1
|
Pan Y, Zhang L, Ma W, Ibrahim YM, Zhang W, Wang M, Wang X, Xu Y, Gao C, Chen H, Zhang H, Xia C, Wang Y. miR-191-5p suppresses PRRSV replication by targeting porcine EGFR to enhance interferon signaling. Front Microbiol 2024; 15:1473504. [PMID: 39469460 PMCID: PMC11514493 DOI: 10.3389/fmicb.2024.1473504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major thread to the global swine industry, lack of effective control strategies. This study explores the regulatory role of a small non-coding RNA, miR-191-5p, in PRRSV infection. We observed that miR-191-5p significantly inhibits PRRSV in porcine alveolar macrophages (PAMs), contrasting with negligible effects in MARC-145 and HEK293-CD163 cells, suggesting a cell-specific antiviral effect. Further investigation unveiled that miR-191-5p directly targets the porcine epidermal growth factor receptor (EGFR), whose overexpression or EGF-induced activation suppresses type I interferon (IFN-I) signaling, promoting PRRSV replication. In contrast, siRNA-or miR-191-5p-induced EGFR downregulation or EGFR inhibitor boosts IFN-I signaling, reducing viral replication. Notably, this miRNA alleviates the suppressive effect of EGF on IFN-I signaling, underscoring its regulatory function. Further investigation revealed interconnections among miR-191-5p, EGFR and signal transducer and activator of transcription 3 (STAT3). Modulation of STAT3 activity influenced IFN-I signaling and PRRSV replication, with STAT3 knockdown countering EGFR activation-induced virus replication. Combination inhibition of STAT3 and miR-191-5p suggests that STAT3 acts downstream in EGFR's antiviral response. Furthermore, miR-191-5p's broad efficacy in restricting various PRRSV strains in PAMs was identified. Collectively, these findings elucidate a novel mechanism of miR-191-5p in activating host IFN-I signaling to inhibit PRRSV replication, highlighting its potential in therapeutic applications against PRRSV.
Collapse
Affiliation(s)
- Yu Pan
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Zhang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjie Ma
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yassein M. Ibrahim
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Science, Chongqing, China
| | - Wenli Zhang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengjie Wang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yunfei Xu
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Science, Chongqing, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Ma X, Zheng H, Chen H, Ma S, Wei Z. Porcine epidemic diarrhea virus: A review of detection, inhibition of host gene expression and evasion of host innate immune. Microb Pathog 2024; 195:106873. [PMID: 39173850 DOI: 10.1016/j.micpath.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
As one of the most important swine enteropathogenic coronavirus, porcine epidemic diarrhea virus (PEDV) is the causative agent of an acute and devastating enteric disease that causes lethal watery diarrhea in suckling piglets. Recent progress in studying PEDV has revealed many intriguing findings on its prevalence and genetic evolution, rapid diagnosis, suppression of host gene expression, and suppression of the host innate immune system. Due to the continuous mutation of the PEDV genome, viral evasions from innate immune defenses and mixed infection with other coronaviruses, the spread of the virus is becoming wider and faster, making it even more necessary to prevent the infections caused by wild-type PEDV variants. It has also been reported that PEDV nsp1 is an essential virulence determinant and is critical for inhibiting host gene expression by structural and biochemical analyses. The inhibition of host protein synthesis employed by PEDV nsp1 may contribute to the regulation of host cell proliferation and immune evasion-related biological functions. In this review, we critically evaluate the recent studies on these aspects of PEDV and assess prospects in understanding the function of PEDV proteins in regulating host innate immune response and viral virulence.
Collapse
Affiliation(s)
- Xiao Ma
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihua Zheng
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, China
| | - Hongying Chen
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Shijie Ma
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Zhanyong Wei
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Wu Y, Wang Y, Wang X, Li M, Yan H, Shi H, Shi D, Chen J, Guo L, Feng L. Elevation of IL-8 secretion induced by PEDV infection via NF-κB signaling pathway. Front Cell Infect Microbiol 2024; 14:1422560. [PMID: 39104852 PMCID: PMC11298435 DOI: 10.3389/fcimb.2024.1422560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is associated with severe enteritis, which contributes to high mortality in piglets. The aim of this study was to describe molecular mechanisms associated with proinflammatory cytokine(s) production during PEDV infection. We showed that infection of porcine intestine epithelial cell clone J2 (IPEC-J2) with PEDV induces a gradual increase in interleukin 8 (IL-8) production at different time points, as well as infection of Vero E6 with PEDV. The secretion of IL-8 in these two cell lines infected with PEDV is related to the activation of NF-κB. Furthermore, the cells expressing PEDV M or E protein can induce the upregulation of IL-8. These findings suggest that the IL-8 production can be the initiator of inflammatory response by the host cells upon PEDV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Longjun Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
4
|
Yu R, Dong S, Chen B, Si F, Li C. Developing Next-Generation Live Attenuated Vaccines for Porcine Epidemic Diarrhea Using Reverse Genetic Techniques. Vaccines (Basel) 2024; 12:557. [PMID: 38793808 PMCID: PMC11125984 DOI: 10.3390/vaccines12050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the etiology of porcine epidemic diarrhea (PED), a highly contagious digestive disease in pigs and especially in neonatal piglets, in which a mortality rate of up to 100% will be induced. Immunizing pregnant sows remains the most promising and effective strategy for protecting their neonatal offspring from PEDV. Although half a century has passed since its first report in Europe and several prophylactic vaccines (inactivated or live attenuated) have been developed, PED still poses a significant economic concern to the swine industry worldwide. Hence, there is an urgent need for novel vaccines in clinical practice, especially live attenuated vaccines (LAVs) that can induce a strong protective lactogenic immune response in pregnant sows. Reverse genetic techniques provide a robust tool for virological research from the function of viral proteins to the generation of rationally designed vaccines. In this review, after systematically summarizing the research progress on virulence-related viral proteins, we reviewed reverse genetics techniques for PEDV and their application in the development of PED LAVs. Then, we probed into the potential methods for generating safe, effective, and genetically stable PED LAV candidates, aiming to provide new ideas for the rational design of PED LAVs.
Collapse
Affiliation(s)
| | | | | | - Fusheng Si
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| | - Chunhua Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| |
Collapse
|
5
|
Shin HJ, Lee W, Ku KB, Yoon GY, Moon HW, Kim C, Kim MH, Yi YS, Jun S, Kim BT, Oh JW, Siddiqui A, Kim SJ. SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics to induce robust virus propagation. Signal Transduct Target Ther 2024; 9:125. [PMID: 38734691 PMCID: PMC11088672 DOI: 10.1038/s41392-024-01836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.
Collapse
Affiliation(s)
- Hye Jin Shin
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Wooseong Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Keun Bon Ku
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gun Young Yoon
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyun-Woo Moon
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Chonsaeng Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Mi-Hwa Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Gyeongnam Biohealth Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Yoon-Sun Yi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, Republic of Korea
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, Republic of Korea
| | - Bum-Tae Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Aleem Siddiqui
- Division of Infectious Diseases, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seong-Jun Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
6
|
Amegashie EA, Asamoah P, Ativi LEA, Adusei-Poku M, Bonney EY, Tagoe EA, Paintsil E, Torpey K, Quaye O. Clinical outcomes and immunological response to SARS-CoV-2 infection among people living with HIV. Exp Biol Med (Maywood) 2024; 249:10059. [PMID: 38628843 PMCID: PMC11020089 DOI: 10.3389/ebm.2024.10059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
People living with HIV (PLWH) usually suffer from co-infections and co-morbidities including respiratory tract infections. SARS-CoV-2 has been reported to cause respiratory infections. There are uncertainties in the disease severity and immunological response among PLWH who are co-infected with COVID-19. This review outlines the current knowledge on the clinical outcomes and immunological response to SARS-CoV-2 among PLWH. Literature was searched in Google scholar, Scopus, PubMed, and Science Direct conforming with the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines from studies published from January 2020 to June 2023. A total of 81 studies from 25 countries were identified, and RT-PCR was used in confirming COVID-19 in 80 of the studies. Fifty-seven studies assessed risk factors and clinical outcomes in HIV patients co-infected with COVID-19. Thirty-nine of the studies indicated the following factors being associated with severe outcomes in HIV/SARS-CoV-2: older age, the male sex, African American race, smoking, obesity, cardiovascular diseases, low CD4+ count, high viral load, tuberculosis, high levels of inflammatory markers, chronic kidney disease, hypertension, diabetes, interruption, and delayed initiation of ART. The severe outcomes are patients' hospitalization, admission at intensive care unit, mechanical ventilation, and death. Twenty (20) studies, however, reported no difference in clinical presentation among co-infected compared to mono-infected individuals. Immune response to SARS-CoV-2 infection was investigated in 25 studies, with some of the studies reporting high levels of inflammatory markers, T cell exhaustion and lower positive conversion rate of IgG in PLWH. There is scanty information on the cytokines that predisposes to severity among HIV/SARS-CoV-2 co-infected individuals on combined ART. More research work should be carried out to validate co-infection-related cytokines and/or immune markers to SARS-CoV-2 among PLWH.
Collapse
Affiliation(s)
- Esimebia Adjovi Amegashie
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Prince Asamoah
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Lawrencia Emefa Ami Ativi
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Mildred Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Elijah Paintsil
- Department of Paediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Kwasi Torpey
- Department of Population, Family and Reproductive Health, School of Public Health, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Li H, Zhou C, Zhang M, Yuan N, Huang X, Xiang J, Wang L, Shi L. Transcriptomics yields valuable information regarding the response mechanisms of Chinese Min pigs infected with PEDV. Front Vet Sci 2023; 10:1295723. [PMID: 38192721 PMCID: PMC10773921 DOI: 10.3389/fvets.2023.1295723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/15/2023] [Indexed: 01/10/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes porcine epidemic diarrhea (PED), a highly infectious disease, which has resulted in huge economic losses for the pig industry. To date, the pathogenic and immune response mechanism was not particularly clear. The purpose of this study was to investigate the pathogenic and immune responses of pigs infected with PEDV.In this study, 12 Min pigs were randomly selected without taking colostrum. At 3 days old, eight piglets were infected with 1 mL of PEDV solution (10 TCID50/ml), and the remaining four piglets were handled by 1 mL of 0.9% normal saline. Within the age of 7 days old, four piglets died and were considered as the death group. Correspondingly, four alive individuals were classified into the resistance group. Tissues of the duodenum, jejunum, ileum, colon, cecum, and rectum of piglets in the three groups were collected to measure the PEDV content. Additionally, the jejunum was used for the measurements and analyses of Hematoxylin-eosinstaining (HE), immunohistochemical sections, and transcriptomics. The phenotypes of Min piglets infected with PEDV showed that the viral copy numbers and jejunal damage had significant differences between the death and resistance groups. We also observed the transcriptome of the jejunum, and the differentially expressed (DE) analysis observed 6,585 DE protein-coding genes (PCGs), 3,188 DE long non-coding RNAs (lncRNAs), and 350 DE microRNAs (miRNAs), which were mainly involved in immune response and metabolic pathways. Furthermore, the specific expressed molecules for each group were identified, and 97 PCGs,108 lncRNAs, and 51 miRNAs were included in the ceRNA-regulated networks. By weighted gene co-expression network analysis (WGCNA) and transcription factor (TF) prediction, 27 significant modules and 32 significant motifs (E-value < 0.05) annotated with 519 TFs were detected. Of these TFs, 53 were DE PCGs. In summary, the promising key PCGs, lncRNAs, and miRNAs related to the pathogenic and immunological response of pigs infected with PEDV were detected and provided new insights into the pathogenesis of PEDV.
Collapse
Affiliation(s)
- Huihui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxiang Zhou
- Huanghe Science and Technology University, Zhengzhou, China
| | - Meimei Zhang
- Beijing Vica Biotechnology Co., LTD, Beijing, China
| | - Na Yuan
- Beijing Vica Biotechnology Co., LTD, Beijing, China
| | - Xiaoyu Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaojiao Xiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Zhang Y, Zhang S, Sun Z, Liu X, Liao G, Niu Z, Kan Z, Xu S, Zhang J, Zou H, Zhang X, Song Z. Porcine epidemic diarrhea virus causes diarrhea by activating EGFR to regulates NHE3 activity and mobility on plasma membrane. Front Microbiol 2023; 14:1237913. [PMID: 38029193 PMCID: PMC10655020 DOI: 10.3389/fmicb.2023.1237913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
As part of the genus Enteropathogenic Coronaviruses, Porcine Epidemic Diarrhea Virus (PEDV) is an important cause of early diarrhea and death in piglets, and one of the most difficult swine diseases to prevent and control in the pig industry. Previously, we found that PEDV can block Na+ absorption and induce diarrhea in piglets by inhibiting the activity of the sodium-hydrogen ion transporter NHE3 in pig intestinal epithelial cells, but the mechanism needs to be further explored. The epidermal growth factor receptor (EGFR) has been proved to be one of the co-receptors involved in many viral infections and a key protein involved in the regulation of NHE3 activity in response to various pathological stimuli. Based on this, our study used porcine intestinal epithelial cells (IPEC-J2) as an infection model to investigate the role of EGFR in regulating NHE3 activity after PEDV infection. The results showed that EGFR mediated viral invasion by interacting with PEDV S1, and activated EGFR regulated the downstream EGFR/ERK signaling pathway, resulting in decreased expression of NHE3 and reduced NHE3 mobility at the plasma membrane, which ultimately led to decreased NHE3 activity. The low level of NHE3 expression in intestinal epithelial cells may be a key factor leading to PEDV-induced diarrhea in newborn piglets. This study reveals the importance of EGFR in the regulation of NHE3 activity by PEDV and provides new targets and clues for the prevention and treatment of PEDV-induced diarrhea in piglets.
Collapse
Affiliation(s)
- YiLing Zhang
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
- Department of Animal Science and Technology, Three Gorges Vocational College, Chongqing, China
| | - Shujuan Zhang
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - Zhiwei Sun
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - Xiangyang Liu
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Guisong Liao
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - Zheng Niu
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Shanxi, China
| | - ZiFei Kan
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
- School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - ShaSha Xu
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - JingYi Zhang
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - Hong Zou
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - Xingcui Zhang
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - ZhenHui Song
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
- Immunology Research Center, Institute of Medical Research, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Niu Z, Zhang S, Xu S, Wang J, Wang S, Hu X, Zhang L, Ren L, Zhang J, Liu X, Zhou Y, Yang L, Song Z. Porcine Epidemic Diarrhea Virus Replication in Human Intestinal Cells Reveals Potential Susceptibility to Cross-Species Infection. Viruses 2023; 15:v15040956. [PMID: 37112936 PMCID: PMC10142432 DOI: 10.3390/v15040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Various coronaviruses have emerged as a result of cross-species transmission among humans and domestic animals. Porcine epidemic diarrhea virus (PEDV; family Coronaviridae, genus Alphacoronavirus) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets. Porcine small intestinal epithelial cells (IPEC-J2 cells) can be used as target cells for PEDV infection. However, the origin of PEDV in pigs, the host range, and cross-species infection of PEDV remain unclear. To determine whether PEDV has the ability to infect human cells in vitro, human small intestinal epithelial cells (FHs 74 Int cells) were inoculated with PEDV LJX and PEDV CV777 strains. The results indicated that PEDV LJX, but not PEDV CV777, could infect FHs 74 Int cells. Furthermore, we observed M gene mRNA transcripts and N protein expression in infected FHs 74 Int cells. A one-step growth curve showed that the highest viral titer of PEDV occurred at 12 h post infection. Viral particles in vacuoles were observed in FHs 74 Int cells at 24 h post infection. The results proved that human small intestinal epithelial cells are susceptible to PEDV infection, suggesting the possibility of cross-species transmission of PEDV.
Collapse
Affiliation(s)
- Zheng Niu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Shujuan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Shasha Xu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Jing Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Siying Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Xia Hu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Li Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Lixin Ren
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Jingyi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Xiangyang Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Liu Yang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Zhenhui Song
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| |
Collapse
|
10
|
Qin Z, Nai Z, Li G, He X, Wang W, Xia J, Chao W, Li L, Jiang X, Liu D. The Oral Inactivated Porcine Epidemic Diarrhea Virus Presenting in the Intestine Induces Mucosal Immunity in Mice with Alginate-Chitosan Microcapsules. Animals (Basel) 2023; 13:ani13050889. [PMID: 36899746 PMCID: PMC10000104 DOI: 10.3390/ani13050889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
The porcine epidemic diarrhea virus, PEDV, which causes diarrhea, vomiting and death in piglets, causes huge economic losses. Therefore, understanding how to induce mucosal immune responses in piglets is essential in the mechanism and application against PEDV infection with mucosal immunity. A method of treatment in our research was used to make an oral vaccine that packaged the inactive PEDV with microencapsulation, which consisted of sodium alginate and chitosan, and adapted the condition of the gut in mice. The in vitro release experiment of microcapsules showed that inactive PEDV was not only easily released in saline and acid solutions but also had an excellent storage tolerance, and was suitable for use as an oral vaccine. Interestingly, both experimental groups with different doses of inactive virus enhanced the secretion of specific antibodies in the serum and intestinal mucus, which caused the effective neutralization against PEDV in the Vero cell by both IgG and IgA, respectively. Moreover, the microencapsulation could stimulate the differentiation of CD11b+ and CD11c+ dendritic cells, which means that the microencapsulation was also identified as an oral adjuvant to help phagocytosis of dendritic cells in mice. Flow cytometry revealed that the B220+ and CD23+ of the B cells could significantly increase antibody production with the stimulation from the antigens' PEDV groups, and the microencapsulation could also increase the cell viability of B cells, stimulating the secretion of antibodies such as IgG and IgA in mice. In addition, the microencapsulation promoted the expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. Moreover, proinflammatory cytokines, such as IL-1, TNF-α, and IL-17, were inhibited by alginate and chitosan in the microencapsulation groups compared with the inactivated PEDV group. Taken together, our results demonstrate that the microparticle could play the role of mucosal adjuvant, and release inactivated PEDV in the gut, which can effectively stimulate mucosal and systemic immune responses in mice.
Collapse
Affiliation(s)
- Ziliang Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zida Nai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Gang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Wentao Wang
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Jiqiao Xia
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wang Chao
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Lu Li
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Xinpeng Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.J.); (D.L.); Tel.: +86-451-55190722 (X.J. & D.L.)
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
- Correspondence: (X.J.); (D.L.); Tel.: +86-451-55190722 (X.J. & D.L.)
| |
Collapse
|
11
|
Wang Y, Huang H, Li D, Zhao C, Li S, Qin P, Li Y, Yang X, Du W, Li W, Li Y. Identification of niclosamide as a novel antiviral agent against porcine epidemic diarrhea virus infection by targeting viral internalization. Virol Sin 2023; 38:296-308. [PMID: 36702255 PMCID: PMC10176444 DOI: 10.1016/j.virs.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), an enteropathogenic coronavirus, has catastrophic impacts on the global pig industry. However, there remain no effective drugs against PEDV infection. In this study, we utilized a recombinant PEDV expressing renilla luciferase (PEDV-Rluc) to screen potential anti-PEDV agents from an FDA-approved drug library in Vero cells. Four compounds were identified that significantly decreased luciferase activity of PEDV-Rluc. Among them, niclosamide was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index. It can efficiently inhibit viral RNA synthesis, protein expression and viral progeny production of classical and variant PEDV strains in a dose-dependent manner. Time of addition assay showed that niclosamide exhibited potent anti-PEDV activity when added simultaneously with or after virus infection. Furthermore, niclosamide significantly inhibited the entry stage of PEDV infection by affecting viral internalization rather than viral attachment to cells. In addition, a combination with other small molecule inhibitors of endosomal acidification enhanced the anti-PEDV effect of niclosamide in vitro. Taken together, these findings suggested that niclosamide is a novel antiviral agent that might provide a basis for the development of novel drug therapies against PEDV and other related pathogenic coronavirus infections.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huimin Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dongliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuai Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Panpan Qin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yaqin Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjuan Du
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, the Netherlands
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China; Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, the Netherlands.
| |
Collapse
|
12
|
Yao D, Guo D, Zhang Y, Chen Z, Gao X, Xing G, Yang X, Wang X, Di S, Cai J, Niu B. Identification of mutations in porcine STAT5A that contributes to the transcription of CISH. Front Vet Sci 2023; 9:1090833. [PMID: 36733428 PMCID: PMC9887310 DOI: 10.3389/fvets.2022.1090833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Identification of causative genes or genetic variants associated with phenotype traits benefits the genetic improvement of animals. CISH plays a role in immunity and growth, however, the upstream transcriptional factors of porcine CISH and the genetic variations in these factors remain unclear. In this study, we firstly identified the minimal core promoter of porcine CISH and confirmed the existence of STATx binding sites. Overexpression and RT-qPCR demonstrated STAT5A increased CISH transcriptional activity (P < 0.01) and mRNA expression (P < 0.01), while GATA1 inhibited CISH transcriptional activity (P < 0.01) and the following mRNA expression (P < 0.05 or P < 0.01). Then, the putative functional genetic variations of porcine STAT5A were screened and a PCR-SSCP was established for genotype g.508A>C and g.566C>T. Population genetic analysis showed the A allele frequency of g.508A>C and C allele frequency of g.566C>T was 0.61 and 0.94 in Min pigs, respectively, while these two alleles were fixed in the Landrace population. Statistical analysis showed that Min piglets with CC genotype at g.566C>T or Hap1: AC had higher 28-day body weight, 35-day body weight, and ADG than TC or Hap3: CT animals (P < 0.05, P < 0.05). Further luciferase activity assay demonstrated that the activity of g.508A>C in the C allele was lower than the A allele (P < 0.05). Collectively, the present study demonstrated that STAT5A positively regulated porcine CISH transcription, and SNP g.566C>T in the STAT5A was associated with the Min piglet growth trait.
Collapse
Affiliation(s)
- Diwen Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Yingkun Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhihua Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaowen Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guiling Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xibiao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shengwei Di
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | | | - Buyue Niu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Buyue Niu ✉
| |
Collapse
|
13
|
Li M, Guo L, Feng L. Interplay between swine enteric coronaviruses and host innate immune. Front Vet Sci 2022; 9:1083605. [PMID: 36619958 PMCID: PMC9814124 DOI: 10.3389/fvets.2022.1083605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets, causing severe losses worldwide. SeCoV includes the following four members: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine delta coronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Clinically, mixed infections with several SeCoVs, which are more common in global farms, cause widespread infections. It is worth noting that PDCoV has a broader host range, suggesting the risk of PDCoV transmission across species, posing a serious threat to public health and global security. Studies have begun to focus on investigating the interaction between SeCoV and its host. Here, we summarize the effects of viral proteins on apoptosis, autophagy, and innate immunity induced by SeCoV, providing a theoretical basis for an in-depth understanding of the pathogenic mechanism of coronavirus.
Collapse
|
14
|
Chen Z, Yao D, Guo D, Sun Y, Liu L, Kou M, Yang X, Di S, Cai J, Wang X, Niu B. A functional mutation associated with piglet diarrhea partially by regulating the transcription of porcine STAT3. Front Vet Sci 2022; 9:1034187. [DOI: 10.3389/fvets.2022.1034187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to search for functional mutations within the promoter of porcine STAT3 and to provide causative genetic variants associated with piglet diarrhea. We firstly confirmed that STAT3 expressed higher in the small intestine than in the spleen, stomach and large intestine of SPF piglets, respectively (P < 0.05). Then, 10 genetic variations in the porcine STAT3 promoter region was identified by direct sequencing. Among them, three mutations SNP1: g.−870 G>A, SNP2: g.−584 A>C and a 6-bp Indel in the promoter region that displayed significant differential transcriptional activities were identified. Association analyses showed that SNP1: g.−870 G>A was significantly associated with piglet diarrhea (P < 0.05) and the GG animals had lower diarrhea score than AA piglets (P < 0.01) in both Min and Landrace population. Further functional analysis revealed that E2F6 repressed the transcriptional efficiency of STAT3 in vitro, by binding the G allele of SNP1. The present study suggested that SNP1: g.−870 G>A was a piglet diarrhea-associated variant that directly affected binding with E2F6, leading to changes in STAT3 transcription which might partially contribute to piglet diarrhea susceptibility or resistance.
Collapse
|
15
|
Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, Yang L, Yuan H, Pang D, Ouyang H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022; 14:2434. [PMID: 36366532 PMCID: PMC9695474 DOI: 10.3390/v14112434] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
16
|
Cheng YX, Xu WB, Dong WR, Zhang YM, Li BW, Chen DY, Xiao Y, Guo XL, Shu MA. Identification and functional analysis of epidermal growth factor receptor (EGFR) from Scylla paramamosain: The first evidence of two EGFR genes in animal and their involvement in immune defense against pathogen infection. Mol Immunol 2022; 151:143-157. [PMID: 36150275 DOI: 10.1016/j.molimm.2022.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/29/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a pleiotropic glycoprotein which plays a role in regulating cell proliferation, migration and differentiation. However, the genetic diversity of EGFR in crustaceans as well as its function, such as whether it is involved in immune regulation, remains obscure. In this study, two EGFR genes, including EGFR1 and EGFR2, and three transcripts were identified and characterized in Scylla Paramamosain for the first time. To our knowledge, this is the first time that more than one EGFR gene was identified in a single species. The complete open reading frames (ORFs) of SpEGFR1, SpEGFR2a and SpEGFR2b were 4377 bp, 4404 bp and 4341 bp encoding deduced proteins of 1458 amino acids (aa), 1467 aa and 1446 aa, respectively. All EGFR had a signal peptide region and two Recep_L_domain region, followed by a transmembrane region and a conserved tyrosine kinase domain (TyrKc), and phylogenetic analysis demonstrated three SpEGFRs clustered together with invertebrate EGFR branch. Tissue specific expression analysis depicted that all SpEGFRs presented similar transcription patterns. The expression levels of SpEGFR1 and SpEGFR2s in hepatopancreas and gills were significantly altered after the stimulation of bacterial and viral pathogens including Staphylococcus aureus, Vibrio alginolyticus, White spot syndromre virus and Polycytidylinic acid. The in vivo RNA interference assays demonstrated that expression levels of SpIKK, two members of NF-κB (SpRelish and SpDorsal) and six antimicrobial peptide (AMP) genes (SpCrustin and SpALF1-5) were significantly reduced when SpEGFR1 or SpEGFR2 was silenced, respectively. The transcription patterns of SpIKK, SpRelish, SpDorsal and AMPs exhibited similar down- or up-regulation trend when the primary cultured hemocytes were treated with EGFR antagonist or agonist for 24 h. These results suggested that SpEGFR might play an important role in innate immune responses to bacterial and viral infections by regulating the NF-κB pathway. It also provided a better understanding of the origin or evolution of EGFR in crustaceans and even invertebrates.
Collapse
Affiliation(s)
- Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bing-Wu Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ling Guo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
A Review of Bioactive Compounds against Porcine Enteric Coronaviruses. Viruses 2022; 14:v14102217. [PMID: 36298772 PMCID: PMC9607050 DOI: 10.3390/v14102217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022] Open
Abstract
Pig diarrhea is a universal problem in the process of pig breeding, which seriously affects the development of the pig industry. Porcine enteric coronaviruses (PECoVs) are common pathogens causing diarrhea in pigs, currently including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV). With the prosperity of world transportation and trade, the spread of viruses is becoming wider and faster, making it even more necessary to prevent PECoVs. In this paper, the host factors required for the efficient replication of these CoVs and the compounds that exhibit inhibitory effects on them were summarized to promote the development of drugs against PECoVs. This study will be also helpful in discovering general host factors that affect the replication of CoVs and provide references for the prevention and treatment of other CoVs.
Collapse
|
18
|
McGill JR, Lagassé HAD, Hernandez N, Hopkins L, Jankowski W, McCormick Q, Simhadri V, Golding B, Sauna ZE. A structural homology approach to identify potential cross-reactive antibody responses following SARS-CoV-2 infection. Sci Rep 2022; 12:11388. [PMID: 35794133 PMCID: PMC9259575 DOI: 10.1038/s41598-022-15225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
The emergence of the novel SARS-CoV-2 virus is the most important public-health issue of our time. Understanding the diverse clinical presentations of the ensuing disease, COVID-19, remains a critical unmet need. Here we present a comprehensive listing of the diverse clinical indications associated with COVID-19. We explore the theory that anti-SARS-CoV-2 antibodies could cross-react with endogenous human proteins driving some of the pathologies associated with COVID-19. We describe a novel computational approach to estimate structural homology between SARS-CoV-2 proteins and human proteins. Antibodies are more likely to interrogate 3D-structural epitopes than continuous linear epitopes. This computational workflow identified 346 human proteins containing a domain with high structural homology to a SARS-CoV-2 Wuhan strain protein. Of these, 102 proteins exhibit functions that could contribute to COVID-19 clinical pathologies. We present a testable hypothesis to delineate unexplained clinical observations vis-à-vis COVID-19 and a tool to evaluate the safety-risk profile of potential COVID-19 therapies.
Collapse
Affiliation(s)
- Joseph R McGill
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - H A Daniel Lagassé
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Nancy Hernandez
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Louis Hopkins
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Wojciech Jankowski
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Quinn McCormick
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vijaya Simhadri
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Basil Golding
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Zuben E Sauna
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
19
|
Zhang YG, Chen HW, Zhang HX, Wang K, Su J, Chen YR, Wang XR, Fu ZF, Cui M. EGFR Activation Impairs Antiviral Activity of Interferon Signaling in Brain Microvascular Endothelial Cells During Japanese Encephalitis Virus Infection. Front Microbiol 2022; 13:894356. [PMID: 35847084 PMCID: PMC9279666 DOI: 10.3389/fmicb.2022.894356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The establishment of Japanese encephalitis virus (JEV) infection in brain microvascular endothelial cells (BMECs) is thought to be a critical step to induce viral encephalitis with compromised blood–brain barrier (BBB), and the mechanisms involved in this process are not completely understood. In this study, we found that epidermal growth factor receptor (EGFR) is related to JEV escape from interferon-related host innate immunity based on a STRING analysis of JEV-infected primary human brain microvascular endothelial cells (hBMECs) and mouse brain. At the early phase of the infection processes, JEV induced the phosphorylation of EGFR. In JEV-infected hBMECs, a rapid internalization of EGFR that co-localizes with the endosomal marker EEA1 occurred. Using specific inhibitors to block EGFR, reduced production of viral particles was observed. Similar results were also found in an EGFR-KO hBMEC cell line. Even though the process of viral infection in attachment and entry was not noticeably influenced, the induction of IFNs in EGFR-KO hBMECs was significantly increased, which may account for the decreased viral production. Further investigation demonstrated that EGFR downstream cascade ERK, but not STAT3, was involved in the antiviral effect of IFNs, and a lowered viral yield was observed by utilizing the specific inhibitor of ERK. Taken together, the results revealed that JEV induces EGFR activation, leading to a suppression of interferon signaling and promotion of viral replication, which could provide a potential target for future therapies for the JEV infection.
Collapse
Affiliation(s)
- Ya-Ge Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hao-Wei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hong-Xin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Ke Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Jie Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Yan-Ru Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiang-Ru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Zhen-Fang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
- *Correspondence: Min Cui
| |
Collapse
|
20
|
Dependency of EGFR activation in vanadium-based sensitization to oncolytic virotherapy. Mol Ther Oncolytics 2022; 25:146-159. [PMID: 35572196 PMCID: PMC9065483 DOI: 10.1016/j.omto.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virotherapy is a clinically validated approach to treat cancers such as melanoma; however, tumor resistance to virus makes its efficacy variable. Compounds such as sodium orthovanadate (vanadate) can overcome viral resistance and synergize with RNA-based oncolytic viruses. In this study, we explored the basis of vanadate mode of action and identified key cellular components in vanadate’s oncolytic virus-enhancing mechanism using a high-throughput kinase inhibitor screen. We found that several kinase inhibitors affecting signaling downstream of the epidermal growth factor receptor (EGFR) pathway abrogated the oncolytic virus-enhancing effects of vanadate. EGFR pathway inhibitors such as gefitinib negated vanadate-associated changes in the phosphorylation and localization of STAT1/2 as well as NF-κB signaling. Moreover, gefitinib treatment could abrogate the viral sensitizing response of vanadium compounds in vivo. Together, we demonstrate that EGFR signaling plays an integral role in vanadium viral sensitization and that pharmacological EGFR blockade can counteract vanadium/oncolytic virus combination therapy.
Collapse
|
21
|
Abstract
Viruses are intracellular pathogen that exploit host cellular machinery for their propagation. Extensive research on virus-host interaction have shed light on an alternative antiviral strategy that targets host cell factors. Epidermal growth factor receptor (EGFR) is a versatile signal transducer that is involved in a range of cellular processes. Numerous studies have revealed how viruses exploit the function of EGFR in different stages of viral life cycle. In general, viruses attach onto the host cell surface and interacts with EGFR to facilitate viral entry, viral replication and spread as well as evasion from host immunosurveillance. Moreover, virus-induced activation of EGFR signalling is associated with mucin expression, tissue damage and carcinogenesis that contribute to serious complications. Herein, we review our current understanding of roles of EGFR in viral infection and its potential as therapeutic target in managing viral infection. We also discuss the available EGFR-targeted therapies and their limitations.
Collapse
Affiliation(s)
- Kah Man Lai
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
22
|
Zhang J, Yuan S, Peng Q, Ding Z, Hao W, Peng G, Xiao S, Fang L. Porcine Epidemic Diarrhea Virus nsp7 Inhibits Interferon-Induced JAK-STAT Signaling through Sequestering the Interaction between KPNA1 and STAT1. J Virol 2022; 96:e0040022. [PMID: 35442061 PMCID: PMC9093119 DOI: 10.1128/jvi.00400-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic enteric coronavirus that causes high mortality in piglets. Interferon (IFN) responses are the primary defense mechanism against viral infection; however, viruses always evolve elaborate strategies to antagonize the antiviral action of IFN. Previous study showed that PEDV nonstructural protein 7 (nsp7), a component of the viral replicase polyprotein, can antagonize ploy(I:C)-induced type I IFN production. Here, we found that PEDV nsp7 also antagonized IFN-α-induced JAK-STAT signaling and the production of IFN-stimulated genes. PEDV nsp7 did not affect the protein and phosphorylation levels of JAK1, Tyk2, STAT1, and STAT2 or the formation of the interferon-stimulated gene factor 3 (ISGF3) complex. However, PEDV nsp7 prevented the nuclear translocation of STAT1 and STAT2. Mechanistically, PEDV nsp7 interacted with the DNA binding domain of STAT1/STAT2, which sequestered the interaction between karyopherin α1 (KPNA1) and STAT1, thereby blocking the nuclear transport of ISGF3. Collectively, these data reveal a new mechanism developed by PEDV to inhibit type I IFN signaling pathway. IMPORTANCE In recent years, an emerging porcine epidemic diarrhea virus (PEDV) variant has gained attention because of serious outbreaks of piglet diarrhea in China and the United States. Coronavirus nonstructural protein 7 (nsp7) has been proposed to act with nsp8 as part of an RNA primase to generate RNA primers for viral RNA synthesis. However, accumulating evidence indicates that coronavirus nsp7 can also antagonize type I IFN production. Our present study extends previous findings and demonstrates that PEDV nsp7 also antagonizes IFN-α-induced IFN signaling by competing with KPNA1 for binding to STAT1, thereby enriching the immune regulation function of coronavirus nsp7.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuangling Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenqi Hao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
23
|
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int J Mol Sci 2022; 23:ijms23073953. [PMID: 35409315 PMCID: PMC8999375 DOI: 10.3390/ijms23073953] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species, which made the epidemic situation of SeCoV more complex and changeable. Recent studies have begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection. These complex interactions may be directly involved in viral replication or the alteration of some signal pathways.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| |
Collapse
|
24
|
The tyrosine phosphatase PTPN14 inhibits the activation of STAT3 in PEDV infected Vero cells. Vet Microbiol 2022; 267:109391. [DOI: 10.1016/j.vetmic.2022.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/23/2022]
|
25
|
Zhang K, Lin S, Li J, Deng S, Zhang J, Wang S. Modulation of Innate Antiviral Immune Response by Porcine Enteric Coronavirus. Front Microbiol 2022; 13:845137. [PMID: 35237253 PMCID: PMC8882816 DOI: 10.3389/fmicb.2022.845137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Host’s innate immunity is the front-line defense against viral infections, but some viruses have evolved multiple strategies for evasion of antiviral innate immunity. The porcine enteric coronaviruses (PECs) consist of porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), transmissible gastroenteritis coronavirus (TGEV), and swine acute diarrhea syndrome-coronavirus (SADS-CoV), which cause lethal diarrhea in neonatal pigs and threaten the swine industry worldwide. PECs interact with host cells to inhibit and evade innate antiviral immune responses like other coronaviruses. Moreover, the immune escape of porcine enteric coronaviruses is the key pathogenic mechanism causing infection. Here, we review the most recent advances in the interactions between viral and host’s factors, focusing on the mechanisms by which viral components antagonize interferon (IFN)-mediated innate antiviral immune responses, trying to shed light on new targets and strategies effective for controlling and eliminating porcine enteric coronaviruses.
Collapse
|
26
|
Hu Y, Xie X, Yang L, Wang A. A Comprehensive View on the Host Factors and Viral Proteins Associated With Porcine Epidemic Diarrhea Virus Infection. Front Microbiol 2021; 12:762358. [PMID: 34950116 PMCID: PMC8688245 DOI: 10.3389/fmicb.2021.762358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a coronavirus pathogen of the pig intestinal tract, can cause fatal watery diarrhea in piglets, thereby causing huge economic losses to swine industries around the world. The pathogenesis of PEDV has intensively been studied; however, the viral proteins of PEDV and the host factors in target cells, as well as their interactions, which are the foundation of the molecular mechanisms of viral infection, remain to be summarized and updated. PEDV has multiple important structural and functional proteins, which play various roles in the process of virus infection. Among them, the S and N proteins play vital roles in biological processes related to PEDV survival via interacting with the host cell proteins. Meanwhile, a number of host factors including receptors are required for the infection of PEDV via interacting with the viral proteins, thereby affecting the reproduction of PEDV and contributing to its life cycle. In this review, we provide an updated understanding of viral proteins and host factors, as well as their interactions in terms of PEDV infection. Additionally, the effects of cellular factors, events, and signaling pathways on PEDV infection are also discussed. Thus, these comprehensive and profound insights should facilitate for the further investigations, control, and prevention of PEDV infection.
Collapse
Affiliation(s)
- Yi Hu
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiaohong Xie
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Aibing Wang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,PCB Biotechnology, LLC, Rockville, MD, United States
| |
Collapse
|
27
|
Innate Immune Evasion of Porcine Epidemic Diarrhea Virus through Degradation of F-box and WD repeat domain-containing 7 protein via Ubiquitin-proteasome Pathway. J Virol 2021; 96:e0088921. [PMID: 34495699 DOI: 10.1128/jvi.00889-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a porcine disease associated with swine epidemic diarrhea. Different antagonistic strategies have been identified, and the mechanism by which PEDV infection impairs the production of interferon (IFN) and delays the activation of the IFN response to escape host innate immunity has been determined, but the pathogenic mechanisms of PEDV infection remain enigmatic. Our preliminary results revealed that endogenous F-box and WD repeat domain-containing 7 (FBXW7), the substrate recognition component of the SCF-type E3 ubiquitin ligase, is downregulated in PEDV-infected Vero E6 cells, according to the results from an isobaric tags for relative and absolute quantification (iTRAQ) analysis. Overexpression of FBXW7 in target cells makes them more resistant to PEDV infection, whereas ablation of FBXW7 expression by small interfering RNA (siRNA) significantly promotes PEDV infection. In addition, FBXW7 was verified as an innate antiviral factor capable of enhancing the expression of RIG-I and TBK1, and it was found to induce interferon-stimulated genes (ISGs), which led to an elevated antiviral state of the host cells. Moreover, we revealed that PEDV nonstructural protein 2 (nsp2) interacts with FBXW7 and targets FBXW7 for degradation through the K48-linked ubiquitin-proteasome pathway. Consistent with the results proven in vitro, FBXW7 reduction was also confirmed in different intestinal tissues from PEDV-infected specific-pathogen-free (SPF) pigs. Taken together, the data indicated that PEDV has evolved with a distinct antagonistic strategy to circumvent the host antiviral response by targeting the ubiquitin-proteasome-mediated degradation of FBXW7. Our findings provide novel insights into PEDV infection and pathogenesis. IMPORTANCE To counteract the host antiviral defenses, most viruses, including coronaviruses, have evolved with diverse strategies to dampen host IFN-mediated antiviral response, wither by interfering with or evading specific host regulators at multiple steps of this response. In this study, a novel antagonistic strategy was revealed showing that PEDV infection could circumvent the host innate response by targeted degradation of endogenous FBXW7 in target cells, a process that was verified to be a positive modulator for the host innate immune system. Degradation of FBXW7 hampers host innate antiviral activation and facilitates PEDV replication. Our findings reveal a new mechanism exploited by PEDV to suppress the host antiviral response.
Collapse
|
28
|
Zhai X, Wang N, Jiao H, Zhang J, Li C, Ren W, Reiter RJ, Su S. Melatonin and other indoles show antiviral activities against swine coronaviruses in vitro at pharmacological concentrations. J Pineal Res 2021; 71:e12754. [PMID: 34139040 DOI: 10.1111/jpi.12754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights major gaps in our knowledge on the prevention control and cross-species transmission mechanisms of animal coronaviruses. Transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and porcine delta coronavirus (PDCoV) are three common swine coronaviruses and have similar clinical features. In the absence of effective treatments, they have led to significant economic losses in the swine industry worldwide. We reported that indoles exerted potent activity against swine coronaviruses, the molecules used included melatonin, indole, tryptamine, and L-tryptophan. Herein, we did further systematic studies with melatonin, a ubiquitous and versatile molecule, and found it inhibited TGEV, PEDV, and PDCoV infection in PK-15, Vero, or LLC-PK1 cells by reducing viral entry and replication, respectively. Collectively, we provide the molecular basis for the development of new treatments based on the ability of indoles to control TGEV, PEDV, and PDCoV infection and spread.
Collapse
Affiliation(s)
- Xiaofeng Zhai
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Ningning Wang
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Houqi Jiao
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhang
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Chaofan Li
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Shuo Su
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Gao J, Pan Y, Xu Y, Zhang W, Zhang L, Li X, Tian Z, Chen H, Wang Y. Unveiling the long non-coding RNA profile of porcine reproductive and respiratory syndrome virus-infected porcine alveolar macrophages. BMC Genomics 2021; 22:177. [PMID: 33711920 PMCID: PMC7953715 DOI: 10.1186/s12864-021-07482-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Long noncoding RNA (lncRNA) is highly associated with inflammatory response and virus-induced interferon production. By far the majority of studies have focused on the immune-related lncRNAs of mice and humans, but the function of lncRNAs in porcine immune cells are poorly understood. Porcine reproductive and respiratory syndrome virus (PRRSV) impairs local immune responses in the lungs of nursery and growing pigs, whereas the virus triggers the inflammatory responses. Porcine alveolar macrophage (PAM) is the primary target cell of PRRSV, thus PRRSV is used as an in vitro model of inflammation. Here, we profiled lncRNA and mRNA repertories from PRRSV-infected PAMs to explore the underlying mechanism of porcine lncRNAs in regulating host immune responses. Results In this study, a total of 350 annotated lncRNAs and 1792 novel lncRNAs in PAMs were identified through RNA-seq analysis. Among them 86 differentially expressed (DE) lncRNAs and 406 DE protein-coding mRNAs were identified upon PRRSV incubation. GO category and KEGG pathway enrichment analyses revealed that these DE lncRNAs and mRNAs were mainly involved in inflammation- and pathogen infection-induced pathways. The results of dynamic correlated expression networks between lncRNAs and their predicted target genes uncovered that numerous lncRNAs, such as XLOC-022175, XLOC-019295, and XLOC-017089, were correlated with innate immune genes. Further analysis validated that these three lncRNAs were positively correlated with their predicted target genes including CXCL2, IFI6, and CD163. This study suggests that porcine lncRNAs affect immune responses against PRRSV infection through regulating their target genes in PAMs. Conclusion This study provides both transcriptomic and epigenetic status of porcine macrophages. In response to PRRSV infection, comprehensive DE lncRNAs and mRNAs were profiled from PAMs. Co-expression analysis demonstrated that lncRNAs are emerging as the important modulators of immune gene activities through their critical influence upon PRRSV infection in porcine macrophages. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07482-9.
Collapse
Affiliation(s)
- Junxin Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunfei Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenli Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xi Li
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
30
|
Hemmat N, Asadzadeh Z, Ahangar NK, Alemohammad H, Najafzadeh B, Derakhshani A, Baghbanzadeh A, Baghi HB, Javadrashid D, Najafi S, Ar Gouilh M, Baradaran B. The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV. Arch Virol 2021; 166:675-696. [PMID: 33462671 PMCID: PMC7812983 DOI: 10.1007/s00705-021-04958-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
The number of descriptions of emerging viruses has grown at an unprecedented rate since the beginning of the 21st century. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is the third highly pathogenic coronavirus that has introduced itself into the human population in the current era, after SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Molecular and cellular studies of the pathogenesis of this novel coronavirus are still in the early stages of research; however, based on similarities of SARS-CoV-2 to other coronaviruses, it can be hypothesized that the NF-κB, cytokine regulation, ERK, and TNF-α signaling pathways are the likely causes of inflammation at the onset of COVID-19. Several drugs have been prescribed and used to alleviate the adverse effects of these inflammatory cellular signaling pathways, and these might be beneficial for developing novel therapeutic modalities against COVID-19. In this review, we briefly summarize alterations of cellular signaling pathways that are associated with coronavirus infection, particularly SARS-CoV and MERS-CoV, and tabulate the therapeutic agents that are currently approved for treating other human diseases.
Collapse
Affiliation(s)
- Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Hajar Alemohammad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Basira Najafzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
- IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Meriadeg Ar Gouilh
- Groupe de Recherche sur l'Adaptation Microbienne, EA2656 Université de Caen Normandie, Caen, France.
- Virology Lab, Department of Biology, Centre Hospitalier Universitaire de Caen, 14000, Caen, France.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Protein Tyrosine Phosphatase SHP2 Suppresses Host Innate Immunity against Influenza A Virus by Regulating EGFR-Mediated Signaling. J Virol 2021; 95:JVI.02001-20. [PMID: 33361428 DOI: 10.1128/jvi.02001-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza A virus (IAV) is a highly contagious pathogen, causing acute respiratory illnesses in human beings and animals and frequently giving rise to epidemic outbreaks. Evasion by IAV of host immunity facilitates viral replication and spread, which can be initiated through various mechanisms, including epidermal growth factor receptor (EGFR) activation. However, how EGFR mediates the suppression of antiviral systems remains unclear. Here, we examined host innate immune responses and their relevant signaling to EGFR upon IAV infection. IAV was found to induce the phosphorylation of EGFR and extracellular signal-regulated kinase (ERK) at an early stage of infection. Inhibition of EGFR or ERK suppressed the viral replication but increased the expression of type I and type III interferons (IFNs) and interferon-stimulated genes (ISGs), supporting the idea that IAV escapes from antiviral innate immunity by activating EGFR/ERK signaling. Meanwhile, IAV infection also induced the activation of Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). Pharmacological inhibition or small interfering RNA (siRNA)-based silencing of SHP2 enhanced the IFN-dependent antiviral activity and reduced virion production. Furthermore, knockdown of SHP2 attenuated the EGFR-mediated ERK phosphorylation triggered by viral infection or EGF stimulation. Conversely, ectopic expression of constitutively active SHP2 noticeably promoted ERK activation and viral replication, concomitant with diminished immune function. Altogether, the results indicate that SHP2 is crucial for IAV-induced activation of the EGFR/ERK pathway to suppress host antiviral responses.IMPORTANCE Viral immune evasion is the most important strategy whereby viruses evolve for their survival. This work shows that influenza A virus (IAV) suppressed the antiviral innate immunity through downregulation of IFNs and ISGs by activating EGFR/ERK signaling. Meanwhile, IAV also induced the activation of protein tyrosine phosphatase SHP2, which was found to be responsible for modulating the EGFR-mediated ERK activity and subsequent antiviral effectiveness both in vitro and in vivo The results suggest that SHP2 is a key signal transducer between EGFR and ERK and plays a crucial role in suppressing host innate immunity during IAV infection. The finding enhances our understanding of influenza immune evasion and provides a new therapeutic approach to viral infection.
Collapse
|
32
|
Hu Z, Li Y, Du H, Ren J, Zheng X, Wei K, Liu J. Transcriptome analysis reveals modulation of the STAT family in PEDV-infected IPEC-J2 cells. BMC Genomics 2020; 21:891. [PMID: 33317444 PMCID: PMC7734901 DOI: 10.1186/s12864-020-07306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) is a causative agent of serious viral enteric disease in suckling pigs. Such diseases cause considerable economic losses in the global swine industry. Enhancing our knowledge of PEDV-induced transcriptomic responses in host cells is imperative to understanding the molecular mechanisms involved in the immune response. Here, we analyzed the transcriptomic profile of intestinal porcine epithelial cell line J2 (IPEC-J2) after infection with a classical strain of PEDV to explore the host response. RESULTS In total, 854 genes were significantly differentially expressed after PEDV infection, including 716 upregulated and 138 downregulated genes. Functional annotation analysis revealed that the differentially expressed genes were mainly enriched in the influenza A, TNF signaling, inflammatory response, cytokine receptor interaction, and other immune-related pathways. Next, the putative promoter regions of the 854 differentially expressed genes were examined for the presence of transcription factor binding sites using the MEME tool. As a result, 504 sequences (59.02%) were identified as possessing at least one binding site of signal transducer and activator of transcription (STAT), and five STAT transcription factors were significantly induced by PEDV infection. Furthermore, we revealed the regulatory network induced by STAT members in the process of PEDV infection. CONCLUSION Our transcriptomic analysis described the host genetic response to PEDV infection in detail in IPEC-J2 cells, and suggested that STAT transcription factors may serve as key regulators in the response to PEDV infection. These results further our understanding of the pathogenesis of PEDV.
Collapse
Affiliation(s)
- Zhengzheng Hu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuchen Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Heng Du
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junxiao Ren
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kejian Wei
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen, China
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
33
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
34
|
An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020; 27:3209-3225. [PMID: 33037393 PMCID: PMC7545020 DOI: 10.1038/s41418-020-00633-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.
Collapse
|
35
|
Niu Y, Fu X, Liu L, Lin Q, Liang H, Huang Z, Li N. Molecular characterization and function of EGFR during viral infectionprocess in Mandarin fishSiniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2020; 102:211-217. [PMID: 32298770 DOI: 10.1016/j.fsi.2020.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a tyrosine kinase protein and plays a critical role in virus infection by modulating innate immunity. In this study, we cloned and sequenced the EGFR coding sequence of mandarin fish, designed as scEGFR, and explored its characteristics. scEGFR mRNA was widely expressed in the tested tissues of mandarin fish, and the higher mRNA levels were expressed in kidney and spleen. scEGFR expression was up-regulated in spleen and CPB cells at early stage of ISKNV and SCRV infection. Gefitinib (EGFR inhibitor) inhibited ISKNV and SCRV replication, and increased the expression of the interferon-stimulated genes (ISG). However the EGF (EGFR activator) promoted ISKNV and SCRV replication, and decreased the interferon-stimulated genes. Those results indicated that scEGFR and its signaling involved in ISKNV and SCRV infection, and EGFR activation negatively regulated the interferon response, providing a potential target for the development of new therapic strategy against ISKNV and SCRV.
Collapse
Affiliation(s)
- Yinjie Niu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Lihui Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Zhibin Huang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China.
| |
Collapse
|
36
|
Li X, Sun J, Prinz RA, Liu X, Xu X. Inhibition of porcine epidemic diarrhea virus (PEDV) replication by A77 1726 through targeting JAK and Src tyrosine kinases. Virology 2020; 551:75-83. [PMID: 32829915 PMCID: PMC7301827 DOI: 10.1016/j.virol.2020.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/15/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Porcine epidemic diarrhea (PED) virus (PEDV) is a coronavirus that primarily infects porcine intestinal epithelial cells and causes severe diarrhea and high fatality in piglets. A77 1726 is the active metabolite of leflunomide, a clinically approved anti-rheumatoid arthritis (RA) drug. A77 1726 inhibits the activity of protein tyrosine kinases (PTKs), p70 S6 kinase (S6K1), and dihydroorotate dehydrogenase (DHO-DHase). Whether A77 1726 can control coronavirus infections has not been investigated. Here we report that A77 1726 effectively restricted PEDV replication by inhibiting Janus kinases (JAKs) and Src kinase activities but not by inhibiting DHO-DHase and S6K1 activities. Overexpression of Src, JAK2 or its substrate STAT3 enhanced PEDV replication and attenuated the antiviral activity of A77 1726. Our study demonstrates for the first time the ability of A77 1726 to control coronavirus replication by inhibiting PTK activities. Leflunomide has potential therapeutic value for the control of PEDV and other coronavirus infections.
Collapse
Affiliation(s)
- Xiaomei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL60201, USA
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
37
|
Porcine Epidemic Diarrhea Virus nsp15 Antagonizes Interferon Signaling by RNA Degradation of TBK1 and IRF3. Viruses 2020; 12:v12060599. [PMID: 32486349 PMCID: PMC7354440 DOI: 10.3390/v12060599] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a porcine disease associated with swine epidemic diarrhea. The type I interferon (IFN-I or IFN α/β) is a key mediator of innate antiviral response during virus infection. Different antagonistic strategies have been identified and determined as to how PEDV infection inhibits the host's IFN responses to escape the host innate immune pathway, but the pathogenic mechanisms of PEDV infection are not fully elucidated. Our preliminary results revealed that endogenous TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), the key components in the IFN signaling pathway were downregulated in PEDV infected IPEC-J2 cells by iTRAQ analysis. In this study, we screened nsp15 as the most important viral encoded protein involved in TBK1 and IRF3 reduction. Endoribonuclease (EndoU) activity has been well determined for coronavirus nsp15. Three residues (H226, H241, and K282) of PEDV nsp15 were identified as critical amino acids for PEDV EndoU but not D265, which was not well correlated with published results of other coronaviruses, such as severe acute respiratory syndrome virus (SARS-CoV). Moreover, PEDV nsp15 can directly degrade the RNA levels of TBK1 and IRF3 dependent on its EndoU activity to suppress IFN production and constrain the induction of IFN stimulated genes (ISGs), by which PEDV antagonizes the host innate response to facilitate its replication. Collectively, these results have confirmed that PEDV nsp15 was capable of subverting the IFN response by the RNA degradation of TBK1 and IRF3.
Collapse
|
38
|
Hondermarck H, Bartlett NW, Nurcombe V. The role of growth factor receptors in viral infections: An opportunity for drug repurposing against emerging viral diseases such as COVID-19? FASEB Bioadv 2020; 2:296-303. [PMID: 32395702 PMCID: PMC7211041 DOI: 10.1096/fba.2020-00015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Growth factor receptors are known to be involved in the process of viral infection. Many viruses not only use growth factor receptors to physically attach to the cell surface and internalize, but also divert receptor tyrosine kinase signaling in order to replicate. Thus, repurposing drugs that have initially been developed to target growth factor receptors and their signaling in cancer may prove to be a fast track to effective therapies against emerging new viral infections, including the coronavirus disease 19 (COVID-19).
Collapse
Affiliation(s)
- Hubert Hondermarck
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNSWAustralia
| | - Nathan W. Bartlett
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNSWAustralia
| | - Victor Nurcombe
- Institute of Medical BiologyGlycotherapeutics GroupA*STARSingapore
- Lee Kong Chian School of MedicineNanyang Technology University‐Imperial College LondonSingapore
| |
Collapse
|
39
|
Liu J, Zhao SY, Jiang Q, Qu Y, Huang X, Du J, Sun W, Ye Q. Long noncoding RNA MYLK-AS1 promotes growth and invasion of hepatocellular carcinoma through the EGFR/HER2-ERK1/2 signaling pathway. Int J Biol Sci 2020; 16:1989-2000. [PMID: 32398965 PMCID: PMC7211179 DOI: 10.7150/ijbs.43062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family members EGFR and HER2 play pivotal roles in oncogenesis and tumor progression. Anticancer drugs targeting EGFR and HER2 have been developed. Long noncoding RNAs (lncRNAs) have been reported to regulate cancer development and progression through signaling pathways. However, lncRNAs that regulate EGFR and HER2 expression remain unknown. Here, we show that lncRNA myosin light chain kinase-antisense RNA 1 (MYLK-AS1) promotes EGFR and HER2 expression and activates their downstream signaling pathway. MYLK-AS1 increases hepatocellular carcinoma (HCC) cell proliferation, migration, and invasion in vitro. Consistently, MYLK-AS1 knockdown hinders tumor growth in vivo. Mechanistically, MYLK-AS1 enhances HCC cell proliferation, migration, and invasion through stimulating the EGFR/HER2-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. In addition, MYLK-AS1 is overexpressed in HCC patients and negatively correlated with HCC prognosis. Thus, MYLK-AS1 is an upstream regulator of EGFR/HER2, and acts as an oncogene, suggesting an additional target for cancer therapeutics.
Collapse
Affiliation(s)
- Juan Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China.,Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Si-Yuan Zhao
- Medical unit, 91638 Troops, PLA, Beijing 102202, China
| | - Qiwei Jiang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yuanyuan Qu
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Xiaomei Huang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Jundong Du
- Department of Surgery, Hebei Yanda Hospital, Hebei 065201, China
| | - Wanjun Sun
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| |
Collapse
|
40
|
Host Factors Affecting Generation of Immunity Against Porcine Epidemic Diarrhea Virus in Pregnant and Lactating Swine and Passive Protection of Neonates. Pathogens 2020; 9:pathogens9020130. [PMID: 32085410 PMCID: PMC7168134 DOI: 10.3390/pathogens9020130] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly virulent re-emerging enteric coronavirus that causes acute diarrhea, dehydration, and up to 100% mortality in neonatal suckling piglets. Despite this, a safe and effective PEDV vaccine against highly virulent strains is unavailable, making PEDV prevention and control challenging. Lactogenic immunity induced via the gut-mammary gland-secretory IgA (sIgA) axis, remains the most promising and effective way to protect suckling piglets from PEDV. Therefore, a successful PEDV vaccine must induce protective maternal IgA antibodies that passively transfer into colostrum and milk. Identifying variables that influence lymphocyte migration and IgA secretion during gestation and lactation is imperative for designing maternal immunization strategies that generate the highest amount of lactogenic immune protection against PEDV in suckling piglets. Because pregnancy-associated immune alterations influence viral pathogenesis and adaptive immune responses in many different species, a better understanding of host immune responses to PEDV in pregnant swine may translate into improved maternal immunization strategies against enteric pathogens for multiple species. In this review, we discuss the role of host factors during pregnancy on antiviral immunity and their implications for generating protective lactogenic immunity in suckling neonates.
Collapse
|
41
|
Dong W, Xie W, Liu Y, Sui B, Zhang H, Liu L, Tan Y, Tong X, Fu ZF, Yin P, Fang L, Peng G. Receptor tyrosine kinase inhibitors block proliferation of TGEV mainly through p38 mitogen-activated protein kinase pathways. Antiviral Res 2019; 173:104651. [PMID: 31751591 PMCID: PMC7114126 DOI: 10.1016/j.antiviral.2019.104651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 01/05/2023]
Abstract
Emerging coronaviruses (CoVs) primarily cause severe gastroenteric or respiratory diseases in humans and animals, and no approved therapeutics are currently available. Here, A9, a receptor tyrosine kinase inhibitor (RTKI) of the tyrphostin class, is identified as a robust inhibitor of transmissible gastroenteritis virus (TGEV) infection in cell-based assays. Moreover, A9 exhibited potent antiviral activity against the replication of various CoVs, including murine hepatitis virus (MHV), porcine epidemic diarrhea virus (PEDV) and feline infectious peritonitis virus (FIPV). We further performed a comparative phosphoproteomic analysis to investigate the mechanism of action of A9 against TGEV infection in vitro. We specifically identified p38 and JNK1, which are the downstream molecules of receptor tyrosine kinases (RTKs) required for efficient TGEV replication, as A9 targets through plaque assays, qRT-PCR and Western blotting assays. p38 and JNK1 inhibitors and RNA interference further showed that the inhibitory activity of A9 against TGEV infection was mainly mediated by the p38 mitogen-activated protein kinase (MAPK) signaling pathway. All these findings indicated that the RTKI A9 directly inhibits TGEV replication and that its inhibitory activity against TGEV replication mainly occurs by targeting p38, which provides vital clues to the design of novel drugs against CoVs. We screened inhibitors against coronavirus replication using TGEV as a surrogate model through a high-throughput assay. A9, a receptor tyrosine kinase inhibitor (RTKI) of the tyrphostin class, was identified as a robust inhibitor of TGEV. A9 also exhibited potent antiviral activity against the replication of various coronaviruses. The inhibitory activity of A9 against TGEV replication is mainly regulated by targeting p38.
Collapse
Affiliation(s)
- Wanyu Dong
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wenting Xie
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunbo Liu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baokun Sui
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liran Liu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yubei Tan
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohan Tong
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liurong Fang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqing Peng
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
42
|
Chen H, Muhammad I, Zhang Y, Ren Y, Zhang R, Huang X, Diao L, Liu H, Li X, Sun X, Abbas G, Li G. Antiviral Activity Against Infectious Bronchitis Virus and Bioactive Components of Hypericum perforatum L. Front Pharmacol 2019; 10:1272. [PMID: 31736754 PMCID: PMC6830131 DOI: 10.3389/fphar.2019.01272] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
Hypericum perforatum L., also known as Saint John’s Wort, has been well studied for its chemical composition and pharmacological activity. In this study, the antiviral activities of H. perforatum on infectious bronchitis virus (IBV) were evaluated in vitro and in vivo for the first time. The results of in vitro experiments confirmed that the antiviral component of H. perforatum was ethyl acetate extraction section (HPE), and results showed that treatment with HPE significantly reduced the relative messenger ribonucleic acid (mRNA) expression and virus titer of IBV, and reduced positive green immunofluorescence signal of IBV in chicken embryo kidney (CEK) cells. HPE treatment at doses of 480–120 mg/kg for 5 days, reduced IBV induced injury in the trachea and kidney, moreover, reduced the mRNA expression level of IBV in the trachea and kidney in vivo. The mRNA expression levels of IL-6, tumor necrosis factor alpha (TNF-α), and nuclear factor kappa beta (NF-κB) significantly decreased, but melanoma differentiation-associated protein 5 (MDA5), mitochondrial antiviral signaling gene, interferon alpha (IFN-α), and interferon beta (IFN-β) mRNA levels significantly increased in vitro and in vivo. Our findings demonstrated that HPE had significant anti-IBV effects in vitro and in vivo, respectively. In addition, it is possible owing to up-regulate mRNA expression of type I interferon through the MDA5 signaling pathway and down-regulate mRNA expression of IL-6 and TNF-α via the NF-κB signaling pathway. Moreover, the mainly active compositions of HPE analyzed by high-performance liquid chromatography/electrospray ionization–mass spectroscopy (ESI-MS) are hyperoside, quercitrin, quercetin, pseudohypericin, and hypericin, and a combination of these compounds could mediate the antiviral activities. This might accelerate our understanding of the antiviral effect of H. perforatum and provide new insights into the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Huijie Chen
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Zhang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yudong Ren
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruili Zhang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaodan Huang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lei Diao
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Haixin Liu
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xunliang Li
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqi Sun
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ghulam Abbas
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guangxing Li
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
43
|
Tsai MH, Pai LM, Lee CK. Fine-Tuning of Type I Interferon Response by STAT3. Front Immunol 2019; 10:1448. [PMID: 31293595 PMCID: PMC6606715 DOI: 10.3389/fimmu.2019.01448] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Type I interferon (IFN-I) is induced during innate immune response and is required for initiating antiviral activity, growth inhibition, and immunomodulation. STAT1, STAT2, and STAT3 are activated in response to IFN-I stimulation. STAT1, STAT2, and IRF9 form ISGF3 complex which transactivates downstream IFN-stimulated genes and mediates antiviral response. However, the role of STAT3 remains to be characterized. Here, we review the multiple actions of STAT3 on suppressing IFN-I responses, including blocking IFN-I signaling, downregulating the expression of ISGF3 components, and antagonizing the transcriptional activity of ISGF3. Finally, we discuss the evolution of the suppressive activity of STAT3 and the therapeutic potential of STAT3 inhibitors in host defense against viral infections and IFN-I-associated diseases.
Collapse
Affiliation(s)
- Ming-Hsun Tsai
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Mei Pai
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
44
|
Koonpaew S, Teeravechyan S, Frantz PN, Chailangkarn T, Jongkaewwattana A. PEDV and PDCoV Pathogenesis: The Interplay Between Host Innate Immune Responses and Porcine Enteric Coronaviruses. Front Vet Sci 2019; 6:34. [PMID: 30854373 PMCID: PMC6395401 DOI: 10.3389/fvets.2019.00034] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Enteropathogenic porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), members of the coronavirus family, account for the majority of lethal watery diarrhea in neonatal pigs in the past decade. These two viruses pose significant economic and public health burdens, even as both continue to emerge and reemerge worldwide. The ability to evade, circumvent or subvert the host’s first line of defense, namely the innate immune system, is the key determinant for pathogen virulence, survival, and the establishment of successful infection. Unfortunately, we have only started to unravel the underlying viral mechanisms used to manipulate host innate immune responses. In this review, we gather current knowledge concerning the interplay between these viruses and components of host innate immunity, focusing on type I interferon induction and signaling in particular, and the mechanisms by which virus-encoded gene products antagonize and subvert host innate immune responses. Finally, we provide some perspectives on the advantages gained from a better understanding of host-pathogen interactions. This includes their implications for the future development of PEDV and PDCoV vaccines and how we can further our knowledge of the molecular mechanisms underlying virus pathogenesis, virulence, and host coevolution.
Collapse
Affiliation(s)
- Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
45
|
Hao Z, Fu F, Cao L, Guo L, Liu J, Xue M, Feng L. Tumor suppressor p53 inhibits porcine epidemic diarrhea virus infection via interferon-mediated antiviral immunity. Mol Immunol 2019; 108:68-74. [PMID: 30784764 PMCID: PMC7112615 DOI: 10.1016/j.molimm.2019.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
p53 is a tumor suppressor gene that can be activated in many contexts, such as DNA damage or stressful conditions. p53 has also been shown to be important for responses to certain viral infections. Porcine epidemic diarrhea virus (PEDV) is a major enteric pathogen of the coronavirus family that causes extensive mortality among piglets. The involvement of p53 during PEDV infection has not previously been investigated. In this study, we detected p53 upregulation in response to PEDV infection. Treatment with a p53 specific activator or p53 overexpression markedly decreased viral replication, and we showed that there was more viral progeny produced in p53 knock-out cells than in p53 wild-type cells. Finally, we demonstrated that inhibition of viral infection by p53 was mediated via p53-dependent IFN signaling, leading to IFN-stimulated response element (ISRE) activation, as well as the upregulation of IFN-stimulated genes (ISGs) and IFN-β released from infected cells. These findings demonstrate that p53 suppresses PEDV infection, offering a novel therapeutic strategy for combatting this deadly disease in piglets.
Collapse
Affiliation(s)
- Zhichao Hao
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Fang Fu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Liyan Cao
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Longjun Guo
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Jianbo Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Mei Xue
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| |
Collapse
|