1
|
Sinha A, Singh AK, Kadni TS, Mullick J, Sahu A. Virus-Encoded Complement Regulators: Current Status. Viruses 2021; 13:v13020208. [PMID: 33573085 PMCID: PMC7912105 DOI: 10.3390/v13020208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022] Open
Abstract
Viruses require a host for replication and survival and hence are subjected to host immunological pressures. The complement system, a crucial first response of the host immune system, is effective in targeting viruses and virus-infected cells, and boosting the antiviral innate and acquired immune responses. Thus, the system imposes a strong selection pressure on viruses. Consequently, viruses have evolved multiple countermeasures against host complement. A major mechanism employed by viruses to subvert the complement system is encoding proteins that target complement. Since viruses have limited genome size, most of these proteins are multifunctional in nature. In this review, we provide up to date information on the structure and complement regulatory functions of various viral proteins.
Collapse
Affiliation(s)
- Anwesha Sinha
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University Campus, Ganeskhind, Pune 411007, India; (A.S.); (A.K.S.); (T.S.K.)
| | - Anup Kumar Singh
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University Campus, Ganeskhind, Pune 411007, India; (A.S.); (A.K.S.); (T.S.K.)
| | - Trupti Satish Kadni
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University Campus, Ganeskhind, Pune 411007, India; (A.S.); (A.K.S.); (T.S.K.)
| | - Jayati Mullick
- Polio Virology Group, Microbial Containment Complex, ICMR-National Institute of Virology, Pune 411021, India;
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University Campus, Ganeskhind, Pune 411007, India; (A.S.); (A.K.S.); (T.S.K.)
- Correspondence: ; Tel.: +91-20-2570-8083; Fax: +91-20-2569-2259
| |
Collapse
|
2
|
Maloney BE, Perera KD, Saunders DRD, Shadipeni N, Fleming SD. Interactions of viruses and the humoral innate immune response. Clin Immunol 2020; 212:108351. [PMID: 32028020 DOI: 10.1016/j.clim.2020.108351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022]
Abstract
The innate immune response is crucial for defense against virus infections where the complement system, coagulation cascade and natural antibodies play key roles. These immune components are interconnected in an intricate network and are tightly regulated to maintain homeostasis and avoid uncontrolled immune responses. Many viruses in turn have evolved to modulate these interactions through various strategies to evade innate immune activation. This review summarizes the current understanding on viral strategies to inhibit the activation of complement and coagulation cascades, evade natural antibody-mediated clearance and utilize complement regulatory mechanisms to their advantage.
Collapse
Affiliation(s)
- Bailey E Maloney
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Krishani Dinali Perera
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Danielle R D Saunders
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Naemi Shadipeni
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
3
|
Yin W, Wei X, Jiang J, Fan K, Zhao J, Sun N, Wang Z, Sun Y, Ma H, Zhao X, Li H. Complement receptor activity of recombinant porcine CR1-like protein expressed in a eukaryotic system. Immunol Res 2017; 64:1025-32. [PMID: 26903010 DOI: 10.1007/s12026-016-8792-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Primate complement receptor type 1 (CR1) protein, a single-chain transmembrane glycoprotein, plays an important role in immune adherence and clearing complement-opsonized immune complexes. Here, the mRNA of the porcine primate-like complement receptor (CR1-like) gene was analyzed, and two domain sequences with potential functions were cloned into the pwPICZalpha vector for expression in Pichia pastoris. The recombinant proteins were purified with both Protein Pure Ni-NTA resin and strong anion exchange resin. The activities of the purified recombinant proteins were evaluated by SDS-PAGE, western blotting, and complement receptor assays. The results indicated that two domains of the CR1-like protein, CCP36 and CCP811 with molecular weights of 29.8 kDa and 30 kDa, respectively, were successfully expressed in P. pastoris. These two recombinant proteins possess some of the functions of the primate CR1 protein. Using these two proteins coupled with an antibody blocking technique, we also showed that CR1-like is expressed on natural porcine erythrocytes.
Collapse
Affiliation(s)
- Wei Yin
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, 030801, Shanxi, People's Republic of China
| | - Xiaoming Wei
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, 030801, Shanxi, People's Republic of China
| | - Junbing Jiang
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, 030801, Shanxi, People's Republic of China
| | - Kuohai Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, 030801, Shanxi, People's Republic of China
| | - Junxing Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, 030801, Shanxi, People's Republic of China
| | - Na Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, 030801, Shanxi, People's Republic of China
| | - Zhiwei Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, 030801, Shanxi, People's Republic of China
| | - Yaogui Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, 030801, Shanxi, People's Republic of China
| | - Haili Ma
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, 030801, Shanxi, People's Republic of China
| | - Xin Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, 030801, Shanxi, People's Republic of China
| | - Hongquan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, 030801, Shanxi, People's Republic of China.
| |
Collapse
|
4
|
Abou-El-Hassan H, Zaraket H. Viral-derived complement inhibitors: current status and potential role in immunomodulation. Exp Biol Med (Maywood) 2016; 242:397-410. [PMID: 27798122 DOI: 10.1177/1535370216675772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The complement system is one of the body's major innate immune defense mechanisms in vertebrates. Its function is to detect foreign bodies and promote their elimination through opsonisation or lysis. Complement proteins play an important role in the immunopathogenesis of several disorders. However, excessive complement activation does not confer more protection but instead leads to several autoimmune and inflammatory diseases. With inappropriate activation of the complement system, activated complement proteins and glycoproteins may damage both healthy and diseased tissues. Development of complement inhibitors represents an effective approach in controlling dysregulated complement activity and reducing disease severity, yet few studies have investigated the nature and role of novel complement inhibitory proteins of viral origin. Viral complement inhibitors have important implications in understanding the importance of complement inhibition and their role as a promising novel therapeutic approach in diseases caused by dysregulated complement function. In this review, we discuss the role and importance of complement inhibitors derived from several viruses in the scope of human inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- 1 Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,2 Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- 2 Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,3 Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
5
|
Complete genome sequence of Pig-tailed macaque rhadinovirus 2 and its evolutionary relationship with rhesus macaque rhadinovirus and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus. J Virol 2015; 89:3888-909. [PMID: 25609822 DOI: 10.1128/jvi.03597-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Two rhadinovirus lineages have been identified in Old World primates. The rhadinovirus 1 (RV1) lineage consists of human herpesvirus 8, Kaposi's sarcoma-associated herpesvirus (KSHV), and closely related rhadinoviruses of chimpanzees, gorillas, macaques and other Old World primates. The RV2 rhadinovirus lineage is distinct and consists of closely related viruses from the same Old World primate species. Rhesus macaque rhadinovirus (RRV) is the RV2 prototype, and two RRV isolates, 26-95 and 17577, were sequenced. We determined that the pig-tailed macaque RV2 rhadinovirus, MneRV2, is highly associated with lymphomas in macaques with simian AIDS. To further study the role of rhadinoviruses in the development of lymphoma, we sequenced the complete genome of MneRV2 and identified 87 protein coding genes and 17 candidate microRNAs (miRNAs). A strong genome colinearity and sequence homology were observed between MneRV2 and RRV26-95, although the open reading frame (ORF) encoding the KSHV ORFK15 homolog was disrupted in RRV26-95. Comparison with MneRV2 revealed several genomic anomalies in RRV17577 that were not present in other rhadinovirus genomes, including an N-terminal duplication in ORF4 and a recombinative exchange of more distantly related homologs of the ORF22/ORF47 interacting glycoprotein genes. The comparison with MneRV2 has revealed novel genes and important conservation of protein coding domains and transcription initiation, termination, and splicing signals, which have added to our knowledge of RV2 rhadinovirus genetics. Further comparisons with KSHV and other RV1 rhadinoviruses will provide important avenues for dissecting the biology, evolution, and pathology of these closely related tumor-inducing viruses in humans and other Old World primates. IMPORTANCE This work provides the sequence characterization of MneRV2, the pig-tailed macaque homolog of rhesus rhadinovirus (RRV). MneRV2 and RRV belong to the rhadinovirus 2 (RV2) rhadinovirus lineage of Old World primates and are distinct but related to Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma. Pig-tailed macaques provide important models of human disease, and our previous studies have indicated that MneRV2 plays a causal role in AIDS-related lymphomas in macaques. Delineation of the MneRV2 sequence has allowed a detailed characterization of the genome structure, and evolutionary comparisons with RRV and KSHV have identified conserved promoters, splice junctions, and novel genes. This comparison provides insight into RV2 rhadinovirus biology and sets the groundwork for more intensive next-generation (Next-Gen) transcript and genetic analysis of this class of tumor-inducing herpesvirus. This study supports the use of MneRV2 in pig-tailed macaques as an important model for studying rhadinovirus biology, transmission and pathology.
Collapse
|
6
|
Ojha H, Panwar HS, Gorham RD, Morikis D, Sahu A. Viral regulators of complement activation: structure, function and evolution. Mol Immunol 2014; 61:89-99. [PMID: 24976595 DOI: 10.1016/j.molimm.2014.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 11/25/2022]
Abstract
The complement system surveillance in the host is effective in controlling viral propagation. Consequently, to subvert this effector mechanism, viruses have developed a series of adaptations. One among these is encoding mimics of host regulators of complement activation (RCA) which help viruses to avoid being labeled as 'foreign' and protect them from complement-mediated neutralization and complement-enhanced antiviral adaptive immunity. In this review, we provide an overview on the structure, function and evolution of viral RCA proteins.
Collapse
Affiliation(s)
- Hina Ojha
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Hemendra Singh Panwar
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Ronald D Gorham
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Arvind Sahu
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
7
|
Escudero-Esparza A, Kalchishkova N, Kurbasic E, Jiang WG, Blom AM. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly. FASEB J 2013; 27:5083-93. [PMID: 23964079 DOI: 10.1096/fj.13-230706] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CUB and Sushi multiple domains 1 (CSMD1) is a transmembrane protein containing 15 consecutive complement control protein (CCP) domains, which are characteristic for complement inhibitors. We expressed a membrane-bound fragment of human CSMD1 composed of the 15 C-terminal CCP domains and demonstrated that it inhibits deposition of C3b by the classical pathway on the surface of Chinese hamster ovary cells by 70% at 6% serum and of C9 (component of membrane attack complex) by 90% at 1.25% serum. Furthermore, this fragment of CSMD1 served as a cofactor to factor I-mediated degradation of C3b. In all functional assays performed, well-characterized complement inhibitors were used as positive controls, whereas Coxsackie adenovirus receptor, a protein with no effect on complement, was a negative control. Moreover, attenuation of expression in human T47 breast cancer cells that express endogenous CSMD1 significantly increased C3b deposition on these cells by 45% at 8% serum compared with that for the controls. Furthermore, by expressing a soluble 17-21 CCP fragment of CSMD1, we found that CSMD1 inhibits complement by promoting factor I-mediated C4b/C3b degradation and inhibition of MAC assembly at the level of C7. Our results revealed a novel complement inhibitor for the classical and lectin pathways.
Collapse
Affiliation(s)
- Astrid Escudero-Esparza
- 1Department of Laboratory Medicine Malmö, Section of Medical Protein Chemistry, Skåne University Hospital, The Wallenberg Laboratory, Inga Marie Nilssons gata 53, 20502 Malmö, Sweden.
| | | | | | | | | |
Collapse
|
8
|
Pyaram K, Yadav VN, Reza MJ, Sahu A. Virus–complement interactions: an assiduous struggle for dominance. Future Virol 2010. [DOI: 10.2217/fvl.10.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complement system is a major component of the innate immune system that recognizes invading pathogens and eliminates them by means of an array of effector mechanisms, in addition to using direct lytic destruction. Viruses, in spite of their small size and simple composition, are also deftly recognized and neutralized by the complement system. In turn, as a result of years of coevolution with the host, viruses have developed multiple mechanisms to evade the host complement. These complex interactions between the complement system and viruses have been an area of focus for over three decades. In this article, we provide a broad overview of the field using key examples and up-to-date information on the complement-evasion strategies of viruses.
Collapse
Affiliation(s)
- Kalyani Pyaram
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Viveka Nand Yadav
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Malik Johid Reza
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | |
Collapse
|
9
|
Steer B, Adler B, Jonjic S, Stewart JP, Adler H. A gammaherpesvirus complement regulatory protein promotes initiation of infection by activation of protein kinase Akt/PKB. PLoS One 2010; 5:e11672. [PMID: 20657771 PMCID: PMC2908122 DOI: 10.1371/journal.pone.0011672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/27/2010] [Indexed: 12/22/2022] Open
Abstract
Background Viruses have evolved to evade the host's complement system. The open reading frames 4 (ORF4) of gammaherpesviruses encode homologs of regulators of complement activation (RCA) proteins, which inhibit complement activation at the level of C3 and C4 deposition. Besides complement regulation, these proteins are involved in heparan sulfate and glycosaminoglycan binding, and in case of MHV-68, also in viral DNA synthesis in macrophages. Methodology/Principal Findings Here, we made use of MHV-68 to study the role of ORF4 during infection of fibroblasts. While attachment and penetration of virions lacking the RCA protein were not affected, we observed a delayed delivery of the viral genome to the nucleus of infected cells. Analysis of the phosphorylation status of a variety of kinases revealed a significant reduction in phosphorylation of the protein kinase Akt in cells infected with ORF4 mutant virus, when compared to cells infected with wt virus. Consistent with a role of Akt activation in initial stages of infection, inhibition of Akt signaling in wt virus infected cells resulted in a phenotype resembling the phenotype of the ORF4 mutant virus, and activation of Akt by addition of insulin partially reversed the phenotype of the ORF4 mutant virus. Importantly, the homologous ORF4 of KSHV was able to rescue the phenotype of the MHV-68 ORF4 mutant, indicating that ORF4 is functionally conserved and that ORF4 of KSHV might have a similar function in infection initiation. Conclusions/Significance In summary, our studies demonstrate that ORF4 contributes to efficient infection by activation of the protein kinase Akt and thus reveal a novel function of a gammaherpesvirus RCA protein.
Collapse
Affiliation(s)
- Beatrix Steer
- The Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - Barbara Adler
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - James P. Stewart
- Centre for Comparative Infectious Diseases, Department of Medical Microbiology, University of Liverpool, Liverpool, United Kingdom
| | - Heiko Adler
- The Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
- * E-mail:
| |
Collapse
|
10
|
Wen KW, Dittmer DP, Damania B. Disruption of LANA in rhesus rhadinovirus generates a highly lytic recombinant virus. J Virol 2009; 83:9786-802. [PMID: 19587030 PMCID: PMC2748027 DOI: 10.1128/jvi.00704-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 07/02/2009] [Indexed: 02/05/2023] Open
Abstract
Rhesus monkey rhadinovirus (RRV) is a gammaherpesvirus that is closely related to human Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8). RRV is the closest relative to KSHV that has a fully sequenced genome and serves as an in vitro and an in vivo model system for KSHV. The latency-associated nuclear antigen (LANA) protein of both KSHV and RRV plays key roles in the establishment and maintenance of these herpesviruses. We have constructed a RRV recombinant virus (RRVDeltaLANA/GFP) in which the RRV LANA open reading frame has been disrupted with a green fluorescent protein (GFP) expression cassette generated by homologous recombination. The integrity of the recombinant virus was confirmed by diagnostic PCR, restriction digestion, Southern blot analysis, and whole-genome sequencing. We compared the single-step and multistep replication kinetics of RRVDeltaLANA/GFP, RRV-GFP, wild-type (WT) RRV H26-95, and a revertant virus using traditional plaque assays, as well as real-time quantitative PCR-based genome quantification assays. The RRVDeltaLANA/GFP recombinant virus exhibited significantly higher lytic replicative properties compared to RRV-GFP, WT RRV, or the revertant virus. This was observed upon de novo infection and in the absence of chemical inducers such as phorbol esters. In addition, by using a quantitative real-time PCR-based viral array, we are the first to report differences in global viral gene expression between WT and recombinant viruses. The RRVDeltaLANA/GFP virus displayed increased lytic gene transcription at all time points postinfection compared to RRV-GFP. Moreover, we also examined several cellular genes that are known to be repressed by KSHV LANA and report that these genes are derepressed during de novo lytic infection with the RRVDeltaLANA/GFP virus compared to RRV-GFP. Finally, we also demonstrate that the RRVDeltaLANA/GFP virus fails to establish latency in B cells, as measured by the loss of GFP-positive cells and intracellular viral genomes.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
11
|
Wang L, Pietrek M, Brinkmann MM, Hävemeier A, Fischer I, Hillenbrand B, Dittrich-Breiholz O, Kracht M, Chanas S, Blackbourn DJ, Schulz TF. Identification and functional characterization of a spliced rhesus rhadinovirus gene with homology to the K15 gene of Kaposi's sarcoma-associated herpesvirus. J Gen Virol 2009; 90:1190-1201. [PMID: 19264656 DOI: 10.1099/vir.0.007971-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhesus monkey rhadinovirus (RRV) is a gamma-2 herpesvirus related to the human Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8). This study identified an alternatively spliced gene at the right side of the RRV genome (strain 17577) between open reading frame 75 and the terminal repeat region. Of its eight exons, the first seven encoded up to 12 transmembrane domains, whilst the eighth exon encoded a predicted C-terminal cytoplasmic domain. Structurally and positionally, this RRV gene therefore resembles the K15 gene of KSHV; it was provisionally named RK15 to avoid confusion with other RRV17577 genes. In ectopic expression studies, the 55 kDa RK15 protein isoform activated the JNK and NF-kappaB pathways, like the 45 kDa KSHV K15-encoded protein isoform. In contrast to K15, which activates angiogenic and inflammatory cytokines such as interleukin (IL)-8, IL-6 and CCL20, the range of cellular transcripts activated by the RRV K15 homologue was much more restricted, but included IL-6, IL-8 and FGF21. These data suggest functional differences between terminal membrane proteins at the right end of the genomes of Old World primate gamma-2 herpesviruses.
Collapse
Affiliation(s)
- Linding Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan 430071, PR China
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Marcel Pietrek
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Melanie M Brinkmann
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Anika Hävemeier
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Irina Fischer
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Bernd Hillenbrand
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Oliver Dittrich-Breiholz
- Institute of Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Michael Kracht
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Simon Chanas
- CRUK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - David J Blackbourn
- CRUK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
12
|
Okroj M, Mark L, Stokowska A, Wong SW, Rose N, Blackbourn DJ, Villoutreix BO, Spiller OB, Blom AM. Characterization of the complement inhibitory function of rhesus rhadinovirus complement control protein (RCP). J Biol Chem 2009; 284:505-514. [PMID: 18990693 DOI: 10.1074/jbc.m806669200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhesus rhadinovirus (RRV) is currently the closest known, fully sequenced homolog of human Kaposi sarcoma-associated herpesvirus. Both these viruses encode complement inhibitors as follows: Kaposi sarcoma-associated herpesvirus-complement control protein (KCP) and RRV-complement control protein (RCP). Previously we characterized in detail the functional properties of KCP as a complement inhibitor. Here, we performed comparative analyses for two variants of RCP protein, encoded by RRV strains H26-95 and 17577. Both RCP variants and KCP inhibited human and rhesus complement when tested in hemolytic assays measuring all steps of activation via the classical and the alternative pathway. RCP variants from both RRV strains supported C3b and C4b degradation by factor I and decay acceleration of the classical C3 convertase, similar to KCP. Additionally, the 17577 RCP variant accelerated decay of the alternative C3 convertase, which was not seen for KCP. In contrast to KCP, RCP showed no affinity to heparin and is the first described complement inhibitor in which the binding site for C3b/C4b does not interact with heparin. Molecular modeling shows a structural disruption in the region of RCP that corresponds to the KCP-heparin-binding site. This makes RRV a superior model for future in vivo investigations of complement evasion, as RCP does not play a supportive role in viral attachment as KCP does.
Collapse
Affiliation(s)
- Marcin Okroj
- Department of Laboratory Medicine, Lund University, University Hospital Malmo¨, Malmo¨ S-20502, Sweden, the Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, the National Institute for Biological Standards and Control, Herts EN6 3QG, United Kingdom, the Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, United Kingdom, INSERM MTi, University Paris Diderot, Paris 75013, France, and the Department of Child Health, Cardiff University, Wales School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Linda Mark
- Department of Laboratory Medicine, Lund University, University Hospital Malmo¨, Malmo¨ S-20502, Sweden, the Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, the National Institute for Biological Standards and Control, Herts EN6 3QG, United Kingdom, the Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, United Kingdom, INSERM MTi, University Paris Diderot, Paris 75013, France, and the Department of Child Health, Cardiff University, Wales School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Anna Stokowska
- Department of Laboratory Medicine, Lund University, University Hospital Malmo¨, Malmo¨ S-20502, Sweden, the Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, the National Institute for Biological Standards and Control, Herts EN6 3QG, United Kingdom, the Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, United Kingdom, INSERM MTi, University Paris Diderot, Paris 75013, France, and the Department of Child Health, Cardiff University, Wales School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Scott W Wong
- Department of Laboratory Medicine, Lund University, University Hospital Malmo¨, Malmo¨ S-20502, Sweden, the Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, the National Institute for Biological Standards and Control, Herts EN6 3QG, United Kingdom, the Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, United Kingdom, INSERM MTi, University Paris Diderot, Paris 75013, France, and the Department of Child Health, Cardiff University, Wales School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Nicola Rose
- Department of Laboratory Medicine, Lund University, University Hospital Malmo¨, Malmo¨ S-20502, Sweden, the Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, the National Institute for Biological Standards and Control, Herts EN6 3QG, United Kingdom, the Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, United Kingdom, INSERM MTi, University Paris Diderot, Paris 75013, France, and the Department of Child Health, Cardiff University, Wales School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - David J Blackbourn
- Department of Laboratory Medicine, Lund University, University Hospital Malmo¨, Malmo¨ S-20502, Sweden, the Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, the National Institute for Biological Standards and Control, Herts EN6 3QG, United Kingdom, the Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, United Kingdom, INSERM MTi, University Paris Diderot, Paris 75013, France, and the Department of Child Health, Cardiff University, Wales School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Bruno O Villoutreix
- Department of Laboratory Medicine, Lund University, University Hospital Malmo¨, Malmo¨ S-20502, Sweden, the Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, the National Institute for Biological Standards and Control, Herts EN6 3QG, United Kingdom, the Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, United Kingdom, INSERM MTi, University Paris Diderot, Paris 75013, France, and the Department of Child Health, Cardiff University, Wales School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - O Brad Spiller
- Department of Laboratory Medicine, Lund University, University Hospital Malmo¨, Malmo¨ S-20502, Sweden, the Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, the National Institute for Biological Standards and Control, Herts EN6 3QG, United Kingdom, the Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, United Kingdom, INSERM MTi, University Paris Diderot, Paris 75013, France, and the Department of Child Health, Cardiff University, Wales School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Anna M Blom
- Department of Laboratory Medicine, Lund University, University Hospital Malmo¨, Malmo¨ S-20502, Sweden, the Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, the National Institute for Biological Standards and Control, Herts EN6 3QG, United Kingdom, the Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, United Kingdom, INSERM MTi, University Paris Diderot, Paris 75013, France, and the Department of Child Health, Cardiff University, Wales School of Medicine, Cardiff CF14 4XN, United Kingdom.
| |
Collapse
|
13
|
Okroj M, Spiller OB, Korodi Z, Tedeschi R, Dillner J, Blom AM. Antibodies against Kaposi sarcoma-associated herpes virus (KSHV) complement control protein (KCP) in infected individuals. Vaccine 2007; 25:8102-9. [PMID: 17964697 DOI: 10.1016/j.vaccine.2007.09.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 09/17/2007] [Accepted: 09/20/2007] [Indexed: 10/22/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is the most important etiopathological factor of Kaposi's sarcoma (KS) and some specific types of malignant lymphomas. One of the viral lytic genes encodes the KSHV complement control protein (KCP), which functionally mimics human complement inhibitors. Although this protein provides an advantage for evading the complement attack, it can serve as target for adaptive immune response. Herein, we identified anti-KCP IgG antibodies in patients with KS and KSHV-related lymphomas. KCP-specific antibodies were only detected in sera of those patients who had high titres of antibodies against lytic or latent KSHV antigens. Complement control protein domain 2 (CCP2) was found to be the most immunogenic part of the KCP protein. Furthermore, pre-incubation of KCP-expressing CHO cells with patient sera containing anti-KCP antibodies resulted in an increased complement deposition when incubated with human serum.
Collapse
Affiliation(s)
- Marcin Okroj
- Department of Laboratory Medicine, Lund University, University Hospital Malmö, S-205 02 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|