1
|
Guan X, Wu Q, Sun B. MicroRNA-regulated flounder CLDN4 functions in anti-bacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110270. [PMID: 40074190 DOI: 10.1016/j.fsi.2025.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
CLDN4 belongs to a multi-transmembrane protein family of claudins, which mainly functions in cell-cell adhesion and migration. MicroRNAs (miRNAs) are important post-transcriptional regulating factors that participate in broad biological process including immunity. Through high-throughput RNA sequencing strategy, a flounder miRNA, miR-29-x, was identified to be responsible to both bacteria and virus. In this study, we explored the regulatory mechanism and function of miR-29-x and its target gene of flounder CLDN4 (named PoCLDN4). We proved that miR-29-x could interact with the 3'UTR of PoCLDN4 and negatively regulate its expression. PoCLDN4 located on cell membrane, while the depletion of extracellular loop E2 abolished the membrane localization of this protein. E3 could bind different bacteria, and mutation of the amino acids of 13E and 18E enhanced this capacity, while mutation of 10L abolish this capacity. Further study revealed the bacteria killing effect of E3 and verified 10L as a key factor. These results identified the interaction between miR-29-x and PoCLDN4, and unraveled the function as well as the molecular basis of flounder CLDN4 in anti-bacterial immunity.
Collapse
Affiliation(s)
- Xiaolu Guan
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Qian Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Boguang Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Freppel W, Barragan Torres VA, Uyar O, Anton A, Nouhi Z, Broquière M, Mazeaud C, Sow AA, Léveillé A, Gilbert C, Tremblay N, Owen JE, Bemis CL, Laulhé X, Lamarre A, Neufeldt CJ, Rodrigue-Gervais IG, Pichlmair A, Girard D, Scaturro P, Hulea L, Chatel-Chaix L. Dengue virus and Zika virus alter endoplasmic reticulum-mitochondria contact sites to regulate respiration and apoptosis. iScience 2025; 28:111599. [PMID: 39834870 PMCID: PMC11743106 DOI: 10.1016/j.isci.2024.111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/17/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
During infection, dengue virus (DENV) and Zika virus (ZIKV), two (ortho)flaviviruses of public health concern worldwide, induce alterations of mitochondria morphology to favor viral replication, suggesting a viral co-opting of mitochondria functions. Here, we performed an extensive transmission electron microscopy-based quantitative analysis to demonstrate that both DENV and ZIKV alter endoplasmic reticulum-mitochondria contact sites (ERMC). This correlated at the molecular level with an impairment of ERMC tethering protein complexes located at the surface of both organelles. Furthermore, virus infection modulated the mitochondrial oxygen consumption rate. Consistently, metabolomic and mitoproteomic analyses revealed a decrease in the abundance of several metabolites of the Krebs cycle and changes in the stoichiometry of the electron transport chain. Most importantly, ERMC destabilization by protein knockdown increased virus replication while dampening ZIKV-induced apoptosis. Overall, our results support the notion that flaviviruses hijack ERMCs to generate a cytoplasmic environment beneficial for sustained and efficient replication.
Collapse
Affiliation(s)
- Wesley Freppel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Viviana Andrea Barragan Torres
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Olus Uyar
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Anaïs Anton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Zaynab Nouhi
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec H1T 2M4, Canada
| | - Mathilde Broquière
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Clément Mazeaud
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Alexanne Léveillé
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Claudia Gilbert
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Nicolas Tremblay
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Jonathan Eintrez Owen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheyanne L. Bemis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xavier Laulhé
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Alain Lamarre
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Christopher J. Neufeldt
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ian Gaël Rodrigue-Gervais
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine 81675 Munich, Germany
- German Center of Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Denis Girard
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Pietro Scaturro
- Institute of Virology, Technical University of Munich, School of Medicine 81675 Munich, Germany
- Leibniz Institute of Virology 20251 Hamburg, Germany
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec H1T 2M4, Canada
- Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
- Center of Excellence in Orphan Diseases Research-Fondation Courtois, Québec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec, Québec, Canada
| |
Collapse
|
3
|
Manea M, Mărunțelu I, Constantinescu I. An In-Depth Approach to the Associations between MicroRNAs and Viral Load in Patients with Chronic Hepatitis B-A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:8410. [PMID: 39125978 PMCID: PMC11313658 DOI: 10.3390/ijms25158410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Scientists study the molecular activities of the hepatitis B virus (HBV). However, in vivo experiments are scarce. Some microRNAs are HBV-related, but their exact mechanisms are unknown. Our study provides an up-to-date view of the associations between microRNAs and HBV-DNA levels in chronically infected individuals. We conducted this large-scale research on five databases according to PRISMA guidance. Joanna Briggs Institute tools and Newcastle Ottawa Quality Assessment scores helped with quality evaluations. R 4.2.2 performed statistical computations for the meta-analysis. DIANA-microT 2023 and g:Profiler enriched the predictions of liver genes associated with miR-122 and miR-192-5p. From the 1313 records, we eliminated those irrelevant to our theme, non-article methodologies, non-English entries, and duplicates. We assessed associations between microRNAs and HBV-DNA levels. Overall, the pooled correlations favoured the general idea of the connection between non-coding molecules and viremia levels. MiR-122 and miR-192-5p were the most researched microRNAs, significantly associated with HBV-DNA levels. The connections between miR-122, miR-192-5p, let-7, miR-215, miR-320, and viral loads need further in vivo assessment. To conclude, this study evaluates systematically, for the first time, the correlations between non-coding molecules and viremia levels in patients. Our meta-analysis emphasizes potentially important pathways toward new inhibitors of the viral replication cycle.
Collapse
Affiliation(s)
- Marina Manea
- Immunology and Transplant Immunology, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
| | - Ion Mărunțelu
- Immunology and Transplant Immunology, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
4
|
Jiang Y, Dou H, Wang X, Song T, Jia Y, Yue Y, Li L, He F, Kong L, Wu Z, Huang X, Liang Y, Jiao B, Jiao B. Analysis of seasonal H3N2 influenza virus epidemic characteristics and whole genome features in Jining City from 2018 to 2023. J Med Virol 2024; 96:e29846. [PMID: 39138641 DOI: 10.1002/jmv.29846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Seasonal H3N2 influenza virus, known for its rapid evolution, poses a serious threat to human health. This study focuses on analyzing the influenza virus trends in Jining City (2018-2023) and understanding the evolving nature of H3N2 strains. Data on influenza-like cases were gathered from Jining City's sentinel hospitals: Jining First People's Hospital and Rencheng Maternal and Child Health Hospital, using the Chinese Influenza Surveillance Information System. Over the period from 2018 to 2023, 7844 throat swab specimens were assessed using real-time fluorescence quantitative PCR for influenza virus nucleic acid detection. For cases positive for seasonal H3N2 influenza virus, virus isolation was followed by whole genome sequencing. Evolutionary trees were built for the eight gene segments, and protein variation analysis was performed. From 2018 to 2023, influenza-like cases in Jining City represented 6.99% (237 299/3 397 247) of outpatient visits, peaking in December and January. Influenza virus was detected in 15.67% (1229/7844) of cases, primarily from December to February. Notably, no cases were found in the 2020-2021 season. Full genome sequencing was conducted on 70 seasonal H3N2 strains, revealing distinct evolutionary branches across seasons. Significant antigenic site variations in the HA protein were noted. No resistance mutations to inhibitors were found, but some strains exhibited mutations in PA, NS1, PA-X, and PB1-F2. Influenza trends in Jining City saw significant shifts in the 2020-2021 and 2022-2023 seasons. Seasonal H3N2 exhibited rapid evolution. Sustained vigilance is imperative for vaccine updates and antiviral selection.
Collapse
Affiliation(s)
- Yajuan Jiang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Huixin Dou
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
- School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Xiaoyu Wang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Tongyun Song
- Department of Laboratory, Rencheng Maternal and Child Health Hospital, Jining, China
| | - Yongjian Jia
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Ying Yue
- Department of Infectious Disease Control, Jining Center for Disease Control and Prevention, Jining, China
| | - Libo Li
- Department of Infectious Disease Control, Jining Center for Disease Control and Prevention, Jining, China
| | - Feifei He
- Computer Information Technology, Northern Arizona University, Flagstaff, Arizona, USA
| | - Lingming Kong
- Department of AI and Bioinformatics, Nanjing Chengshi BioTech (TheraRNA) Co., Ltd., Nanjing, China
| | - Zengding Wu
- Department of AI and Bioinformatics, Nanjing Chengshi BioTech (TheraRNA) Co., Ltd., Nanjing, China
| | - Xiankun Huang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Yumin Liang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Boyan Jiao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Baihai Jiao
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Division of Nephrology, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Su G, Liu J, Duan C, Fang P, Fang L, Zhou Y, Xiao S. Enteric coronavirus PDCoV evokes a non-Warburg effect by hijacking pyruvic acid as a metabolic hub. Redox Biol 2024; 71:103112. [PMID: 38461791 PMCID: PMC10938170 DOI: 10.1016/j.redox.2024.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.
Collapse
Affiliation(s)
- Guanning Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiao Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chenrui Duan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
6
|
Yin Q, Liu W, Jiang Y, Feng Q, Wang X, Dou H, Liu Z, He F, Fan Y, Jiao B, Jiao B. Comprehensive genomic analysis of the SARS-CoV-2 Omicron variant BA.2.76 in Jining City, China, 2022. BMC Genomics 2024; 25:378. [PMID: 38632523 PMCID: PMC11022347 DOI: 10.1186/s12864-024-10246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE This study aims to analyze the molecular characteristics of the novel coronavirus (SARS-CoV-2) Omicron variant BA.2.76 in Jining City, China. METHODS Whole-genome sequencing was performed on 87 cases of SARS-CoV-2 infection. Evolutionary trees were constructed using bioinformatics software to analyze sequence homology, variant sites, N-glycosylation sites, and phosphorylation sites. RESULTS All 87 SARS-CoV-2 whole-genome sequences were classified under the evolutionary branch of the Omicron variant BA.2.76. Their similarity to the reference strain Wuhan-Hu-1 ranged from 99.72 to 99.74%. In comparison to the reference strain Wuhan-Hu-1, the 87 sequences exhibited 77-84 nucleotide differences and 27 nucleotide deletions. A total of 69 amino acid variant sites, 9 amino acid deletions, and 1 stop codon mutation were identified across 18 proteins. Among them, the spike (S) protein exhibited the highest number of variant sites, and the ORF8 protein showed a Q27 stop mutation. Multiple proteins displayed variations in glycosylation and phosphorylation sites. CONCLUSION SARS-CoV-2 continues to evolve, giving rise to new strains with enhanced transmission, stronger immune evasion capabilities, and reduced pathogenicity. The application of high-throughput sequencing technologies in the epidemic prevention and control of COVID-19 provides crucial insights into the evolutionary and variant characteristics of the virus at the genomic level, thereby holding significant implications for the prevention and control of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Qiang Yin
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Wei Liu
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Yajuan Jiang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Qiang Feng
- Department of Laboratory, Rencheng Center for Disease Control and Prevention, Jining, China
| | - Xiaoyu Wang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Huixin Dou
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Zanzan Liu
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Feifei He
- Computer Information Technology, Northern Arizona University, Arizona, USA
| | - Yingying Fan
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China.
| | - Baihai Jiao
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| | - Boyan Jiao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China.
| |
Collapse
|
7
|
Gupta S, Parveen S. Potential role of microRNAs in personalized medicine against hepatitis: a futuristic approach. Arch Virol 2024; 169:33. [PMID: 38245876 DOI: 10.1007/s00705-023-05955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/21/2023] [Indexed: 01/23/2024]
Abstract
MicroRNAs (miRNAs) have been the subject of extensive research for many years, primarily in the context of diseases such as cancer. However, our appreciation of their significance in viral infections, particularly in hepatitis, has increased due to the discovery of their association with both the host and the virus. Hepatitis is a major global health concern and can be caused by various viruses, including hepatitis A to E. This review highlights the key factors associated with miRNAs and their involvement in infections with various viruses that cause hepatitis. The review not only emphasizes the expression profiles of miRNAs in hepatitis but also puts a spotlight on their potential for diagnostics and therapeutic interventions. Ongoing extensive studies are propelling the therapeutic application of miRNAs, addressing both current limitations and potential strategies for the future of miRNAs in personalized medicine. Here, we discuss the potential of miRNAs to influence future medical research and an attempt to provide a thorough understanding of their diverse roles in hepatitis and beyond.
Collapse
Affiliation(s)
- Sonam Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
8
|
Bartosh UI, Dome AS, Zhukova NV, Karitskaya PE, Stepanov GA. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int J Mol Sci 2023; 25:334. [PMID: 38203503 PMCID: PMC10779197 DOI: 10.3390/ijms25010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis is an inflammatory liver disease primarily caused by hepatitis A (HAV), B (HBV), C (HCV), D (HDV), and E (HEV) viruses. The chronic forms of hepatitis resulting from HBV and HCV infections can progress to cirrhosis or hepatocellular carcinoma (HCC), while acute hepatitis can lead to acute liver failure, sometimes resulting in fatality. Viral hepatitis was responsible for over 1 million reported deaths annually. The treatment of hepatitis caused by viral infections currently involves the use of interferon-α (IFN-α), nucleoside inhibitors, and reverse transcriptase inhibitors (for HBV). However, these methods do not always lead to a complete cure for viral infections, and chronic forms of the disease pose significant treatment challenges. These facts underscore the urgent need to explore novel drug developments for the treatment of viral hepatitis. The discovery of the CRISPR/Cas9 system and the subsequent development of various modifications of this system have represented a groundbreaking advance in the quest for innovative strategies in the treatment of viral infections. This technology enables the targeted disruption of specific regions of the genome of infectious agents or the direct manipulation of cellular factors involved in viral replication by introducing a double-strand DNA break, which is targeted by guide RNA (spacer). This review provides a comprehensive summary of our current knowledge regarding the application of the CRISPR/Cas system in the regulation of viral infections caused by HAV, HBV, and HCV. It also highlights new strategies for drug development aimed at addressing both acute and chronic forms of viral hepatitis.
Collapse
Affiliation(s)
| | | | | | | | - Grigory A. Stepanov
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; (U.I.B.); (A.S.D.); (N.V.Z.); (P.E.K.)
| |
Collapse
|
9
|
Wang H, Zhang J. The glucose metabolic reprogramming in hepatitis B virus infection and hepatitis B virus associated diseases. J Gastroenterol Hepatol 2023; 38:1886-1891. [PMID: 37654246 DOI: 10.1111/jgh.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) infection is closely related to viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HBV infection can reprogram metabolism processes of the host cells including glucose metabolism. The aberrant glucose metabolism may aid in viral infection and immune escape and may contribute to liver associated pathology. In this review, we discussed the interplay between HBV infection and glucose metabolism, which may provide new insights into HBV infection and pathology, novel intervention targets for HBV-related diseases.
Collapse
Affiliation(s)
- Hangle Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
10
|
Li S, Duan X, Jiang N, Jeyarajan AJ, Warner CA, Li Y, Xu M, Li X, Tan L, Li M, Shao T, Li S, Chen L, Gao Y, Han M, Lin W. Vaccination increased host antiviral gene expression and reduced COVID-19 severity during the Omicron variant outbreak in Fuyang City, China. Int Immunopharmacol 2023; 120:110333. [PMID: 37201409 PMCID: PMC10183626 DOI: 10.1016/j.intimp.2023.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND The differences in host antiviral gene expression and disease severity between vaccinated and non-vaccinated coronavirus disease 2019 (COVID-19) patients are not well characterized. We sought to compare the clinical characteristics and host antiviral gene expression patterns of vaccinated and non-vaccinated cohorts at the Second People's Hospital of Fuyang City. METHODS In this case-control study, we retrospectively analyzed 113 vaccinated patients with a COVID-19 Omicron variant infection, 46 non-vaccinated COVID-19 patients, and 24 healthy subjects (no history of COVID-19) recruited from the Second People's Hospital of Fuyang City. Blood samples were collected from each study participant for RNA extraction and PCR. We compared host antiviral gene expression profiles between healthy controls and COVID-19 patients who were either vaccinated or non-vaccinated at the time of infection. RESULTS In the vaccinated group, most patients were asymptomatic, with only 42.9 % of patients developing fever. Notably, no patients had extrapulmonary organ damage. In contrast, 21.4 % of patients in the non-vaccinated group developed severe/critical (SC) disease and 78.6 % had mild/moderate (MM) disease, with fever occurring in 74.2 % patients. We found that Omicron infection in COVID-19 vaccinated patients was associated with significantly increased expression of several important host antiviral genes including IL12B, IL13, CXCL11, CXCL9, IFNA2, IFNA1, IFNγ, and TNFα. CONCLUSION Vaccinated patients infected with the Omicron variant were mostly asymptomatic. In contrast, non-vaccinated patients frequently developed SC or MM disease. Older patients with SC COVID-19 also had a higher occurrence of mild liver dysfunction. Omicron infection in COVID-19 vaccinated patients was associated with the activation of key host antiviral genes and thus may play a role in reducing disease severity.
Collapse
Affiliation(s)
- Shasha Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Ning Jiang
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Andre J Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Charlotte A Warner
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Xiuyong Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Lin Tan
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Ming Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Tuo Shao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China.
| | - Mingfeng Han
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China.
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Li L, Liu T, Wang Q, Ding Y, Jiang Y, Wu Z, Wang X, Dou H, Jia Y, Jiao B. Genetic characterization and whole-genome sequencing-based genetic analysis of influenza virus in Jining City during 2021-2022. Front Microbiol 2023; 14:1196451. [PMID: 37426015 PMCID: PMC10324579 DOI: 10.3389/fmicb.2023.1196451] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 07/11/2023] Open
Abstract
Background The influenza virus poses a significant threat to global public health due to its high mutation rate. Continuous surveillance, development of new vaccines, and public health measures are crucial in managing and mitigating the impact of influenza outbreaks. Methods Nasal swabs were collected from individuals with influenza-like symptoms in Jining City during 2021-2022. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect influenza A viruses, followed by isolation using MDCK cells. Additionally, nucleic acid detection was performed to identify influenza A H1N1, seasonal H3N2, B/Victoria, and B/Yamagata strains. Whole-genome sequencing was conducted on 24 influenza virus strains, and subsequent analyses included characterization, phylogenetic construction, mutation analysis, and assessment of nucleotide diversity. Results A total of 1,543 throat swab samples were collected. The study revealed the dominance of the B/Victoria influenza virus in Jining during 2021-2022. Whole-genome sequencing showed co-prevalence of B/Victoria influenza viruses in the branches of Victoria clade 1A.3a.1 and Victoria clade 1A.3a.2, with a higher incidence observed in winter and spring. Comparative analysis demonstrated lower similarity in the HA, MP, and PB2 gene segments of the 24 sequenced influenza virus strains compared to the Northern Hemisphere vaccine strain B/Washington/02/2019. Mutations were identified in all antigenic epitopes of the HA protein at R133G, N150K, and N197D, and the 17-sequence antigenic epitopes exhibited more than 4 amino acid variation sites, resulting in antigenic drift. Moreover, one sequence had a D197N mutation in the NA protein, while seven sequences had a K338R mutation in the PA protein. Conclusion This study highlights the predominant presence of B/Victoria influenza strain in Jining from 2021 to 2022. The analysis also identified amino acid site variations in the antigenic epitopes, contributing to antigenic drift.
Collapse
Affiliation(s)
- Libo Li
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Tiantian Liu
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Qingchuan Wang
- Department of Medicine, Jining Municipal Government Hospital, Jining, China
| | - Yi Ding
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Yajuan Jiang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Zengding Wu
- Department of AI and Bioinformatics, Nanjing Chengshi BioTech (TheraRNA) Co., Ltd., Nanjing, China
| | - Xiaoyu Wang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Huixin Dou
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Yongjian Jia
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Boyan Jiao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| |
Collapse
|
12
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
13
|
Yuan Y, Jiao B, Qu L, Yang D, Liu R. The development of COVID-19 treatment. Front Immunol 2023; 14:1125246. [PMID: 36776881 PMCID: PMC9909293 DOI: 10.3389/fimmu.2023.1125246] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic named coronavirus disease 2019 (COVID-19) that has become the greatest worldwide public health threat of this century. Recent studies have unraveled numerous mysteries of SARS-CoV-2 pathogenesis and thus largely improved the studies of COVID-19 vaccines and therapeutic strategies. However, important questions remain regarding its therapy. In this review, the recent research advances on COVID-19 mechanism are quickly summarized. We mainly discuss current therapy strategies for COVID-19, with an emphasis on antiviral agents, neutralizing antibody therapies, Janus kinase inhibitors, and steroids. When necessary, specific mechanisms and the history of therapy are present, and representative strategies are described in detail. Finally, we discuss key outstanding questions regarding future directions of the development of COVID-19 treatment.
Collapse
Affiliation(s)
- Yongliang Yuan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Baihai Jiao
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Lili Qu
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Duomeng Yang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States,*Correspondence: Ruijuan Liu, ; Duomeng Yang,
| | - Ruijuan Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Ruijuan Liu, ; Duomeng Yang,
| |
Collapse
|
14
|
Guan X, Zhang B, Sun L. TNFR2 is a regulatory target of pol-miR-194a and promotes the antibacterial immunity of Japanese flounder Paralichthys olivaceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104477. [PMID: 35752347 DOI: 10.1016/j.dci.2022.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are regulatory RNAs that modulate target gene expression after transcription. Pol-miR-194a had been reported to be a miRNA of Japanese flounder (Paralichthys olivaceus) involved in Edwardsiella tarda infection. Here, we identified tumor necrosis factor receptor 2 (TNFR2) as a target gene of pol-miR-194a. Pol-miR-194a markedly repressed the protein expression of flounder TNFR2 (PoTNFR2) via specific interaction with the 3'UTR of PoTNFR2. PoTNFR2 responded to E. tarda infection in a manner that was opposite to that of pol-miR-194a and inhibited E. tarda invasion by activating the NF-κB pathway. Consistently, dysregulation of PoTNFR2 had a significant impact on E. tarda dissemination in flounder tissues. Together, these results add new insights into the regulation mechanism and immune function of fish TNFR2 and pol-miR-194a.
Collapse
Affiliation(s)
- Xiaolu Guan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Baocun Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Roles of microRNAs in Hepatitis C Virus Replication and Pathogenesis. Viruses 2022; 14:v14081776. [PMID: 36016398 PMCID: PMC9413378 DOI: 10.3390/v14081776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with the development of chronic liver diseases, e.g., fibrosis, cirrhosis, even hepatocellular carcinoma, and/or extra-hepatic diseases such as diabetes. As an obligatory intracellular pathogen, HCV absolutely relies on host cells to propagate and is able to modulate host cellular factors in favor of its replication. Indeed, lots of cellular factors, including microRNAs (miRNAs), have been identified to be dysregulated during HCV infection. MiRNAs are small noncoding RNAs that regulate protein synthesis of their targeting mRNAs at the post-transcriptional level, usually by suppressing their target gene expression. The miRNAs dysregulated during HCV infection could directly or indirectly modulate HCV replication and/or induce liver diseases. Regulatory mechanisms of various miRNAs in HCV replication and pathogenesis have been characterized. Some dysregulated miRNAs have been considered as the biomarkers for the detection of HCV infection and/or HCV-related diseases. In this review, we intend to briefly summarize the identified miRNAs functioning at HCV replication and pathogenesis, focusing on the recent developments.
Collapse
|
16
|
Park EG, Ha H, Lee DH, Kim WR, Lee YJ, Bae WH, Kim HS. Genomic Analyses of Non-Coding RNAs Overlapping Transposable Elements and Its Implication to Human Diseases. Int J Mol Sci 2022; 23:ijms23168950. [PMID: 36012216 PMCID: PMC9409130 DOI: 10.3390/ijms23168950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
It is estimated that up to 80% of the human genome is transcribed into RNA molecules but less than 2% of the genome encodes the proteins, and the rest of the RNA transcripts that are not translated into protein are called non-coding RNAs (ncRNAs). Many studies have revealed that ncRNAs have biochemical activities as epigenetic regulators at the post-transcriptional level. Growing evidence has demonstrated that transposable elements (TEs) contribute to a large percentage of ncRNAs’ transcription. The TEs inserted into certain parts of the genome can act as alternative promoters, enhancers, and insulators, and the accumulation of TEs increases genetic diversity in the human genome. The TEs can also generate microRNAs, so-called miRNA-derived from transposable elements (MDTEs), and are also implicated in disease progression, such as infectious diseases and cancer. Here, we analyzed the origin of ncRNAs and reviewed the published literature on MDTEs related to disease progression.
Collapse
Affiliation(s)
- Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Hongseok Ha
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
- Correspondence:
| |
Collapse
|
17
|
Li W, Duan X, Zhu C, Liu X, Jeyarajan AJ, Xu M, Tu Z, Sheng Q, Chen D, Zhu C, Shao T, Cheng Z, Salloum S, Schaefer EA, Kruger AJ, Holmes JA, Chung RT, Lin W. Hepatitis B and Hepatitis C Virus Infection Promote Liver Fibrogenesis through a TGF-β1-Induced OCT4/Nanog Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:672-684. [PMID: 35022275 PMCID: PMC8770612 DOI: 10.4049/jimmunol.2001453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
Hepatitis B virus (HBV)/hepatitis C virus (HCV) coinfection accelerates liver fibrosis progression compared with HBV or HCV monoinfection. Octamer binding transcription factor 4 (OCT4) and Nanog are direct targets of the profibrogenic TGF-β1 signaling cascade. We leveraged a coculture model to monitor the effects of HBV and HCV coinfection on fibrogenesis in both sodium taurocholate cotransporting polypeptide-transfected Huh7.5.1 hepatoma cells and LX2 hepatic stellate cells (HSCs). We used CRISPR-Cas9 to knock out OCT4 and Nanog to evaluate their effects on HBV-, HCV-, or TGF-β1-induced liver fibrogenesis. HBV/HCV coinfection and HBx, HBV preS2, HCV Core, and HCV NS2/3 overexpression increased TGF-β1 mRNA levels in sodium taurocholate cotransporting polypeptide-Huh7.5.1 cells compared with controls. HBV/HCV coinfection further enhanced profibrogenic gene expression relative to HBV or HCV monoinfection. Coculture of HBV and HCV monoinfected or HBV/HCV coinfected hepatocytes with LX2 cells significantly increased profibrotic gene expression and LX2 cell invasion and migration. OCT4 and Nanog guide RNA independently suppressed HBV-, HCV-, HBV/HCV-, and TGF-β1-induced α-SMA, TIMP-1, and Col1A1 expression and reduced Huh7.5.1, LX2, primary hepatocyte, and primary human HSC migratory capacity. OCT4/Nanog protein expression also correlated positively with fibrosis stage in liver biopsies from patients with chronic HBV or HCV infection. In conclusion, HBV and HCV independently and cooperatively promote liver fibrogenesis through a TGF-β1-induced OCT4/Nanog-dependent pathway.
Collapse
Affiliation(s)
- Wenting Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan Province, China
| | - Chuanlong Zhu
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao Liu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Southwest University, College of Animal Science and Technology, Chongqing, China
| | - Andre J Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Min Xu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zeng Tu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Microbiology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Qiuju Sheng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Dong Chen
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chuanwu Zhu
- Department of Hepatology, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Tuo Shao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zhimeng Cheng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shadi Salloum
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Esperance A Schaefer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Annie J Kruger
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC; and
| | - Jacinta A Holmes
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
| |
Collapse
|
18
|
Multiomics interrogation into HBV (Hepatitis B virus)-host interaction reveals novel coding potential in human genome, and identifies canonical and non-canonical proteins as host restriction factors against HBV. Cell Discov 2021; 7:105. [PMID: 34725333 PMCID: PMC8560872 DOI: 10.1038/s41421-021-00337-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B Virus (HBV) constitutes a major threat to global public health. Current understanding of HBV-host interaction is yet limited. Here, ribosome profiling, quantitative mass spectrometry and RNA-sequencing were conducted on a recently established HBV replication system, through which we identified multiomic differentially expressed genes (DEGs) that HBV orchestrated to remodel host proteostasis networks. Our multiomics interrogation revealed that HBV induced significant changes in both transcription and translation of 35 canonical genes including PPP1R15A, PGAM5 and SIRT6, as well as the expression of at least 15 non-canonical open reading frames (ncORFs) including ncPON2 and ncGRWD1, thus revealing an extra coding potential of human genome. Overexpression of these five genes but not the enzymatically deficient SIRT6 mutants suppressed HBV replication while knockdown of SIRT6 had opposite effect. Furthermore, the expression of SIRT6 was down-regulated in patients, cells or animal models of HBV infection. Mechanistic study further indicated that SIRT6 directly binds to mini-chromosome and deacetylates histone H3 lysine 9 (H3K9ac) and histone H3 lysine 56 (H3K56ac), and chemical activation of endogenous SIRT6 with MDL800 suppressed HBV infection in vitro and in vivo. By generating the first multiomics landscape of host-HBV interaction, our work is thus opening a new avenue to facilitate therapeutic development against HBV infection.
Collapse
|
19
|
Hao Q, Wang Q, Qian H, Jiang J, Liu X, Xia W. Identification and functional characterization of miR-451a as a novel plasma-based biomarker for occult hepatitis B virus infection. Microb Pathog 2021; 161:105233. [PMID: 34626767 DOI: 10.1016/j.micpath.2021.105233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Numerous studies have indicated that miRNAs might play significant roles in the development of hepatitis B virus (HBV) infection. while the miRNAs in occult HBV infection (OBI) are still largely unknown. METHODS Initially, 15 HBV infection-related miRNAs in plasma of 10 OBI and 10 healthy controls (HCs) was analyzed by qRT-PCR. Significantly dysregulated miRNAs were subsequently validated in another 64 OBI, 20HCs, 31 chronic hepatitis B (CHB) and 20 asymptomatic HBsAg carriers (ASC). Furthermore, the potential biological functions and molecular mechanisms of miR-451a in HBV infection were investigated using HBV-expressing hepatoma cell lines. RESULTS Compared to HCs, plasma miR-451a and miR-340-3p were significantly up-regulated in OBI, ASC and CHB patients, while no significant difference was found among OBI, ASC and CHB patients. ROC curve analysis indicated that both plasma miR-451a and miR-340-3p could moderately distinguish OBI from HCs, with AUCs of 0.76 and 0.78, respectively. When combined, the differentiation efficiency of this miRNA panel was better, with an AUC of 0.82. While, they both could not specifically separate the stage of chronic HBV infection. Functional experiments showed that overexpression of miR-451a might suppress HBV replication and gene expression in hepatoma cell lines. Mechanistically, miR-451a might inhibit HBV replication and gene expression by directly targeting ATF2. CONCLUSIONS A plasma panel, including miR-340-3p and miR-451a that might suppress HBV replication by targeting ATF2, has the potential as biomarkers for HBV infection. In the setting of blood donations, this panel would be more practical to moderately differentiate OBI in HBsAg-negative donors.
Collapse
Affiliation(s)
- Qingqin Hao
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, 214000, China
| | - Qinghui Wang
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, 214000, China
| | - Huizhong Qian
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, 214000, China
| | - Jian Jiang
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, 214000, China
| | - Xiao Liu
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, 214000, China.
| | - Wei Xia
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, 214000, China.
| |
Collapse
|
20
|
Singh P, Kairuz D, Arbuthnot P, Bloom K. Silencing hepatitis B virus covalently closed circular DNA: The potential of an epigenetic therapy approach. World J Gastroenterol 2021; 27:3182-3207. [PMID: 34163105 PMCID: PMC8218364 DOI: 10.3748/wjg.v27.i23.3182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Global prophylactic vaccination programmes have helped to curb new hepatitis B virus (HBV) infections. However, it is estimated that nearly 300 million people are chronically infected and have a high risk of developing hepatocellular carcinoma. As such, HBV remains a serious health priority and the development of novel curative therapeutics is urgently needed. Chronic HBV infection has been attributed to the persistence of the covalently closed circular DNA (cccDNA) which establishes itself as a minichromosome in the nucleus of hepatocytes. As the viral transcription intermediate, the cccDNA is responsible for producing new virions and perpetuating infection. HBV is dependent on various host factors for cccDNA formation and the minichromosome is amenable to epigenetic modifications. Two HBV proteins, X (HBx) and core (HBc) promote viral replication by modulating the cccDNA epigenome and regulating host cell responses. This includes viral and host gene expression, chromatin remodeling, DNA methylation, the antiviral immune response, apoptosis, and ubiquitination. Elimination of the cccDNA minichromosome would result in a sterilizing cure; however, this may be difficult to achieve. Epigenetic therapies could permanently silence the cccDNA minichromosome and promote a functional cure. This review explores the cccDNA epigenome, how host and viral factors influence transcription, and the recent epigenetic therapies and epigenome engineering approaches that have been described.
Collapse
Affiliation(s)
- Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Dylan Kairuz
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| |
Collapse
|
21
|
Li S, Duan X, Li Y, Li M, Gao Y, Li T, Li S, Tan L, Shao T, Jeyarajan AJ, Chen L, Han M, Lin W, Li X. Differentially expressed immune response genes in COVID-19 patients based on disease severity. Aging (Albany NY) 2021; 13:9265-9276. [PMID: 33780352 PMCID: PMC8064215 DOI: 10.18632/aging.202877] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/14/2021] [Indexed: 12/19/2022]
Abstract
Background: Dysregulated immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are thought to underlie the progression of coronavirus disease 2019 (COVID-19). We sought to further characterize host antiviral and cytokine gene expression in COVID-19 patients based on illness severity. Methods: In this case-control study, we retrospectively analyzed 46 recovered COVID-19 patients and 24 healthy subjects (no history of COVID-19) recruited from the Second People's Hospital of Fuyang City. Blood samples were collected from each study participant for RNA extraction and PCR. We assessed changes in antiviral gene expression between healthy controls and patients with mild/moderate (MM) and severe/critical (SC) disease. Results: We found that type I interferon signaling (IFNA2, TLR8, IFNA1, IFNAR1, TLR9, IRF7, ISG15, APOBEC3G, and MX1) and genes encoding proinflammatory cytokines (IL12B, IL15, IL6, IL12A and IL1B) and chemokines (CXCL9, CXCL11 and CXCL10) were upregulated in patients with MM and SC disease. Moreover, we found that IFNA1, apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G (APOBEC3G), and Fas-associated protein with death domain (FADD) were significantly downregulated (P < 0.05) in the SC group compared to the MM group. We also observed that microRNA (miR)-155 and miR-130a levels were markedly higher in the MM group compared to the SC group. Conclusion: COVID-19 is associated with the activation of host antiviral genes. Induction of the IFN system appears to be particularly important in controlling SARS-CoV-2 infection, as decreased expression of IFNA1, APOBEC3G and FADD genes in SC patients, relative to MM patients, may be associated with disease progression.
Collapse
Affiliation(s)
- Shasha Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, P.R. of China.,Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang 236015, Anhui Province, P.R. of China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, P.R. of China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, P.R. of China
| | - Ming Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, P.R. of China.,Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang 236015, Anhui Province, P.R. of China
| | - Yong Gao
- Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang 236015, Anhui Province, P.R. of China.,Clinical laboratory, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, P.R. of China
| | - Tuantuan Li
- Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang 236015, Anhui Province, P.R. of China.,Clinical laboratory, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, P.R. of China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, P.R. of China
| | - Lin Tan
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, P.R. of China.,Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang 236015, Anhui Province, P.R. of China
| | - Tuo Shao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andre J Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, P.R. of China
| | - Mingfeng Han
- Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang 236015, Anhui Province, P.R. of China.,Department of Pneumology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, P.R. of China
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xiuyong Li
- Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang 236015, Anhui Province, P.R. of China.,Hemodialysis center, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, P.R. of China
| |
Collapse
|
22
|
Li W, Yu X, Chen X, Wang Z, Yin M, Zhao Z, Zhu C. HBV induces liver fibrosis via the TGF-β1/miR-21-5p pathway. Exp Ther Med 2021; 21:169. [PMID: 33456536 PMCID: PMC7792493 DOI: 10.3892/etm.2020.9600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNA (miR)-21-5p is a newly discovered factor that mediates TGF-β1 signaling. The present study was designed to investigate the role of TGF-β1/miR-21-5p in hepatitis B virus (HBV)-induced liver fibrosis. HBV-infected sodium taurocholate co-transporting polypeptide (NTCP)-transfected Huh7.5.1 cells were co-cultured with LX2 cells to simulate HBV infection in the present study. A total of 29 patients with chronic HBV infection were enrolled. Cells were transfected with miR-21-5p mimic or inhibitor with or without TGF-β1 stimulation. The demographic, biochemical and virological data from the 29 patients were analyzed and liver tissues were collected. miR-21-5p levels and the mRNA and protein expression of α-smooth muscle actin (SMA), collagen type 1 α 1 (CoL1A1), tissue inhibitor of metalloproteinase (TIMP)-1 and Smad from liver cells or tissues were detected by quantitative PCR analysis and western blotting, respectively. Cell viability was observed, and the liver fibrosis score was evaluated. The association between miR-21-5p and liver fibrosis was evaluated by correlation analysis. HBV infection upregulated TGF-β1/miR-21-5p mRNA expression in NTCP-Huh7.5.1 cells compared with mock infection (P<0.05). TGF-β1 incubation significantly increased miR-21-5p levels, as well as the mRNA and protein expression of α-SMA, CoL1A1 and TIMP-1, and reduced Smad7 expression in LX2 cells compared with the normal group, and these effects were counteracted by miR-21-5p inhibitor (P<0.05). miR-21-5p overexpression also contributed to TGF-β1-induced α-SMA, CoL1A1 and TIMP-1 expression in LX2 cells (P<0.05). Co-culture with HBV-infected NTCP-Huh7.5.1 cells upregulated TGF-β1/miR-21-5p activity and CoL1A1 expression in LX2 cells compared with normal control, which were significantly reduced by miR-21-5p inhibitor (P<0.05). miR-21-5p levels were significantly correlated with the liver fibrosis score (r=0.888; P<0.05). These data demonstrated that HBV induced liver fibrosis via the TGF-β1/miR-21-5p pathway and suggested that miR-21-5p may be an effective anti-fibrosis target.
Collapse
Affiliation(s)
- Wenting Li
- 3rd Liver Unit, Department of Infectious Disease, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Xiaolan Yu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
- Department of Ear-Nose-Throat, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Xiliu Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zheng Wang
- Department of Respiratory and Critical Medicine, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Ming Yin
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
- Intensive Care Unit, Department of Infectious Disease, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Zonghao Zhao
- 3rd Liver Unit, Department of Infectious Disease, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Chuanwu Zhu
- Department of Hepatology, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu 215131, P.R. China
| |
Collapse
|
23
|
Draz MS, Vasan A, Muthupandian A, Kanakasabapathy MK, Thirumalaraju P, Sreeram A, Krishnakumar S, Yogesh V, Lin W, Yu XG, Chung RT, Shafiee H. Virus detection using nanoparticles and deep neural network-enabled smartphone system. SCIENCE ADVANCES 2020; 6:eabd5354. [PMID: 33328239 PMCID: PMC7744080 DOI: 10.1126/sciadv.abd5354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 05/02/2023]
Abstract
Emerging and reemerging infections present an ever-increasing challenge to global health. Here, we report a nanoparticle-enabled smartphone (NES) system for rapid and sensitive virus detection. The virus is captured on a microchip and labeled with specifically designed platinum nanoprobes to induce gas bubble formation in the presence of hydrogen peroxide. The formed bubbles are controlled to make distinct visual patterns, allowing simple and sensitive virus detection using a convolutional neural network (CNN)-enabled smartphone system and without using any optical hardware smartphone attachment. We evaluated the developed CNN-NES for testing viruses such as hepatitis B virus (HBV), HCV, and Zika virus (ZIKV). The CNN-NES was tested with 134 ZIKV- and HBV-spiked and ZIKV- and HCV-infected patient plasma/serum samples. The sensitivity of the system in qualitatively detecting viral-infected samples with a clinically relevant virus concentration threshold of 250 copies/ml was 98.97% with a confidence interval of 94.39 to 99.97%.
Collapse
Affiliation(s)
- Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Anish Vasan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Aradana Muthupandian
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Manoj Kumar Kanakasabapathy
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Prudhvi Thirumalaraju
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Aparna Sreeram
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Sanchana Krishnakumar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Vinish Yogesh
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Wenyu Lin
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xu G Yu
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02129, USA
| | - Raymond T Chung
- Harvard Medical School, Boston, MA 02115, USA
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
The Relevance of MicroRNAs in the Pathogenesis and Prognosis of HCV-Disease: The Emergent Role of miR-17-92 in Cryoglobulinemic Vasculitis. Viruses 2020; 12:v12121364. [PMID: 33260407 PMCID: PMC7761224 DOI: 10.3390/v12121364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) is a major public health problem. HCV is a hepatotropic and lymphotropic virus that leads to hepatocellular carcinoma (HCC) and lymphoproliferative disorders such as cryoglobulinemic vasculitis (CV) and non-Hodgkin's lymphoma (NHL). The molecular mechanisms by which HCV induces these diseases are not fully understood. MicroRNAs (miRNAs) are small non-coding molecules that negatively regulate post-transcriptional gene expression by decreasing their target gene expression. We will attempt to summarize the current knowledge on the role of miRNAs in the HCV life cycle, HCV-related HCC, and lymphoproliferative disorders, focusing on both the functional effects of their deregulation as well as on their putative role as biomarkers, based on association analyses. We will also provide original new data regarding the miR 17-92 cluster in chronically infected HCV patients with and without lymphoproliferative disorders who underwent antiviral therapy. All of the cluster members were significantly upregulated in CV patients compared to patients without CV and significantly decreased in those who achieved vasculitis clinical remission after viral eradication. To conclude, miRNAs play an important role in HCV infection and related oncogenic processes, but their molecular pathways are not completely clear. In some cases, they may be potential therapeutic targets or non-invasive biomarkers of tumor progression.
Collapse
|
25
|
He F, Xiao Z, Yao H, Li S, Feng M, Wang W, Liu Z, Liu Z, Wu J. The protective role of microRNA-21 against coxsackievirus B3 infection through targeting the MAP2K3/P38 MAPK signaling pathway. J Transl Med 2019; 17:335. [PMID: 31585536 PMCID: PMC6778380 DOI: 10.1186/s12967-019-2077-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background The P38 mitogen-activated protein kinase (MAPK) pathway plays an essential role in CVB3-induced diseases. We previously demonstrated microRNA-21 has potential inhibitory effect on the MAP2K3 which locates upstream of P38 MAPK and was upregulated in mouse hearts upon CVB3 infection. However, the effect and underlying mechanism of miRNA-21 on CVB3 infection remain unclear. Methods We detected continuous changes of cellular miRNA-21 and P38 MAPK proteins expression profiling post CVB3 infection in vitro within 12 h. P38 MAPK signaling was inhibited by the specific inhibitor, small interfering RNA and miRNA-21 mimic in vitro, CVB3 replication, cell apoptosis rate and proliferation were detected. Viral load in the mice heart, cardiomyocyte apoptosis rate and histological of the heart were also detected in the mice model of viral myocarditis pretreated with miRNA-21-lentivirus. Results We observed significant upregulation of miRNA-21 expression followed by suppression of the MAP2K3/P38 MAPK signaling in CVB3-infected Hela cells. The inactivation of the MAP2K3/P38 MAPK signaling by P38 MAPK specific inhibitor, small interfering RNA against MAP2K3, or miRNA-21 overexpression significantly inhibited viral progeny release from CVB3-infected cells. Mechanistically, when compared with control miRNA, miRNA-21 showed no effect on capsid protein VP1 expression and viral load within host cells, while significantly reversing CVB3-induced caspase-3 activation and cell apoptosis rate, further promoting proliferation of infected cells, which indicates the inhibitory effect of miRNA-21 on CVB3 progeny release. In the in vivo study, when compared with control miRNA, miRNA-21 pretreatment remarkably inactivated the MAP2K3/P38 MAPK signaling in mice and protected them against CVB3 infection as evidenced by significantly alleviated cell apoptosis rate, reduced viral titers, necrosis in the heart as well as by remarkably prolonged survival time. Conclusions miRNA-21 were reverse correlated with P38 MAPK activation post CVB3 infection, miRNA-21 overexpression significantly inhibited viral progeny release and decreased myocytes apoptosis rate in vitro and in vivo, suggesting that miRNA-21 may serve as a potential therapeutic agent against CVB3 infection through targeting the MAP2K3/P38 MAPK signaling.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics-Peking University Teaching Hospital, YaBao Road 2, Beijing, 100020, China
| | - Zonghui Xiao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Hailan Yao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Sen Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Miao Feng
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Wei Wang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Zhewei Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Zhuo Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China.
| | - Jianxin Wu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics-Peking University Teaching Hospital, YaBao Road 2, Beijing, 100020, China. .,Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China.
| |
Collapse
|
26
|
Mayer KA, Stöckl J, Zlabinger GJ, Gualdoni GA. Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction. Front Immunol 2019; 10:1533. [PMID: 31333664 PMCID: PMC6617997 DOI: 10.3389/fimmu.2019.01533] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Viral replication is a process that involves an extremely high turnover of cellular molecules. Since viruses depend on the host cell to obtain the macromolecules needed for their proper replication, they have evolved numerous strategies to shape cellular metabolism and the biosynthesis machinery of the host according to their specific needs. Technologies for the rigorous analysis of metabolic alterations in cells have recently become widely available and have greatly expanded our knowledge of these crucial host–pathogen interactions. We have learned that most viruses enhance specific anabolic pathways and are highly dependent on these alterations. Since uninfected cells are far more plastic in their metabolism, targeting of the virus-induced metabolic alterations is a promising strategy for specific antiviral therapy and has gained great interest recently. In this review, we summarize the current advances in our understanding of metabolic adaptations during viral infections, with a particular focus on the utilization of this information for therapeutic application.
Collapse
Affiliation(s)
- Katharina A Mayer
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes Stöckl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Guido A Gualdoni
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Duan X, Liu X, Li W, Holmes JA, Kruger AJ, Yang C, Li Y, Xu M, Ye H, Li S, Liao X, Sheng Q, Chen D, Shao T, Cheng Z, Kaj B, Schaefer EA, Li S, Chen L, Lin W, Chung RT. Microrna-130a Downregulates HCV Replication through an atg5-Dependent Autophagy Pathway. Cells 2019; 8:338. [PMID: 30974864 PMCID: PMC6523735 DOI: 10.3390/cells8040338] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022] Open
Abstract
We previously identified that miR-130a downregulates HCV replication through two independent pathways: restoration of host immune responses and regulation of pyruvate metabolism. In this study, we further sought to explore host antiviral target genes regulated by miR-130a. We performed a RT² Profiler™ PCR array to identify the host antiviral genes regulated by miR-130a. The putative binding sites between miR-130a and its downregulated genes were predicted by miRanda. miR-130a and predicted target genes were over-expressed or knocked down by siRNA or CRISPR/Cas9 gRNA. Selected gene mRNAs and their proteins, together with HCV replication in JFH1 HCV-infected Huh7.5.1 cells were monitored by qRT-PCR and Western blot. We identified 32 genes that were significantly differentially expressed more than 1.5-fold following miR-130a overexpression, 28 of which were upregulated and 4 downregulated. We found that ATG5, a target gene for miR-130a, significantly upregulated HCV replication and downregulated interferon stimulated gene expression. miR-130a downregulated ATG5 expression and its conjugation complex with ATG12. ATG5 and ATG5-ATG12 complex affected interferon stimulated gene (ISG) such as MX1 and OAS3 expression and subsequently HCV replication. We concluded that miR-130a regulates host antiviral response and HCV replication through targeting ATG5 via the ATG5-dependent autophagy pathway.
Collapse
Affiliation(s)
- Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Xiao Liu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Wenting Li
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
- Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei 230000, China.
| | - Jacinta A Holmes
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy, VIC 3065, Australia.
| | - Annie J Kruger
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Chunhui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Shuang Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Xinzhong Liao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Qiuju Sheng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Dong Chen
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Tuo Shao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Zhimeng Cheng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Batul Kaj
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Esperance A Schaefer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Wenyu Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Liu X, Duan X, Holmes JA, Li W, Lee SH, Tu Z, Zhu C, Salloum S, Lidofsky A, Schaefer EA, Cai D, Li S, Wang H, Huang Y, Zhao Y, Yu ML, Xu Z, Chen L, Hong J, Lin W, Chung RT. A Long Noncoding RNA Regulates Hepatitis C Virus Infection Through Interferon Alpha-Inducible Protein 6. Hepatology 2019; 69:1004-1019. [PMID: 30199576 PMCID: PMC6393205 DOI: 10.1002/hep.30266] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) play a critical role in the regulation of many important cellular processes. However, the mechanisms by which lncRNAs regulate viral infection and host immune responses are not well understood. We sought to explore lncRNA regulation of hepatitis C virus (HCV) infection and interferon response. We performed RNA sequencing (RNAseq) in Huh7.5.1 cells with or without interferon alpha (IFNα) treatment. Clustered regularly interspaced short palindromic repeats/Cas9 guide RNA (gRNA) was used to knock out selected genes. The promoter clones were constructed, and the activity of related interferon-stimulated genes (ISGs) were detected by the secrete-pair dual luminescence assay. We constructed the full-length and four deletion mutants of an interferon-induced lncRNA RP11-288L9.4 (lncRNA-IFI6) based on predicted secondary structure. Selected gene mRNAs and their proteins, together with HCV infection, in Huh7.5.1 cells and primary human hepatocytes (PHHs) were monitored by quantitative real-time PCR (qRT-PCR) and western blot. We obtained 7,901 lncRNAs from RNAseq. A total of 1,062 host-encoded lncRNAs were significantly differentially regulated by IFNα treatment. We found that lncRNA-IFI6 gRNA significantly inhibited HCV infection compared with negative gRNA control. The expression of the antiviral ISG IFI6 was significantly increased following lncRNA-IFI6 gRNA editing compared with negative gRNA control in Japanese fulminant hepatitis 1 (JFH1)-infected Huh7.5.1 cells and PHHs. We observed that lncRNA-IFI6 regulation of HCV was independent of Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling. lncRNA-IFI6 negatively regulated IFI6 promoter function through histone modification. Overexpression of the truncated spatial domain or full-length lncRNA-IFI6 inhibited IFI6 expression and increased HCV replication. Conclusion: A lncRNA, lncRNA-IFI6, regulates antiviral innate immunity in the JFH1 HCV infection model. lncRNA-IFI6 regulates HCV infection independently of the JAK-STAT pathway. lncRNA-IFI6 exerts its regulatory function via promoter activation and histone modification of IFI6 through its spatial domain.
Collapse
Affiliation(s)
- Xiao Liu
- Southwest University, College of Animal Science and technology, 400715 Chongqing, China
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, 610052 Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 610052 Chengdu, China
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jacinta A. Holmes
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Wenting Li
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Sae Hwan Lee
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Soonchunhyang University College of Medicine, Cheonan Hospital, 330721 Dongnamgu Cheonan, Republic of Korea
| | - Zeng Tu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of microbiology, College of Basic Medical Science, Chongqing Medical University, 400715 Chongqing, China
| | - Chuanlong Zhu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shadi Salloum
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anna Lidofsky
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Esperance A. Schaefer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dachuan Cai
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Infectious Disease, Chongqing Medical University, 400715 Chongqing, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 610052 Chengdu, China
| | - Haoju Wang
- Southwest University, College of Animal Science and technology, 400715 Chongqing, China
| | - Yongfu Huang
- Southwest University, College of Animal Science and technology, 400715 Chongqing, China
| | - Yongju Zhao
- Southwest University, College of Animal Science and technology, 400715 Chongqing, China
| | - Ming-Lung Yu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Division of Hepatobiliary, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Kaohsiung Medical University, Taiwan
| | - Zhiwen Xu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, 610052 Chengdu, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 610052 Chengdu, China
| | - Jian Hong
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Wenyu Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 610052 Chengdu, China
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raymond T. Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
29
|
Mukherjee S, Akbar I, Kumari B, Vrati S, Basu A, Banerjee A. Japanese Encephalitis Virus-induced let-7a/b interacted with the NOTCH-TLR7 pathway in microglia and facilitated neuronal death via caspase activation. J Neurochem 2019; 149:518-534. [PMID: 30556910 DOI: 10.1111/jnc.14645] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) released from the activated microglia upon neurotropic virus infection may exacerbate the neuronal damage. Here, we identified let-7a and let-7b (let-7a/b) as one of the essential miRNAs over-expressed upon Japanese Encephalitis virus (JEV) infection and released in the culture supernatant of the JEV-infected microglial cells through extracellular vesicles. The let-7a/b was previously reported to modulate inflammation in microglial cells through Toll-like receptor 7 (TLR7) pathways; although their role in accelerating JEV pathogenesis remain unexplored. Therefore, we studied the role of let-7a/b in modulating microglia-mediated inflammation during JEV infection and investigated the effect of let-7a/b-containing exosomes on primary neurons. To this end, we examined let-7a/b and NOTCH signaling pathway in TLR7 knockdown (KD) mice. We observed that TLR7 KD or inhibition of let-7a/b suppressed the JEV-induced NOTCH activation possibly via NF-κB dependent manner and subsequently, attenuated JEV-induced TNFα production in microglial cells. Furthermore, exosomes secreted from let-7a/b over-expressed microglia when transferred to uninfected mice brain induced caspase activation. Exosomes secreted from virus-infected or let-7a/b over-expressed microglia when co-incubated with mouse neuronal (Neuro2a) cells or primary cortical neurons also facilitated caspase activation leading to neuronal death. Thus, our results provide evidence for the multifaceted role of let-7a/b miRNAs in JEV pathogenesis. Let-7a/b can interact with TLR7 and NOTCH signaling pathway and enhance TNFα release from microglia. On the other hand, the exosomes secreted by JEV-infected microglia can activate caspases in uninfected neuronal cells which possibly contribute to bystander neuronal death. Cover Image for this issue: doi: 10.1111/jnc.14506.
Collapse
Affiliation(s)
| | | | - Bharti Kumari
- Translational Health Science and Technology Institute, Faridabad, India
| | - Sudhanshu Vrati
- Translational Health Science and Technology Institute, Faridabad, India.,Regional Center for Biotechnology, Faridabad, India
| | | | - Arup Banerjee
- Translational Health Science and Technology Institute, Faridabad, India.,Regional Center for Biotechnology, Faridabad, India
| |
Collapse
|
30
|
Liao X, Wang Y, Ye H, Li S, Chen L, Duan X. Role of interferon-stimulated genes in regulation of HCV infection and type I interferon anti-HCV activity. Future Virol 2018. [DOI: 10.2217/fvl-2017-0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HCV chronically infects over 71 million people worldwide and is one of the leading causes of advanced liver diseases. Type I interferons (IFN-α/β) play critical role in host antiviral innate immunity. IFN-α/β exerts its anti-HCV effects through the activation of the JAK/STAT signaling pathway leading to the induction of a few hundred interferon-stimulated genes (ISGs). The interplay between ISG and HCV infection remains partially understood. In this review, we summarized the role of ISGs in HCV infection and interferon anti-HCV activity.
Collapse
Affiliation(s)
- Xinzhong Liao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052 Chengdu, PR China
| | - Yancui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052 Chengdu, PR China
| | - Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052 Chengdu, PR China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052 Chengdu, PR China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052 Chengdu, PR China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052 Chengdu, PR China
| |
Collapse
|