1
|
Yang Y, Delcourte L, van Belleghem C, Fonte S, Gerard K, Baconnais S, Callon M, Le Cam E, Fogeron ML, Levrero M, Faivre-Moskalenko C, Böckmann A, Lecoq L. Structure and nucleic acid interactions of the S Δ60 domain of the hepatitis delta virus small antigen. Proc Natl Acad Sci U S A 2025; 122:e2411890122. [PMID: 40324079 DOI: 10.1073/pnas.2411890122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/25/2025] [Indexed: 05/07/2025] Open
Abstract
Infection with hepatitis delta virus (HDV) causes the most severe form of viral hepatitis, affecting more than 15 million people worldwide. HDV is a small RNA satellite virus of the hepatitis B virus (HBV) that relies on the HBV envelope for viral particle assembly. The only specific HDV component is the ribonucleoprotein (RNP), which consists of viral RNA (vRNA) associated with the small (S) and large (L) delta antigens (HDAg). While the structure of the HDAg N-terminal assembly domain is known, here we address the structure of the remaining SΔ60 protein using NMR. We show that SΔ60 contains two intrinsically disordered regions separated by a helix-loop-helix motif and that this structure is conserved in the full-length protein. Solution NMR analysis revealed that SΔ60 binds to both full-length and truncated vRNA, highlighting the role of the helical regions in submicromolar affinity interactions. The resulting complex contains approximately 120 SΔ60 proteins per RNA. Our results provide a model for the arginine-rich domains in RNP assembly and RNA interactions. In addition, we show that a cluster of acidic residues within the structured region of SΔ60 is critical for HDV replication, possibly mimicking the nucleosome acidic patch involved in the recruitment of chromatin remodelers. Our work thus provides the molecular basis for understanding the role of the C-terminal RNA-binding domain of S-HDAg in HDV infection.
Collapse
Affiliation(s)
- Yang Yang
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Loïc Delcourte
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Carolanne van Belleghem
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Simone Fonte
- Institut hospitalo-universitaire (IHU) EVEREST, Institute of Hepatology Lyon, Lyon 69004, France
- UMR University Claude Bernard Lyon 1 - INSERM U1350, Pathobiologie et thérapie des maladies du foie (PaThLiv), Lyon 69003, France
| | - Kassandra Gerard
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, UMR CNRS 5672, Lyon 69342, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay - Gustave Roussy, Villejuif 94805, France
| | - Morgane Callon
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay - Gustave Roussy, Villejuif 94805, France
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Massimo Levrero
- Institut hospitalo-universitaire (IHU) EVEREST, Institute of Hepatology Lyon, Lyon 69004, France
- UMR University Claude Bernard Lyon 1 - INSERM U1350, Pathobiologie et thérapie des maladies du foie (PaThLiv), Lyon 69003, France
- Department of Hepatology, Hospices Civils de Lyon, Lyon 69004, France
- Faculté de Médecine Lyon Est, University Claude Bernard Lyon 1, Lyon 69003, France
| | | | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| |
Collapse
|
2
|
Mueller NL, Dujsikova A, Singh A, Chen YG. Human and pathogen-encoded circular RNAs in viral infections: insights into functions and therapeutic opportunities. Hum Mol Genet 2025:ddaf031. [PMID: 40304711 DOI: 10.1093/hmg/ddaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 05/02/2025] Open
Abstract
Circular RNAs (circRNAs) are emerging as important regulatory molecules in both host and viral systems, acting as microRNA sponges, protein decoys or scaffolds, and templates for protein translation. Host-derived circRNAs are increasingly recognized for their roles in immune responses, while virus-encoded circRNAs, especially those from DNA viruses, have been shown to modulate host cellular machinery to favor viral replication and immune evasion. Recently, RNA virus-encoded circRNAs were also discovered, but evidence suggests that they might be generated using a different mechanism compared to the circRNAs produced from the host and DNA viruses. This review highlights recent advances in our understanding of both host and virus-derived circRNAs, with a focus on their biological roles and contributions to pathogenesis. Furthermore, we discuss the potential of circRNAs as biomarkers and their application as therapeutic targets or scaffolds for RNA-based therapies. Understanding the roles of circRNAs in host-virus interactions offers novel insights into RNA biology and opens new avenues for therapeutic strategies against viral diseases and associated cancers.
Collapse
Affiliation(s)
- Noah L Mueller
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06519, United States
| | - Adela Dujsikova
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06519, United States
| | - Amrita Singh
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06519, United States
| | - Y Grace Chen
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06519, United States
- Department of Genetics, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06519, United States
| |
Collapse
|
3
|
Heuschkel MJ, Bach C, Meiss-Heydmann L, Gerges E, Felli E, Giannone F, Pessaux P, Schuster C, Lucifora J, Baumert TF, Verrier ER. JAK1 promotes HDV replication and is a potential target for antiviral therapy. J Hepatol 2024; 80:220-231. [PMID: 37925078 DOI: 10.1016/j.jhep.2023.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND & AIMS Chronic co-infection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. To date, no treatment induces efficient viral clearance, and a better characterization of virus-host interactions is required to develop new therapeutic strategies. METHODS Using loss-of-function strategies, we validated the unexpected proviral activity of Janus kinase 1 (JAK1) - a key player in innate immunity - in the HDV life cycle and determined its mechanism of action on HDV through various functional analyses including co-immunoprecipitation assays. RESULTS We confirmed the key role of JAK1 kinase activity in HDV infection. Moreover, our results suggest that JAK1 inhibition is associated with a modulation of ERK1/2 activation and S-HDAg phosphorylation, which is crucial for viral replication. Finally, we showed that FDA-approved JAK1-specific inhibitors are efficient antivirals in relevant in vitro models including primary human hepatocytes. CONCLUSIONS Taken together, we uncovered JAK1 as a key host factor for HDV replication and a potential target for new antiviral treatment. IMPACT AND IMPLICATIONS Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. As no curative treatment is currently available, new therapeutic strategies based on host-targeting agents are urgently needed. Here, using loss-of-function strategies, we uncover an unexpected interaction between JAK1, a major player in the innate antiviral response, and HDV infection. We demonstrated that JAK1 kinase activity is crucial for both the phosphorylation of the delta antigen and the replication of the virus. By demonstrating the antiviral potential of several FDA-approved JAK1 inhibitors, our results could pave the way for the development of innovative therapeutic strategies to tackle this global health threat.
Collapse
Affiliation(s)
- Margaux J Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Laura Meiss-Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emma Gerges
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emanuele Felli
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Fabio Giannone
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Patrick Pessaux
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Julie Lucifora
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France; Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut Universitaire de France, Paris, France
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.
| |
Collapse
|
4
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
5
|
Asif B, Koh C. Hepatitis D virus (HDV): investigational therapeutic agents in clinical trials. Expert Opin Investig Drugs 2022; 31:905-920. [PMID: 34482769 PMCID: PMC11391510 DOI: 10.1080/13543784.2021.1977795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chronic Hepatitis D virus (HDV) infection is a global disease leading to rapidly progressive liver disease with increased liver-related mortality and hepatocellular carcinoma. Therapies are minimally effective; however, an increased understanding of the HDV lifecycle has provided new potential drug targets. Thus, there is a growing number of investigational therapeutics under exploration for HDV with the potential for successful viral eradication. AREAS COVERED This review discusses the clinical impact of HDV infection and offers an in-depth look at the HDV life cycle. The authors examine current and new drug targets and the investigational therapies in clinical trials. The search strategy was based on PubMed database and clinicaltrials.gov which highlight the most up-to-date aspects of investigational therapies for chronic HDV infection.
Collapse
Affiliation(s)
- Bilal Asif
- Digestive Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
6
|
Jung S, Altstetter SM, Protzer U. Innate immune recognition and modulation in hepatitis D virus infection. World J Gastroenterol 2020; 26:2781-2791. [PMID: 32550754 PMCID: PMC7284172 DOI: 10.3748/wjg.v26.i21.2781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/30/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) is a global health threat with more than 15 million humans affected. Current treatment options are largely unsatisfactory leaving chronically infected humans at high risk to develop liver cirrhosis and hepatocellular carcinoma. HDV is the only human satellite virus known. It encodes only two proteins, and requires Hepatitis B virus (HBV) envelope protein expression for productive virion release and spread of the infection. How HDV could evolve and why HBV was selected as a helper virus remains unknown. Since the discovery of Na+-taurocholate co-transporting polypeptide as the essential uptake receptor for HBV and HDV, we are beginning to understand the interactions of HDV and the immune system. While HBV is mostly regarded a stealth virus, that escapes innate immune recognition, HBV-HDV coinfection is characterized by a strong innate immune response. Cytoplasmic RNA sensor melanoma differentiation antigen 5 has been reported to recognize HDV RNA replication and activate innate immunity. Innate immunity, however, seems not to impair HDV replication while it inhibits HBV. In this review, we describe what is known up-to-date about the interplay between HBV as a helper and HDV’s immune evasion strategy and identify where additional research is required.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Coinfection/complications
- Coinfection/immunology
- Coinfection/pathology
- Coinfection/virology
- Hepatitis B virus/genetics
- Hepatitis B virus/immunology
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/pathology
- Hepatitis B, Chronic/virology
- Hepatitis D, Chronic/complications
- Hepatitis D, Chronic/immunology
- Hepatitis D, Chronic/pathology
- Hepatitis D, Chronic/virology
- Hepatitis Delta Virus/genetics
- Hepatitis Delta Virus/immunology
- Hepatitis Delta Virus/metabolism
- Hepatitis delta Antigens/immunology
- Hepatitis delta Antigens/metabolism
- Humans
- Immune Evasion
- Immunity, Innate
- Interferon-Induced Helicase, IFIH1/metabolism
- Liver/immunology
- Liver/pathology
- Liver/virology
- Liver Cirrhosis/immunology
- Liver Cirrhosis/pathology
- Liver Cirrhosis/virology
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Organic Anion Transporters, Sodium-Dependent/metabolism
- RNA, Viral/immunology
- RNA, Viral/metabolism
- Receptors, Pattern Recognition/immunology
- Receptors, Pattern Recognition/metabolism
- Satellite Viruses/genetics
- Satellite Viruses/immunology
- Satellite Viruses/metabolism
- Symporters/metabolism
- Virus Replication/immunology
Collapse
Affiliation(s)
- Stephanie Jung
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich D-81675, Germany
| | | | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich D-81675, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich D-81675, Germany
| |
Collapse
|
7
|
Lucifora J, Delphin M. Current knowledge on Hepatitis Delta Virus replication. Antiviral Res 2020; 179:104812. [PMID: 32360949 DOI: 10.1016/j.antiviral.2020.104812] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Hepatitis B Virus (HBV) that infects liver parenchymal cells is responsible for severe liver diseases and co-infection with Hepatitis Delta Virus (HDV) leads to the most aggressive form of viral hepatitis. Even tough being different for their viral genome (relaxed circular partially double stranded DNA for HBV and circular RNA for HDV), HBV and HDV are both maintained as episomes in the nucleus of infected cells and use the cellular machinery for the transcription of their viral RNAs. We propose here an update on the current knowledge on HDV replication cycle that may eventually help to identify new antiviral targets.
Collapse
Affiliation(s)
- Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France.
| | - Marion Delphin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| |
Collapse
|
8
|
Abeywickrama-Samarakoon N, Cortay JC, Sureau C, Müller S, Alfaiate D, Guerrieri F, Chaikuad A, Schröder M, Merle P, Levrero M, Dény P. Hepatitis Delta Virus histone mimicry drives the recruitment of chromatin remodelers for viral RNA replication. Nat Commun 2020; 11:419. [PMID: 31964889 PMCID: PMC6972770 DOI: 10.1038/s41467-020-14299-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/21/2019] [Indexed: 12/26/2022] Open
Abstract
Hepatitis Delta virus (HDV) is a satellite of Hepatitis B virus with a single-stranded circular RNA genome. HDV RNA genome synthesis is carried out in infected cells by cellular RNA polymerases with the assistance of the small hepatitis delta antigen (S-HDAg). Here we show that S-HDAg binds the bromodomain (BRD) adjacent to zinc finger domain 2B (BAZ2B) protein, a regulatory subunit of BAZ2B-associated remodeling factor (BRF) ISWI chromatin remodeling complexes. shRNA-mediated silencing of BAZ2B or its inactivation with the BAZ2B BRD inhibitor GSK2801 impairs HDV replication in HDV-infected human hepatocytes. S-HDAg contains a short linear interacting motif (SLiM) KacXXR, similar to the one recognized by BAZ2B BRD in histone H3. We found that the integrity of the S-HDAg SLiM sequence is required for S-HDAg interaction with BAZ2B BRD and for HDV RNA replication. Our results suggest that S-HDAg uses a histone mimicry strategy to co-activate the RNA polymerase II-dependent synthesis of HDV RNA and sustain HDV replication. Histone mimicry of viral components is a strategy to subvert host factors for virus replication. Here, the authors show that an acetylated histone-like motif of the small Hepatitis Delta Antigen (S-HDAg) interacts with the chromatin remodeler BAZ2B to recruit the DNA-dependent RNA polymerase II for HDV RNA replication.
Collapse
Affiliation(s)
| | - Jean-Claude Cortay
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, INSERM U1134, Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75739, Paris, France
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Dulce Alfaiate
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Département de Pathologie et Immunologie, Université de Genève, avenue de Champel 41, 1206, Genève, Switzerland.,Department of Infectious and Tropical Diseases, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France
| | - Francesca Guerrieri
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Italian Institute of Technology (IIT) - Center for Life Nanoscience (CLNS), Sapienza University, Viale Regina Elena, 291, 00161, Rome, Italy
| | - Apirat Chaikuad
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Martin Schröder
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Philippe Merle
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Department of Hepatology, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France
| | - Massimo Levrero
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France. .,Italian Institute of Technology (IIT) - Center for Life Nanoscience (CLNS), Sapienza University, Viale Regina Elena, 291, 00161, Rome, Italy. .,Department of Hepatology, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France.
| | - Paul Dény
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France. .,Laboratoire de Microbiologie Clinique, Groupe des Hôpitaux Universitaires de Paris - Seine Saint Denis, UFR Santé Médecine, Biologie Humaine, Université Paris 13, 125 Rue de Stalingrad, 93009, Bobigny, France.
| |
Collapse
|
9
|
Gilman C, Heller T, Koh C. Chronic hepatitis delta: A state-of-the-art review and new therapies. World J Gastroenterol 2019; 25:4580-4597. [PMID: 31528088 PMCID: PMC6718034 DOI: 10.3748/wjg.v25.i32.4580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic delta hepatitis is the most severe form of viral hepatitis affecting nearly 65 million people worldwide. Individuals with this devastating illness are at higher risk for developing cirrhosis and hepatocellular carcinoma. Delta virus is a defective RNA virus that requires hepatitis B surface antigen for propagation in humans. Infection can occur in the form of a co-infection with hepatitis B, which can be self-limiting, vs superinfection in a patient with established hepatitis B infection, which often leads to chronicity in majority of cases. Current noninvasive tools to assess for advanced liver disease have limited utility in delta hepatitis. Guidelines recommend treatment with pegylated interferon, but this is limited to patients with compensated disease and is efficacious in about 30% of those treated. Due to limited treatment options, novel agents are being investigated and include entry, assembly and export inhibitors of viral particles in addition to stimulators of the host immune response. Future clinical trials should take into consideration the interaction of hepatitis B and hepatitis D as suppression of one virus can lead to the activation of the other. Also, surrogate markers of treatment efficacy have been proposed.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Coinfection/drug therapy
- Coinfection/epidemiology
- Coinfection/virology
- Drug Therapy, Combination/methods
- Global Burden of Disease
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B virus/immunology
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/epidemiology
- Hepatitis B, Chronic/virology
- Hepatitis D, Chronic/drug therapy
- Hepatitis D, Chronic/epidemiology
- Hepatitis D, Chronic/virology
- Hepatitis Delta Virus/immunology
- Hepatitis Delta Virus/pathogenicity
- Humans
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Lipopeptides/pharmacology
- Lipopeptides/therapeutic use
- Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Randomized Controlled Trials as Topic
- Review Literature as Topic
- Superinfection/drug therapy
- Superinfection/epidemiology
- Superinfection/virology
- Symporters/antagonists & inhibitors
- Symporters/metabolism
- Therapies, Investigational/methods
- Treatment Outcome
- Virus Assembly/drug effects
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Christy Gilman
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
10
|
Chang WS, Pettersson JHO, Le Lay C, Shi M, Lo N, Wille M, Eden JS, Holmes EC. Novel hepatitis D-like agents in vertebrates and invertebrates. Virus Evol 2019; 5:vez021. [PMID: 31321078 PMCID: PMC6628682 DOI: 10.1093/ve/vez021] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis delta virus (HDV) is the smallest known RNA virus, encoding a single protein. Until recently, HDV had only been identified in humans, where it is strongly associated with co-infection with hepatitis B virus (HBV). However, the recent discovery of HDV-like viruses in metagenomic samples from birds and snakes suggests that this virus has a far longer evolutionary history. Herein, using additional meta-transcriptomic data, we show that highly divergent HDV-like viruses are also present in fish, amphibians, and invertebrates, with PCR and Sanger sequencing confirming the presence of the invertebrate HDV-like viruses. Notably, the novel viruses identified here share genomic features characteristic of HDV, such as a circular genome of only approximately 1.7 kb in length, and self-complementary, unbranched rod-like structures. Coiled-coil domains, leucine zippers, conserved residues with essential biological functions, and isoelectronic points similar to those in the human hepatitis delta virus antigens (HDAgs) were also identified in the putative non-human viruses. Importantly, none of these novel HDV-like viruses were associated with hepadnavirus infection, supporting the idea that the HDV–HBV association may be specific to humans. Collectively, these data not only broaden our understanding of the diversity and host range of HDV, but also shed light on its origin and evolutionary history.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - John H-O Pettersson
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Callum Le Lay
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Mang Shi
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Michelle Wille
- The Peter Doherty Institute for Infection and Immunity, WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, VIC, Australia
| | - John-Sebastian Eden
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Mentha N, Clément S, Negro F, Alfaiate D. A review on hepatitis D: From virology to new therapies. J Adv Res 2019; 17:3-15. [PMID: 31193285 PMCID: PMC6526199 DOI: 10.1016/j.jare.2019.03.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective virus that requires the hepatitis B virus (HBV) to complete its life cycle in human hepatocytes. HDV virions contain an envelope incorporating HBV surface antigen protein and a ribonucleoprotein containing the viral circular single-stranded RNA genome associated with both forms of hepatitis delta antigen, the only viral encoded protein. Replication is mediated by the host cell DNA-dependent RNA polymerases. HDV infects up to72 million people worldwide and is associated with an increased risk of severe and rapidly progressive liver disease. Pegylated interferon-alpha is still the only available treatment for chronic hepatitis D, with poor tolerance and dismal success rate. Although the development of antivirals inhibiting the viral replication is challenging, as HDV does not possess its own polymerase, several antiviral molecules targeting other steps of the viral life cycle are currently under clinical development: Myrcludex B, which blocks HDV entry into hepatocytes, lonafarnib, a prenylation inhibitor that prevents virion assembly, and finally REP 2139, which is thought to inhibit HBsAg release from hepatocytes and interact with hepatitis delta antigen. This review updates the epidemiology, virology and management of HDV infection.
Collapse
Affiliation(s)
- Nathalie Mentha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Sophie Clément
- Division of Clinical Pathology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Francesco Negro
- Division of Clinical Pathology, Geneva University Hospitals, 1211 Geneva, Switzerland
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Dulce Alfaiate
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
12
|
Hepatitis Delta Antigen Regulates mRNA and Antigenome RNA Levels during Hepatitis Delta Virus Replication. J Virol 2019; 93:JVI.01989-18. [PMID: 30728256 DOI: 10.1128/jvi.01989-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023] Open
Abstract
Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of acute and chronic liver disease. HDV produces three processed RNAs that accumulate in infected cells: the circular genome; the circular antigenome, which serves as a replication intermediate; and lesser amounts of the mRNA, which encodes the sole viral protein, hepatitis delta antigen (HDAg). The HDV genome and antigenome RNAs form ribonucleoprotein complexes with HDAg. Although HDAg is required for HDV replication, it is not known how the relative amounts of HDAg and HDV RNA affect replication, or whether HDAg synthesis is regulated by the virus. Using a novel transfection system in which HDV replication is initiated using in vitro-synthesized circular HDV RNAs, HDV replication was found to depend strongly on the relative amounts of HDV RNA and HDAg. HDV controls these relative amounts via differential effects of HDAg on the production of HDV mRNA and antigenome RNA, both of which are synthesized from the genome RNA template. mRNA synthesis is favored at low HDAg levels but becomes saturated at high HDAg concentrations. Antigenome RNA accumulation increases linearly with HDAg and dominates at high HDAg levels. These results provide a conceptual model for how HDV antigenome RNA production and mRNA transcription are controlled from the earliest stage of infection onward and also demonstrate that, in this control, HDV behaves similarly to other negative-strand RNA viruses, even though there is no genetic similarity between them.IMPORTANCE Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of liver disease; approximately 15 million people are chronically infected worldwide. There are no licensed therapies available. HDV is not related to any known virus, and few details regarding its replication cycle are known. One key question is whether and how HDV regulates the relative amounts of viral RNA and protein in infected cells. Such regulation might be important because the HDV RNA and protein form complexes that are essential for HDV replication, and the proper stoichiometry of these complexes could be critical for their function. Our results show that the relative amounts of HDV RNA and protein in cells are indeed important for HDV replication and that the virus does control them. These observations indicate that further study of these regulatory mechanisms is required to better understand replication of this serious human pathogen.
Collapse
|
13
|
Tabernero D, Cortese MF, Buti M, Rodriguez-Frias F. HDV evolution-will viral resistance be an issue in HDV infection? Curr Opin Virol 2018; 32:100-107. [PMID: 30415162 DOI: 10.1016/j.coviro.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
Hepatitis D virus (HDV) is a hepatotropic subviral infectious agent, obligate satellite of the Hepatitis B virus (HBV) and is highly related to viroids. HDV affects around 5% of the 257 million chronic HBV-carriers worldwide, leading to the most severe form of chronic viral hepatitis. Interferon alpha is the only approved treatment for chronic hepatitis D, albeit with low response rates (around 20%-30%). New antiviral strategies are currently under study. Due to the high viral evolution rates (10-3 to 10-4 substitutions/site/year) HDV forms an extremely complex viral population (quasispecies) that can be studied by Next-Generation Sequencing. Therefore, although specific viral resistance in HDV infection has not been reported, it cannot be completely discarded.
Collapse
Affiliation(s)
- David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Maria Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Francisco Rodriguez-Frias
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| |
Collapse
|
14
|
Botelho-Souza LF, Vasconcelos MPA, Dos Santos ADO, Salcedo JMV, Vieira DS. Hepatitis delta: virological and clinical aspects. Virol J 2017; 14:177. [PMID: 28903779 PMCID: PMC5597996 DOI: 10.1186/s12985-017-0845-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
There are an estimated 400 million chronic carriers of HBV worldwide; between 15 and 20 million have serological evidence of exposure to HDV. Traditionally, regions with high rates of endemicity are central and northern Africa, the Amazon Basin, eastern Europe and the Mediterranean, the Middle East and parts of Asia. There are two types of HDV/HBV infection which are differentiated by the previous status infection by HBV for the individual. Individuals with acute HBV infection contaminated by HDV is an HDV/HBV co-infection, while individuals with chronic HBV infection contaminated by HDV represent an HDV/HBV super-infection. The appropriate treatment for chronic hepatitis delta is still widely discussed since it does not have an effective drug. Alpha interferon is currently the only licensed therapy for the treatment of chronic hepatitis D. The most widely used drug is pegylated interferon but only approximately 25% of patients maintain a sustained viral response after 1 year of treatment. The best marker of therapeutic success would be the clearance of HBsAg, but this data is rare in clinical practice. Therefore, the best way to predict a sustained virologic response is the maintenance of undetectable HDV RNA levels.
Collapse
Affiliation(s)
- Luan Felipo Botelho-Souza
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil.
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil.
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil.
| | | | - Alcione de Oliveira Dos Santos
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Juan Miguel Villalobos Salcedo
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Deusilene Souza Vieira
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| |
Collapse
|
15
|
Belyhun Y, Liebert UG, Maier M. Clade homogeneity and low rate of delta virus despite hyperendemicity of hepatitis B virus in Ethiopia. Virol J 2017; 14:176. [PMID: 28899424 PMCID: PMC5596854 DOI: 10.1186/s12985-017-0844-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background Although hepatitis B virus (HBV) is hyperendemic and heterogeneous in its genetic diversity in Ethiopia, little is known about hepatitis D virus (HDV) circulating genotypes and molecular diversity. Methods A total of 321 hepatitis B surface antigen (HBsAg) positives (125 HIV co-infected, 102 liver disease patients and 94 blood donors) were screened for anti-HDV antibody. The anti-HDV positive sera were subjected to Real time PCR for HDV-RNA confirmation. The non coding genome region (spanning from 467 to 834 nucleotides) commonly used for HDV genotyping as well as complete HDV genome were sequenced for genotyping and molecular analysis. Results The anti-HDV antibody was found to be 3.2% (3) in blood donors, 8.0% (10) in HIV co-infected individuals and 12.7% (13) in liver disease patients. None of the HIV co-infected patients who revealed HBV lamivudine (3TC) resistance at tyrosine-methionine/isoleucine-aspartate-aspartate (YM(I)DD) reverse transcriptase (RT) motif with concomitant vaccine escape gene mutants was positive for anti-HDV antibody. The HDV viremia rate was 33.3%, 30.0% and 23.1% in respect to the above study groups. All the six isolates sequenced were phylogenetically classified as HDV genotype 1 (HDV-1) and grouped into two monophyletic clusters. Amino acid (aa) residues analysis of clathrin heavy chain (CHC) domain and the isoprenylation signal site (Py) at 19 carboxyl (C)-terminal amino acids (aa 196–214) and the HDV RNA binding domain (aa 79–107) were highly conserved and showed a very little nucleotide variations. All the sequenced isolates showed serine at amino acid position 202. The RNA editing targets of the anti-genomic HDV RNA (nt1012) and its corresponding genomic RNA (nt 580) showed nucleotides A and C, respectively. Conclusions The low seroprevalence and viraemic rates of HDV in particular during HIV-confection might be highly affected by HBV drug resistance selected HBsAg mutant variants in this setting, although HDV-1 sequences analysis revealed clade homogeneity and highly conserved structural and functional domains. Thus, the potential role of HBV drug resistance associated polymerase mutations and concomitant HBsAg protein variability on HDV viral assembly, secretion and infectivity needs further investigation.
Collapse
Affiliation(s)
- Yeshambel Belyhun
- Institute of Virology, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany. .,School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Uwe Gerd Liebert
- Institute of Virology, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Melanie Maier
- Institute of Virology, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| |
Collapse
|
16
|
Sureau C, Negro F. The hepatitis delta virus: Replication and pathogenesis. J Hepatol 2016; 64:S102-S116. [PMID: 27084031 DOI: 10.1016/j.jhep.2016.02.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) is a defective virus and a satellite of the hepatitis B virus (HBV). Its RNA genome is unique among animal viruses, but it shares common features with some plant viroids, including a replication mechanism that uses a host RNA polymerase. In infected cells, HDV genome replication and formation of a nucleocapsid-like ribonucleoprotein (RNP) are independent of HBV. But the RNP cannot exit, and therefore propagate, in the absence of HBV, as the latter supplies the propagation mechanism, from coating the HDV RNP with the HBV envelope proteins for cell egress to delivery of the HDV virions to the human hepatocyte target. HDV is therefore an obligate satellite of HBV; it infects humans either concomitantly with HBV or after HBV infection. HDV affects an estimated 15 to 20 million individuals worldwide, and the clinical significance of HDV infection is more severe forms of viral hepatitis--acute or chronic--, and a higher risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV monoinfection. This review covers molecular aspects of HDV replication cycle, including its interaction with the helper HBV and the pathogenesis of infection in humans.
Collapse
Affiliation(s)
- Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS INSERM U1134, Paris, France.
| | - Francesco Negro
- Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
17
|
Cunha C, Tavanez JP, Gudima S. Hepatitis delta virus: A fascinating and neglected pathogen. World J Virol 2015; 4:313-322. [PMID: 26568914 PMCID: PMC4641224 DOI: 10.5501/wjv.v4.i4.313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatitis delta virus (HDV) is the etiologic agent of the most severe form of virus hepatitis in humans. Sharing some structural and functional properties with plant viroids, the HDV RNA contains a single open reading frame coding for the only virus protein, the Delta antigen. A number of unique features, including ribozyme activity, RNA editing, rolling-circle RNA replication, and redirection for a RNA template of host DNA-dependent RNA polymerase II, make this small pathogen an excellent model to study virus-cell interactions and RNA biology. Treatment options for chronic hepatitis Delta are scarce and ineffective. The disease burden is perhaps largely underestimated making the search for new, specific drugs, targets, and treatment strategies an important public health challenge. In this review we address the main features of virus structure, replication, and interaction with the host. Virus pathogenicity and current treatment options are discussed in the light of recent developments.
Collapse
|
18
|
Guo Z, King T. Therapeutic Strategies and New Intervention Points in Chronic Hepatitis Delta Virus Infection. Int J Mol Sci 2015; 16:19537-52. [PMID: 26295228 PMCID: PMC4581312 DOI: 10.3390/ijms160819537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/18/2022] Open
Abstract
Chronic hepatitis delta virus infection (CHD) is a condition arising from super-infection of hepatitis B virus (HBV)-infected patients, resulting in a more rapid advance in liver pathology and hepatocellular carcinoma than is observed for HBV mono-infection. Although hepatitis delta virus (HDV) is structurally simple, its life cycle involves the complex participation of host enzymes, HBV-derived surface antigen (HBsAg), and HDV-auto-ribozyme and hepatitis delta antigen (HDAg) activities. Unsatisfactory clinical trial results with interferon-based therapies are motivating researchers to adjust and redirect the approach to CHD drug development. This new effort will likely require additional structural and functional studies of the viral and cellular/host components involved in the HDV replication cycle. This review highlights recent work aimed at new drug interventions for CHD, with interpretation of key pre-clinical- and clinical trial outcomes and a discussion of promising new technological approaches to antiviral drug design.
Collapse
Affiliation(s)
- Zhimin Guo
- Huron Peak Ave., Superior, CO 80027, USA.
| | - Thomas King
- Allevagen, LLC, 4105 Perry St., Denver, CO 80212, USA.
| |
Collapse
|
19
|
Protein-peptide arrays for detection of specific anti-hepatitis D virus (HDV) genotype 1, 6, and 8 antibodies among HDV-infected patients by surface plasmon resonance imaging. J Clin Microbiol 2015; 53:1164-71. [PMID: 25631795 DOI: 10.1128/jcm.03002-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Liver diseases linked to hepatitis B-hepatitis D virus co- or superinfections are more severe than those during hepatitis B virus (HBV) monoinfection. The diagnosis of hepatitis D virus (HDV) infection therefore remains crucial in monitoring patients but is often overlooked. To integrate HDV markers into high-throughput viral hepatitis diagnostics, we studied the binding of anti-HDV antibodies (Abs) using surface plasmon resonance imaging (SPRi). We focused on the ubiquitous HDV genotype 1 (HDV1) and the more uncommon African-HDV6 and HDV8 genotypes to define an array with recombinant proteins or peptides. Full-length and truncated small hepatitis D antigen (S-HDAg) recombinant proteins of HDV genotype 1 (HDV1) and 11 HDV peptides of HDV1, 6, and 8, representing various portions of the delta antigen were grafted onto biochips, allowing SPRi measurements to be made. Sixteen to 17 serum samples from patients infected with different HDV genotypes were injected onto protein and peptide chips. In all, Abs against HDV proteins and/or peptides were detected in 16 out of 17 infected patients (94.12%), although the amplitude of the SPR signal varied. The amino-terminal part of the protein was poorly immunogenic, while epitope 65-80, exposed on the viral ribonucleoprotein, may be immunodominant, as 9 patient samples led to a specific SPR signal on peptide 65 type 1 (65#1), independently of the infecting genotype. In this pilot study, we confirmed that HDV infection screening based on the reactivity of patient Abs against carefully chosen HDV peptides and/or proteins can be included in a syndrome-based viral hepatitis diagnostic assay. The preliminary results indicated that SPRi studying direct physical HDAg-anti-HDV Ab interactions was more convenient using linear peptide epitopes than full-length S-HDAg proteins, due to the regeneration process, and may represent an innovative approach for a hepatitis syndrome-viral etiology-exploring array.
Collapse
|
20
|
Shirvani-Dastgerdi E, Amini-Bavil-Olyaee S, Alavian SM, Trautwein C, Tacke F. Comprehensive analysis of mutations in the hepatitis delta virus genome based on full-length sequencing in a nationwide cohort study and evolutionary pattern during disease progression. Clin Microbiol Infect 2014; 21:510.e11-23. [PMID: 25656625 DOI: 10.1016/j.cmi.2014.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/21/2014] [Accepted: 12/18/2014] [Indexed: 02/06/2023]
Abstract
Delta hepatitis, caused by co-infection or super-infection of hepatitis D virus (HDV) in hepatitis B virus (HBV) -infected patients, is the most severe form of chronic hepatitis, often progressing to liver cirrhosis and liver failure. Although 15 million individuals are affected worldwide, molecular data on the HDV genome and its proteins, small and large delta antigen (S-/L-HDAg), are limited. We therefore conducted a nationwide study in HBV-HDV-infected patients from Iran and successfully amplified 38 HDV full genomes and 44 L-HDAg sequences from 34 individuals. Phylogenetic analyses of full-length HDV and L-HDAg isolates revealed that all strains clustered with genotype 1 and showed high genotypic distances to HDV genotypes 2 to 8, with a maximal distance to genotype 3. Longitudinal analyses in individual patients indicated a reverse evolutionary trend, especially in L-HDAg amino acid composition, over time. Besides multiple sequence variations in the hypervariable region of HDV, nucleotide substitutions preferentially occurred in the stabilizing P4 domain of the HDV ribozyme. A high rate of single amino acid changes was detected in structural parts of L-HDAg, whereas its post-translational modification sites were highly conserved. Interestingly, several non-synonymous mutations were positively selected that affected immunogenic epitopes of L-HDAg towards CD8 T-cell- and B-cell-driven immune responses. Hence, our comprehensive molecular analysis comprising a nationwide cohort revealed phylogenetic relationships and provided insight into viral evolution within individual hosts. Moreover, preferential areas of frequent mutations in the HDV ribozyme and antigen protein were determined in this study.
Collapse
Affiliation(s)
| | - S Amini-Bavil-Olyaee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, Los Angeles, CA, USA
| | - S Moayed Alavian
- Baqiyatallah Research Centre for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - C Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - F Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| |
Collapse
|
21
|
Huang CR, Lo SJ. Hepatitis D virus infection, replication and cross-talk with the hepatitis B virus. World J Gastroenterol 2014; 20:14589-14597. [PMID: 25356023 PMCID: PMC4209526 DOI: 10.3748/wjg.v20.i40.14589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis remains a worldwide public health problem. The hepatitis D virus (HDV) must either coinfect or superinfect with the hepatitis B virus (HBV). HDV contains a small RNA genome (approximately 1.7 kb) with a single open reading frame (ORF) and requires HBV supplying surface antigens (HBsAgs) to assemble a new HDV virion. During HDV replication, two isoforms of a delta antigen, a small delta antigen (SDAg) and a large delta antigen (LDAg), are produced from the same ORF of the HDV genome. The SDAg is required for HDV replication, whereas the interaction of LDAg with HBsAgs is crucial for packaging of HDV RNA. Various clinical outcomes of HBV/HDV dual infection have been reported, but the molecular interaction between HBV and HDV is poorly understood, especially regarding how HBV and HDV compete with HBsAgs for assembling virions. In this paper, we review the role of endoplasmic reticulum stress induced by HBsAgs and the molecular pathway involved in their promotion of LDAg nuclear export. Because the nuclear sublocalization and export of LDAg is regulated by posttranslational modifications (PTMs), including acetylation, phosphorylation, and isoprenylation, we also summarize the relationship among HBsAg-induced endoplasmic reticulum stress signaling, LDAg PTMs, and nuclear export mechanisms in this review.
Collapse
|
22
|
Ding J, Yi Y, Su Q, Qiu F, Jia Z, Bi S. High expression of small hepatitis D antigen in Escherichia coli and ELISA for diagnosis of hepatitis D virus. J Virol Methods 2014; 197:34-8. [DOI: 10.1016/j.jviromet.2013.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 11/30/2022]
|
23
|
Lunemann S, Grabowski J, Wedemeyer H. Immunopathogenesis of Hepatitis D. LIVER IMMUNOLOGY 2014:231-241. [DOI: 10.1007/978-3-319-02096-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Abbas Z, Afzal R. Life cycle and pathogenesis of hepatitis D virus: A review. World J Hepatol 2013; 5:666-675. [PMID: 24409335 PMCID: PMC3879688 DOI: 10.4254/wjh.v5.i12.666] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus which requires the help of hepatitis B virus (HBV) virus for its replication and assembly of new virions. HDV genome contains only one actively transcribed open reading frame which encodes for two isoforms of hepatitis delta antigen. Post-translational modifications of small and large delta antigens (S-HDAg and L-HDAg) involving phosphorylation and isoprenylation respectively confer these antigens their specific properties. S-HDAg is required for the initiation of the viral genome replication, whereas L-HDAg serves as a principal inhibitor of replication and is essential for the assembly of new virion particles. Immune mediation has usually been implicated in HDV-associated liver damage. The pathogenesis of HDV mainly involves interferon-α signaling inhibition, HDV-specific T-lymphocyte activation and cytokine responses, and tumor necrosis factor-alpha and nuclear factor kappa B signaling. Due to limited protein coding capacity, HDV makes use of host cellular proteins to accomplish their life cycle processes, including transcription, replication, post-transcriptional and translational modifications. This intimate host-pathogen interaction significantly alters cell proteome and is associated with an augmented expression of pro-inflammatory, growth and anti-apoptotic factors which explains severe necroinflammation and increased cell survival and an early progression to hepatocellular carcinoma in HDV patients. The understanding of the process of viral replication, HBV-HDV interactions, and etio-pathogenesis of the severe course of HDV infection is helpful in identifying the potential therapeutic targets in the virus life cycle for the prophylaxis and treatment of HDV infection and complications.
Collapse
Affiliation(s)
- Zaigham Abbas
- Zaigham Abbas, Rafia Afzal, Department of Hepatogastroenterology, Sindh Institute of Urology and Transplantation, Karachi 75500, Pakistan
| | - Rafia Afzal
- Zaigham Abbas, Rafia Afzal, Department of Hepatogastroenterology, Sindh Institute of Urology and Transplantation, Karachi 75500, Pakistan
| |
Collapse
|
25
|
Hepatitis delta virus: a peculiar virus. Adv Virol 2013; 2013:560105. [PMID: 24198831 PMCID: PMC3807834 DOI: 10.1155/2013/560105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 02/07/2023] Open
Abstract
The hepatitis delta virus (HDV) is distributed worldwide and related to the most severe form of viral hepatitis. HDV is a satellite RNA virus dependent on hepatitis B surface antigens to assemble its envelope and thus form new virions and propagate infection. HDV has a small 1.7 Kb genome making it the smallest known human virus. This deceivingly simple virus has unique biological features and many aspects of its life cycle remain elusive. The present review endeavors to gather the available information on HDV epidemiology and clinical features as well as HDV biology.
Collapse
|
26
|
Huang CR, Wang RYL, Hsu SC, Lo SJ. Lysine-71 in the large delta antigen of hepatitis delta virus clade 3 modulates its localization and secretion. Virus Res 2012; 170:75-84. [PMID: 23022530 DOI: 10.1016/j.virusres.2012.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/30/2012] [Accepted: 08/30/2012] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV) is an RNA virus and eight clades of HDV have been identified. HDV clade 3 (HDV-3) is isolated only in the northern area of South America. The outcome of HDV-3 infection is associated with severe fulminant hepatitis. Variations in the large delta antigen (LDAg) between HDV clade 1 (HDV-1) and HDV-3 have been proposed to contribute to differences in viral secretion efficiency, but which changes might be relevant remains unclear. The control of subcellular localization of LDAg has been reported to be associated with post-translational modifications, such as phosphorylation and isoprenylation. We have observed evidence for acetylation on the LDAg of HDV-3 (LDAg-3) and LDAg of HDV-1 (LDAg-1). Green fluorescent protein-fused LDAg-3 (GFP-LD3) was used to investigate the cellular distribution and secretion of the protein. Sequence alignment of LDAg amino acids suggested that lysine-71 of LDAg-3 could be an acetylation site. Expression of a mutant form of LDAg-3 with an arginine-substitution at lysine-71 (GFP-LD3K71R) showed a distribution of the protein predominantly in the cytoplasm instead of the nucleus. Western blot analyses of secreted empty viral particles (EVPs) revealed a higher amount of secreted GFP-LD3K71R compared to GFP-LD3. Furthermore, the ectopic expression of p300, a histone acetyltransferase, led to a reduction of GFP-LD3 in EVPs. By contrast, expression of three histone deacetylases (HDAC-4, -5, and -6) facilitated the secretion of GFP-LD3. Combined, our observations support the hypothesis that the acetylation status of LDAg-3 plays a role in regulating LDAg-3's localization inside the nucleus or cytoplasm, and its secretion.
Collapse
Affiliation(s)
- Chi-Ruei Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | | | | | | |
Collapse
|
27
|
Abstract
Hepatitis delta virus (HDV) is a small, defective RNA virus that can infect only individuals who have hepatitis B virus (HBV); worldwide more than 15 million people are co-infected. There are eight reported genotypes of HDV with unexplained variations in their geographical distribution and pathogenicity. The hepatitis D virion is composed of a coat of HBV envelope proteins surrounding the nucleocapsid, which consists of a single-stranded, circular RNA genome complexed with delta antigen, the viral protein. HDV is clinically important because although it suppresses HBV replication, it causes severe liver disease with rapid progression to cirrhosis and hepatic decompensation. The range of clinical presentation is wide, varying from mild disease to fulminant liver failure. The prevalence of HDV is declining in some endemic areas but increasing in northern and central Europe because of immigration. Treatment of HDV is with pegylated interferon alfa; however, response rates are poor. Increased understanding of the molecular virology of HDV will identify novel therapeutic targets for this most severe form of chronic viral hepatitis.
Collapse
Affiliation(s)
- Sarah A Hughes
- Institute of Liver Studies, King's College Hospital, London, UK
| | | | | |
Collapse
|
28
|
Interaction of host cellular proteins with components of the hepatitis delta virus. Viruses 2010; 2:189-212. [PMID: 21994607 PMCID: PMC3185554 DOI: 10.3390/v2010189] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 12/18/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known RNA pathogen capable of propagation in the human host and causes substantial global morbidity and mortality. Due to its small size and limited protein coding capacity, HDV is exquisitely reliant upon host cellular proteins to facilitate its transcription and replication. Remarkably, HDV does not encode an RNA-dependent RNA polymerase which is traditionally required to catalyze RNA-templated RNA synthesis. Furthermore, HDV lacks enzymes responsible for post-transcriptional and -translational modification, processes which are integral to the HDV life cycle. This review summarizes the known HDV-interacting proteins and discusses their significance in HDV biology.
Collapse
|