1
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
2
|
Welch SR, Bilello JP, Carter K, Delang L, Dirr L, Durantel D, Feng JY, Gowen BB, Herrero LJ, Janeba Z, Kleymann G, Lee AA, Meier C, Moffat J, Schang LM, Schiffer JT, Seley-Radtke KL, Sheahan TP, Spengler JR. Meeting report of the 37th International Conference on Antiviral Research in Gold Coast, Australia, May 20-24, 2024, organized by the International Society for Antiviral Research. Antiviral Res 2024; 232:106037. [PMID: 39542140 PMCID: PMC11871649 DOI: 10.1016/j.antiviral.2024.106037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The 37th International Conference on Antiviral Research (ICAR) was held in Gold Coast, Australia, May 20-24, 2024. ICAR 2024 featured over 75 presentations along with two poster sessions and special events, including those specifically tailored for trainees and early-career scientists. The meeting served as a platform for the exchange of cutting-edge research, with presentations and discussions covering novel antiviral compounds, vaccine development, clinical trials, and therapeutic advancements. A comprehensive array of topics in antiviral science was covered, from the latest breakthroughs in antiviral drug development to innovative strategies for combating emerging viral threats. The keynote presentations provided fascinating insight into two diverse areas fundamental to medical countermeasure development and use, including virus emergence at the human-animal interface and practical considerations for bringing antivirals to the clinic. Additional sessions addressed a variety of timely post-pandemic topics, such as the hunt for broad spectrum antivirals, combination therapy, pandemic preparedness, application of in silico tools and AI in drug discovery, the virosphere, and more. Here, we summarize all the presentations and special sessions of ICAR 2024 and introduce the 38th ICAR, which will be held in Las Vegas, USA, March 17-21, 2025.
Collapse
Affiliation(s)
- Stephen R Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | - Leen Delang
- Virus-Host Interactions & Therapeutic Approaches Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Larissa Dirr
- Institute for Biomedicine and Glycomics, Griffith University, Southport, QLD, Australia
| | - David Durantel
- Centre International de Recherche en Infectiologie (CIRI), Inserm_U1111, CNRS_UMR5308, Université Claude Bernard Lyon 1, F-69007, Lyon, France
| | - Joy Y Feng
- Division of the Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Brian B Gowen
- Institute for Antiviral Research and Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Lara J Herrero
- Institute for Biomedicine and Glycomics, Griffith University, Southport, QLD, Australia
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Gerald Kleymann
- Innovative Molecules GmbH, Lipowsky Str. 10, 81373, Munich, Bavaria, Germany
| | | | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, Hamburg, Germany
| | - Jennifer Moffat
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Luis M Schang
- Baker Institute and Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, USA; Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
3
|
Tessema MB, Feng S, Enosi Tuipulotu D, Farrukee R, Ngo C, Gago da Graça C, Yamomoto M, Utzschneider DT, Brooks AG, Londrigan SL, Man SM, Reading PC. Mouse guanylate-binding proteins of the chromosome 3 cluster do not mediate antiviral activity in vitro or in mouse models of infection. Commun Biol 2024; 7:1050. [PMID: 39183326 PMCID: PMC11345437 DOI: 10.1038/s42003-024-06748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Dynamin-like GTPase proteins, including myxoma (Mx) and guanylate-binding proteins (GBPs), are among the many interferon stimulated genes induced following viral infections. While studies report that human (h)GBPs inhibit different viruses in vitro, few have convincingly demonstrated that mouse (m)GBPs mediate antiviral activity, although mGBP-deficient mice have been used extensively to define their importance in immunity to diverse intracellular bacteria and protozoa. Herein, we demonstrate that individual (overexpression) or collective (knockout (KO) mice) mGBPs of the chromosome 3 cluster (mGBPchr3) do not inhibit replication of five viruses from different virus families in vitro, nor do we observe differences in virus titres recovered from wild type versus mGBPchr3 KO mice after infection with three of these viruses (influenza A virus, herpes simplex virus type 1 or lymphocytic choriomeningitis virus). These data indicate that mGBPchr3 do not appear to be a major component of cell-intrinsic antiviral immunity against the diverse viruses tested in our studies.
Collapse
Affiliation(s)
- Melkamu B Tessema
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Chinh Ngo
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Catarina Gago da Graça
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Masahiro Yamomoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
| |
Collapse
|
4
|
Nigos LR, Scott NE, Brooks AG, Ait-Goughoulte M, Londrigan SL, Reading PC, Farrukee R. TRIM16 Overexpression in HEK293T Cells Results in Cell Line-Specific Antiviral Activity. Pathogens 2023; 12:852. [PMID: 37375542 DOI: 10.3390/pathogens12060852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Host cell restriction factors are intracellular proteins that can inhibit virus replication. Characterisation of novel host cell restriction factors can provide potential targets for host-directed therapies. In this study, we aimed to assess a member of the Tripartite-motif family protein (TRIM) family, TRIM16, as a putative host cell restriction factor. To this end, we utilized constitutive or doxycycline-inducible systems to overexpress TRIM16 in HEK293T epithelial cells and then tested for its ability to inhibit growth by a range of RNA and DNA viruses. In HEK293T cells, overexpression of TRIM16 resulted in potent inhibition of multiple viruses, however, when TRIM16 was overexpressed in other epithelial cell lines (A549, Hela, or Hep2), virus inhibition was not observed. When investigating the antiviral activity of endogenous TRIM16, we report that siRNA-mediated knockdown of TRIM16 in A549 cells also modulated the mRNA expression of other TRIM proteins, complicating the interpretation of results using this method. Therefore, we used CRISPR/Cas9 editing to knockout TRIM16 in A549 cells and demonstrate that endogenous TRIM16 did not mediate antiviral activity against the viruses tested. Thus, while initial overexpression in HEK293T cells suggested that TRIM16 was a host cell restriction factor, alternative approaches did not validate these findings. These studies highlight the importance of multiple complementary experimental approaches, including overexpression analysis in multiple cell lines and investigation of the endogenous protein, when defining host cell restriction factors with novel antiviral activity.
Collapse
Affiliation(s)
- Lance R Nigos
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Malika Ait-Goughoulte
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Disease Reference Laboratory, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| |
Collapse
|
5
|
Yau E, Yang L, Chen Y, Umstead TM, Atkins H, Katz ZE, Yewdell JW, Gandhi CK, Halstead ES, Chroneos ZC. Surfactant protein A alters endosomal trafficking of influenza A virus in macrophages. Front Immunol 2023; 14:919800. [PMID: 36960051 PMCID: PMC10028185 DOI: 10.3389/fimmu.2023.919800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Influenza A virus infection (IAV) often leads to acute lung injury that impairs breathing and can lead to death, with disproportionate mortality in children and the elderly. Surfactant Protein A (SP-A) is a calcium-dependent opsonin that binds a variety of pathogens to help control pulmonary infections by alveolar macrophages. Alveolar macrophages play critical roles in host resistance and susceptibility to IAV infection. The effect of SP-A on IAV infection and antiviral response of macrophages, however, is not understood. Here, we report that SP-A attenuates IAV infection in a dose-dependent manner at the level of endosomal trafficking, resulting in infection delay in a model macrophage cell line. The ability of SP-A to suppress infection was independent of its glycosylation status. Binding of SP-A to hemagglutinin did not rely on the glycosylation status or sugar binding properties of either protein. Incubation of either macrophages or IAV with SP-A slowed endocytic uptake rate of IAV. SP-A interfered with binding to cell membrane and endosomal exit of the viral genome as indicated by experiments using isolated cell membranes, an antibody recognizing a pH-sensitive conformational epitope on hemagglutinin, and microscopy. Lack of SP-A in mice enhanced IFNβ expression, viral clearance and reduced mortality from IAV infection. These findings support the idea that IAV is an opportunistic pathogen that co-opts SP-A to evade host defense by alveolar macrophages. Our study highlights novel aspects of host-pathogen interactions that may lead to better understanding of the local mechanisms that shape activation of antiviral and inflammatory responses to viral infection in the lung.
Collapse
Affiliation(s)
- Eric Yau
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Linlin Yang
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yan Chen
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Todd M. Umstead
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Hannah Atkins
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, PA, Hershey, United States
| | - Zoe E. Katz
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Chintan K. Gandhi
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - E. Scott Halstead
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Zissis C. Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
- *Correspondence: Zissis C. Chroneos,
| |
Collapse
|
6
|
Zinc Finger Protein BCL11A Contributes to the Abortive Infection of Hirame novirhabdovirus (HIRRV) in B Lymphocytes of Flounder (Paralichthys olivaceus). J Virol 2022; 96:e0147022. [PMID: 36448803 PMCID: PMC9769382 DOI: 10.1128/jvi.01470-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hirame novirhabdovirus (HIRRV) infection is characterized by a pronounced viremia, and the high viral load is typically detected in immune-related organs and the circulatory system. In the present study, we demonstrated that HIRRV has the capacity to invade part of flounder membrane-bound IgM (mIgM+) B lymphocyte. Eight quantitative real-time PCR (qRT-PCR) standard curves involving HIRRV genomic RNA (gRNA), cRNA, and six mRNAs were established based on the strand-specific reverse transcription performed with tagged primers. It was revealed that viral RNA synthesis, especially the replication of gRNA, was inhibited in B cells, and the intracellular HIRRV even failed to produce infectious viral particles. Moreover, a range of genes with nucleic acid binding activity or related to viral infection were screened out based on the transcriptome analysis of HIRRV-infected B cells, and five molecules were further selected because of their different expression patterns in HIRRV-infected B cells and hirame natural embryo (HINAE) cells. The overexpression of these genes followed by HIRRV infection and RNA binding protein immunoprecipitation (RIP) assay revealed that the flounder B cell lymphoma/leukemia 11A (BCL11A), a highly conserved zinc finger transcription factor, is able to inhibit the proliferation of HIRRV by binding with full-length viral RNA mainly via its zinc finger domains at the C terminus. In conclusion, these data indicated that the high transcriptional activity of BCL11A in flounder mIgM+ B lymphocytes is a crucial factor for the abortive infection of HIRRV, and our findings provide new insights into the interaction between HIRRV and teleost B cells. IMPORTANCE HIRRV is a fish rhabdovirus that is considered as an important pathogen threatening the fish farming industry represented by flounder because of its high infectivity and fatality rate. To date, research toward understanding the complex pathogenic mechanism of HIRRV is still in its infancy and faces many challenges. Exploration of the relationship between HIRRV and its target cells is interesting and necessary. Here, we revealed that flounder mIgM+ B cells are capable of suppressing viral RNA synthesis and result in an unproductive infection of HIRRV. In addition, our results demonstrated that zinc finger protein BCL11A, a transcription factor in B cells, is able to suppress the replication of HIRRV. These findings increased our understanding of the underlying characteristics of HIRRV infection and revealed a novel antiviral mechanism against HIRRV based on the host restriction factor in teleost B cells, which sheds new light on the research into HIRRV control.
Collapse
|
7
|
Transcriptomic comparison of primary human lung cells with lung tissue samples and the human A549 lung cell line highlights cell type specific responses during infections with influenza A virus. Sci Rep 2022; 12:20608. [PMID: 36446841 PMCID: PMC9709075 DOI: 10.1038/s41598-022-24792-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Influenza A virus (IAV) causes pandemics and annual epidemics of severe respiratory infections. A better understanding of the molecular regulation in tissue and cells upon IAV infection is needed to thoroughly understand pathogenesis. We analyzed IAV replication and gene expression induced by IAV strain H3N2 Panama in isolated primary human alveolar epithelial type II cells (AECIIs), the permanent A549 adenocarcinoma cell line, alveolar macrophages (AMs) and explanted human lung tissue by bulk RNA sequencing. Primary AECII exhibit in comparison to AM a broad set of strongly induced genes related to RIG-I and interferon (IFN) signaling. The response of AECII was partly mirrored in A549 cells. In human lung tissue, we observed induction of genes unlike in isolated cells. Viral RNA was used to correlate host cell gene expression changes with viral burden. While relative induction of key genes was similar, gene abundance was highest in AECII cells and AM, while weaker in the human lung (due to less IAV replication) and A549 cells (pointing to their limited suitability as a model). Correlation of host gene induction with viral burden allows a better understanding of the cell-type specific induction of pathways and a possible role of cellular crosstalk requiring intact tissue.
Collapse
|
8
|
Gerlt V, Mayr J, Del Sarto J, Ludwig S, Boergeling Y. Cellular Protein Phosphatase 2A Regulates Cell Survival Mechanisms in Influenza A Virus Infection. Int J Mol Sci 2021; 22:11164. [PMID: 34681823 PMCID: PMC8540457 DOI: 10.3390/ijms222011164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAVs) are respiratory pathogens that are able to hijack multiple cellular mechanisms to drive their replication. Consequently, several viral and cellular proteins undergo posttranslational modifications such as dynamic phosphorylation/dephosphorylation. In eukaryotic cells, dephosphorylation is mainly catalyzed by protein phosphatase 2A (PP2A). While the function of kinases in IAV infection is quite well studied, only little is known about the role of PP2A in IAV replication. Here, we show, by using knockdown and inhibition approaches of the catalytic subunit PP2Ac, that this phosphatase is important for efficient replication of several IAV subtypes. This could neither be attributed to alterations in the antiviral immune response nor to changes in transcription or translation of viral genes. Interestingly, decreased PP2Ac levels resulted in a significantly reduced cell viability after IAV infection. Comprehensive kinase activity profiling identified an enrichment of process networks related to apoptosis and indicated a synergistic action of hyper-activated PI3K/Akt, MAPK/JAK-STAT and NF-kB signaling pathways, collectively resulting in increased cell death. Taken together, while IAV seems to effectively tap leftover PP2A activity to ensure efficient viral replication, reduced PP2Ac levels fail to orchestrate cell survival mechanisms to protect infected cells from early cell death.
Collapse
Affiliation(s)
- Vanessa Gerlt
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (V.G.); (J.M.); (J.D.S.); (S.L.)
| | - Juliane Mayr
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (V.G.); (J.M.); (J.D.S.); (S.L.)
| | - Juliana Del Sarto
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (V.G.); (J.M.); (J.D.S.); (S.L.)
- Department of Neurology, Institute of Translational Neurology, Medical Faculty, University Hospital Muenster, 48149 Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (V.G.); (J.M.); (J.D.S.); (S.L.)
| | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (V.G.); (J.M.); (J.D.S.); (S.L.)
| |
Collapse
|
9
|
Toulmin SA, Bhadiadra C, Paris AJ, Lin JH, Katzen J, Basil MC, Morrisey EE, Worthen GS, Eisenlohr LC. Type II alveolar cell MHCII improves respiratory viral disease outcomes while exhibiting limited antigen presentation. Nat Commun 2021; 12:3993. [PMID: 34183650 PMCID: PMC8239023 DOI: 10.1038/s41467-021-23619-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Type II alveolar cells (AT2s) are critical for basic respiratory homeostasis and tissue repair after lung injury. Prior studies indicate that AT2s also express major histocompatibility complex class II (MHCII) molecules, but how MHCII expression by AT2s is regulated and how it contributes to host defense remain unclear. Here we show that AT2s express high levels of MHCII independent of conventional inflammatory stimuli, and that selective loss of MHCII from AT2s in mice results in modest worsening of respiratory virus disease following influenza and Sendai virus infections. We also find that AT2s exhibit MHCII presentation capacity that is substantially limited compared to professional antigen presenting cells. The combination of constitutive MHCII expression and restrained antigen presentation may position AT2s to contribute to lung adaptive immune responses in a measured fashion, without over-amplifying damaging inflammation.
Collapse
Affiliation(s)
- Sushila A. Toulmin
- grid.239552.a0000 0001 0680 8770Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Chaitali Bhadiadra
- grid.239552.a0000 0001 0680 8770Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Andrew J. Paris
- grid.25879.310000 0004 1936 8972Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jeffrey H. Lin
- grid.25879.310000 0004 1936 8972Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jeremy Katzen
- grid.25879.310000 0004 1936 8972Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Maria C. Basil
- grid.25879.310000 0004 1936 8972Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA USA
| | - Edward E. Morrisey
- grid.25879.310000 0004 1936 8972Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Penn Institute for Regenerative Medicine, Perelman School of Medicine, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - G. Scott Worthen
- grid.25879.310000 0004 1936 8972Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA ,grid.239552.a0000 0001 0680 8770Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Laurence C. Eisenlohr
- grid.239552.a0000 0001 0680 8770Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
10
|
Latino I, Gonzalez SF. Spatio-temporal profile of innate inflammatory cells and mediators during influenza virus infection. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Fiege JK, Thiede JM, Nanda HA, Matchett WE, Moore PJ, Montanari NR, Thielen BK, Daniel J, Stanley E, Hunter RC, Menachery VD, Shen SS, Bold TD, Langlois RA. Single cell resolution of SARS-CoV-2 tropism, antiviral responses, and susceptibility to therapies in primary human airway epithelium. PLoS Pathog 2021; 17:e1009292. [PMID: 33507952 PMCID: PMC7872261 DOI: 10.1371/journal.ppat.1009292] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/09/2021] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Jessica K. Fiege
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joshua M. Thiede
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hezkiel Arya Nanda
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William E. Matchett
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Patrick J. Moore
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Noe Rico Montanari
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Beth K. Thielen
- Department of Pediatrics, Division of Infectious Diseases, University of Minnesota, United States of America
| | - Jerry Daniel
- University of Minnesota Genomics Center, Minneapolis, Minnesota, United States of America
| | - Emma Stanley
- University of Minnesota Genomics Center, Minneapolis, Minnesota, United States of America
| | - Ryan C. Hunter
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Steven S. Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Tyler D. Bold
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ryan A. Langlois
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
12
|
Fiege JK, Thiede JM, Nanda H, Matchett WE, Moore PJ, Montanari NR, Thielen BK, Daniel J, Stanley E, Hunter RC, Menachery VD, Shen SS, Bold TD, Langlois RA. Single cell resolution of SARS-CoV-2 tropism, antiviral responses, and susceptibility to therapies in primary human airway epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33106802 PMCID: PMC7587775 DOI: 10.1101/2020.10.19.343954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Jessica K Fiege
- Center for Immunology, University of Minnesota.,Department of Microbiology and Immunology, University of Minnesota
| | - Joshua M Thiede
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota
| | - Hezkiel Nanda
- Institute for Health Informatics, University of Minnesota
| | - William E Matchett
- Center for Immunology, University of Minnesota.,Department of Microbiology and Immunology, University of Minnesota
| | - Patrick J Moore
- Department of Microbiology and Immunology, University of Minnesota
| | | | - Beth K Thielen
- Department of Pediatrics, Division of Infectious Diseases, University of Minnesota
| | | | | | - Ryan C Hunter
- Center for Immunology, University of Minnesota.,Department of Microbiology and Immunology, University of Minnesota
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch
| | - Steven S Shen
- Institute for Health Informatics, University of Minnesota
| | - Tyler D Bold
- Center for Immunology, University of Minnesota.,Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota
| | - Ryan A Langlois
- Center for Immunology, University of Minnesota.,Department of Microbiology and Immunology, University of Minnesota
| |
Collapse
|
13
|
Fay EJ, Aron SL, Macchietto MG, Markman MW, Esser-Nobis K, Gale M, Shen S, Langlois RA. Cell type- and replication stage-specific influenza virus responses in vivo. PLoS Pathog 2020; 16:e1008760. [PMID: 32790753 PMCID: PMC7447048 DOI: 10.1371/journal.ppat.1008760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/25/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
Influenza A viruses (IAVs) remain a significant global health burden. Activation of the innate immune response is important for controlling early virus replication and spread. It is unclear how early IAV replication events contribute to immune detection. Additionally, while many cell types in the lung can be infected, it is not known if all cell types contribute equally to establish the antiviral state in the host. Here, we use single-cycle influenza A viruses (scIAVs) to characterize the early immune response to IAV in vitro and in vivo. We found that the magnitude of virus replication contributes to antiviral gene expression within infected cells prior to the induction of a global response. We also developed a scIAV that is only capable of undergoing primary transcription, the earliest stage of virus replication. Using this tool, we uncovered replication stage-specific responses in vitro and in vivo. Using several innate immune receptor knockout cell lines, we identify RIG-I as the predominant antiviral detector of primary virus transcription and amplified replication in vitro. Through a Cre-inducible reporter mouse, we used scIAVs expressing Cre-recombinase to characterize cell type-specific responses in vivo. Individual cell types upregulate unique sets of antiviral genes in response to both primary virus transcription and amplified replication. We also identified antiviral genes that are only upregulated in response to direct infection. Altogether, these data offer insight into the early mechanisms of antiviral gene activation during influenza A infection.
Collapse
Affiliation(s)
- Elizabeth J. Fay
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis MN, United States of America
- Center for Immunology, University of Minnesota, Minneapolis MN, United States of America
| | - Stephanie L. Aron
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN, United States of America
| | - Marissa G. Macchietto
- Institute for Health Informatics, University of Minnesota, Minneapolis MN, United States of America
| | - Matthew W. Markman
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN, United States of America
| | - Katharina Esser-Nobis
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, Seattle WA, United States of America
| | - Michael Gale
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, Seattle WA, United States of America
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis MN, United States of America
| | - Ryan A. Langlois
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis MN, United States of America
- Center for Immunology, University of Minnesota, Minneapolis MN, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN, United States of America
| |
Collapse
|
14
|
Bedford JG, Infusini G, Dagley LF, Villalon-Letelier F, Zheng MZM, Bennett-Wood V, Reading PC, Wakim LM. Airway Exosomes Released During Influenza Virus Infection Serve as a Key Component of the Antiviral Innate Immune Response. Front Immunol 2020; 11:887. [PMID: 32477358 PMCID: PMC7236881 DOI: 10.3389/fimmu.2020.00887] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular vesicles secreted by cells that have an important biological function in intercellular communication by transferring biologically active proteins, lipids, and RNAs to neighboring or distant cells. While a role for exosomes in antimicrobial defense has recently emerged, currently very little is known regarding the nature and functional relevance of exosomes generated in vivo, particularly during an active viral infection. Here, we characterized exosomes released into the airways during influenza virus infection. We show that these vesicles dynamically change in protein composition over the course of infection, increasing expression of host proteins with known anti-influenza activity, and viral proteins with the potential to trigger host immune responses. We show that exosomes released into the airways during influenza virus infection trigger pulmonary inflammation and carry viral antigen that can be utilized by antigen presenting cells to drive the induction of a cellular immune response. Moreover, we show that attachment factors for influenza virus, namely α2,3 and α2,6-linked sialic acids, are present on the surface of airway exosomes and these vesicles have the ability to neutralize influenza virus, thereby preventing the virus from binding and entering target cells. These data reveal a novel role for airway exosomes in the antiviral innate immune defense against influenza virus infection.
Collapse
Affiliation(s)
- James G Bedford
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Giuseppe Infusini
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Laura F Dagley
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Fernando Villalon-Letelier
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ming Z M Zheng
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Meischel T, Villalon-Letelier F, Saunders PM, Reading PC, Londrigan SL. Influenza A virus interactions with macrophages: Lessons from epithelial cells. Cell Microbiol 2020; 22:e13170. [PMID: 31990121 DOI: 10.1111/cmi.13170] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/24/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022]
Abstract
Influenza viruses are an important cause of respiratory infection worldwide. In humans, infection with seasonal influenza A virus (IAV) is generally restricted to the respiratory tract where productive infection of airway epithelial cells promotes viral amplification, dissemination, and disease. Alveolar macrophages (MΦ) are also among the first cells to detect and respond to IAV, where they play a pivotal role in mounting effective innate immune responses. In contrast to epithelial cells, IAV infection of MΦ is a "dead end" for most seasonal strains, where replication is abortive and newly synthesised virions are not released. Although the key replicative stages leading to productive IAV infection in epithelial cells are defined, there is limited knowledge about the abortive IAV life cycle in MΦ. In this review, we will explore host factors and viral elements that support the early stages (entry) through to the late stages (viral egress) of IAV replication in epithelial cells. Similarities, differences, and unknowns for each key stage of the IAV replicative cycle in MΦ will then be highlighted. Herein, we provide mechanistic insights into MΦ-specific control of seasonal IAV replication through abortive infection, which may in turn, contribute to effective host defence.
Collapse
Affiliation(s)
- Tina Meischel
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Fernando Villalon-Letelier
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Londrigan SL, Wakim LM, Smith J, Haverkate AJ, Brooks AG, Reading PC. IFITM3 and type I interferons are important for the control of influenza A virus replication in murine macrophages. Virology 2019; 540:17-22. [PMID: 31731106 DOI: 10.1016/j.virol.2019.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Abortive infection of macrophages serves as a "dead end" for most seasonal influenza A virus (IAV) strains, and it is likely to contribute to effective host defence. Interferon (IFN)-induced transmembrane protein 3 (IFITM3) restricts the early stages of IAV replication in epithelial cells, but IFITM3 restriction of IAV replication in macrophages has not been previously investigated. Herein, macrophages isolated from IFITM3-deficient mice were more susceptible to initial IAV infection, but late-stage viral replication was still controlled through abortive infection. Strikingly, IFNα/β receptor (IFNAR)-deficient macrophages infected with IAV were not only more susceptible to initial infection, but these cells also supported productive viral replication. Significantly, we have established that abortive IAV infection in macrophages is controlled through a type I IFN-dependent mechanism, where late-stage IAV replication can proceed in the absence of type I IFN responses. These findings provide novel mechanistic insight into macrophage-specific processes that potently shut down IAV replication.
Collapse
Affiliation(s)
- Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Jeffrey Smith
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Anne J Haverkate
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| |
Collapse
|
17
|
Liu G, Zhou Y. Cytoplasm and Beyond: Dynamic Innate Immune Sensing of Influenza A Virus by RIG-I. J Virol 2019; 93:e02299-18. [PMID: 30760567 PMCID: PMC6450113 DOI: 10.1128/jvi.02299-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/24/2022] Open
Abstract
Innate immune sensing of influenza A virus (IAV) requires retinoic acid-inducible gene I (RIG-I), a fundamental cytoplasmic RNA sensor. How RIG-I's cytoplasmic localization reconciles with the nuclear replication nature of IAV is poorly understood. Recent findings provide advanced insights into the spatiotemporal RIG-I sensing of IAV and highlight the contribution of various RNA ligands to RIG-I activation. Understanding a compartment-specific RIG-I-sensing paradigm would facilitate the identification of the full spectrum of physiological RIG-I ligands produced during IAV infection.
Collapse
Affiliation(s)
- GuanQun Liu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|