1
|
Ahmed MZ, Rao T, Mutahir Z, Ahmed S, Ullah N, Ojha SC. Immunoinformatic-driven design and evaluation of multi-epitope mRNA vaccine targeting HIV-1 gp120. Front Immunol 2025; 16:1480025. [PMID: 40433366 PMCID: PMC12106336 DOI: 10.3389/fimmu.2025.1480025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
HIV (human immunodeficiency virus) presents a global health crisis, causing significant AIDS-related deaths and over one million new infections annually. The curbing of HIV is an intricate and continuously evolving domain, marked by numerous challenges, including drug resistance and the absence of a significant cure or vaccine because of its mutating ability and diverse antigens in its envelope, prompting research for functional cures and long-term remission strategies. The endeavor to devise an HIV vaccine capable of eliciting robust and broadly cross-reactive humoral and cellular immune responses is a formidable undertaking, primarily due to the pronounced genetic heterogeneity of HIV-1, the variances observed in virus subtypes (clades) across distinct geographic regions, and the polymorphic nature of human leukocyte antigens (HLA). The viral envelope protein (gp120) selectively interacts with CD4 and chemokine receptors on the surface of target cells. It serves as the key initiator in the intricate viral entry into host cells, rendering it a compelling candidate for vaccine development. This study used bioinformatic tools to design a safe, hypoallergenic, and non-toxic mRNA HIV-1 vaccine by assembling immunogenic B- and T-cell epitopes from the gp120 protein. We identified antigenic, non-toxic, and non-allergic B-cell epitopes (IEPLGIAPTRAKRRVVER) and T-cell epitopes (QQKVHALFY, ITIGPGQVF, WQGVGQAMY, APTRAKRRV, KQQKVHALFYRLDIV, QQKVHALFYRLDIVQ, QKVHALFYRLDIVQI, SLAEEEIIIRSENLT, and IRSENLTNNVKTIIV). For designing the mRNA vaccine against HIV-1 gp120, we assembled the epitopes with 5' m7G cap, 5' UTR (untranslated region), Kozak sequence, signal peptide (tPA), RpfE (resuscitation-promoting factor E) adjuvant at N-terminal and MITD (MHC class I trafficking domain) adjuvant, stop codon, 3' UTR, and 120-nucleotide long poly(A) tail at the C-terminal with immunogenic robustness linkers. The mRNA vaccine is translated into a protein-based vaccine by the host body's ribosomes. Their comprehensive computational findings, including physicochemical, structural, and 3D refinement analyses, substantiated the stability and quality of the translated vaccine. Molecular docking and simulation revealed a strong and stable binding affinity of vaccine immunization with immune cells' pattern recognition receptors (TLR4). Immune simulations demonstrated a potent primary immune response characterized by a gradual increase in immunoglobulins and a corresponding decline in antigen concentration. This bioinformatics-driven study presents a promising HIV-1 mRNA vaccine candidate, underscoring the need for further experimental validation through preclinical and clinical trials. At the same time, its methodologies hold the potential for addressing other challenging infectious diseases, thereby impacting vaccinology broadly.
Collapse
Affiliation(s)
- Muhammad Zeeshan Ahmed
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Tazeen Rao
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Zeeshan Mutahir
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Sarfraz Ahmed
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Najeeb Ullah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Frank I, Li SS, Grunenberg N, Overton ET, Robinson ST, Zheng H, Seaton KE, Heptinstall JR, Allen MA, Mayer KH, Culver DA, Keefer MC, Edupuganti S, Pensiero MN, Mehra VL, De Rosa SC, Morris DE, Wang S, Seaman MS, Montefiori DC, Ferrari G, Tomaras GD, Kublin JG, Corey L, Lu S. Safety and immunogenicity of a polyvalent DNA-protein HIV vaccine with matched Env immunogens delivered as a prime-boost regimen or coadministered in HIV-uninfected adults in the USA (HVTN 124): a phase 1, placebo-controlled, double-blind randomised controlled trial. Lancet HIV 2024; 11:e285-e299. [PMID: 38692824 PMCID: PMC11228966 DOI: 10.1016/s2352-3018(24)00036-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND An effective HIV vaccine will most likely need to have potent immunogenicity and broad cross-subtype coverage. The aim of the HIV Vaccine Trials Network (HVTN) 124 was to evaluate safety and immunogenicity of a unique polyvalent DNA-protein HIV vaccine with matching envelope (Env) immunogens. METHODS HVTN 124 was a randomised, phase 1, placebo-controlled, double-blind study, including participants who were HIV seronegative and aged 18-50 years at low risk for infection. The DNA vaccine comprised five plasmids: four copies expressing Env gp120 (clades A, B, C, and AE) and one gag p55 (clade C). The protein vaccine included four DNA vaccine-matched GLA-SE-adjuvanted recombinant gp120 proteins. Participants were enrolled across six clinical sites in the USA and were randomly assigned to placebo or one of two vaccine groups (ie, prime-boost or coadministration) in a 5:1 ratio in part A and a 7:1 ratio in part B. Vaccines were delivered via intramuscular needle injection. The primary outcomes were safety and tolerability, assessed via frequency, severity, and attributability of local and systemic reactogenicity and adverse events, laboratory safety measures, and early discontinuations. Part A evaluated safety. Part B evaluated safety and immunogenicity of two regimens: DNA prime (administered at months 0, 1, and 3) with protein boost (months 6 and 8), and DNA-protein coadministration (months 0, 1, 3, 6, and 8). All randomly assigned participants who received at least one dose were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT03409276) and is closed to new participants. FINDINGS Between April 19, 2018 and Feb 13, 2019, 60 participants (12 in part A [five men and seven women] and 48 in part B [21 men and 27 women]) were enrolled. All 60 participants received at least one dose, and 14 did not complete follow-up (six of 21 in the prime-boost group and eight of 21 in the coadminstration group). 11 clinical adverse events deemed by investigators as study-related occurred in seven of 48 participants in part B (eight of 21 in the prime-boost group and three of 21 in the coadministration group). Local reactogenicity in the vaccine groups was common, but the frequency and severity of reactogenicity signs or symptoms did not differ between the prime-boost and coadministration groups (eg, 20 [95%] of 21 in the prime-boost group vs 21 [100%] of 21 in the coadministration group had either local pain or tenderness of any severity [p=1·00], and seven [33%] vs nine [43%] had either erythema or induration [p=0·97]), nor did laboratory safety measures. There were no delayed-type hypersensitivity reactions or vasculitis or any severe clinical adverse events related to vaccination. The most frequently reported systemic reactogenicity symptoms in the active vaccine groups were malaise or fatigue (five [50%] of ten in part A and 17 [81%] of 21 in the prime-boost group vs 15 [71%] of 21 in the coadministration group in part B), headache (five [50%] and 18 [86%] vs 12 [57%]), and myalgia (four [40%] and 13 [62%] vs ten [48%]), mostly of mild or moderate severity. INTERPRETATION Both vaccine regimens were safe, warranting evaluation in larger trials. FUNDING US National Institutes of Health and US National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Ian Frank
- Division of Infectious Disease, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shuying S Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Edgar T Overton
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel T Robinson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hua Zheng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Icon, Burlington, QC, Canada
| | - Kelly E Seaton
- Department of Surgery, Duke University, Durham, NC, USA; Department of Immunology, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Center for Human Systems Immunology, Duke University, Durham, NC, USA
| | - Jack R Heptinstall
- Department of Surgery, Duke University, Durham, NC, USA; Department of Immunology, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Center for Human Systems Immunology, Duke University, Durham, NC, USA
| | - Mary A Allen
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth H Mayer
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA; The Fenway Institute, Fenway Health, Boston, MA, USA
| | - Daniel A Culver
- Department of Pulmonary and Critical Care Medicine, Integrated Hospital Care Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael C Keefer
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sri Edupuganti
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, USA
| | - Michael N Pensiero
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vijay L Mehra
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Daryl E Morris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David C Montefiori
- Department of Surgery, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Center for Human Systems Immunology, Duke University, Durham, NC, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University, Durham, NC, USA; Department of Immunology, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Center for Human Systems Immunology, Duke University, Durham, NC, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Adams TM, Zhao P, Kong R, Wells L. ppmFixer: a mass error adjustment for pGlyco3.0 to correct near-isobaric mismatches. Glycobiology 2024; 34:cwae006. [PMID: 38263491 PMCID: PMC11005163 DOI: 10.1093/glycob/cwae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Modern glycoproteomics experiments require the use of search engines due to the generation of countless spectra. While these tools are valuable, manual validation of search engine results is often required for detailed analysis of glycopeptides as false-discovery rates are often not reliable for glycopeptide data. Near-isobaric mismatches are a common source of misidentifications for the popular glycopeptide-focused search engine pGlyco3.0, and in this technical note we share a strategy and script that improves the accuracy of the search utilizing two manually validated datasets of the glycoproteins CD16a and HIV-1 Env as proof-of-principle.
Collapse
Affiliation(s)
- Trevor M Adams
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens 30602, Georgia
| | - Peng Zhao
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens 30602, Georgia
| | - Rui Kong
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, 7 Frist Ave, Atlanta 30317, Georgia
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens 30602, Georgia
| |
Collapse
|
4
|
Baboo S, Diedrich JK, Martínez-Bartolomé S, Wang X, Schiffner T, Groschel B, Schief WR, Paulson JC, Yates JR. DeGlyPHER: Highly sensitive site-specific analysis of N-linked glycans on proteins. Methods Enzymol 2022; 682:137-185. [PMID: 36948700 PMCID: PMC11032187 DOI: 10.1016/bs.mie.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traditional mass spectrometry-based glycoproteomic approaches have been widely used for site-specific N-glycoform analysis, but a large amount of starting material is needed to obtain sampling that is representative of the vast diversity of N-glycans on glycoproteins. These methods also often include a complicated workflow and very challenging data analysis. These limitations have prevented glycoproteomics from being adapted to high-throughput platforms, and the sensitivity of the analysis is currently inadequate for elucidating N-glycan heterogeneity in clinical samples. Heavily glycosylated spike proteins of enveloped viruses, recombinantly expressed as potential vaccines, are prime targets for glycoproteomic analysis. Since the immunogenicity of spike proteins may be impacted by their glycosylation patterns, site-specific analysis of N-glycoforms provides critical information for vaccine design. Using recombinantly expressed soluble HIV Env trimer, we describe DeGlyPHER, a modification of our previously reported sequential deglycosylation strategy to yield a "single-pot" process. DeGlyPHER is an ultrasensitive, simple, rapid, robust, and efficient approach for site-specific analysis of protein N-glycoforms, that we developed for analysis of limited quantities of glycoproteins.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | | | - Xiaoning Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
5
|
Dammen-Brower K, Epler P, Zhu S, Bernstein ZJ, Stabach PR, Braddock DT, Spangler JB, Yarema KJ. Strategies for Glycoengineering Therapeutic Proteins. Front Chem 2022; 10:863118. [PMID: 35494652 PMCID: PMC9043614 DOI: 10.3389/fchem.2022.863118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Almost all therapeutic proteins are glycosylated, with the carbohydrate component playing a long-established, substantial role in the safety and pharmacokinetic properties of this dominant category of drugs. In the past few years and moving forward, glycosylation is increasingly being implicated in the pharmacodynamics and therapeutic efficacy of therapeutic proteins. This article provides illustrative examples of drugs that have already been improved through glycoengineering including cytokines exemplified by erythropoietin (EPO), enzymes (ectonucleotide pyrophosphatase 1, ENPP1), and IgG antibodies (e.g., afucosylated Gazyva®, Poteligeo®, Fasenra™, and Uplizna®). In the future, the deliberate modification of therapeutic protein glycosylation will become more prevalent as glycoengineering strategies, including sophisticated computer-aided tools for "building in" glycans sites, acceptance of a broad range of production systems with various glycosylation capabilities, and supplementation methods for introducing non-natural metabolites into glycosylation pathways further develop and become more accessible.
Collapse
Affiliation(s)
- Kris Dammen-Brower
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paige Epler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Stanley Zhu
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Zachary J. Bernstein
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Jamie B. Spangler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kevin J. Yarema
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
6
|
Pérez-Yanes S, Pernas M, Marfil S, Cabrera-Rodríguez R, Ortiz R, Urrea V, Rovirosa C, Estévez-Herrera J, Olivares I, Casado C, Lopez-Galindez C, Blanco J, Valenzuela-Fernández A. The Characteristics of the HIV-1 Env Glycoprotein Are Linked With Viral Pathogenesis. Front Microbiol 2022; 13:763039. [PMID: 35401460 PMCID: PMC8988142 DOI: 10.3389/fmicb.2022.763039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/31/2022] [Indexed: 12/17/2022] Open
Abstract
The understanding of HIV-1 pathogenesis and clinical progression is incomplete due to the variable contribution of host, immune, and viral factors. The involvement of viral factors has been investigated in extreme clinical phenotypes from rapid progressors to long-term non-progressors (LTNPs). Among HIV-1 proteins, the envelope glycoprotein complex (Env) has been concentrated on in many studies for its important role in the immune response and in the first steps of viral replication. In this study, we analyzed the contribution of 41 Envs from 24 patients with different clinical progression rates and viral loads (VLs), LTNP-Elite Controllers (LTNP-ECs); Viremic LTNPs (vLTNPs), and non-controller individuals contemporary to LTNPs or recent, named Old and Modern progressors. We studied the Env expression, the fusion and cell-to-cell transfer capacities, as well as viral infectivity. The sequence and phylogenetic analysis of Envs were also performed. In every functional characteristic, the Envs from subjects with viral control (LTNP-ECs and vLTNPs) showed significant lower performance compared to those from the progressor individuals (Old and Modern). Regarding sequence analysis, the variable loops of the gp120 subunit of the Env (i.e., V2, V4, and mainly V5) of the progressor individuals showed longer and more glycosylated sequences than controller subjects. Therefore, HIV-1 Envs from virus of patients presenting viremic control and the non-progressor clinical phenotype showed poor viral functions and shorter sequences, whereas functional Envs were associated with virus of patients lacking virological control and with progressor clinical phenotypes. These correlations support the role of Env genotypic and phenotypic characteristics in the in vivo HIV-1 infection and pathogenesis.
Collapse
Affiliation(s)
- Silvia Pérez-Yanes
- Unidad de Farmacología, Sección de Medicina, Laboratorio de Inmunología Celular y Viral, Facultad de Ciencias de la Salud de la Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - María Pernas
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Marfil
- Institut de Recerca de la Sida IrsiCaixa, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Romina Cabrera-Rodríguez
- Unidad de Farmacología, Sección de Medicina, Laboratorio de Inmunología Celular y Viral, Facultad de Ciencias de la Salud de la Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Raquel Ortiz
- Institut de Recerca de la Sida IrsiCaixa, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Víctor Urrea
- Institut de Recerca de la Sida IrsiCaixa, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Carla Rovirosa
- Institut de Recerca de la Sida IrsiCaixa, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Judith Estévez-Herrera
- Unidad de Farmacología, Sección de Medicina, Laboratorio de Inmunología Celular y Viral, Facultad de Ciencias de la Salud de la Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Isabel Olivares
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Concepción Casado
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
- Concepción Casado,
| | - Cecilio Lopez-Galindez
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
- Cecilio Lopez-Galindez,
| | - Julià Blanco
- Institut de Recerca de la Sida IrsiCaixa, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
- Chair of Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain
- Julià Blanco,
| | - Agustín Valenzuela-Fernández
- Unidad de Farmacología, Sección de Medicina, Laboratorio de Inmunología Celular y Viral, Facultad de Ciencias de la Salud de la Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
- *Correspondence: Agustín Valenzuela-Fernández,
| |
Collapse
|
7
|
Zhang Y, Zheng S, Zhao W, Mao Y, Cao W, Zeng W, Liu Y, Hu L, Gong M, Cheng J, Chen Y, Yang H. Sequential Analysis of the N/O-Glycosylation of Heavily Glycosylated HIV-1 gp120 Using EThcD-sceHCD-MS/MS. Front Immunol 2021; 12:755568. [PMID: 34745128 PMCID: PMC8567067 DOI: 10.3389/fimmu.2021.755568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Deciphering the glycosylation of the viral envelope (Env) glycoprotein is critical for evaluating viral escape from the host’s immune response and developing vaccines and antiviral drugs. However, it is still challenging to precisely decode the site-specific glycosylation characteristics of the highly glycosylated Env proteins, although glycoproteomics have made significant advances in mass spectrometry techniques and data analysis tools. Here, we present a hybrid dissociation technique, EThcD-sceHCD, by combining electron transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) into a sequential glycoproteomic workflow. Following this scheme, we characterized site-specific N/O-glycosylation of the human immunodeficiency virus type 1 (HIV-1) Env protein gp120. The EThcD-sceHCD method increased the number of identified glycopeptides when compared with EThcD, while producing more comprehensive fragment ions than sceHCD for site-specific glycosylation analysis, especially for accurate O-glycosite assignment. Finally, eighteen N-glycosites and five O-glycosites with attached glycans were assigned unambiguously from heavily glycosylated gp120. These results indicate that our workflow can achieve improved performance for analysis of the N/O-glycosylation of a highly glycosylated protein containing numerous potential glycosites in one process. Knowledge of the glycosylation landscape of the Env glycoprotein will be useful for understanding of HIV-1 infection and development of vaccines and drugs.
Collapse
Affiliation(s)
- Yong Zhang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Zheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Zhao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Cao
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Zeng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yueqiu Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiang Hu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhao J, Song E, Huang Y, Yu A, Mechref Y. Variability in the Glycosylation Patterns of gp120 Proteins from Different Human Immunodeficiency Virus Type 1 Isolates Expressed in Different Host Cells. J Proteome Res 2021; 20:4862-4874. [PMID: 34448591 DOI: 10.1021/acs.jproteome.1c00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mature HIV-1 envelope (Env) glycoprotein is composed of gp120, the exterior subunit, and gp41, the transmembrane subunit assembled as trimer by noncovalent interaction. There is a great body of literature to prove that gp120 binds to CD4 first, then to the coreceptor. Binding experiments and functional assays have demonstrated that CD4 binding induces conformational changes in gp120 that enable or enhance its interaction with a coreceptor. Previous studies provided different glycomic maps for the HIV-1 gp120. Here, we build on previous work to report that the use of LC-MS/MS, in conjunction with hydrophilic interaction liquid chromatography (HILIC) enrichment to glycosylation sites, associated with the assorted neutralizing or binding events of glycosylation targeted antibodies from different clades or strains. In this study, the microheterogeneity of the glycosylation from 4 different clades of gp120s is deeply investigated. Aberrant glycosylation patterns were detected on gp120 that originated from different clades, viral sequences, and host cells. The results of this study may help provide a better understanding of the mechanism of how the glycans participate in the antibody neutralizing process that targets glycosylation sites.
Collapse
Affiliation(s)
- Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
9
|
Stevenson-Leggett P, Armstrong S, Keep S, Britton P, Bickerton E. Analysis of the avian coronavirus spike protein reveals heterogeneity in the glycans present. J Gen Virol 2021; 102. [PMID: 34424155 PMCID: PMC8513636 DOI: 10.1099/jgv.0.001642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Infectious bronchitis virus (IBV) is an economically important coronavirus, causing damaging losses to the poultry industry worldwide as the causative agent of infectious bronchitis. The coronavirus spike (S) glycoprotein is a large type I membrane protein protruding from the surface of the virion, which facilitates attachment and entry into host cells. The IBV S protein is cleaved into two subunits, S1 and S2, the latter of which has been identified as a determinant of cellular tropism. Recent studies expressing coronavirus S proteins in mammalian and insect cells have identified a high level of glycosylation on the protein’s surface. Here we used IBV propagated in embryonated hens’ eggs to explore the glycan profile of viruses derived from infection in cells of the natural host, chickens. We identified multiple glycan types on the surface of the protein and found a strain-specific dependence on complex glycans for recognition of the S2 subunit by a monoclonal antibody in vitro, with no effect on viral replication following the chemical inhibition of complex glycosylation. Virus neutralization by monoclonal or polyclonal antibodies was not affected. Following analysis of predicted glycosylation sites for the S protein of four IBV strains, we confirmed glycosylation at 18 sites by mass spectrometry for the pathogenic laboratory strain M41-CK. Further characterization revealed heterogeneity among the glycans present at six of these sites, indicating a difference in the glycan profile of individual S proteins on the IBV virion. These results demonstrate a non-specific role for complex glycans in IBV replication, with an indication of an involvement in antibody recognition but not neutralisation.
Collapse
Affiliation(s)
| | - Stuart Armstrong
- Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Sarah Keep
- The Pirbright Institute, Woking, Surrey GU24 0NF, UK
| | - Paul Britton
- The Pirbright Institute, Woking, Surrey GU24 0NF, UK
| | | |
Collapse
|
10
|
Olvera A, Cedeño S, Llano A, Mothe B, Sanchez J, Arsequell G, Brander C. Does Antigen Glycosylation Impact the HIV-Specific T Cell Immunity? Front Immunol 2021; 11:573928. [PMID: 33552045 PMCID: PMC7862545 DOI: 10.3389/fimmu.2020.573928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
It is largely unknown how post-translational protein modifications, including glycosylation, impacts recognition of self and non-self T cell epitopes presented by HLA molecules. Data in the literature indicate that O- and N-linked glycosylation can survive epitope processing and influence antigen presentation and T cell recognition. In this perspective, we hypothesize that glycosylation of viral proteins and processed epitopes contribute to the T cell response to HIV. Although there is some evidence for T cell responses to glycosylated epitopes (glyco-epitopes) during viral infections in the literature, this aspect has been largely neglected for HIV. To explore the role of glyco-epitope specific T cell responses in HIV infection we conducted in silico and ex vivo immune studies in individuals with chronic HIV infection. We found that in silico viral protein segments with potentially glycosylable epitopes were less frequently targeted by T cells. Ex vivo synthetically added glycosylation moieties generally masked T cell recognition of HIV derived peptides. Nonetheless, in some cases, addition of simple glycosylation moieties produced neo-epitopes that were recognized by T cells from HIV infected individuals. Herein, we discuss the potential importance of these observations and compare limitations of the employed technology with new methodologies that may have the potential to provide a more accurate assessment of glyco-epitope specific T cell immunity. Overall, this perspective is aimed to support future research on T cells recognizing glycosylated epitopes in order to expand our understanding on how glycosylation of viral proteins could alter host T cell immunity against viral infections.
Collapse
Affiliation(s)
- Alex Olvera
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | | | - Anuska Llano
- IrsiCaixa-AIDS Research Institute, Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Christian Brander
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
11
|
Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host Microbe 2020; 28:586-601.e6. [PMID: 32841605 PMCID: PMC7443692 DOI: 10.1016/j.chom.2020.08.004] [Citation(s) in RCA: 323] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 betacoronavirus uses its highly glycosylated trimeric Spike protein to bind to the cell surface receptor angiotensin converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatics analyses of natural variants and with existing 3D structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein both alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation. Taken together, these data can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.
Collapse
Affiliation(s)
- Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Jeremy L Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Katelyn E Rosenbalm
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Benjamin P Kellman
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, La Jolla, CA 92093, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Bing Chen
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
12
|
Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.25.172403. [PMID: 32743578 PMCID: PMC7386495 DOI: 10.1101/2020.06.25.172403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current COVID-19 pandemic is caused by the SARS-CoV-2 betacoronavirus, which utilizes its highly glycosylated trimeric Spike protein to bind to the cell surface receptor ACE2 glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatic analyses of natural variants and with existing 3D-structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation that, taken together, can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.
Collapse
Affiliation(s)
- Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Jeremy L. Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Oliver C. Grant
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Katelyn E. Rosenbalm
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Benjamin P. Kellman
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California, 92093, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, La Jolla, California, 92093, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Bing Chen
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|