1
|
Losay VA, Damania B. Unraveling the Kaposi Sarcoma-Associated Herpesvirus (KSHV) Lifecycle: An Overview of Latency, Lytic Replication, and KSHV-Associated Diseases. Viruses 2025; 17:177. [PMID: 40006930 PMCID: PMC11860327 DOI: 10.3390/v17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus and the etiological agent of several diseases. These include the malignancies Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD), as well as the inflammatory disorder KSHV inflammatory cytokine syndrome (KICS). The KSHV lifecycle is characterized by two phases: a default latent phase and a lytic replication cycle. During latency, the virus persists as an episome within host cells, expressing a limited subset of viral genes to evade immune surveillance while promoting cellular transformation. The lytic phase, triggered by various stimuli, results in the expression of the full viral genome, production of infectious virions, and modulation of the tumor microenvironment. Both phases of the KSHV lifecycle play crucial roles in driving viral pathogenesis, influencing oncogenesis and immune evasion. This review dives into the intricate world of the KSHV lifecycle, focusing on the molecular mechanisms that drive its latent and lytic phases, their roles in disease progression, and current therapeutic strategies.
Collapse
Affiliation(s)
- Victor A. Losay
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Suraweera CD, Espinoza B, Hinds MG, Kvansakul M. Mastering Death: The Roles of Viral Bcl-2 in dsDNA Viruses. Viruses 2024; 16:879. [PMID: 38932171 PMCID: PMC11209288 DOI: 10.3390/v16060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Proteins of the Bcl-2 family regulate cellular fate via multiple mechanisms including apoptosis, autophagy, senescence, metabolism, inflammation, redox homeostasis, and calcium flux. There are several regulated cell death (RCD) pathways, including apoptosis and autophagy, that use distinct molecular mechanisms to elicit the death response. However, the same proteins/genes may be deployed in multiple biochemical pathways. In apoptosis, Bcl-2 proteins control the integrity of the mitochondrial outer membrane (MOM) by regulating the formation of pores in the MOM and apoptotic cell death. A number of prosurvival genes populate the genomes of viruses including those of the pro-survival Bcl-2 family. Viral Bcl-2 proteins are sequence and structural homologs of their cellular counterparts and interact with cellular proteins in apoptotic and autophagic pathways, potentially allowing them to modulate these pathways and determine cellular fate.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| | - Benjamin Espinoza
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Marc Kvansakul
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
3
|
Zhang T, Potgieter TI, Kosche E, Rückert J, Ostermann E, Schulz T, Empting M, Brune W. Thioxothiazolo[3,4-a]quinazoline derivatives inhibit the human cytomegalovirus alkaline nuclease. Antiviral Res 2023; 217:105696. [PMID: 37541625 DOI: 10.1016/j.antiviral.2023.105696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Human cytomegalovirus (HCMV, human herpesvirus 5) is an opportunistic pathogen responsible for serious disease in immunocompromised patients. Current antiviral therapies rely predominantly on drugs interfering with viral DNA replication and packaging. However, the serious side effects of existing drugs and the emergence of drug resistance indicate the need for new targets for anti-HCMV therapy. One such target is the viral alkaline nuclease (AN), an enzyme highly conserved among the Herpesviridae. In this study, we validated the HCMV AN, encoded by the viral UL98 open reading frame, as a drug target by demonstrating that a UL98-deficient HCMV mutant is severely attenuated and shows a reduced ability to spread in cell culture. We established a fluorescence-based enzyme assay suitable for high-throughput screening and used it on a small-molecule compound library. The most promising hit, a thioxothiazolo[3,4-a]quinazoline derivative, blocked AN activity in vitro and inhibited HCMV replication in plaque reduction (PRA) and fluorescence reduction assays (FRA). Several derivatives of the hit compound were tested, some of which had similar or better inhibitory activities. The most potent derivative of hit scaffold A, compound AD-51, inhibited HCMV replication with a 50% effective concentrations (EC50) of 0.9 μM in the FRA and 1.1 μM in the PRA. AD-51 was also active against ganciclovir, foscarnet, and letermovir-resistant HCMVs. Moreover, it inhibited herpes simplex virus, Kaposi's sarcoma-associated herpesvirus, and murine CMV, a mouse virus serving as a model for HCMV. These results suggest that thioxothiazolo[3,4-a]quinazoline derivatives are a new class of herpesvirus inhibitors targeting the viral AN.
Collapse
Affiliation(s)
- Tianyu Zhang
- Leibniz Institute of Virology (LIV), Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Theodore I Potgieter
- Leibniz Institute of Virology (LIV), Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Erik Kosche
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Jessica Rückert
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Schulz
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany.
| |
Collapse
|
4
|
Rusu-Zota G, Manole OM, Galeș C, Porumb-Andrese E, Obadă O, Mocanu CV. Kaposi Sarcoma, a Trifecta of Pathogenic Mechanisms. Diagnostics (Basel) 2022; 12:1242. [PMID: 35626397 PMCID: PMC9140574 DOI: 10.3390/diagnostics12051242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 01/10/2023] Open
Abstract
Kaposi's sarcoma is a rare disease with four known variants: classic, epidemic, endemic and iatrogenic (transplant-related), all caused by an oncogenic virus named Human Herpes Virus 8. The viral infection in itself, along with the oncogenic properties of HHV8 and with immune system dysfunction, forms the grounds on which Kaposi's Sarcoma may develop. Infection with HHV8 occurs through saliva via close contacts, blood, blood products, solid organ donation and, rarely, vertical transmission. Chronic inflammation and oncogenesis are promoted by a mix of viral genes that directly promote cell survival and transformation or interfere with the regular cell cycle and cell signaling (of particular note: LANA-1, v-IL6, vBCL-2, vIAP, vIRF3, vGPCR, gB, K1, K8.1, K15). The most common development sites for Kaposi's sarcoma are the skin, mucocutaneous zones, lymph nodes and visceral organs, but it can also rarely appear in the musculoskeletal system, urinary system, endocrine organs, heart or eye. Histopathologically, spindle cell proliferation with slit-like vascular spaces, plasma cell and lymphocyte infiltrate are characteristic. The clinical presentation is heterogenic depending on the variant; some patients have indolent disease and others have aggressive disease. The treatment options include highly active antiretroviral therapy, surgery, radiation therapy, chemotherapy, and immunotherapy. A literature search was carried out using the MEDLINE/PubMed, SCOPUS and Google Scholar databases with a combination of keywords with the aim to provide critical, concise, and comprehensive insights into advances in the pathogenic mechanism of Kaposi's sarcoma.
Collapse
Affiliation(s)
- Gabriela Rusu-Zota
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Oana Mădălina Manole
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania
| | - Cristina Galeș
- Department of Histology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Elena Porumb-Andrese
- Department of Dermatology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Otilia Obadă
- Department of Ophthalmology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Cezar Valentin Mocanu
- Department of Anatomical Pathology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| |
Collapse
|
5
|
Mekni-Toujani M, Mousavizadeh L, Gallo A, Ghram A. Thymus capitatus flavonoids inhibit infection of Kaposi's sarcoma-associated herpesvirus. FEBS Open Bio 2022; 12:1166-1177. [PMID: 35384415 PMCID: PMC9157407 DOI: 10.1002/2211-5463.13407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpes virus 8 (HHV-8), causes primary effusion lymphoma, multicentric Castleman's disease, and Kaposi's sarcoma. Few antiviral drugs are available to efficiently control KSHV infection, and therefore development of novel, effective anti-KSHV treatments is needed. The aim of this study was to determine the antiviral activity of ethanolic and aqueous extracts, essential oils and certain flavonoids (hesperidin, eupafolin, and vicenin) derived from Thymus capitatus (commonly known as thyme). We assessed the toxicity of these different extracts and components in RPE-1 cell cultures using the MTS test and evaluated their antiviral effect using the TCID50 method. The mechanism of action was determined through time-of-addition tests as well as viral entry, attachment and virucidal assays. Additionally, western blot analysis was also used to assess their modes of action. Total treatment assay showed that the aqueous extract of Thymus capitatus has the highest inhibitory effect against KSHVLYT with an EC50 value of 0.2388 µg/ml. Both hesperidin and eupafolin showed the ability to inactivate viral infection in a dose-response manner (EC50 values of 0.2399 µM and 1.396 µM, respectively). Moreover, they were able to inactivate KSHVLyt post-infection by reducing viral protein expression. In summary, the effective antiviral property of the aqueous extract is likely a result of the inhibition of viral growth within the host cells by both hesperidin and eupafolin.
Collapse
Affiliation(s)
- Marwa Mekni-Toujani
- University of Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, PB 74, 1002, Tunis-Belvedere, Tunisia
| | - Leila Mousavizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,einrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Antonio Gallo
- einrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Abdeljelil Ghram
- University of Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, PB 74, 1002, Tunis-Belvedere, Tunisia
| |
Collapse
|
6
|
Suraweera CD, Hinds MG, Kvansakul M. Structural Insight into KsBcl-2 Mediated Apoptosis Inhibition by Kaposi Sarcoma Associated Herpes Virus. Viruses 2022; 14:v14040738. [PMID: 35458468 PMCID: PMC9027176 DOI: 10.3390/v14040738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Numerous large DNA viruses have evolved sophisticated countermeasures to hijack the premature programmed cell death of host cells post-infection, including the expression of proteins homologous in sequence, structure, or function to cellular Bcl-2 proteins. Kaposi sarcoma herpes virus (KSHV), a member of the gammaherpesvirinae, has been shown to encode for KsBcl-2, a potent inhibitor of Bcl-2 mediated apoptosis. KsBcl-2 acts by directly engaging host pro-apoptotic Bcl-2 proteins including Bak, Bax and Bok, the BH3-only proteins; Bim, Bid, Bik, Hrk, Noxa and Puma. Here we determined the crystal structures of KsBcl-2 bound to the BH3 motif of pro-apoptotic proteins Bid and Puma. The structures reveal that KsBcl-2 engages pro-apoptotic BH3 motif peptides using the canonical ligand binding groove. Thus, the presence of the readily identifiable conserved BH1 motif sequence “NWGR” of KsBcl-2, as well as highly conserved Arg residue (R86) forms an ionic interaction with the conserved Asp in the BH3 motif in a manner that mimics the canonical ionic interaction seen in host Bcl-2:BH3 motif complexes. These findings provide a structural basis for KSHV mediated inhibition of host cell apoptosis and reveal the flexibility of virus encoded Bcl-2 proteins to mimic key interactions from endogenous host signalling pathways.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
7
|
A panel of KSHV mutants in the polycistronic kaposin locus for precise analysis of individual protein products. J Virol 2021; 96:e0156021. [PMID: 34936820 PMCID: PMC8906436 DOI: 10.1128/jvi.01560-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the cause of several human cancers, including the endothelial cell (EC) malignancy, Kaposi’s sarcoma. Unique KSHV genes absent from other human herpesvirus genomes, the “K-genes,” are important for KSHV replication and pathogenesis. Among these, the kaposin transcript is highly expressed in all phases of infection, but its complex polycistronic nature has hindered functional analysis to date. At least three proteins are produced from the kaposin transcript: Kaposin A (KapA), B (KapB), and C (KapC). To determine the relative contributions of kaposin proteins during KSHV infection, we created a collection of mutant viruses unable to produce kaposin proteins individually or in combination. In previous work, we showed KapB alone recapitulated the elevated proinflammatory cytokine transcripts associated with KS via the disassembly of RNA granules called processing bodies (PBs). Using the new ΔKapB virus, we showed that KapB was necessary for this effect during latent KSHV infection. Moreover, we observed that despite the ability of all kaposin-deficient latent iSLK cell lines to produce virions, all displayed low viral episome copy number, a defect that became more pronounced after primary infection of naive ECs. For ΔKapB, provision of KapB in trans failed to complement the defect, suggesting a requirement for the kaposin locus in cis. These findings demonstrate that our panel of kaposin-deficient viruses enables precise analysis of the respective contributions of individual kaposin proteins to KSHV replication. Moreover, our mutagenesis approach serves as a guide for the functional analysis of other complex multicistronic viral loci. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses high levels of the kaposin transcript during both latent and lytic phases of replication. Due to its repetitive, GC-rich nature and polycistronic coding capacity, until now no reagents existed to permit a methodical analysis of the role of individual kaposin proteins in KSHV replication. We report the creation of a panel of recombinant viruses and matched producer cell lines that delete kaposin proteins individually or in combination. We demonstrate the utility of this panel by confirming the requirement of one kaposin translation product to a key KSHV latency phenotype. This study describes a new panel of molecular tools for the KSHV field to enable precise analysis of the roles of individual kaposin proteins during KSHV infection.
Collapse
|
8
|
Abstract
Viral infection is an indisputable causal factor for nearly 17% of all human cancers. However, the diversity and complexity of oncogenic mechanisms raises new questions as to the mechanistic role of viruses in cancer. Classical viral oncogenes have been identified for all tumor-associated viruses. These oncogenes can have multiple oncogenic activities that may or may not be utilized in a particular tumor cell. In addition, stochastic events, like viral mutation and integration, as well as heritable host susceptibilities and immune deficiencies are also implicated in tumorigenesis. A more contemporary view of tumor biology highlights the importance of evolutionary forces that select for phenotypes better adapted to a complex and changing environment. Given the challenges of prioritizing singular mechanistic causes, it may be necessary to integrate concepts from evolutionary theory and systems biology to better understand viral cancer-driving forces. Here, we propose that viral infection provides a biological “entropy” that increases genetic variation and phenotypic plasticity, accelerating the main driving forces of cancer cell evolution. Viruses can also influence the evolutionary selection criteria by altering the tumor microenvironment and immune signaling. Utilizing concepts from cancer cell evolution, population genetics, thermodynamics, and systems biology may provide new perspectives on viral oncogenesis and identify novel therapeutic strategies for treating viruses and cancer.
Collapse
Affiliation(s)
- Italo Tempera
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| | - Paul M Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
9
|
Quarleri J, Cevallos C, Delpino MV. Apoptosis in infectious diseases as a mechanism of immune evasion and survival. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:1-24. [PMID: 33931136 DOI: 10.1016/bs.apcsb.2021.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In pluricellular organisms, apoptosis is indispensable for the development and homeostasis. During infection, apoptosis plays the main role in the elimination of infected cells. Infectious diseases control apoptosis, and this contributes to disease pathogenesis. Increased apoptosis may participate in two different ways. It can assist the dissemination of intracellular pathogens or induce immunosuppression to favor pathogen dissemination. In other conditions, apoptosis can benefit eradicate infectious agents from the host. Accordingly, bacteria, viruses, fungi, and parasites have developed strategies to inhibit host cell death by apoptosis to allow intracellular survival and persistence of the pathogen. The clarification of the intracellular signaling pathways, the receptors involved and the pathogen factors that interfere with apoptosis could disclose new therapeutic targets for blocking microbial actions on apoptotic pathways. In this review, we summarize the current knowledge on pathogen anti-apoptotic and apoptotic approaches and the mechanisms involving in disease.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Cintia Cevallos
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Choi YB, Cousins E, Nicholas J. Novel Functions and Virus-Host Interactions Implicated in Pathogenesis and Replication of Human Herpesvirus 8. Recent Results Cancer Res 2021; 217:245-301. [PMID: 33200369 DOI: 10.1007/978-3-030-57362-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human herpesvirus 8 (HHV-8) is classified as a γ2-herpesvirus and is related to Epstein-Barr virus (EBV), a γ1-herpesvirus. One important aspect of the γ-herpesviruses is their association with neoplasia, either naturally or in animal model systems. HHV-8 is associated with B-cell-derived primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD), endothelial-derived Kaposi's sarcoma (KS), and KSHV inflammatory cytokine syndrome (KICS). EBV is also associated with a number of B-cell malignancies, such as Burkitt's lymphoma, Hodgkin's lymphoma, and posttransplant lymphoproliferative disease, in addition to epithelial nasopharyngeal and gastric carcinomas. Despite the similarities between these viruses and their associated malignancies, the particular protein functions and activities involved in key aspects of virus biology and neoplastic transformation appear to be quite distinct. Indeed, HHV-8 specifies a number of proteins for which counterparts had not previously been identified in EBV, other herpesviruses, or even viruses in general, and these proteins are believed to play vital functions in virus biology and to be involved centrally in viral pathogenesis. Additionally, a set of microRNAs encoded by HHV-8 appears to modulate the expression of multiple host proteins to provide conditions conductive to virus persistence within the host and possibly contributing to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Young Bong Choi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA.
| | - Emily Cousins
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
11
|
TNF Signaling Dictates Myeloid and Non-Myeloid Cell Crosstalk to Execute MCMV-Induced Extrinsic Apoptosis. Viruses 2020; 12:v12111221. [PMID: 33126536 PMCID: PMC7693317 DOI: 10.3390/v12111221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cytomegaloviruses all encode the viral inhibitor of caspase-8-induced apoptosis (vICA). After binding to this initiator caspase, vICA blocks caspase-8 proteolytic activity and ability to activate caspase-3 and/or caspase-7. In this manner, vICA has long been known to prevent apoptosis triggered via tumor necrosis factor (TNF) family death receptor-dependent extrinsic signaling. Here, we employ fully wild-type murine cytomegalovirus (MCMV) and vICA-deficient MCMV (∆M36) to investigate the contribution of TNF signaling to apoptosis during infection of different cell types. ∆M36 shows the expected ability to kill mouse splenic hematopoietic cells, bone marrow-derived macrophages (BMDM), and dendritic cells (BMDC). Antibody blockade or genetic elimination of TNF protects myeloid cells from death, and caspase-8 activation accompanies cell death. Interferons, necroptosis, and pyroptotic gasdermin D (GSDMD) do not contribute to myeloid cell death. Human and murine fibroblasts or murine endothelial cells (SVEC4-10) normally insensitive to TNF become sensitized to ∆M36-induced apoptosis when treated with TNF or TNF-containing BMDM-conditioned medium. We demonstrate that myeloid cells are the natural source of TNF that triggers apoptosis in either myeloid (autocrine) or non-myeloid cells (paracrine) during ∆M36 infection of mice. Caspase-8 suppression by vICA emerges as key to subverting innate immune elimination of a wide variety of infected cell types.
Collapse
|
12
|
Noguchi K, Majima R, Takahashi K, Iwase Y, Yamada S, Satoh K, Koshizuka T, Inoue N. Identification and functional analyses of a cell-death inhibitor encoded by guinea pig cytomegalovirus gp38.1 in cell culture and in animals. J Gen Virol 2020; 101:1270-1279. [PMID: 32915127 DOI: 10.1099/jgv.0.001493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytomegaloviruses (CMVs) employ an array of strategies designed to interfere with host defence responses against pathogens. Studies on such evasion mechanisms are important for understanding the pathogenesis of CMV diseases. Although guinea pig CMV (GPCMV) provides a useful animal model for congenital CMV infection, its evasion strategies are not fully elucidated. Here, we analysed a genome locus that may encode gene products for the GPCMV evasion mechanisms and found the following. (1) RACE analyses identified five transcripts in the GP38-gp38.4 locus, one of which was a spliced product encoding gp38.1. Similarities in the splicing pattern and gene position of gp38.1 to human CMV UL37 and its exon 1 encoding vMIA (viral mitochondria-localized inhibitor of apoptosis) suggest that the gp38.1 gene encodes an apoptosis inhibitor. (2) In a transient transfection assay, gp38.1 localized in the mitochondria and relocated BAX from the cytoplasm to the mitochondria, although its co-localization with BAK was not evident. Further, the expression of gp38.1 partially reduced staurosporine-induced apoptosis. (3) GPCMV defective in the gp38.1 ORF (Δ38.1) and the virus that rescues the defect (r38.1) were generated. Guinea pig fibroblast cells infected with Δ38.1 died earlier than r38.1-infected cells, which resulted in the lower yields of Δ38.1. (4) In animals, viral loads in the spleens of r38.1-infected guinea pigs were higher than those in the spleens of Δ38.1-infected animals. In conclusion, although GPCMV gp38.1 exerts a vMIA-like function, its inhibitory effect was not robust, suggesting the presence of additional inhibitory molecule(s), such as a BAK-specific inhibitor.
Collapse
Affiliation(s)
- Kazuma Noguchi
- Present address: Kaken Pharmaceutical, Tokyo, Japan
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryuichi Majima
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keita Takahashi
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshihiko Iwase
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keisuke Satoh
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuo Koshizuka
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Naoki Inoue
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
13
|
Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Is Independent of Anaphase-Promoting Complex Activity. J Virol 2020; 94:JVI.02079-19. [PMID: 32295923 PMCID: PMC7307157 DOI: 10.1128/jvi.02079-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/12/2020] [Indexed: 11/20/2022] Open
Abstract
The anaphase-promoting complex, or cyclosome (APC/C), is a large E3 ubiquitin ligase composed of 14 subunits. The activity of APC/C oscillates during the cell cycle to ensure a timely transition through each phase by promoting the degradation of important cell cycle regulators. Of the human herpesviruses, cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) both impair the activity of APC/C during their lytic replication cycle through virus-encoded protein kinases. Here, we addressed whether the oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) deregulates the activity of APC/C during the lytic replication cycle. To this end, we used the well-characterized iSLK.219 cell model of KSHV infection and established a new infection model of primary lymphatic endothelial cells (LECs) infected with a lytically replicating KSHV BAC16 mutant. In contrast to those of EBV and HCMV, the KSHV lytic cycle occurs while the APC/C is active. Moreover, interfering with the activity of APC/C did not lead to major changes in the production of infectious virus. We further investigated whether rereplication stress induced by the unscheduled activation of the APC/C-CDH1 complex affects the number and integrity of KSHV viral episomes. Deep sequencing of the viral episomes and host chromosomes in iSLK.219 cells revealed that, while distinct regions in the cellular chromosomes were severely affected by rereplication stress, the integrity of the viral episomes remained unaltered.IMPORTANCE DNA viruses have evolved complex strategies to gain control over the cell cycle. Several of them target APC/C, a key cellular machinery that controls the timely progression of the cell cycle, by either blocking or enhancing its activity. Here, we investigated the activity of APC/C during the lytic replication cycle of KSHV and found that, in contrast to that of KSHV's close relatives EBV and HCMV, KSHV lytic replication occurs while the APC/C is active. Perturbing APC/C activity by depleting a core protein or the adaptor proteins of the catalytic domain, and hence interfering with normal cell-cycle progression, did not affect virus replication. This suggests that KSHV has evolved to replicate independently of the activity of APC/C and in various cell cycle conditions.
Collapse
|
14
|
Novel Insights into the Roles of Bcl-2 Homolog Nr-13 (vNr-13) Encoded by Herpesvirus of Turkeys in the Virus Replication Cycle, Mitochondrial Networks, and Apoptosis Inhibition. J Virol 2020; 94:JVI.02049-19. [PMID: 32161176 PMCID: PMC7199394 DOI: 10.1128/jvi.02049-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Bcl-2 (B cell lymphoma 2)-related protein Nr-13 plays a major role in the regulation of cell death in developing avian B cells. With over 65% sequence similarity to the chicken Nr-13, herpesvirus of turkeys (HVT) vNr-13, encoded by the HVT079 and HVT096 genes, is the first known alphaherpesvirus-encoded Bcl-2 homolog. HVT-infected cells were reported to be relatively more resistant to serum starvation, suggested that vNr-13 could be involved in protecting the cells. Here, we describe CRISPR/Cas9-based editing of exon 1 of the HVT079 and HVT096 genes from the HVT genome to generate the mutant HVT-ΔvNr-13 to gain insights into its functional roles. Overall, wild-type HVT and HVT-ΔvNr-13 showed similar growth kinetics; however, at early time points, HVT-ΔvNr-13 showed 1.3- to 1.7-fold-lower growth of cell-associated virus and 3- to 6.2-fold-lower growth of cell-free virus. In transfected cells, HVT vNr-13 showed a mainly diffuse cytoplasmic distribution with faint nuclear staining. Further, vNr-13 localized to the mitochondria and endoplasmic reticulum (ER) and disrupted mitochondrial network morphology in the transfected cells. In the wild-type HVT-infected cells, vNr-13 expression appeared to be directly involved in the disruption of the mitochondrial network, as the mitochondrial network morphology was substantially restored in the HVT-ΔvNr-13-infected cells. IncuCyte S3 real-time apoptosis monitoring demonstrated that vNr-13 is unequivocally involved in the apoptosis inhibition, and it is associated with an increase of PFU, especially under serum-free conditions in the later stages of the viral replication cycle. Furthermore, HVT blocks apoptosis in infected cells but activates apoptosis in noninfected bystander cells.IMPORTANCE B cell lymphoma 2 (Bcl-2) family proteins play important roles in regulating apoptosis during homeostasis, tissue development, and infectious diseases. Several viruses encode homologs of cellular Bcl-2-proteins (vBcl-2) to inhibit apoptosis, which enable them to replicate and persist in the infected cells and to evade/modulate the immune response of the host. Herpesvirus of turkeys (HVT) is a nonpathogenic alphaherpesvirus of turkeys and chickens that is widely used as a live vaccine against Marek's disease and as recombinant vaccine viral vectors for protecting against multiple avian diseases. Identical copies of the HVT genes HVT079 and HVT096 encode the Bcl-2 homolog vNr-13. While previous studies have identified the potential ability of vNr-13 in inhibiting apoptosis induced by serum deprivation, there have been no detailed investigations on the functions of vNr-13. Using CRISPR/Cas9-based ablation of the vNr-13 gene, we demonstrated the roles of HVT vNr-13 in early stages of the viral replication cycle, mitochondrial morphology disruption, and apoptosis inhibition in later stages of viral replication.
Collapse
|
15
|
Koch S, Damas M, Freise A, Hage E, Dhingra A, Rückert J, Gallo A, Kremmer E, Tegge W, Brönstrup M, Brune W, Schulz TF. Kaposi's sarcoma-associated herpesvirus vIRF2 protein utilizes an IFN-dependent pathway to regulate viral early gene expression. PLoS Pathog 2019; 15:e1007743. [PMID: 31059555 PMCID: PMC6522069 DOI: 10.1371/journal.ppat.1007743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 05/16/2019] [Accepted: 03/31/2019] [Indexed: 12/14/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) belongs to the subfamily of Gammaherpesvirinae and is the etiological agent of Kaposi’s sarcoma as well as of two lymphoproliferative diseases: primary effusion lymphoma and multicentric Castleman disease. The KSHV life cycle is divided into a latent and a lytic phase and is highly regulated by viral immunomodulatory proteins which control the host antiviral immune response. Among them is a group of proteins with homology to cellular interferon regulatory factors, the viral interferon regulatory factors 1–4. The KSHV vIRFs are known as inhibitors of cellular interferon signaling and are involved in different oncogenic pathways. Here we characterized the role of the second vIRF protein, vIRF2, during the KSHV life cycle. We found the vIRF2 protein to be expressed in different KSHV positive cells with early lytic kinetics. Importantly, we observed that vIRF2 suppresses the expression of viral early lytic genes in both newly infected and reactivated persistently infected endothelial cells. This vIRF2-dependent regulation of the KSHV life cycle might involve the increased expression of cellular interferon-induced genes such as the IFIT proteins 1, 2 and 3, which antagonize the expression of early KSHV lytic proteins. Our findings suggest a model in which the viral protein vIRF2 allows KSHV to harness an IFN-dependent pathway to regulate KSHV early gene expression. The life cycle of Kaposi Sarcoma herpesvirus involves both persistence in a latent form and productive replication to generate new viral particles. How the virus switches between latency and productive (‘lytic’) replication is only partially understood. Here we show that a viral homologue of interferon regulatory factors, vIRF2, antagonizes lytic protein expression in endothelial cells. It does this by inducing the expression of cellular interferon-regulated genes such as IFIT 1–3, which in turn dampens early viral gene expression. This observation suggests that vIRF2 allows KSHV to harness the interferon pathway to regulate early viral gene expression in endothelial cells.
Collapse
Affiliation(s)
- Sandra Koch
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Modester Damas
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Anika Freise
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Elias Hage
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Akshay Dhingra
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Jessica Rückert
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Antonio Gallo
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Centre for Infection Research, Hamburg Site, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Werner Tegge
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mark Brönstrup
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfram Brune
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Centre for Infection Research, Hamburg Site, Germany
| | - Thomas F. Schulz
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
- * E-mail:
| |
Collapse
|
16
|
Naderer T, Fulcher MC. Targeting apoptosis pathways in infections. J Leukoc Biol 2019; 103:275-285. [PMID: 29372933 DOI: 10.1189/jlb.4mr0717-286r] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 11/24/2022] Open
Abstract
The programmed cell death pathway of apoptosis is essential for mammalian development and immunity as it eliminates unwanted and dangerous cells. As part of the cellular immune response, apoptosis removes the replicative niche of intracellular pathogens and enables the resolution of infections. To subvert apoptosis, pathogens have evolved a diverse range of mechanisms. In some circumstances, however, pathogens express effector molecules that induce apoptotic cell death. In this review, we focus on selected host-pathogen interactions that affect apoptotic pathways. We discuss how pathogens control the fate of host cells and how this determines the outcome of infections. Finally, small molecule inhibitors that activate apoptosis in cancer cells can also induce apoptotic cell death of infected cells. This suggests that targeting host death factors to kill infected cells is a potential therapeutic option to treat infectious diseases.
Collapse
Affiliation(s)
- Thomas Naderer
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | - Maria Cecilia Fulcher
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
17
|
Moreno-Altamirano MMB, Kolstoe SE, Sánchez-García FJ. Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Front Cell Infect Microbiol 2019; 9:95. [PMID: 31058096 PMCID: PMC6482253 DOI: 10.3389/fcimb.2019.00095] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, there has been significant advances in the understanding of the cross-talk between metabolism and immune responses. It is now evident that immune cell effector function strongly depends on the metabolic pathway in which cells are engaged in at a particular point in time, the activation conditions, and the cell microenvironment. It is also clear that some metabolic intermediates have signaling as well as effector properties and, hence, topics such as immunometabolism, metabolic reprograming, and metabolic symbiosis (among others) have emerged. Viruses completely rely on their host's cell energy and molecular machinery to enter, multiply, and exit for a new round of infection. This review explores how viruses mimic, exploit or interfere with host cell metabolic pathways and how, in doing so, they may evade immune responses. It offers a brief outline of key metabolic pathways, mitochondrial function and metabolism-related signaling pathways, followed by examples of the mechanisms by which several viral proteins regulate host cell metabolic activity.
Collapse
Affiliation(s)
- María Maximina B Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Simon E Kolstoe
- School of Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
18
|
|
19
|
EBV and KSHV Infection Dysregulates Autophagy to Optimize Viral Replication, Prevent Immune Recognition and Promote Tumorigenesis. Viruses 2018; 10:v10110599. [PMID: 30384495 PMCID: PMC6266050 DOI: 10.3390/v10110599] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic process strongly involved in the immune response, and its dysregulation contributes to the onset of several diseases including cancer. The human oncogenic gammaherpesviruses, Epstein—Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), manipulate autophagy, either during the de novo infection or during the lytic reactivation, in naturally latently-infected lymphoma cells. In particular, the gammaherpesvirus infection reduces autophagy in immune cells, such as monocytes, resulting in the impairment of cell survival and cell differentiation into dendritic cells (DCs), which are essential for initiating and regulating the immune response. In the case of EBV, the reduction of autophagy in these cells, leading to p62 accumulation, activated the p62-NRF2-antioxidant response, reducing ROS, and further inhibiting autophagy. KSHV inhibits autophagy in monocytes by de-phosphorylating JNK2, altering the calpains–calpastatin balance and increasing the calpain activity responsible for the cleavage of ATG5. To further impair the immune response, KSHV also inhibits autophagy in differentiated DCs by hyper-phosphorylating STAT3. Conversely, when the lytic cycle is induced in vitro in latently-infected lymphoma B cells, both EBV and KSHV promote autophagy to enhance their replication, although the final autophagic steps are blocked through the down-regulation of Rab7. This strategy allows viruses to avoid the destructive environment of lysosomes, and to exploit the autophagic machinery for intracellular transportation. EBV and KSHV encode for proteins that may either inhibit or promote autophagy and, in addition, they can modulate the cellular pathways that control this process. In this review we will discuss the findings that indicate that autophagy is dysregulated by gammaherpesvirus to promote immune suppression, facilitate viral replication and contribute to the onset and maintenance of gammaherpesvirus-associated malignancies.
Collapse
|
20
|
Hussein HAM, Okafor IB, Walker LR, Abdel-Raouf UM, Akula SM. Cellular and viral oncogenes: the key to unlocking unknowns of Kaposi's sarcoma-associated herpesvirus pathogenesis. Arch Virol 2018; 163:2633-2643. [PMID: 29936609 DOI: 10.1007/s00705-018-3918-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
Oncogenic viruses carry an extensive arsenal of oncogenes for hijacking cellular pathways. Notably, variations in oncogenes among tumor-producing viruses give rise to different mechanisms for cellular transformation. Specifically, Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus able to infect and transform a variety of cell types. The oncogenicity of KSHV disseminates from the virus' ability to induce and encode a wide variety of both cellular and viral oncogenes. Such an array of cellular and viral oncogenes enables KSHV to induce the malignant phenotype of a KSHV-associated cancer. Evolutionarily, KSHV has acquired many oncogenic homologues capable of inducing cell proliferation, cell differentiation, cell survival, and immune evasion. Integration between inducing and encoding oncogenes plays a vital role in KSHV pathogenicity. KSHV is alleged to harbor the highest number of potential oncogenes by which a virus promotes cellular transformation and malignancy. Many KSHV inducing/encoding oncogenes are mainly expressed during the latent phase of KSHV infection, a period required for virus establishment of malignant cellular transformation. Elucidation of the exact mechanism(s) by which oncogenes promote KSHV pathogenicity would not only give rise to potential novel therapeutic targets/drugs but would also add to our understanding of cancer biology. The scope of this review is to examine the roles of the most important cellular and viral oncogenes involved in KSHV pathogenicity.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Ikenna B Okafor
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
21
|
Bussey KA, Lau U, Schumann S, Gallo A, Osbelt L, Stempel M, Arnold C, Wissing J, Gad HH, Hartmann R, Brune W, Jänsch L, Whitehouse A, Brinkmann MM. The interferon-stimulated gene product oligoadenylate synthetase-like protein enhances replication of Kaposi's sarcoma-associated herpesvirus (KSHV) and interacts with the KSHV ORF20 protein. PLoS Pathog 2018; 14:e1006937. [PMID: 29499066 PMCID: PMC5851652 DOI: 10.1371/journal.ppat.1006937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/14/2018] [Accepted: 02/12/2018] [Indexed: 12/23/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the few oncogenic human viruses known to date. Its large genome encodes more than 85 proteins and includes both unique viral proteins as well as proteins conserved amongst herpesviruses. KSHV ORF20 is a member of the herpesviral core UL24 family, but the function of ORF20 and its role in the viral life cycle is not well understood. ORF20 encodes three largely uncharacterized isoforms, which we found were localized predominantly in the nuclei and nucleoli. Quantitative affinity purification coupled to mass spectrometry (q-AP-MS) identified numerous specific interacting partners of ORF20, including ribosomal proteins and the interferon-stimulated gene product (ISG) oligoadenylate synthetase-like protein (OASL). Both endogenous and transiently transfected OASL co-immunoprecipitated with ORF20, and this interaction was conserved among all ORF20 isoforms and multiple ORF20 homologs of the UL24 family in other herpesviruses. Characterization of OASL interacting partners by q-AP-MS identified a very similar interactome to that of ORF20. Both ORF20 and OASL copurified with 40S and 60S ribosomal subunits, and when they were co-expressed, they associated with polysomes. Although ORF20 did not have a global effect on translation, ORF20 enhanced RIG-I induced expression of endogenous OASL in an IRF3-dependent but IFNAR-independent manner. OASL has been characterized as an ISG with antiviral activity against some viruses, but its role for gammaherpesviruses was unknown. We show that OASL and ORF20 mRNA expression were induced early after reactivation of latently infected HuARLT-rKSHV.219 cells. Intriguingly, we found that OASL enhanced infection of KSHV. During infection with a KSHV ORF20stop mutant, however, OASL-dependent enhancement of infectivity was lost. Our data have characterized the interaction of ORF20 with OASL and suggest ORF20 usurps the function of OASL to benefit KSHV infection. The herpesviruses are a family of large double-stranded DNA viruses that cause a variety of illnesses from chicken pox to cancer. Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-causing herpesvirus and can lead to development of Kaposi’s sarcoma, a major form of cancer in HIV-positive patients. As for all herpesviruses, infection with KSHV is lifelong. Exactly how KSHV initiates and maintains its infection is still not well understood, but it must manipulate the host cell to establish favorable conditions. Likewise, the host has developed a complicated system to fight off invaders, which includes the production of interferon-stimulated gene products. We have now found that KSHV exploits one such host cell protein, the oligoadenylate synthetase-like protein (OASL). Rather than OASL acting as an antiviral protein as it does during many other viral infections, KSHV appears to have found a way to utilize OASL for its own benefit. The KSHV protein ORF20 interacts with OASL, they co-localize in nucleoli, and both ORF20 and OASL associate and purify with components of the cellular translational machinery. This may help viral infection by selectively controlling protein production.
Collapse
Affiliation(s)
- Kendra A. Bussey
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Ulrike Lau
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Sophie Schumann
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Antonio Gallo
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Lisa Osbelt
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Markus Stempel
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Christine Arnold
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Josef Wissing
- Cellular Proteomics Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Hans Henrik Gad
- Center for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Center for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Lothar Jänsch
- Cellular Proteomics Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Melanie M. Brinkmann
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
22
|
Cavallari I, Scattolin G, Silic-Benussi M, Raimondi V, D'Agostino DM, Ciminale V. Mitochondrial Proteins Coded by Human Tumor Viruses. Front Microbiol 2018; 9:81. [PMID: 29467726 PMCID: PMC5808139 DOI: 10.3389/fmicb.2018.00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
Viruses must exploit the cellular biosynthetic machinery and evade cellular defense systems to complete their life cycles. Due to their crucial roles in cellular bioenergetics, apoptosis, innate immunity and redox balance, mitochondria are important functional targets of many viruses, including tumor viruses. The present review describes the interactions between mitochondria and proteins coded by the human tumor viruses human T-cell leukemia virus type 1, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, human hepatitis viruses B and C, and human papillomavirus, and highlights how these interactions contribute to viral replication, persistence and transformation.
Collapse
Affiliation(s)
| | - Gloria Scattolin
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | | | | | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV-IRRCS, Padova, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Novel Role of vBcl2 in the Virion Assembly of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2018; 92:JVI.00914-17. [PMID: 29167347 DOI: 10.1128/jvi.00914-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022] Open
Abstract
The viral Bcl-2 homolog (vBcl2) of Kaposi's sarcoma-associated herpesvirus (KSHV) displays efficient antiapoptotic and antiautophagic activity through its central BH3 domain, which functions to prolong the life span of virus-infected cells and ultimately enhances virus replication and latency. Independent of its antiapoptotic and antiautophagic activity, vBcl2 also plays an essential role in KSHV lytic replication through its amino-terminal amino acids (aa) 11 to 20. Here, we report a novel molecular mechanism of vBcl2-mediated regulation of KSHV lytic replication. vBcl2 specifically bound the tegument protein open reading frame 55 (ORF55) through its amino-terminal aa 11 to 20, allowing their association with virions. Consequently, the vBcl2 peptide derived from vBcl2 aa 11 to 20 effectively disrupted the interaction between vBcl2 and ORF55, inhibiting the incorporation of the ORF55 tegument protein into virions. This study provides new insight into vBcl2's function in KSHV virion assembly that is separable from its inhibitory role in host apoptosis and autophagy.IMPORTANCE KSHV, an important human pathogen accounting for a large percentage of virally caused cancers worldwide, has evolved a variety of stratagems for evading host immune responses to establish lifelong persistent infection. Upon viral infection, infected cells can go through programmed cell death, including apoptosis and autophagy, which plays an effective role in antiviral responses. To counter the host response, KSHV vBcl2 efficiently blocks apoptosis and autophagy to persist for the life span of virus-infected cells. Besides its anti-programmed-cell-death activity, vBcl2 also interacts with the ORF55 tegument protein for virion assembly in infected cells. Interestingly, the vBcl2 peptide disrupts the vBcl2-ORF55 interaction and effectively inhibits KSHV virion assembly. This study indicates that KSHV vBcl2 harbors at least three genetically separable functions to modulate both host cell death signaling and virion production and that the vBcl2 peptide can be developed as an anti-KSHV therapeutic application.
Collapse
|
24
|
Lussignol M, Esclatine A. Herpesvirus and Autophagy: "All Right, Everybody Be Cool, This Is a Robbery!". Viruses 2017; 9:v9120372. [PMID: 29207540 PMCID: PMC5744147 DOI: 10.3390/v9120372] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an essential vacuolar process of the cell, leading to lysosomal degradation and recycling of proteins and organelles, which is extremely important in maintaining homeostasis. Multiple roles have been now associated with autophagy, in particular a pro-survival role in nutrient starvation or in stressful environments, a role in life span extension, in development, or in innate and adaptive immunity. This cellular process can also take over microorganisms or viral proteins inside autophagosomes and degrade them directly in autolysosomes and is then called xenophagy and virophagy, respectively. Several Herpesviruses have developed strategies to escape this degradation, by expression of specific anti-autophagic proteins. However, we are increasingly discovering that Herpesviruses hijack autophagy, rather than just fight it. This beneficial effect is obvious since inhibition of autophagy will lead to decreased viral titers for human cytomegalovirus (HCMV), Epstein-Barr virus (EBV) or Varicella-Zoster virus (VZV), for example. Conversely, autophagy stimulation will improve viral multiplication. The autophagic machinery can be used in whole or in part, and can optimize viral propagation or persistence. Some viruses block maturation of autophagosomes to avoid the degradation step, then autophagosomal membranes are used to contribute to the envelopment and/or the egress of viral particles. On the other hand, VZV stimulates the whole process of autophagy to subvert it in order to use vesicles containing ATG (autophagy-related) proteins and resembling amphisomes for their transport in the cytoplasm. During latency, autophagy can also be activated by latent proteins encoded by different oncogenic Herpesviruses to promote cell survival and achieve long term viral persistence in vivo. Finally, reactivation of gammaherpesvirus Murid Herpesvirus 68 (MHV68) in mice appears to be positively modulated by autophagy, in order to control the level of inflammation. Therefore, Herpesviruses appear to behave more like thieves than fugitives.
Collapse
Affiliation(s)
- Marion Lussignol
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Audrey Esclatine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
25
|
The Bcl-2 Family in Host-Virus Interactions. Viruses 2017; 9:v9100290. [PMID: 28984827 PMCID: PMC5691641 DOI: 10.3390/v9100290] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the B cell lymphoma-2 (Bcl-2) family are pivotal arbiters of mitochondrially mediated apoptosis, a process of fundamental importance during tissue development, homeostasis, and disease. At the structural and mechanistic level, the mammalian members of the Bcl-2 family are increasingly well understood, with their interplay ultimately deciding the fate of a cell. Dysregulation of Bcl-2-mediated apoptosis underlies a plethora of diseases, and numerous viruses have acquired homologs of Bcl-2 to subvert host cell apoptosis and autophagy to prevent premature death of an infected cell. Here we review the structural biology, interactions, and mechanisms of action of virus-encoded Bcl-2 proteins, and how they impact on host-virus interactions to ultimately enable successful establishment and propagation of viral infections.
Collapse
|
26
|
Rosani U, Venier P. Oyster RNA-seq Data Support the Development of Malacoherpesviridae Genomics. Front Microbiol 2017; 8:1515. [PMID: 28848525 PMCID: PMC5552708 DOI: 10.3389/fmicb.2017.01515] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/27/2017] [Indexed: 12/24/2022] Open
Abstract
The family of double-stranded DNA (dsDNA) Malacoherpesviridae includes viruses able to infect marine mollusks and detrimental for worldwide aquaculture production. Due to fast-occurring mortality and a lack of permissive cell lines, the available data on the few known Malacoherpesviridae provide only partial support for the study of molecular virus features, life cycle, and evolutionary history. Following thorough data mining of bivalve and gastropod RNA-seq experiments, we used more than five million Malacoherpesviridae reads to improve the annotation of viral genomes and to characterize viral InDels, nucleotide stretches, and SNPs. Both genome and protein domain analyses confirmed the evolutionary diversification and gene uniqueness of known Malacoherpesviridae. However, the presence of Malacoherpesviridae-like sequences integrated within genomes of phylogenetically distant invertebrates indicates broad diffusion of these viruses and indicates the need for confirmatory investigations. The manifest co-occurrence of OsHV-1 genotype variants in single RNA-seq samples of Crassostrea gigas provide further support for the Malacoherpesviridae diversification. In addition to simple sequence motifs inter-punctuating viral ORFs, recombination-inducing sequences were found to be enriched in the OsHV-1 and AbHV1-AUS genomes. Finally, the highly correlated expression of most viral ORFs in multiple oyster samples is consistent with the burst of viral proteins during the lytic phase.
Collapse
Affiliation(s)
| | - Paola Venier
- Department of Biology, University of PaduaPadua, Italy
| |
Collapse
|
27
|
Gandhi J, Khera L, Gaur N, Paul C, Kaul R. Role of Modulator of Inflammation Cyclooxygenase-2 in Gammaherpesvirus Mediated Tumorigenesis. Front Microbiol 2017; 8:538. [PMID: 28400769 PMCID: PMC5368278 DOI: 10.3389/fmicb.2017.00538] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Chronic inflammation is recognized as a threat factor for cancer progression. Release of inflammatory molecules generates microenvironment which is highly favorable for development of tumor, cancer progression and metastasis. In cases of latent viral infections, generation of such a microenvironment is one of the major predisposing factors related to virus mediated tumorigenesis. Among various inflammatory mediators implicated in pathological process associated with cancer, the cyclooxygenase (COX) and its downstream effector molecules are of greater significance. Though the role of infectious agents in causing inflammation leading to transformation of cells has been more or less well established, however, the mechanism by which inflammation in itself modulates the events in life cycle of infectious agent is not very much clear. This is specifically important for gammaherpesviruses infections where viral life cycle is characterized by prolonged periods of latency when the virus remains hidden, immunologically undetectable and expresses only a very limited set of genes. Therefore, it is important to understand the mechanisms for role of inflammation in virus life cycle and tumorigenesis. This review is an attempt to summarize the latest findings highlighting the significance of COX-2 and its downstream signaling effectors role in life cycle events of gammaherpesviruses leading to progression of cancer.
Collapse
Affiliation(s)
- Jaya Gandhi
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Lohit Khera
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Nivedita Gaur
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Catherine Paul
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| |
Collapse
|