasome protein degradation pathway. The function of VCP/p97 in the baculovirus infection cycle in insect cells remains unknown. Here, we identified VCP/p97 in the fall armyworm Spodoptera frugiperda (Sf9) cells and analyzed the replication of the Autographa californica multiple nucleopolyhedrovirus, AcMNPV, in Sf9 cells in which the VCP/p97 function was inhibited. The specific allosteric inhibitor of the VCP/p97 ATPase activity, NMS-873, did not deplete VCP/p97 in infected cells but caused a dose-dependent inhibition of viral DNA synthesis and efficiently suppressed expression of viral proteins and production of budded virions. NMS-873 caused accumulation of ubiquitinated proteins in a manner similar to the inhibitor of proteasome activity, Bortezomib. This suggests the essential function of VCP/p97 in the baculovirus infection cycle might be associated, at least in part, with the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yulia V Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Pavel A Erokhov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Oksana I Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Alexander D Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Svetlana B Abaturova
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Olga V Orlova
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., Moscow, 119334, Russia
| | - Svetlana N Beljelarskaya
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., Moscow, 119334, Russia
| | - Margarita V Kostyuchenko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Str., Moscow, 119334, Russia
| | - Victor S Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia.
| |
Collapse
|
45
|
Kong M, Zuo H, Zhu F, Hu Z, Chen L, Yang Y, Lv P, Yao Q, Chen K. The interaction between baculoviruses and their insect hosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:114-123. [PMID: 29408049 DOI: 10.1016/j.dci.2018.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Baculoviruses are double-stranded circular DNA viruses that infect arthropods via the midgut. Because of their superiority as eukaryotic expression systems and their importance as biopesticides, extensive research on the functions of baculovirus genes as well as on the host response to baculovirus infection has been carried out, including transcriptomic and proteomic analyses of the midgut. The morphological and cellular changes caused by baculovirus infection are also important to better understand the infection pathway. Thanks to these previous studies, we now have a clearer picture of the mechanisms of action of the virus and of host immunity. In this paper, we systematically reviewed studies on the interaction between baculoviruses and their insect hosts. By better understanding these interactions, baculoviruses can be developed for use as more efficient biopesticides to improve agricultural development in the future.
Collapse
Affiliation(s)
- Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huan Zuo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
46
|
Wang J, Lin G, Batool K, Zhang S, Chen M, Xu J, Wu J, Jin L, Gelbic I, Xu L, Zhang L, Guan X. Alimentary Tract Transcriptome Analysis of the Tea Geometrid, Ectropis oblique (Lepidoptera: Geometridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1411-1419. [PMID: 29546335 DOI: 10.1093/jee/toy010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Indexed: 06/08/2023]
Abstract
Ectropis oblique Prout (Lepidoptera: Geometridae) is one of the main pests that damages the tea crop in Southeast Asia. To understand the molecular mechanisms of its feeding biology, transcriptomes of the alimentary tract (AT) and of the body minus the AT of E. oblique were successfully sequenced and analyzed in this study. A total of 36,950 unigenes from de novo sequences were assembled. After analysis using six annotation databases (e.g., Gene Ontology, Kyoto Encyclopedia of Genes and Genome, and NCBI nr), a series of putative genes were found for this insect species that were related to digestion, detoxification, the immune system, and Bacillus thuringiensis (Bt) receptors. From this series of genes, 21 were randomly selected to verify the relative expression levels of transcripts using quantitative real-time polymerase chain reaction. These results will provide an invaluable genomic resource for future studies on the molecular mechanisms of E. oblique, which will be useful in developing biological control strategies for this pest.
Collapse
Affiliation(s)
- Junxiang Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Shuaiqi Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Mingfeng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Jin Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Juan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Liang Jin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Ivan Gelbic
- Institute of Entomology, Biology Centre of the Czech Academy of Science, Branišovská, Ceské Budejovice, Czech Republic
| | - Lei Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
47
|
Han Y, van Houte S, van Oers MM, Ros VID. Baculovirus PTP2 Functions as a Pro-Apoptotic Protein. Viruses 2018; 10:v10040181. [PMID: 29642442 PMCID: PMC5923475 DOI: 10.3390/v10040181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
The family Baculoviridae encompasses a large number of invertebrate viruses, mainly infecting caterpillars of the order Lepidoptera. The baculovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) induces physiological and behavioral changes in its host Spodoptera exigua, as well as immunological responses, which may affect virus transmission. Here we show that the SeMNPV-encoded protein tyrosine phosphatase 2 (PTP2) induces mild apoptosis in Spodoptera frugiperda (Sf) 21 cells upon transient expression. Transient expression of a catalytic-site mutant of ptp2 did not lead to apoptosis, indicating that the phosphatase activity of PTP2 is needed to induce apoptosis. We also found that the caspase level (indicator of apoptosis) was higher in cells transfected with the ptp2 gene than in cells transfected with the catalytic mutant. Adding a caspase inhibitor reduced the level of ptp2-induced apoptosis. Moreover, deletion of the ptp2 gene from the viral genome prevented the induction of apoptosis in S. exigua hemocytes. The virus titer and virulence indices (the viral infectivity and the time to death) were not affected by deletion of the ptp2 gene. However, the viral occlusion body yield from S. exigua larvae infected with the mutant virus lacking the ptp2 gene was much lower than the yield from larvae infected with the wild-type (WT) virus. We hypothesize that the observed pro-apoptotic effects of PTP2 are the result of PTP2-mediated immune suppression in larvae, which consequently leads to higher viral occlusion body yields.
Collapse
Affiliation(s)
- Yue Han
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Stineke van Houte
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
48
|
Gu SH, Li G, Hsieh HY, Lin PL, Li S. Stimulation of JNK Phosphorylation by the PTTH in Prothoracic Glands of the Silkworm, Bombyx mori. Front Physiol 2018; 9:43. [PMID: 29459829 PMCID: PMC5807416 DOI: 10.3389/fphys.2018.00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 01/06/2023] Open
Abstract
In this study, phosphorylation of c-Jun N-terminal kinase (JNK) by the prothoracicotropic hormone (PTTH) was investigated in prothoracic glands (PGs) of the silkworm, Bombyx mori. Results showed that JNK phosphorylation was stimulated by the PTTH in time- and dose-dependent manners. In vitro activation of JNK phosphorylation in PGs by the PTTH was also confirmed in an in vivo experiment, in which a PTTH injection greatly increased JNK phosphorylation in PGs of day-6 last instar larvae. JNK phosphorylation caused by PTTH stimulation was greatly inhibited by U73122, a potent and specific inhibitor of phospholipase C (PLC) and an increase in JNK phosphorylation was also detected when PGs were treated with agents (either A23187 or thapsigargin) that directly elevated the intracellular Ca2+ concentration, thereby indicating involvement of PLC and Ca2+. Pretreatment with an inhibitor (U0126) of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) and an inhibitor (LY294002) of phosphoinositide 3-kinase (PI3K) failed to significantly inhibit PTTH-stimulated JNK phosphorylation, indicating that ERK and PI3K were not related to JNK. We further investigated the effect of modulation of the redox state on JNK phosphorylation. In the presence of either an antioxidant (N-acetylcysteine, NAC) or diphenylene iodonium (DPI), PTTH-stimulated JNK phosphorylation was blocked. The JNK kinase inhibitor, SP600125, markedly inhibited PTTH-stimulated JNK phosphorylation and ecdysteroid synthesis. The kinase assay of JNK in PGs confirmed its stimulation by PTTH and inhibition by SP600125. Moreover, PTTH treatment did not affect JNK or Jun mRNA expressions. Based on these findings, we concluded that PTTH stimulates JNK phosphorylation in Ca2+- and PLC-dependent manners and that the redox-regulated JNK signaling pathway is involved in PTTH-stimulated ecdysteroid synthesis in B. mori PGs.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Gen Li
- Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Hsiao-Yen Hsieh
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
49
|
Transcriptome profiling of whitefly guts in response to Tomato yellow leaf curl virus infection. Virol J 2018; 15:14. [PMID: 29338737 PMCID: PMC5771010 DOI: 10.1186/s12985-018-0926-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/09/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Plant viruses in agricultural crops are of great concern worldwide, and over 75% of them are transmitted from infected to healthy plants by insect vectors. Tomato yellow leaf curl virus (TYLCV) is a begomovirus, which is the largest and most economically important group of plant viruses, transmitted by the whitefly Bemisia tabaci. The circulation of TYLCV in the insect involves complex insect-virus interactions, whereas the molecular mechanisms of these interactions remain ambiguous. The insect gut as a barrier for viral entry and dissemination is thought to regulate the vector specificity. However, due to its tiny size, information for the responses of whitefly gut to virus infection is limited. METHODS We investigated the transcriptional response of the gut of B. tabaci Middle East-Asia Minor 1 species to TYLCV infection using Illumina sequencing. RESULTS A total of 5207 differentially expressed genes (DEGs) between viruliferous and non-viruliferous whitefly guts were identified. Enrichment analyses showed that cargo receptor and ATP-binding cassette (ABC) transporters were enriched in DEGs, and might help the virus to cross gut barrier. TYLCV could perturb cell cycle and DNA repair as a possible result of its replication in the whitefly. Our data also demonstrated that TYLCV can activate whitefly defense responses, such as antimicrobial peptides. Meanwhile, a number of genes involved in intracellular signaling were activated by TYLCV infection. CONCLUSIONS Our results reveal the complex insect-virus relationship in whitefly gut and provide substantial molecular information for the role of insect midguts in virus transmission.
Collapse
|
50
|
Comprehensive Profiling of Lysine Acetylome in Baculovirus Infected Silkworm (Bombyx mori) Cells. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/01/2017] [Indexed: 12/12/2022]
|