1
|
Castellan M, Zamperin G, Foiani G, Zorzan M, Priore MF, Drzewnioková P, Melchiotti E, Vascellari M, Monne I, Crovella S, Leopardi S, De Benedictis P. Immunological findings of West Caucasian bat virus in an accidental host. J Virol 2025; 99:e0191424. [PMID: 39846740 PMCID: PMC11853057 DOI: 10.1128/jvi.01914-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
The Lyssavirus genus includes seventeen viral species able to cause rabies, an acute and almost invariably fatal encephalomyelitis of mammals. Rabies virus (RABV), which represents the type species of the genus, is a multi-host pathogen that over the years has undergone multiple events of host-switching, thus occupying several geographical and ecological niches. In contrast, non-RABV lyssaviruses are mainly confined within a single natural host with rare spillover events. In this scenario, unveiling the mechanisms underlying the host immune response against a virus is crucial to understand the dynamics of infection and to predict the probability of colonization/adaptation to a new target species. Presently, the host response to lyssaviruses has only been partially explored, with the majority of data extrapolated from RABV infection. West Caucasian bat virus (WCBV), a divergent lyssavirus, has recently been associated with a spillover event to a domestic cat, raising concern about the risks to public health due to the circulation of the virus in its natural host. Through this study we have investigated the immune response determined by the WCBV versus two widely known lyssaviruses. We selected the Syrian hamster as representative of an accidental host, and chose the intramuscular route in order to mimic the natural infection. In hamsters, WCBV was highly pathogenic, determining 100% lethality and mild encephalitis. In comparison with Duvenhage virus (DUVV) and RABV, we found that WCBV displayed an intermediate ability to promote cellular antiviral response, produce pro-inflammatory cytokines, and recruit and activate lymphocytes in the hamsters' central nervous system. IMPORTANCE Although all lyssaviruses cause fatal encephalomyelitis in mammals, they display a different host tropism and pathogenicity, with the ecology of Rabies virus (RABV) continually evolving and adapting to new host species. In 2020, West Caucasian bat virus (WCBV) was identified as the causative agent of rabies in a domestic cat in Italy. This event raised concerns about its public health consequences, due to the absence of biologicals against the infection. Our study investigates the host immune response triggered by WCBV in comparison with a pathogenic strain of RABV and the low pathogenic Duvenhage lyssavirus (DUVV), as a proxy to understand the mechanisms leading to lyssavirus spillover and pathogenicity. We overall confirm that previous evidence indicating an inverse relationship between lyssavirus pathogenicity and immune response is applicable for WCBV as well. Importantly, this work represents the first transcriptomic analysis of the WCBV interaction in the central nervous system with an accidental host.
Collapse
Affiliation(s)
- Martina Castellan
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Gianpiero Zamperin
- Viral Genomics and Transcriptomics Laboratory, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Greta Foiani
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maira Zorzan
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maria Francesca Priore
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Petra Drzewnioková
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Erica Melchiotti
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Marta Vascellari
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Isabella Monne
- Viral Genomics and Transcriptomics Laboratory, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| | - Stefania Leopardi
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Paola De Benedictis
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
2
|
Gao H, Zhao D, Li C, Deng M, Li G, Chen S, Zhao M, Qin L, Zhang K. The Role of Orthobunyavirus Glycoprotein Gc in the Viral Life Cycle: From Viral Entry to Egress. Molecules 2025; 30:503. [PMID: 39942606 PMCID: PMC11820035 DOI: 10.3390/molecules30030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Orthobunyavirus refers to the virus members within the Genus Orthobunyavirus, which is the largest virus genus in the Family Peribunyaviridae and even Class Bunyaviricetes. To date, over 130 species of Orthobunyaviruses have been identified worldwide. Orthobunyaviruses mainly infect arthropods, while some species are capable of being transmitted to mammals, including humans, via intermediate vectors. As emerging and re-emerging pathogens, orthobunyavirus poses a significant threat to both human and veterinary public health worldwide. Currently, there are no commercial vaccines against orthobunyavirus. The structure of orthobunyavirus is relatively simple, consisting of a typical tri-segmented negative-sense RNA genome that encodes four structural proteins (L, Gn, Gc, and N) and two non-structural proteins (NSm and NSs). The highly glycosylated Gc protein, which has a complex conformation and forms polymers embedded in the viral envelope, plays a critical role in inducing neutralizing antibodies throughout the orthobunyavirus infection cycle from entry to egress. This review provides a comprehensive summary of the virus-encoded Gc protein and its role in the virus life cycle from viral entry to egress, offering researchers with valuable integrated information for further investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Limei Qin
- School of Animal Science and Technology, Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (H.G.)
| | - Keshan Zhang
- School of Animal Science and Technology, Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (H.G.)
| |
Collapse
|
3
|
Gansevoort M, Oostendorp C, Bouwman LF, Tiemessen DM, Geutjes PJ, Feitz WFJ, van Kuppevelt TH, Daamen WF. Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model. Tissue Eng Regen Med 2024; 21:1173-1187. [PMID: 39215940 PMCID: PMC11589036 DOI: 10.1007/s13770-024-00667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development. Surgical closure of the skin in utero limits neurological damage, but in large defects this results in scarring and contractures. Stimulating skin regeneration in utero would greatly benefit treatment outcome. Previously, we demonstrated that a porous type I collagen (COL) scaffold, functionalized with heparin (HEP), fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) (COL-HEP/GF) improved pre- and postnatal skin regeneration in a fetal sheep full thickness wound model. In this study we uncover the early events associated with enhanced skin regeneration. METHODS We investigated the gene expression profiles of healing fetal skin wounds two weeks after implantation of the COL(-HEP/GF) scaffolds. Using laser dissection and microarrays, differentially expressed genes (DEG) were identified in the epidermis and dermis between untreated wounds, COL-treated wounds and wounds treated with COL-HEP/GF. Biological processes were identified using gene enrichment analysis and DEG were clustered using protein-protein-interaction networks. RESULTS COL-HEP/GF influences various interesting biological processes involved in wound healing. Although the changes were modest, using protein-protein-interaction networks we identified a variety of clustered genes that indicate COL-HEP/GF induces a tight but subtle control over cell signaling and extracellular matrix organization. CONCLUSION These data offer a novel perspective on the key processes involved in (fetal) wound healing, where a targeted and early interference during wound healing can result in long-term enhanced effects on skin regeneration.
Collapse
Affiliation(s)
- Merel Gansevoort
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Corien Oostendorp
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- HAN University of Applied Sciences, Arnhem, The Netherlands
| | - Linde F Bouwman
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Dorien M Tiemessen
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Schwartz DA, Dashraath P, Baud D. Oropouche Virus (OROV) in Pregnancy: An Emerging Cause of Placental and Fetal Infection Associated with Stillbirth and Microcephaly following Vertical Transmission. Viruses 2024; 16:1435. [PMID: 39339911 PMCID: PMC11437435 DOI: 10.3390/v16091435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Oropouche virus (OROV) is an emerging arbovirus endemic in Latin America and the Caribbean that causes Oropouche fever, a febrile illness that clinically resembles some other arboviral infections. It is currently spreading through Brazil and surrounding countries, where, from 1 January to 1 August 2024, more than 8000 cases have been identified in Bolivia, Brazil, Columbia, and Peru and for the first time in Cuba. Travelers with Oropouche fever have been identified in the United States and Europe. A significant occurrence during this epidemic has been the report of pregnant women infected with OROV who have had miscarriages and stillborn fetuses with placental, umbilical blood and fetal somatic organ samples that were RT-PCR positive for OROV and negative for other arboviruses. In addition, there have been four cases of newborn infants having microcephaly, in which the cerebrospinal fluid tested positive for IgM antibodies to OROV and negative for other arboviruses. This communication examines the biology, epidemiology, and clinical features of OROV, summarizes the 2023-2024 Oropouche virus epidemic, and describes the reported cases of vertical transmission and congenital infection, fetal death, and microcephaly in pregnant women with Oropouche fever, addresses experimental animal infections and potential placental pathology findings of OROV, and reviews other bunyavirus agents that can cause vertical transmission. Recommendations are made for pregnant women travelling to the regions affected by the epidemic.
Collapse
Affiliation(s)
- David A. Schwartz
- Perinatal Pathology Consulting, 490 Dogwood Valley Drive, Atlanta, GA 30342, USA
| | - Pradip Dashraath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore;
| | - David Baud
- Materno-Fetal & Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland;
| |
Collapse
|
5
|
Bergevin MD, Ng V, Sadeghieh T, Menzies P, Ludwig A, Mubareka S, Clow KM. A Scoping Review on the Epidemiology of Orthobunyaviruses in Canada, in the Context of Human, Wildlife, and Domestic Animal Host Species. Vector Borne Zoonotic Dis 2024; 24:249-264. [PMID: 38206763 DOI: 10.1089/vbz.2023.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Background: Mosquito-borne orthobunyaviruses in Canada are a growing public health concern. Orthobunyaviral diseases are commonly underdiagnosed and in Canada, likely underreported as surveillance is passive. No vaccines or specific treatments exist for these disease agents. Further, climate change is facilitating habitat expansion for relevant reservoirs and vectors, and it is likely that the majority of the Canadian population is susceptible to these viruses. Methods: A scoping review was conducted to describe the current state of knowledge on orthobunyavirus epidemiology in Canada. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guideline was used. Literature searches were conducted in six databases and in gray literature. The epidemiology of orthobunyaviruses was characterized for studies focusing on host species, including spatiotemporal patterns, risk factors, and climate change impact. Results: A total of 172 relevant studies were identified from 1734 citations from which 95 addressed host species, including humans, wildlife, and domestic animals including livestock. The orthobunyaviruses-Cache Valley virus (CVV), Jamestown Canyon virus (JCV), Snowshoe Hare virus (SHV), and La Crosse virus (LACV)-were identified, and prevalence was widespread across vertebrate species. CVV, JCV, and SHV were detected across Canada and the United States. LACV was reported only in the United States, predominantly the Mid-Atlantic and Appalachian regions. Disease varied by orthobunyavirus and was associated with age, environment, preexisting compromised immune systems, or livestock breeding schedule. Conclusion: Knowledge gaps included seroprevalence data in Canada, risk factor analyses, particularly for livestock, and disease projections in the context of climate change. Additional surveillance and mitigation strategies, especially accounting for climate change, are needed to guide future public health efforts to prevent orthobunyavirus exposure and disease.
Collapse
Affiliation(s)
- Michele D Bergevin
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Victoria Ng
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Tara Sadeghieh
- Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Paula Menzies
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Antoinette Ludwig
- National Microbiology Laboratory Branch, Public Health Agency of Canada, St. Hyacinthe, Québec, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Katie M Clow
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Hughes HR, Kenney JL, Calvert AE. Cache Valley virus: an emerging arbovirus of public and veterinary health importance. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1230-1241. [PMID: 37862064 DOI: 10.1093/jme/tjad058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 10/21/2023]
Abstract
Cache Valley virus (CVV) is a mosquito-borne virus in the genus Orthobunyavirus (Bunyavirales: Peribunyaviridae) that has been identified as a teratogen in ruminants causing fetal death and severe malformations during epizootics in the U.S. CVV has recently emerged as a viral pathogen causing severe disease in humans. Despite its emergence as a public health and agricultural concern, CVV has yet to be significantly studied by the scientific community. Limited information exists on CVV's geographic distribution, ecological cycle, seroprevalence in humans and animals, and spectrum of disease, including its potential as a human teratogen. Here, we present what is known of CVV's virology, ecology, and clinical disease in ruminants and humans. We discuss the current diagnostic techniques available and highlight gaps in our current knowledge and considerations for future research.
Collapse
Affiliation(s)
- Holly R Hughes
- Arboviral Diseases Branch, Division of Vector-Borne Infectious Diseases, U.S. Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Joan L Kenney
- Arboviral Diseases Branch, Division of Vector-Borne Infectious Diseases, U.S. Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Amanda E Calvert
- Arboviral Diseases Branch, Division of Vector-Borne Infectious Diseases, U.S. Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| |
Collapse
|
7
|
Mhamadi M, Dieng I, Dolgova AS, Touré CT, Ndiaye M, Diagne MM, Faye B, Gladkikh AS, Dedkov VG, Sall AA, Faye O, Faye O. Whole Genome Sequencing Analysis of African Orthobunyavirus Isolates Reveals Naturally Interspecies Segments Recombinations between Bunyamwera and Ngari Viruses. Viruses 2023; 15:v15020550. [PMID: 36851764 PMCID: PMC9963518 DOI: 10.3390/v15020550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bunyamwera virus is the prototype of the Bunyamwera serogroup, which belongs to the order Bunyavirales of the Orthobunyavirus genus in the Peribunyaviridae family. Bunyamwera is a negative-sense RNA virus composed of three segments S, M, and L. Genetic recombination is possible between members of this order as it is already documented. Additionally, it can lead to pathogenic or host range improvement, if it occurs with viruses of public health and agricultural importance such as Rift Valley fever virus and Crimea-Congo hemorrhagic fever virus. Here, we characterize five African Orthobunyavirus viruses from different geographical regions. Our results suggest that the five newly characterized strains are identified as Bunyamwera virus strains. Furthermore, two of the five strains sequenced in this study are recombinant strains, as fragments of their segments are carried by Ngari and Bunyamwera strains. Further investigations are needed to understand the functional impact of these recombinations.
Collapse
Affiliation(s)
- Moufid Mhamadi
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
- Parasitology Department, Université Cheikh Anta Diop de Dakar, Dakar 10700, Senegal
| | - Idrissa Dieng
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Anna S. Dolgova
- Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia
- Correspondence: (A.S.D.); (O.F.)
| | | | - Mignane Ndiaye
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | | | - Babacar Faye
- Parasitology Department, Université Cheikh Anta Diop de Dakar, Dakar 10700, Senegal
| | - Anna S. Gladkikh
- Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia
| | | | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
- Correspondence: (A.S.D.); (O.F.)
| |
Collapse
|
8
|
Mansfield KL, Folly AJ, Hernández-Triana LM, Sewgobind S, Johnson N. Batai Orthobunyavirus: An Emerging Mosquito-Borne Virus in Europe. Viruses 2022; 14:v14091868. [PMID: 36146674 PMCID: PMC9503884 DOI: 10.3390/v14091868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Batai virus (BATV) is a zoonotic orthobunyavirus transmitted by a wide range of mosquito vectors. The virus is distributed throughout Asia and parts of Africa and has been sporadically detected in several European countries. There is increasing evidence that BATV is emerging in Europe as a potential threat to both animal and human health, having been detected in mosquitoes, mammals, birds and humans. In recent years, serological surveillance in cattle, sheep and goats has suggested an antibody prevalence of up to 46% in European livestock, although human serological prevalence remains generally low. However, the recent and continued spread of invasive mosquito species into Europe may facilitate the establishment of competent populations of mosquitoes leading to increased BATV transmission. Migratory birds may also potentially facilitate the emergence of BATV in geographical locations where it was previously undetected. Although BATV has the potential to cause disease in humans and livestock, our understanding of the impact in wild animal populations is extremely limited. Therefore, there is a need for increased surveillance for BATV in mosquitoes, livestock, wild mammals and birds in Europe to understand the true impact of this virus.
Collapse
|
9
|
Skinner B, Mikula S, Davis BS, Powers JA, Hughes HR, Calvert AE. Monoclonal antibodies to Cache Valley virus for serological diagnosis. PLoS Negl Trop Dis 2022; 16:e0010156. [PMID: 35073325 PMCID: PMC8812937 DOI: 10.1371/journal.pntd.0010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/03/2022] [Accepted: 01/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cache Valley virus (CVV) is a mosquito-borne virus in the genus Orthobunyavirus, family Peribunyaviridae. It was first isolated from a Culiseta inorata mosquito in Cache Valley, Utah in 1956 and is known to circulate widely in the Americas. While only a handful of human cases have been reported since its discovery, it is the causative agent of fetal death and severe malformations in livestock. CVV has recently emerged as a potential viral pathogen causing severe disease in humans. Currently, the only serological assay available for diagnostic testing is plaque reduction neutralization test which takes several days to perform and requires biocontainment. To expand diagnostic capacity to detect CVV infections by immunoassays, 12 hybridoma clones secreting anti-CVV murine monoclonal antibodies (MAbs) were developed. All MAbs developed were found to be non-neutralizing and specific to the nucleoprotein of CVV. Cross-reactivity experiments with related orthobunyaviruses revealed several of the MAbs reacted with Tensaw, Fort Sherman, Tlacotalpan, Maguari, Playas, and Potosi viruses. Our data shows that MAbs CVV14, CVV15, CVV17, and CVV18 have high specific reactivity as a detector in an IgM antibody capture test with human sera. Cache Valley virus is a mosquito-borne virus found throughout the Americas. It causes fetal death and severe malformations in livestock, and only a few cases of human viral disease have been identified. Currently, we do not fully understand the spectrum of disease in humans including its potential to cause fetal malformations. The only serological diagnostic assay available to detect recent viral infection is plaque reduction neutralization test which requires the use of live virus in biocontainment. In order to develop faster and safer serodiagnostics we generated 12 monoclonal antibodies for incorporation into new assays. These antibodies are specific to the nucleoprotein of the virus and cross-react with other closely related mosquito-borne viruses. Four of these antibodies were incorporated into an immunoassay for the detection of IgM from human sera demonstrating their utility in serodiagnosis. Rapid and higher throughput assays utilizing these antibodies will expand diagnostic capacity and facilitate research to increase our understanding of Cache Valley disease prevalence and the virus’s impact on at-risk populations.
Collapse
Affiliation(s)
- Benjamin Skinner
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Sierra Mikula
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Brent S. Davis
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Jordan A. Powers
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Holly R. Hughes
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Amanda E. Calvert
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
10
|
Mutisya J, Kahato M, Mulwa F, Langat S, Chepkorir E, Arum S, Tchouassi D, Sang R, Lutomiah J. Evaluating the vector competence of Aedes simpsoni sl from Kenyan coast for Ngari and Bunyamwera viruses. PLoS One 2021; 16:e0253955. [PMID: 34197539 PMCID: PMC8248722 DOI: 10.1371/journal.pone.0253955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
Background Bunyamwera(BUNV) and Ngari (NGIV) viruses are arboviruses of medical importance globally, the viruses are endemic in Africa, Aedes(Ae) aegypti and Anopheles(An) gambiae mosquitoes are currently competent vectors for BUNV and NGIV respectively. Both viruses have been isolated from humans and mosquitoes in various ecologies of Kenya. Understanding the risk patterns and spread of the viruses necessitate studies of vector competence in local vector population of Ae. simpsoni sl which is abundant in the coastal region. This study sought to assess the ability of Ae. Simpsoni sl mosquitoes abundant at the Coast of Kenya to transmit these viruses in experimental laboratory experiments. Methods Field collected larvae/pupae of Ae. Simpsoni sl mosquitoes from Rabai, Kilifi County, were reared to adults, the first filial generation (F0) females’ mosquitoes were orally exposed to infectious blood meal with isolates of the viruses using the hemotek membrane feeder. The exposed mosquitoes were incubated under insectary conditions and sampled on day 7, 14 and 21days post infection to determine susceptibility to the virus infection using plaque assay. Results A total of 379 (Bunyamwera virus 255 and Ngari virus 124) Ae. simpsoni sl were orally exposed to infectious blood meal. Overall, the infection rate (IR) for BUNV and NGIV were 2.7 and 0.9% respectively. Dissemination occurred in 5 out 7 mosquitoes with mid-gut infection for Bunyamwera virus and 1 out of 2 mosquitoes with mid-gut infection for Ngari virus. Further, the transmission was observed in 1 out of 5 mosquitoes that had disseminated infection and no transmission was observed for Ngari virus in all days post infection (dpi). Conclusion Our study shows that Ae. simpsoni sl. is a laboratory competent vector for Bunyamwera virus since it was able to transmit the virus through capillary feeding while NGIV infection was restricted to midgut infection and disseminated infection, these finding adds information on the epidemiology of the viruses and vector control plan.
Collapse
Affiliation(s)
- James Mutisya
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
- Institute of Tropical Medicine and Infectious Diseases, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- * E-mail:
| | - Michael Kahato
- Institute of Tropical Medicine and Infectious Diseases, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Francis Mulwa
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Solomon Langat
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Edith Chepkorir
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Samuel Arum
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - David Tchouassi
- Human Health Department, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Rosemary Sang
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Joel Lutomiah
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
11
|
Dutuze MF, Mayton EH, Macaluso JD, Christofferson RC. Comparative characterization of the reassortant Orthobunyavirus Ngari with putative parental viruses, Bunyamwera and Batai: in vitro characterization and ex vivo stability. J Gen Virol 2021; 102:001523. [PMID: 33258753 PMCID: PMC8116939 DOI: 10.1099/jgv.0.001523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023] Open
Abstract
Bunyamwera (BUNV), Batai (BATV) and Ngari (NRIV) are mosquito-borne viruses that are members of the genus Orthobunyavirus in the order Bunyavirales. These three viruses are enveloped with single-stranded, negative-sense RNA genomes consiting of three segments, denoted as Small (S), Medium (M) and Large (L). Ngari is thought to be the natural reassortant progeny of Bunyamwera and Batai viruses. The relationship between these 'parental' viruses and the 'progeny' poses an interesting question, especially given that there is overlap in their respective transmission ecologies, but differences in their infection host ranges and pathogenesis. We compared the in vivo kinetics of these three viruses in a common laboratory system and found no significant difference in growth kinetics. There was, however, a tendency of BATV to have smaller plaques than either BUNV or NRIV. Furthermore, we determined that all three viruses are stable in extracellular conditions and retain infectivity for a week in non-cellular media, which has public health and biosafety implications. The study of this understudied group of viruses addresses a need for basic characterization of viruses that have not yet reached epidemic transmission intensity, but that have the potential due to their infectivity to both human and animal hosts. These results lay the groundwork for future studies of these neglected viruses of potential public and One Health importance.
Collapse
Affiliation(s)
- M. Fausta Dutuze
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Rwanda Institute of Conservation and Agriculture, Gashora, Bugesera, Rwanda
| | - E. Handly Mayton
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joshua D. Macaluso
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
12
|
Zhao L, Luo H, Huang D, Yu P, Dong Q, Mwaliko C, Atoni E, Nyaruaba R, Yuan J, Zhang G, Bente D, Yuan Z, Xia H. Pathogenesis and Immune Response of Ebinur Lake Virus: A Newly Identified Orthobunyavirus That Exhibited Strong Virulence in Mice. Front Microbiol 2021; 11:625661. [PMID: 33597934 PMCID: PMC7882632 DOI: 10.3389/fmicb.2020.625661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Orthobunyaviruses are a group of viruses with significant public and veterinary health importance. These viruses are mainly transmitted through mosquito-, midge-, and tick-vectors, and are endemic to various regions of the world. Ebinur Lake virus (EBIV), a newly identified member of Orthobunyavirus, was isolated from Culex mosquitoes in Northwest China. In the present study, we aimed to characterize the pathogenesis and host immune responses of EBIV in BALB/c mice, as an animal model. Herein, we determined that BALB/c mice are highly susceptible to EBIV infection. The infected mice exhibited evident clinical signs including weight loss, mild encephalitis, and death. High mortality of mice was observed even with inoculation of one plaque-forming unit (PFU) of EBIV, and the infected mice succumbed to death within 5-9 days. After EBIV challenge, rapid viremic dissemination was detected in the peripheral tissues and the central nervous system, with prominent histopathologic changes observed in liver, spleen, thymus, and brain. Blood constituents' analysis of EBIV infected mice exhibited leukopenia, thrombocytopenia, and significantly elevated ALT, LDH-L, and CK. Further, EBIV infection induced obvious cytokines changes in serum, spleen, and brain in mice. Collectively, our data describe the first study that systematically examines the pathogenesis of EBIV and induced immune response in an immunocompetent standard mouse model, expanding our knowledge of this virus, which may pose a threat to One Health.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Doudou Huang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ping Yu
- Computing Virus Discipline Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiannan Dong
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiangling Yuan
- The Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Guilin Zhang
- Xinjiang Heribase Biotechnology Co., Ltd., Urumqi, China
| | - Dennis Bente
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Martinez F, Mugas ML, Aguilar JJ, Marioni J, Contigiani MS, Núñez Montoya SC, Konigheim BS. First report of antiviral activity of nordihydroguaiaretic acid against Fort Sherman virus (Orthobunyavirus). Antiviral Res 2021; 187:104976. [PMID: 33444704 DOI: 10.1016/j.antiviral.2020.104976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023]
Abstract
The genus Orthobunyavirus are a group of viruses within arbovirus, with a zoonotic cycle, some of which could lead to human infection. A characteristic of these viruses is their lack of antiviral treatment or vaccine for its prevention. The objective of this work was to study the in vitro antiviral activity of nordihydroguaiaretic acid (NDGA), the most important active compound of Larrea divaricata Cav. (Zigophyllaceae), against Fort Sherman virus (FSV) as a model of Orthobunyavirus genus. At the same time, the effect of NDGA as a lipolytic agent on the cell cycle of this viral model was assessed. The method of reducing plaque forming units on LLC-MK2 cells was used to detect the action of NDGA on CbaAr426 and SFCrEq231 isolates of FSV. NDGA did not show virucidal effect, but it had antiviral activity with a similar inhibition in both isolates, which was dose dependent. It was established that the NDGA has a better inhibition 1-h post-internalization (p.i.), showing a different behavior in each isolate, which was dependent upon the time p.i. Since virus multiplication is dependent on host cell lipid metabolism, the antiviral effect of NDGA has been previously related to its ability to disturb the lipid metabolism, probably by interfering with the 5-lipoxigenase (5-LOX) and the sterol regulatory element-binding proteins (SREBP) pathway. We determined by using caffeic acid, a 5-LOX inhibitor, that the inhibition of this enzyme negatively affected the FSV replication; and by means of resveratrol, a SREBP1 inhibitor, it was showed that the negative regulation of this pathway only had action on the SFCrEq231 reduction. In addition, it was proved that the NDGA acts intracellularly, since it showed the ability to incorporate into LLC-MK2 cells. The information provided in this work converts the NDGA into a compound with antiviral activity in vitro against FSV (Orthobunyavirus), which can be subjected to structural modifications in the future to improve the activity.
Collapse
Affiliation(s)
- Florencia Martinez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Enfermera Gordillo S/N, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Laura Mugas
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad Nacional Córdoba, Facultad Ciencias Químicas, Dpto. Ciencias Farmacéuticas, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Av. Vélez Sarsfield 1666. CP, X5016GCN, Córdoba, Argentina
| | - Juan Javier Aguilar
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Enfermera Gordillo S/N, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Juliana Marioni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad Nacional Córdoba, Facultad Ciencias Químicas, Dpto. Ciencias Farmacéuticas, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Av. Vélez Sarsfield 1666. CP, X5016GCN, Córdoba, Argentina
| | - Marta Silvia Contigiani
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Enfermera Gordillo S/N, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Susana C Núñez Montoya
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad Nacional Córdoba, Facultad Ciencias Químicas, Dpto. Ciencias Farmacéuticas, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Av. Vélez Sarsfield 1666. CP, X5016GCN, Córdoba, Argentina
| | - Brenda S Konigheim
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Enfermera Gordillo S/N, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
14
|
Panda BSK, Mohapatra SK, Chaudhary D, Alhussien MN, Kapila R, Dang AK. Proteomics and transcriptomics study reveals the utility of ISGs as novel molecules for early pregnancy diagnosis in dairy cows. J Reprod Immunol 2020; 140:103148. [PMID: 32447181 DOI: 10.1016/j.jri.2020.103148] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023]
Abstract
An early and precise diagnosis of pregnancy in cows is critical to short the calving interval and to improve their reproductive efficiency. Neutrophils are the first blood cells to sensitize the embryo in the uterus and participate in maternal recognition of pregnancy after getting induced by interferon tau (IFNτ). To study the protein abundance ratio, blood samples were collected on 0th, 10th, 18th and 36th day post-artificial insemination (AI) from crossbred Karan Fries cows. Neutrophils were isolated through density gradient centrifugation and studied for protein abundance by high-performance liquid chromatography coupled with mass spectrometry (LC-MS). Protein abundance ratios for Myxovirus resistance (MX1 and MX2) were found to be higher (P < 0.05) on day 10 and day 18 post-AI, whereas Oligoadenylate synthetase-1 (OAS1) and Interferon stimulated gene-15 ubiquitin-like modifier (ISG15) proteins were more abundant on day 18 post-AI. The relative mRNA expressions of these molecules were also studied by qPCR. The gene expression of ISG15, MX1, MX2 and OAS1 was found to be higher (P < 0.05) on day 10th, 18th and 36th post-AI compared to day 0. The study indicates that ISGs on blood neutrophils are essential for the establishment of pregnancy and may be targeted as potential biomarkers for pregnancy diagnosis in cows.
Collapse
Affiliation(s)
- Bibhudatta S K Panda
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sunil Kumar Mohapatra
- Department of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Dheeraj Chaudhary
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | | | - Rajeev Kapila
- Department of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.
| |
Collapse
|
15
|
Dutuze MF, Ingabire A, Gafarasi I, Uwituze S, Nzayirambaho M, Christofferson RC. Identification of Bunyamwera and Possible Other Orthobunyavirus Infections and Disease in Cattle during a Rift Valley Fever Outbreak in Rwanda in 2018. Am J Trop Med Hyg 2020; 103:183-189. [PMID: 32314686 PMCID: PMC7356447 DOI: 10.4269/ajtmh.19-0596] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In 2018, a large outbreak of Rift Valley fever (RVF)–like illness in cattle in Rwanda and surrounding countries was reported. From this outbreak, sera samples from 157 cows and 28 goats suspected to be cases of RVF were tested to confirm or determine the etiology of the disease. Specifically, the hypothesis that orthobunyaviruses—Bunyamwera virus (BUNV), Batai virus (BATV), and Ngari virus (NRIV)—were co-circulating and contributed to RVF-like disease was tested. Using reverse transcriptase-polymerase chain reaction (RT-PCR), RVFV RNA was detected in approximately 30% of acutely ill animals, but in all cases of hemorrhagic disease. Seven cows with experienced abortion had positive amplification and visualization by gel electrophoresis of all three segments of either BUNV or BATV, and three of these were suggested to be coinfected with BUNV and BATV. On sequencing, five of these seven cows were conclusively positive for BUNV. However, in several other animals, sequencing was successful for some but not all segments of targeted viruses BUNV and BATV. In addition, there was evidence of RVFV–orthobunyavirus coinfection, through RT-PCR/gel electrophoresis and subsequent Sanger sequencing. In no cases were we able to definitely identify the specific coinfecting viral species. This is the first time evidence for orthobunyavirus circulation has been molecularly confirmed in Rwanda. Furthermore, RT-PCR results suggest that BUNV and BATV may coinfect cattle and that RVFV-infected animals may be coinfected with other orthobunyaviruses. Finally, we confirm that BUNV and, perhaps, other orthobunyaviruses were co-circulating with RVFV and contributed to the burden of disease attributed to RVFV in Rwanda.
Collapse
Affiliation(s)
- Marie Fausta Dutuze
- College of Agriculture and Animal Sciences and Veterinary Medicine, University of Rwanda, Kigali, Rwanda.,School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | | | | | | | | | | |
Collapse
|
16
|
Binder LDC, Tauro LB, Farias AA, Labruna MB, Diaz A. Molecular survey of flaviviruses and orthobunyaviruses in Amblyomma spp. ticks collected in Minas Gerais, Brazil. ACTA ACUST UNITED AC 2019; 28:764-768. [PMID: 31576974 DOI: 10.1590/s1984-29612019071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022]
Abstract
Due to anthropic environmental changes, vector-borne diseases are emerging worldwide. Ticks are known vectors of several pathogens of concern among humans and animals. In recent decades, several examples of tick-borne emerging viral diseases have been reported (Crimean Congo hemorrhagic fever virus, Powassan virus, encephalitis virus, heartland virus, severe fever with thrombocytopenia syndrome virus). Unfortunately, few studies addressing the presence of viruses in wild ticks have been carried out in South America. With the aim of detecting flaviviruses and orthobunyaviruses in ticks, we carried out molecular detection in wild ticks collected in the state of Minas Gerais, Brazil. No Flavivirus-positive ticks were detected; however, we detected activity of Orthobunyavirus in 8 Amblyomma tick specimens. One of those individuals was positive for Bunyamwera orthobunyavirus, which represents the first report of this virus among ticks in South America. Further studies related to the ecology of zoonotic diseases are needed to increase knowledge of this topic, including attempts at viral isolation, full genome sequencing and biological characterization. In this way, we will obtain a better picture of the real risk of ticks as a vector for viral diseases for humans and animals on our continent, where no tick-borne viral disease is known to occur.
Collapse
Affiliation(s)
- Lina de Campos Binder
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Laura Beatriz Tauro
- Arbovirus Laboratory, Faculty of Medicine, Institute of Virology "Dr. J. M. Vanella", National University of Córdoba - UCO, Córdoba, Argentina.,Institute of Subtropical Biology, Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, National University of Misiones, Misiones, Argentina
| | - Adrian Alejandro Farias
- Arbovirus Laboratory, Faculty of Medicine, Institute of Virology "Dr. J. M. Vanella", National University of Córdoba - UCO, Córdoba, Argentina
| | - Marcelo Bahia Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Adrian Diaz
- Arbovirus Laboratory, Faculty of Medicine, Institute of Virology "Dr. J. M. Vanella", National University of Córdoba - UCO, Córdoba, Argentina.,Institute of Biological and Technological Research, Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, National University of Córdoba - UCO, Córdoba, Argentina
| |
Collapse
|
17
|
Duplex Quantitative Polymerase Chain Reaction of ISG15 and RSAD2 Increases Accuracy of Early Pregnancy Diagnosis in Dairy Cows. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Early diagnosis of pregnancy is important in livestock production, but there is no reliable technology used for pregnancy diagnosis within the first three weeks after insemination. During early pregnancy, the expression of interferon-stimulating genes (ISGs) in peripheral blood leukocytes (PBL) is significantly increased. However, due to different strains, detection sample types, detection methods, threshold value, etc. the specific effectiveness of early pregnancy diagnosis using ISGs is worth further study. The purpose of this study was to test interferon-stimulated protein 15 (ISG15), 2'–5'-oligoadenylate synthetase 1 (OAS1) and radical S-adenosyl methionine domain containing 2 (RSAD2) for early pregnancy diagnosis in dairy cows. The expression of ISG15, OAS1, and RSAD2 in PBL of pregnant and non-pregnant heifers on days 0, 14, 18, 21 and 28 after artificial insemination (AI) was detected by fluorescence quantitative polymerase chain reaction (PCR). The sensitivity and specificity of the pregnancy diagnosis was analyzed using expression of these three genes separately or in combination by receiver operating characteristic curve. The combination with the highest accuracy used probe primers and duplex fluorescence quantitative PCR. The single quantitative PCR results showed that expression of ISG15, OAS1 and RSAD2 on day 18 after AI was significantly higher in pregnant than in non-pregnant cows. When these three genes were used separately, or in combination, for early pregnancy diagnosis, the sensitivity for the RSAD2 gene was 100%, and the combination of ISG15 with RSAD2 was 94.7%. The duplex quantitative PCR showed that, although the sensitivity of ISG15 alone was 100%, its specificity was only 88.2% (cut-off value 1.402). The sensitivity of RSAD2 alone was 89.5%, and the specificity was 88.2%; however, when the two genes were used in combination, the sensitivity, specificity and diagnostic cut-off value were consistent with the results of single quantitative PCR. These results indicated that a duplex quantitative PCR assay system for early pregnancy diagnosis in cows using ISG15 and RSAD2 was established. Simultaneous detection of expression of ISG15 and RSAD2 by duplex quantitative PCR can effectively improve the diagnostic accuracy for dairy cows.
Collapse
|
18
|
Comparison of Schmallenberg virus sequences isolated from mammal host and arthropod vector. Virus Genes 2018; 54:792-803. [PMID: 30341640 PMCID: PMC6244546 DOI: 10.1007/s11262-018-1607-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Schmallenberg virus (SBV) is the member of Peribunyaviridae family, which comprises pathogens of importance for human and veterinary medicine. The virus is transmitted only between animals and mainly by biting midges of the genus Culicoides. This study was performed in order to determine SBV genetic diversity and elucidate the host–vector adaptation. All three viral segments were analysed for sequence variability and phylogenetic relations. The Polish SBV strains obtained from acute infections of cattle, congenital cases in sheep, and from Culicoides midges were sequenced using Sanger and next-generation sequencing (NGS) methods. The obtained sequences were genetically similar (99.2–100% identity) to the first-detected strain BH80/11—4 from German cattle. The sampling year and origin of Polish sequences had no effect on molecular diversity of SBV. Considering all analysed Polish as well as European sequences, ovine-derived sequences were the most variable, while the midge ones were more conserved and encompassed unique substitutions located mainly in nonstructural protein S. SBV sequences isolated from Culicoides are the first submitted to GenBank and reported.
Collapse
|
19
|
Dunlop JI, Szemiel AM, Navarro A, Wilkie GS, Tong L, Modha S, Mair D, Sreenu VB, Da Silva Filipe A, Li P, Huang YJS, Brennan B, Hughes J, Vanlandingham DL, Higgs S, Elliott RM, Kohl A. Development of reverse genetics systems and investigation of host response antagonism and reassortment potential for Cache Valley and Kairi viruses, two emerging orthobunyaviruses of the Americas. PLoS Negl Trop Dis 2018; 12:e0006884. [PMID: 30372452 PMCID: PMC6245839 DOI: 10.1371/journal.pntd.0006884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/20/2018] [Accepted: 09/28/2018] [Indexed: 11/24/2022] Open
Abstract
Orthobunyaviruses such as Cache Valley virus (CVV) and Kairi virus (KRIV) are important animal pathogens. Periodic outbreaks of CVV have resulted in the significant loss of lambs on North American farms, whilst KRIV has mainly been detected in South and Central America with little overlap in geographical range. Vaccines or treatments for these viruses are unavailable. One approach to develop novel vaccine candidates is based on the use of reverse genetics to produce attenuated viruses that elicit immune responses but cannot revert to full virulence. The full genomes of both viruses were sequenced to obtain up to date genome sequence information. Following sequencing, minigenome systems and reverse genetics systems for both CVV and KRIV were developed. Both CVV and KRIV showed a wide in vitro cell host range, with BHK-21 cells a suitable host cell line for virus propagation and titration. To develop attenuated viruses, the open reading frames of the NSs proteins were disrupted. The recombinant viruses with no NSs protein expression induced the production of type I interferon (IFN), indicating that for both viruses NSs functions as an IFN antagonist and that such attenuated viruses could form the basis for attenuated viral vaccines. To assess the potential for reassortment between CVV and KRIV, which could be relevant during vaccination campaigns in areas of overlap, we attempted to produce M segment reassortants by reverse genetics. We were unable to obtain such viruses, suggesting that it is an unlikely event.
Collapse
Affiliation(s)
- James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Agnieszka M. Szemiel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Aitor Navarro
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Gavin S. Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Daniel Mair
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Vattipally B. Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Ping Li
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
| | - Richard M. Elliott
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| |
Collapse
|
20
|
Yang Y, Qiu J, Snyder-Keller A, Wu Y, Sun S, Sui H, Dean AB, Kramer L, Hernandez-Ilizaliturri F. Fatal Cache Valley virus meningoencephalitis associated with rituximab maintenance therapy. Am J Hematol 2018; 93:590-594. [PMID: 29282755 DOI: 10.1002/ajh.25024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanquan Yang
- Department of Medicine; Roswell Park Cancer Institute; Buffalo New York
| | - Jingxin Qiu
- Department of Pathology; Roswell Park Cancer Institute; Buffalo New York
| | | | - Yongping Wu
- Wadsworth Center, New York State Department of Health; Albany New York
| | - Shufeng Sun
- Wadsworth Center, New York State Department of Health; Albany New York
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health; Albany New York
| | - Amy B. Dean
- Wadsworth Center, New York State Department of Health; Albany New York
| | - Laura Kramer
- Wadsworth Center, New York State Department of Health; Albany New York
| | | |
Collapse
|
21
|
Dutuze MF, Nzayirambaho M, Mores CN, Christofferson RC. A Review of Bunyamwera, Batai, and Ngari Viruses: Understudied Orthobunyaviruses With Potential One Health Implications. Front Vet Sci 2018; 5:69. [PMID: 29707545 PMCID: PMC5906542 DOI: 10.3389/fvets.2018.00069] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/23/2018] [Indexed: 12/25/2022] Open
Abstract
Bunyamwera (BUNV), Batai (BATV), and Ngari (NRIV) are mosquito-borne viruses of the Bunyamwera serogroup in the Orthobunyavirus genus of the Bunyaviridae family. These three viruses have been found to cause disease in both livestock animals, avian species, and humans. Thus, these viruses pose a potential threat to human public health, animal health, and food security. This is especially the case in the developing nations, where BUNV and NRIV are found, mainly in Africa. BUNV and BATV are fairly well characterized, while NRIV is not well characterized owing to only sporadic detection in human and animal populations in Africa. Reassortment is common among bunyaviruses, but NRIV is believed to be the only natural reassortant of the Bunyamwera serogroup. It resulted from a combination of BUNV S and L segments and the BATV M segment. This indicates at least some level co-circulation of BUNV and BATV, which have no historically been reported to overlap in geographic distributions. But as these viruses are undercharacterized, there remains a gap in the understanding of how such reassortment could occur, and the consequences of such. Due to their combined wide range of hosts and vectors, geographic distributions, potential severity of associated diseases, and potential for transmissibility between vertebrate hosts, these viruses represent a significant gap in knowledge with important One Health implications. The goal of this review is to report available knowledge of and identify potential future directions for study of these viruses. As these are collectively understudied viruses, there is a relative paucity of data; however, we use available studies to discuss different perspectives in an effort to promote a better understanding of these three viruses and the public and One Health threat(s) they may pose.
Collapse
Affiliation(s)
- M Fausta Dutuze
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.,College of Agriculture and Animal Sciences and Veterinary Medicine, University of Rwanda, Kigali, Rwanda
| | | | - Christopher N Mores
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | |
Collapse
|
22
|
Noronha LE, Wilson WC. Comparison of two zoonotic viruses from the order Bunyavirales. Curr Opin Virol 2017; 27:36-41. [PMID: 29128744 DOI: 10.1016/j.coviro.2017.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
A comparison of two geographicallly distinct viruses in the order Bunyavirales that are zoonotic and known to cause congenital abnormalities in ruminant livestock was performed. One of these viruses, Cache Valley fever virus, is found in the Americas and is primarily associated with disease in sheep. The other, Rift Valley fever virus, is found in Sub-Saharan Africa and is associated with disease in camels, cattle, goats and sheep. Neither virus has been associated with teratogenicity in humans to date. These two viruses are briefly reviewed and potential for genetic changes especially if introduced into new ecology that could affect pathogenicity are discussed.
Collapse
Affiliation(s)
- Leela E Noronha
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, USDA, Manhattan, KS, United States
| | - William C Wilson
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, USDA, Manhattan, KS, United States.
| |
Collapse
|
23
|
Interferon stimulated genes as peripheral diagnostic markers of early pregnancy in sheep: a critical assessment. Animal 2016; 10:1856-1863. [PMID: 27150201 DOI: 10.1017/s175173111600077x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the diagnostic reliability of pregnancy detection using changes in interferon stimulated gene (ISG) messenger RNA (mRNA) levels in circulating immune cells in ewes. Two different groups of ewes (an experimental group, experiment 1 and a farm group, experiment 2) were oestrus-synchronized and blood sampled on day 14 (D0=day of insemination in control animals, experiment 1) and day 15 (experiment 2). Real-time PCR were performed to evaluate the abundance of different ISG mRNAs. In the experimental group, peripheral blood mononuclear cells of 29 ewes born and bred in experimental facilities were isolated using a Percoll gradient method. Gene expression for Chemokine (C-X-C motif) ligand 10 (CXCL10), Myxovirus (influenza virus) resistance 1 (MX1) and Signal transducer and activator of transcription 1 (STAT1) mRNA were, respectively, 8.3-fold, 6.1-fold and 2.7-fold higher (P0.10) in CXCL10, STAT1, MX1, Myxovirus (influenza virus) resistance 2 (MX2) and ISG15 ubiquitin-like modifier (ISG15) mRNA expression were found between pregnant and non-pregnant ewes. The ROC curves and the hierarchical classification generated from the real-time PCR data failed to discriminate between pregnant and non-pregnant animals. In this group of animals, our results show a strong variability in ISG expression patterns: 17% of animals identified as non-pregnant by the five tests were in fact pregnant, only 52% of pregnant animals had at least two positive results (two genes above threshold), whereas up to five positive results (five genes above threshold) were needed to avoid misclassification. In conclusion, this study illustrates the high variability in ISG expression levels in immune circulating cells during early pregnancy and, therefore, highlights the limits of using ISG expression levels in blood samples, collected on PAXgene® tubes on farms, for early pregnancy detection in sheep.
Collapse
|
24
|
Tauro LB, Rivarola ME, Lucca E, Mariño B, Mazzini R, Cardoso JF, Barrandeguy ME, Teixeira Nunes MR, Contigiani MS. First isolation of Bunyamwera virus (Bunyaviridae family) from horses with neurological disease and an abortion in Argentina. Vet J 2015; 206:111-4. [DOI: 10.1016/j.tvjl.2015.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
|
25
|
Shirafuji H, Yazaki R, Shuto Y, Yanase T, Kato T, Ishikura Y, Sakaguchi Z, Suzuki M, Yamakawa M. Broad-range detection of arboviruses belonging to Simbu serogroup lineage 1 and specific detection of Akabane, Aino and Peaton viruses by newly developed multiple TaqMan assays. J Virol Methods 2015; 225:9-15. [PMID: 26341063 DOI: 10.1016/j.jviromet.2015.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 08/30/2015] [Accepted: 08/30/2015] [Indexed: 12/22/2022]
Abstract
TaqMan assays were developed for the broad-range detection of arboviruses belonging to Simbu serogroup lineage 1 in the genus Orthobunyavirus and also for the specific detection of three viruses in the lineage, Akabane, Aino and Peaton viruses (AKAV, AINOV and PEAV, respectively). A primer and probe set was designed for the broad-range detection of Simbu serogroup lineage 1 (Pan-Simbu1 set) mainly targeting AKAV, AINOV, PEAV, Sathuperi and Shamonda viruses (SATV and SHAV), and the forward and reverse primers of the Pan-Simbu1 set were also used for the specific detection of AKAV with another probe (AKAV-specific set). In addition, two more primer and probe sets were designed for AINOV- and PEAV-specific detection, respectively (AINOV- and PEAV-specific sets). All of the four primer and probe sets successfully detected targeted viruses, and thus broad-range and specific detection of all the targeted viruses can be achieved by using two multiplex assays and a single assay in a dual (two-color) assay format when another primer and probe set for a bovine β-actin control is also used. The assays had an analytical sensitivity of 10 copies/tube for AKAV, at least 100 copies/tube for AINOV, 100 copies/tube for PEAV, one copy/tube for SATV and at least 10 copies/tube for SHAV, respectively. Diagnostic sensitivity of the assays was tested with field-collected bovine samples, and the results suggested that the sensitivity was higher than that of a conventional RT-PCR. These data indicate that the newly developed TaqMan assays will be useful tools for the diagnosis and screening of field-collected samples for infections of AKAV and several other arboviruses belonging to the Simbu serogroup lineage 1.
Collapse
Affiliation(s)
- Hiroaki Shirafuji
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Japan.
| | - Ryu Yazaki
- Kusu Livestock Hygiene Service Center, Oita Prefectural Government, Japan
| | - Yozo Shuto
- Oita Livestock Hygiene Service Center, Oita Prefectural Government, Japan
| | - Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Japan
| | - Tomoko Kato
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Japan
| | - Youji Ishikura
- Domestic Livestock Disease Identification Office, Food Safety Promotion Division, Shimane Prefectural Government, Japan
| | - Zenjiro Sakaguchi
- Kagoshima Central Livestock Hygiene Service Center, Kagoshima Prefectural Government, Japan
| | - Moemi Suzuki
- Okinawa Prefectural Institute of Animal Health, Okinawa Prefectural Government, Japan
| | - Makoto Yamakawa
- Viral Disease and Epidemiology Research Division, NIAH, NARO, Japan
| |
Collapse
|
26
|
Blomström AL, Gu Q, Barry G, Wilkie G, Skelton JK, Baird M, McFarlane M, Schnettler E, Elliott RM, Palmarini M, Kohl A. Transcriptome analysis reveals the host response to Schmallenberg virus in bovine cells and antagonistic effects of the NSs protein. BMC Genomics 2015; 16:324. [PMID: 25896169 PMCID: PMC4404599 DOI: 10.1186/s12864-015-1538-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/14/2015] [Indexed: 01/09/2023] Open
Abstract
Background Schmallenberg virus (SBV) is a member of the Orthobunyavirus genus (Bunyaviridae family) causing malformations and abortions in ruminants. Although, as for other members of this family/genus, the non-structural protein NSs has been shown to be an interferon antagonist, very little is known regarding the overall inhibitory effects and targets of orthobunyavirus NSs proteins on host gene expression during infection. Therefore, using RNA-seq this study describes changes to the transcriptome of primary bovine cells following infection with Schmallenberg virus (SBV) or with a mutant lacking the non-structural protein NSs (SBVdelNSs) providing a detailed comparison of the effect of NSs expression on the host cell. Results The sequence reads from all samples (uninfected cells, SBV and SBVdelNSs) assembled well to the bovine host reference genome (on average 87.43% of the reads). During infection with SBVdelNSs, 649 genes were differentially expressed compared to uninfected cells (78.7% upregulated) and many of these were known antiviral and IFN-stimulated genes. On the other hand, only nine genes were differentially expressed in SBV infected cells compared to uninfected control cells, demonstrating the strong inhibitory effect of NSs on cellular gene expression. However, the majority of the genes that were expressed during SBV infection are involved in restriction of viral replication and spread indicating that SBV does not completely manage to shutdown the host antiviral response. Conclusions In this study we show the effects of SBV NSs on the transcriptome of infected cells as well as the cellular response to wild type SBV. Although NSs is very efficient in shutting down genes of the host innate response, a number of possible antiviral factors were identified. Thus the data from this study can serve as a base for more detailed mechanistic studies of SBV and other orthobunyaviruses.
Collapse
Affiliation(s)
- Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden. .,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Gerald Barry
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK. .,UCD Veterinary Science Centre, School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.
| | - Gavin Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Jessica K Skelton
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Margaret Baird
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Melanie McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Richard M Elliott
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| |
Collapse
|