1
|
Yu KM, Park SJ. Tick-borne viruses: Epidemiology, pathogenesis, and animal models. One Health 2024; 19:100903. [PMID: 39391267 PMCID: PMC11465198 DOI: 10.1016/j.onehlt.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Tick-borne viruses, capable of infecting animals and humans, are expanding geographically and increasing in prevalence, posing significant global public health threats. This review explores the current epidemiology of human pathogenic tick-borne viruses, emphasizing their diversity and the spectrum of symptomatic manifestations in humans, which range from mild to severe. We highlight how the infrequent and unpredictable nature of viral outbreaks complicates the precise identification and understanding of these viruses in human infections. Furthermore, we describe the utility of animal models that accurately mimic human clinical symptoms, facilitating the development of effective control strategies. Our comprehensive analysis provides crucial insights into disease progression and emphasizes the urgent need for continued research. This work aims to provide insight into knowledge gaps to mitigate the health burden of tick-borne infections and open an avenue for further study to enhance our understanding of these emerging infectious diseases.
Collapse
Affiliation(s)
- Kwang-Min Yu
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Su-Jin Park
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Brisse M, Ly H. Langat virus, a prototypic tick-borne encephalitis virus, impacts IL-6 signaling by downregulating gp130 expression. J Med Virol 2024; 96:e29572. [PMID: 38533946 DOI: 10.1002/jmv.29572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Affiliation(s)
- Morgan Brisse
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
3
|
Miao Y, Zheng Y, Wang T, Yi W, Zhang N, Zhang W, Zheng Z. Breast milk transmission and involvement of mammary glands in tick-borne flavivirus infected mice. J Virol 2024; 98:e0170923. [PMID: 38305156 PMCID: PMC10949448 DOI: 10.1128/jvi.01709-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Tick-borne flaviviruses (TBFs) are transmitted to humans through milk and tick bites. Although a case of possible mother-to-child transmission of tick-borne encephalitis virus (TBEV) through breast milk has been reported, this route has not been confirmed in experimental models. Therefore, in this study, using type I interferon receptor-deficient A129 mice infected with Langat virus (LGTV), we aimed to demonstrate the presence of infectious virus in the milk and mammary glands of infected mice. Our results showed viral RNA of LGTV in the pup's stomach milk clots (SMCs) and blood, indicating that the virus can be transmitted from dam to pup through breast milk. In addition, we observed that LGTV infection causes tissue lesions in the mammary gland, and viral particles were present in mammary gland epithelial cells. Furthermore, we found that milk from infected mice could infect adult mice via the intragastric route, which has a milder infection process, longer infection time, and a lower rate of weight loss than other modes of infection. Specifically, we developed a nano-luciferase-LGTV reporter virus system to monitor the dynamics of different infection routes and observed dam-to-pup infection using in vivo bioluminescence imaging. This study provides comprehensive evidence to support breast milk transmission of TBF in mice and has helped provide useful data for studying TBF transmission routes.IMPORTANCETo date, no experimental models have confirmed mother-to-child transmission of tick-borne flavivirus (TBF) through breastfeeding. In this study, we used a mouse model to demonstrate the presence of infectious viruses in mouse breast milk and mammary gland epithelial cells. Our results showed that pups could become infected through the gastrointestinal route by suckling milk, and the infection dynamics could be monitored using a reporter virus system during breastfeeding in vivo. We believe our findings have provided substantial evidence to understand the underlying mechanism of breast milk transmission of TBF in mice, which has important implications for understanding and preventing TBF transmission in humans.
Collapse
Affiliation(s)
- Yuanjiu Miao
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zheng
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenfu Yi
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nailou Zhang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenhua Zheng
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
4
|
Oh B, Park SC, Yang MS, Yang D, Ham G, Tark D, You MJ, Oh SI, Kim B. Difference in Intraspecies Transmissibility of Severe Fever with Thrombocytopenia Syndrome Virus Depending on Abrogating Type 1 Interferon Signaling in Mice. Viruses 2024; 16:401. [PMID: 38543766 PMCID: PMC10974630 DOI: 10.3390/v16030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 05/23/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), a tick-borne zoonotic disease, is caused by infection with SFTS virus (SFTSV). A previous study reported that human-to-human direct transmission of SFTSV can occur. However, potential animal-to-animal transmission of SFTSV without ticks has not been fully clarified. Thus, the objective of this study was to investigate potential mice-to-mice transmission of SFTSV by co-housing three groups of mice [i.e., wild-type mice (WT), mice injected with an anti-type I interferon-α receptor-blocking antibody (IFNAR Ab), and mice with knockout of type I interferon-α receptor (IFNAR KO)] as spreaders or recipients with different immune competence. As a result, co-housed IFNAR Ab and IFNAR KO mice showed body weight loss with SFTS viral antigens detected in their sera, extracorporeal secretions, and various organs. Based on histopathology, white pulp atrophy in the spleen was observed in all co-housed mice except WT mice. These results obviously show that IFNAR Ab and IFNAR KO mice, as spreaders, exhibited higher transmissibility to co-housed mice than WT mice. Moreover, IFNAR KO mice, as recipients, were more susceptible to SFTSV infection than WT mice. These findings suggest that type I interferon signaling is a pivotal factor in mice intraspecies transmissibility of SFTSV in the absence of vectors such as ticks.
Collapse
Affiliation(s)
- Byungkwan Oh
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Seok-Chan Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Myeon-Sik Yang
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Daram Yang
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Gaeul Ham
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea;
| | - Myung Jo You
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Sang-Ik Oh
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Bumseok Kim
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| |
Collapse
|
5
|
Xu Y, Wang J. The Vector Competence of Asian Longhorned Ticks in Langat Virus Transmission. Viruses 2024; 16:304. [PMID: 38400079 PMCID: PMC10893034 DOI: 10.3390/v16020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Haemaphysalis longicornis (the longhorned tick), the predominant tick species in China, serves as a vector for a variety of pathogens, and is capable of transmitting the tick-borne encephalitis virus (TBEV), the causative agent of tick-borne encephalitis. However, it is unclear how these ticks transmit TBEV. Langat virus (LGTV), which has a reduced pathogenicity in humans, has been used as a surrogate for TBEV. In this study, we aimed to investigate the vector competence of H. longicornis to transmit LGTV and demonstrate the efficient acquisition and transmission of LGTV between this tick species and mice. LGTV localization was detected in several tick tissues, such as the midgut, salivary glands, and synganglion, using quantitative PCR and immunohistochemical staining with a polyclonal antibody targeting the LGTV envelope protein. We demonstrated the horizontal transmission of LGTV to different developmental stages within the same generation but did not see evidence of vertical transmission. It was interesting to note that we observed mice acting as a bridge, facilitating the transmission of LGTV to neighboring naïve ticks during blood feeding. In conclusion, the virus-vector-host model employed in this study provides valuable insights into the replication and transmission of LGTV throughout its life cycle.
Collapse
Affiliation(s)
| | - Jingwen Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| |
Collapse
|
6
|
Blanquer A, Rivas F, Gérardy M, Sarlet M, Moula N, Ziegler U, Groschup MH, Desmecht D, Marichal T, Garigliany M. Evaluation of Non-Vector Transmission of Usutu Virus in Domestic Canaries ( Serinus canaria). Viruses 2024; 16:79. [PMID: 38257779 PMCID: PMC10819963 DOI: 10.3390/v16010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Usutu virus (USUV) is a flavivirus transmitted to avian species through mosquito bites that causes mass mortalities in wild and captive bird populations. However, several cases of positive dead birds have been recorded during the winter, a vector-free period. To explain how USUV "overwinters", the main hypothesis is bird-to-bird transmission, as shown for the closely related West Nile virus. To address this question, we experimentally challenged canaries with intranasal inoculation of USUV, which led to systemic dissemination of the virus, provided the inoculated dose was sufficient (>102 TCID50). We also highlighted the oronasal excretion of infectious viral particles in infected birds. Next, we co-housed infected birds with naive sentinels, to determine whether onward transmission could be reproduced experimentally. We failed to detect such transmission but demonstrated horizontal transmission by transferring sputum from an infected to a naive canary. In addition, we evaluated the cellular tropism of respiratory mucosa to USUV in vitro using a canary tracheal explant and observed only limited evidence of viral replication. Further research is then needed to assess if and how comparable bird-to-bird transmission occurs in the wild.
Collapse
Affiliation(s)
- Aude Blanquer
- Fundamental and Applied Research for Animals & Health (FARAH), Laboratory of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (A.B.); (F.R.); (M.G.); (M.S.); (D.D.)
| | - Felipe Rivas
- Fundamental and Applied Research for Animals & Health (FARAH), Laboratory of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (A.B.); (F.R.); (M.G.); (M.S.); (D.D.)
| | - Mazarine Gérardy
- Fundamental and Applied Research for Animals & Health (FARAH), Laboratory of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (A.B.); (F.R.); (M.G.); (M.S.); (D.D.)
| | - Michaël Sarlet
- Fundamental and Applied Research for Animals & Health (FARAH), Laboratory of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (A.B.); (F.R.); (M.G.); (M.S.); (D.D.)
| | - Nassim Moula
- Animal Resources Veterinary Management Department, Faculty of Veterinary Medicine, GIGA Research (AFT), Sart Tilman B23B, B-4000 Liège, Belgium;
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (U.Z.); (M.H.G.)
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (U.Z.); (M.H.G.)
| | - Daniel Desmecht
- Fundamental and Applied Research for Animals & Health (FARAH), Laboratory of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (A.B.); (F.R.); (M.G.); (M.S.); (D.D.)
| | - Thomas Marichal
- Laboratory of Immunophysiology, GIGA Institute, University of Liège, B-4000 Liège, Belgium;
- Faculty of Veterinary Medicine, University of Liège, Sart Tilman B42, B-4000 Liège, Belgium
| | - Mutien Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Laboratory of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (A.B.); (F.R.); (M.G.); (M.S.); (D.D.)
| |
Collapse
|
7
|
Wójcik-Fatla A, Krzowska-Firych J, Czajka K, Nozdryn-Płotnicka J, Sroka J. The Consumption of Raw Goat Milk Resulted in TBE in Patients in Poland, 2022 "Case Report". Pathogens 2023; 12:pathogens12050653. [PMID: 37242323 DOI: 10.3390/pathogens12050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The alimentary route is the second most important route of tick-borne encephalitis infection. In Poland, the last TBE case due to the consumption of unpasteurized milk or dairy products of infected animals was recorded in 2017 as the fourth documented outbreak of TBEV infection in the country. In this study, two patients infected with TBEV through consumption of unpasteurized goat's milk from one source are described from a cluster of eight cases. In August and September 2022, a 63- and 67-year-old woman were hospitalized at the Infectious Diseases Clinic of the Institute of Rural Health (Lublin, Poland). The patients denied been recently bitten by a tick, and neither had been vaccinated against TBEV. The disease had a biphasic course. In the first case, the patient suffered from a fever, spine pain, and muscle weakness and paresis of the lower left limb. The second patient suffered from fever, vertigo, headaches, abdominal pain, and diarrhoea. The results of IgM and IgG antibodies were positive in both cases. After three weeks hospitalization, the patients were discharged in good condition. In one case, slight hearing impairment was observed. Vaccination and avoiding the consumption of unpasteurized milk remain the most effective ways to prevent tick-borne encephalitis.
Collapse
Affiliation(s)
- Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Joanna Krzowska-Firych
- Infectious Diseases Clinic, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Krzysztof Czajka
- Infectious Diseases Clinic, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | | | - Jacek Sroka
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
8
|
Goryashchenko AS, Uvarova VI, Osolodkin DI, Ishmukhametov AA. Discovery of small molecule antivirals targeting tick-borne encephalitis virus. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Abstract
Tick-borne encephalitis virus (TBEV), of the genus Flavivirus, is a causative agent of severe encephalitis in endemic regions of northern Asia and central and northern Europe. Interferon induced transmembrane proteins (IFITMs) are restriction factors that inhibit the replication cycles of numerous viruses, including flaviviruses such as the West Nile virus, dengue virus, and Zika virus. Here, we demonstrate the role of IFITM1, IFITM2, and IFITM3 in the inhibition of TBEV infection and in protection against virus-induced cell death. We show the most significant role being that of IFITM3, including the dissection of its functional motifs by mutagenesis. Furthermore, through the use of CRISPR-Cas9-generated IFITM1/3-knockout monoclonal cell lines, we confirm the role and additive action of endogenous IFITMs in TBEV suppression. However, the results of co-culture assays suggest that TBEV might partially escape IFN- and IFITM-mediated suppression during high-density co-culture infection when the virus enters naïve cells directly from infected donor cells. Thus, cell-to-cell spread may constitute a strategy for virus escape from innate host defenses. Importance: TBEV infection may result in encephalitis, chronic illness or death. TBEV is endemic in northern Asia and Europe; however, due to climate change, new endemic centers arise. Although effective TBEV vaccines have been approved, vaccination coverage is low, and, due to the lack of specific therapeutics, infected individuals depend on their immune responses to control the infection. The IFITM proteins are components of the innate antiviral defenses that suppress cell entry of many viral pathogens. However, no studies regarding the role of IFITM proteins in the TBEV infection have been published so far. Understanding of antiviral innate immune responses is crucial for future development of antiviral strategies. Here, we show the important role of IFITM proteins in the inhibition of TBEV infection and virus-mediated cell death. However, our data suggest that TBEV cell-to-cell spread may be less prone to both IFN- and IFITM-mediated suppression, potentially facilitating escape from IFITM-mediated immunity.
Collapse
|