1
|
Freeman MC, Sinder A, Conway G, Chamseddine S, Nassar MF, Wheeler BJ, Anderson A, Wheeler SE. Pediatric Vaccine-Induced Antibody Thresholds: Rethinking Pre-Immunosuppression Serologic Testing and Revaccination Implications. Clin Chem 2025; 71:577-586. [PMID: 40105237 DOI: 10.1093/clinchem/hvaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Immune response to vaccination is assessed when adequate vaccine protection is in question or immunosuppression is imminent through measurement of antibody levels, which wane as time from vaccination increases. The serologic cutoff value for adequate response is based on thresholds derived from studies in adults, and age-appropriate thresholds for children have not been established. We sought to investigate age-specific differences in antibody levels in healthy children to guide determination of vaccine immunity status when clinically indicated. METHODS This cross-sectional study assessed clinical serology for measles, mumps, rubella (MMR), varicella, and hepatitis B (HepB) in an age-stratified cohort of 471 healthy children who were up to date for vaccination (1 to 18 years). Remnant specimens with sufficient volume were collected from July 23, 2019, to November 17, 2020, as convenience samples and chart reviewed for inclusion. RESULTS While children of all ages had detectable titers to MMR, median titers for HepB and varicella waned by ages 11 to 12 and 9 to 10 years, respectively. Children had titers above adult thresholds for MMR at all measured timepoints, retrospectively resulting in 24.6% (95% CI, 21.6%-27.8%) of children having an inappropriate MMR classification when adult instead of pediatric thresholds were used. Current use of HepB and varicella serology may be inappropriate due to the rapid waning of titers. The adequacy of an individual's response to one vaccine component did not infer adequate responses to other components. CONCLUSIONS Application of age-appropriate reference intervals for vaccine serologic tests will provide a foundation for improved treatment recommendations and standards of care.
Collapse
Affiliation(s)
- Megan Culler Freeman
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
- Institute for Infection, Inflammation, and Immunity (i4Kids), UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Adam Sinder
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Grace Conway
- School of Medicine, University of Pittsburgh Medical Scientist Training Program, Pittsburgh, PA, United States
| | - Sarah Chamseddine
- Division of Allergy and Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mariam Faiz Nassar
- Children's Hospital of Philadelphia, CHOP Care Network, Philadelphia, PA, United States
| | - Bradley J Wheeler
- School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adam Anderson
- Bio-Rad Laboratories, Inc., Hercules, CA, United States
| | - Sarah E Wheeler
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Dib SM, Wimalasena S, Graciaa DS, Rouphael N. Systems Vaccinology: Navigating the Future of Personalized Immunity and Next-Generation Vaccines. J Infect Dis 2024; 230:1305-1308. [PMID: 39424292 DOI: 10.1093/infdis/jiae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024] Open
Abstract
Systems vaccinology integrates a range of "omics" technologies to identify key immune signatures and enhance vaccine development. This approach aids in understanding variations in immune responses, driven by genetics, health status, and the microbiome. Consequently, systems vaccinology helps pave the way for personalized vaccination strategies, essential for addressing diverse populations.
Collapse
Affiliation(s)
- Serena Maria Dib
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| | - Sonia Wimalasena
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| | - Daniel S Graciaa
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| | - Nadine Rouphael
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| |
Collapse
|
3
|
Ferreira-Gomes M, Chen Y, Durek P, Rincon-Arevalo H, Heinrich F, Bauer L, Szelinski F, Guerra GM, Stefanski AL, Niedobitek A, Wiedemann A, Bondareva M, Ritter J, Lehmann K, Hardt S, Hipfl C, Hein S, Hildt E, Matz M, Mei HE, Cheng Q, Dang VD, Witkowski M, Lino AC, Kruglov A, Melchers F, Perka C, Schrezenmeier EV, Hutloff A, Radbruch A, Dörner T, Mashreghi MF. Recruitment of plasma cells from IL-21-dependent and IL-21-independent immune reactions to the bone marrow. Nat Commun 2024; 15:4182. [PMID: 38755157 PMCID: PMC11099182 DOI: 10.1038/s41467-024-48570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.
Collapse
Affiliation(s)
- Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Yidan Chen
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Hector Rincon-Arevalo
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Laura Bauer
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franziska Szelinski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Ana-Luisa Stefanski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Annika Wiedemann
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Bondareva
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Jacob Ritter
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Lehmann
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Sebastian Hardt
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hipfl
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sascha Hein
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Langen, Germany
| | - Mareen Matz
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Qingyu Cheng
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Witkowski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreia C Lino
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrey Kruglov
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Carsten Perka
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eva V Schrezenmeier
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Hutloff
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany.
| |
Collapse
|
4
|
Bhattacharya A, Jan L, Burlak O, Li J, Upadhyay G, Williams K, Dong J, Rohrer H, Pynn M, Simon A, Kuhlmann N, Pustylnikov S, Melo MB, Dey AK. Potent and long-lasting humoral and cellular immunity against varicella zoster virus induced by mRNA-LNP vaccine. NPJ Vaccines 2024; 9:72. [PMID: 38575581 PMCID: PMC10995133 DOI: 10.1038/s41541-024-00865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
Varicella zoster virus (VZV) is a highly contagious human herpes virus responsible for causing chickenpox (varicella) and shingles (herpes zoster). Despite the approval of a highly effective vaccine, Shingrix®, the global incidence of herpes zoster is increasing and the economic burden to the health care system and society are substantial due to significant loss of productivity and health complications, particularly among elderly and immunocompromised individuals. This is primarily because access to the vaccines remains mostly limited to countries within developed economies, such as USA and Canada. Therefore, similarly effective vaccines against VZV that are more accessible to the rest-of-the-world are necessary. In this study, we aimed to evaluate immunogenicity and memory response induced by three mRNA-LNP-based vaccine candidates targeting VZV's surface glycoprotein E (gE). C57BL/6 mice were immunized with each candidate vaccine, and humoral and cellular immune responses were assessed. Our results demonstrate that the mRNA-LNP-based vaccine candidates elicited robust and durable humoral responses specific to the gE antigen. Notably, mice vaccinated with the mRNA-LNP vaccines exhibited significantly higher antigen-specific T-cell cytokine production compared to the group receiving Shingrix®, the current standard of care vaccine. Additionally, mRNA-LNP vaccines induced long-lasting memory response, as evidenced by detection of persistent gE-specific Long-Lived Plasma Cells (LLPCs) and memory T cells four months after final immunization. These findings underscore the potential of our mRNA-LNP-based vaccine candidates in generating potent immune responses against VZV, offering promising prospects for their clinical development as an effective prophylactic vaccine against herpes zoster.
Collapse
Affiliation(s)
| | - Lonzaric Jan
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Olga Burlak
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Jilong Li
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Ghanshyam Upadhyay
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Katherine Williams
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Jinhui Dong
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Harrison Rohrer
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Michelle Pynn
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Andrew Simon
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Nathan Kuhlmann
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Sergei Pustylnikov
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Mariane B Melo
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA.
| | - Antu K Dey
- GreenLight Biosciences Inc., 29 Hartwell Avenue, Lexington, MA, 02421, USA.
- Icosavax (AstraZeneca), 1930 Boren Avenue, Seattle, WA, 98101, USA.
| |
Collapse
|
5
|
Ansaryan S, Liu YC, Li X, Economou AM, Eberhardt CS, Jandus C, Altug H. High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat Biomed Eng 2023:10.1038/s41551-023-01017-1. [PMID: 37012313 PMCID: PMC10365996 DOI: 10.1038/s41551-023-01017-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
Methods for the analysis of cell secretions at the single-cell level only provide semiquantitative endpoint readouts. Here we describe a microwell array for the real-time spatiotemporal monitoring of extracellular secretions from hundreds of single cells in parallel. The microwell array incorporates a gold substrate with arrays of nanometric holes functionalized with receptors for a specific analyte, and is illuminated with light spectrally overlapping with the device's spectrum of extraordinary optical transmission. Spectral shifts in surface plasmon resonance resulting from analyte-receptor bindings around a secreting cell are recorded by a camera as variations in the intensity of the transmitted light while machine-learning-assisted cell tracking eliminates the influence of cell movements. We used the microwell array to characterize the antibody-secretion profiles of hybridoma cells and of a rare subset of antibody-secreting cells sorted from human donor peripheral blood mononuclear cells. High-throughput measurements of spatiotemporal secretory profiles at the single-cell level will aid the study of the physiological mechanisms governing protein secretion.
Collapse
Affiliation(s)
- Saeid Ansaryan
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yen-Cheng Liu
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xiaokang Li
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Agora Center, Lausanne, Switzerland
| | | | - Christiane Sigrid Eberhardt
- Center for Vaccinology, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
- Division of General Pediatrics, Department of Woman, Child and Adolescent Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Camilla Jandus
- Ludwig Institute for Cancer Research, Lausanne Branch, Agora Center, Lausanne, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
6
|
Gao Y, Bergman I. Anti-tumor memory CD4 and CD8 T-cells quantified by bulk T-cell receptor (TCR) clonal analysis. Front Immunol 2023; 14:1137054. [PMID: 37033929 PMCID: PMC10076582 DOI: 10.3389/fimmu.2023.1137054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Simple, reliable methods to detect anti-tumor memory T-cells are necessary to develop a clinical tumor vaccination program. A mouse model of curative viral onco-immunotherapy found that peritoneal tumor challenge following cure identified an oligoclonal anti-tumor memory CD4 and CD8 T-cell response. Clonotypes differed among the challenged animals but were congruent in blood, spleen and peritoneal cells (PC) of the same animal. Adoptive transfer demonstrated that the high-frequency responding T-cells were tumor specific. Tetramer analysis confirmed that clonotype frequency determined by T-cell receptor (TCR)- chain (TRB) analysis closely approximated cell clone frequency. The mean frequency of resting anti-tumor memory CD4 T-cells in unchallenged spleen was 0.028% and of memory CD8 T-cells was 0.11% which was not high enough to distinguish them from background. Stimulation produced a mean ~10-fold increase in splenic and 100-fold increase in peritoneal anti-tumor memory T-cell clonotypes. This methodology can be developed to use blood and tissue sampling to rapidly quantify the effectiveness of a tumor vaccine or any vaccine generating therapeutic T-cells.
Collapse
Affiliation(s)
- Yanhua Gao
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ira Bergman
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Kwiatkowska KM, Mkindi CG, Nielsen CM. Human lymphoid tissue sampling for vaccinology. Front Immunol 2022; 13:1045529. [PMID: 36466924 PMCID: PMC9714609 DOI: 10.3389/fimmu.2022.1045529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 02/15/2024] Open
Abstract
Long-lived plasma cells (LLPCs) - largely resident in the bone marrow - secrete antibody over months and years, thus maintaining serum antibody concentrations relevant for vaccine-mediated immunity. Little is known regarding factors that can modulate the induction of human LLPC responses in draining lymph node germinal centres, or those that maintain LLPCs in bone marrow niches following vaccination. Here, we review human and non-human primate vaccination studies which incorporate draining lymph node and/or bone marrow aspirate sampling. We emphasise the key contributions these samples can make to improve our understanding of LLPC immunology and guide rational vaccine development. Specifically, we highlight findings related to the impact of vaccine dosing regimens, adjuvant/vaccine platform selection, duration of germinal centre reactions in draining lymph nodes and relevance for timing of tissue sampling, and heterogeneity in bone marrow plasma cell populations. Much of this work has come from recent studies with SARS-CoV-2 vaccine candidates or, with respect to the non-human primate work, HIV vaccine development.
Collapse
Affiliation(s)
| | - Catherine G. Mkindi
- Department of Intervention and Clinical Trials, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Carolyn M. Nielsen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Arvin AM. Insights From Studies of the Genetics, Pathogenesis, and Immunogenicity of the Varicella Vaccine. J Infect Dis 2022; 226:S385-S391. [PMID: 36265853 DOI: 10.1093/infdis/jiac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the varicella vaccine was created with approaches established for other live attenuated viral vaccines, novel methods to probe virus-host interactions have been used to explore the genetics, pathogenesis, and immunogenicity of the vaccine compared to wild-type varicella-zoster virus (VZV). As summarized here, a mechanism-based understanding of the safety and efficacy of the varicella vaccine has been achieved through these investigations.
Collapse
Affiliation(s)
- Ann M Arvin
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Molino D, Durier C, Radenne A, Desaint C, Ropers J, Courcier S, Vieillard LV, Rekacewicz C, Parfait B, Appay V, Batteux F, Barillot E, Cogné M, Combadière B, Eberhardt CS, Gorochov G, Hupé P, Ninove L, Paul S, Pellegrin I, van der Werf S, Lefebvre M, Botelho-Nevers E, Ortega-Perez I, Jaspard M, Sow S, Lelièvre JD, de Lamballerie X, Kieny MP, Tartour E, Launay O. A comparison of Sars-Cov-2 vaccine platforms: the CoviCompare project. Nat Med 2022; 28:882-884. [PMID: 35513532 DOI: 10.1038/s41591-022-01785-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Diana Molino
- Université Paris Cité, National Institute for Health and Medical Research (INSERM) CIC 1417 Cochin Pasteur, Innovative Clinical Research Network in Vaccinology (I-REIVAC), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, Paris, France
| | | | - Anne Radenne
- AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière, Paris, France
| | | | - Jacques Ropers
- AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière, Paris, France
| | - Soizic Courcier
- Université Paris Cité, National Institute for Health and Medical Research (INSERM) CIC 1417 Cochin Pasteur, Innovative Clinical Research Network in Vaccinology (I-REIVAC), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, Paris, France
| | - Louis Victorien Vieillard
- Université Paris Cité, National Institute for Health and Medical Research (INSERM) CIC 1417 Cochin Pasteur, Innovative Clinical Research Network in Vaccinology (I-REIVAC), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, Paris, France
| | - Claire Rekacewicz
- Université Paris Cité, National Institute for Health and Medical Research (INSERM) CIC 1417 Cochin Pasteur, Innovative Clinical Research Network in Vaccinology (I-REIVAC), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, Paris, France
| | - Beatrice Parfait
- AP-HP, Hôpital Cochin, Fédération des Centres de Ressources Biologiques-Plateforme de Ressources Biologiques Centre de Ressources Biologique Cochin, Paris, France
| | - Victor Appay
- Centre Hospitalier Universitaire (CHU) Bordeaux, Laboratory of Immunology and Immunogenetics, Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux, France
| | - Frédéric Batteux
- AP-HP, Hôpital Cochin, Service d'Immunologie Biologique et Plateforme d'Immunomonitoring Vaccinal, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University-INSERM U900-MINES ParisTech, PSL, Paris, France
| | - Michel Cogné
- Laboratory of Immunology-Research Unit INSERM U 1236, B cell Ig Remodelling Singularities (BIGRES), Faculty of Medicine, French Blood Center (EFS Bretagne) & University Hospital, Rennes, France
| | - Béhazine Combadière
- Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), INSERM U1135, Sorbonne Université, Paris, France
| | - Christiane S Eberhardt
- University of Geneva, Faculty of Medicine, Division of General Pediatrics, Department of Woman, Child and Adolescent Medicine and Center for Vaccinology, Geneva, Switzerland
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Département d'Immunologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Hupé
- Institut Curie, PSL Research University-INSERM U900-MINES ParisTech, PSL, Paris, France.,CNRS, UMR 144, Paris, France
| | - Laetitia Ninove
- Aix Marseille Université, Research Institute for Sustainable Development (IRD) 190, INSERM 1207, IHU Méditerranée Infection, Unité des Virus Émergents, Marseille, France
| | - Stéphane Paul
- INSERM, U1111, CNRS, UMR 530, Immunology and Immunomonitoring Laboratory, iBiothera, CIRI-GIMAP, UCBL 1, UJM, CIC 1408, Saint-Etienne, France
| | - Isabelle Pellegrin
- Centre Hospitalier Universitaire (CHU) Bordeaux, Laboratory of Immunology and Immunogenetics, Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux, France
| | - Sylvie van der Werf
- Université Paris Cité, Institut Pasteur, Unité Génétique Moléculaire Virus à ARN UMR 3569 CNRS, Paris, France
| | - Maeva Lefebvre
- CHU de Nantes, INSERM CIC1413, Maladies Infectieuses et Tropicales, Centre de Prévention des Maladies Infectieuses et Transmissibles, Nantes, France
| | - Elisabeth Botelho-Nevers
- INSERM CIC 1408, Axe Vaccinologie, CHU de Saint-Etienne, Service d'Infectiologie, Saint-Etienne, France
| | | | - Marie Jaspard
- The Alliance for International Medical Action (ALIMA), Paris, France.,University of Bordeaux, INSERM, IRD, Bordeaux Population Health Center, UMR 1219, Bordeaux, France
| | - Samba Sow
- The Center for Vaccine Development, Bamako, Mali
| | | | - Xavier de Lamballerie
- Aix Marseille Université, Research Institute for Sustainable Development (IRD) 190, INSERM 1207, IHU Méditerranée Infection, Unité des Virus Émergents, Marseille, France
| | | | - Eric Tartour
- AP-HP, Hôpital Européen Georges Pompidou, INSERM U970, PARCC, Paris, France
| | - Odile Launay
- Université Paris Cité, National Institute for Health and Medical Research (INSERM) CIC 1417 Cochin Pasteur, Innovative Clinical Research Network in Vaccinology (I-REIVAC), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, Paris, France.
| |
Collapse
|
10
|
Levin MJ, Weinberg A. Immune Responses to Varicella-Zoster Virus Vaccines. Curr Top Microbiol Immunol 2022; 438:223-246. [PMID: 35102438 DOI: 10.1007/82_2021_245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The live attenuated varicella vaccine is intended to mimic the tempo and nature of the humoral and cell-mediated immune responses to varicella infection. To date, two doses of varicella vaccine administered in childhood have been very effective in generating varicella-zoster virus (VZV) immune responses that prevent natural infection for at least several decades. After primary infection, the infecting VZV establishes latency in sensory and cranial nerve ganglia with the potential to reactivate and cause herpes zoster. Although, the immune responses developed during varicella are important for preventing herpes zoster they wane with increasing age (immune senescence) or with the advent of immune suppression. Protection can be restored by increasing cell-mediated immune responses with two doses of an adjuvanted recombinant VZV glycoprotein E vaccine that stimulates both VZV-and gE-specific immunity. This vaccine provides ~85-90% protection against herpes zoster for 7-8 years (to date).
Collapse
Affiliation(s)
- Myron J Levin
- Departments of Pediatrics and Medicine, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Adriana Weinberg
- Departments of Pediatrics, Medicine, and Pathology, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Skripchenko E, Zheleznikova G, Skripchenko N, Alekseeva L, Goleva O, Bessonova T, Zhirkov A. Immunopatological and genetic aspects of pathogenesis of CNS lesions in VZV infection. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:46-56. [DOI: 10.17116/jnevro202212210146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Linderman SL, Ellebedy AH, Davis C, Eberhardt CS, Antia R, Ahmed R, Zarnitsyna VI. Influenza Immunization in the Context of Preexisting Immunity. Cold Spring Harb Perspect Med 2021; 11:a040964. [PMID: 32988981 PMCID: PMC8559541 DOI: 10.1101/cshperspect.a040964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although we develop influenza immunity from an early age, it is insufficient to prevent future infection with antigenically novel strains. One proposed way to generate long-term protective immunity against a broad range of influenza virus strains is to boost responses to the conserved epitopes on the hemagglutinin, the major surface glycoprotein on the influenza virus. Influenza-specific humoral immunity comprises a large fraction of the overall immune memory in humans, and it has been long recognized that preexisting immunity to influenza shapes the response to subsequent influenza infections and vaccinations. However, the mechanisms by which preexisting immunity modulates the response to influenza vaccination are still not completely understood. Using a set of mathematical models, we explore several hypotheses that may contribute to diminished boosting of antibodies to conserved epitopes after repeated vaccinations.
Collapse
Affiliation(s)
- Susanne L Linderman
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Ali H Ellebedy
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Carl Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Christiane S Eberhardt
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Centre for Vaccinology and Department of Pediatrics, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Veronika I Zarnitsyna
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
13
|
Horváth A. Acceptance of varicella vaccination. Hum Vaccin Immunother 2021; 17:1699-1702. [PMID: 33326320 DOI: 10.1080/21645515.2020.1843337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Varicella is a common vaccine-preventable disease that usually presents in children as a mild infection; however, severe complications also occur. The burden of varicella is significant in the terms of incidence, complication, and hospitalization rate related to varicella and economic disease burden. Despite the evidence of overall positive effects of varicella vaccination, there are great differences in the implementation of varicella vaccination and in the uptake of the vaccine from country to country. Improving acceptance of varicella vaccination on the national and on the individual level would decrease the burden of the disease on the health of children and on health-care resources. In studies determining factors of parental acceptance of varicella vaccination questions specific for varicella vaccination were highlighted. Addressing these issues with open, evidence based communication is important to improve and maintain the trust of the public in varicella vaccination.
Collapse
Affiliation(s)
- Andrea Horváth
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Santoro JD, Saucier LE, Tanna R, Wiegand SE, Pagarkar D, Tempchin AF, Khoshnood M, Ahsan N, Van Haren K. Inadequate Vaccine Responses in Children With Multiple Sclerosis. Front Pediatr 2021; 9:790159. [PMID: 34926358 PMCID: PMC8678906 DOI: 10.3389/fped.2021.790159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Objective: Immunizations against Hepatitis B virus (HBV) and Varicella Zoster virus (VZV), are recommended for patients with pediatric onset multiple sclerosis (POMS) and may be required prior to initiation of some disease modifying therapies. However, the efficacy of routine vaccine administration in POMS has never been studied. We sought to assess the humoral mediated vaccine response to HBV and VZV in children with POMS. Methods: A multi-center retrospective chart-based review of 62 patients with POMS was performed. Clinical data and antibody titers against HBV and VZV were collected prior to initiation of disease modifying therapy or steroids and compared to institutional control data, using t-test and chi squared analysis. Results: There were low rates of immunity against both HBV and VZV (33 and 25% respectively) among individuals with POMS. Fifteen individuals (24%) were non-immune to both. Compared to institutional control data, individuals with POMS were significantly less likely to be immune to and HBV (p = 0.003, 95% CI: 0.22-0.75) and VZV (p < 0.001, 95% CI: 0.09-0.39). Interpretation: Individuals with POMS have low rates of antibody-mediated immunity against HBV and VZV, despite receiving the appropriate vaccinations. This suggests an association between POMS and systemic immune dysregulation although further study is needed.
Collapse
Affiliation(s)
- Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Laura E Saucier
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Runi Tanna
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah E Wiegand
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Dania Pagarkar
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Adam F Tempchin
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mellad Khoshnood
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Nusrat Ahsan
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Keith Van Haren
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
15
|
Identification and Characterization of CD4 + T Cell Epitopes after Shingrix Vaccination. J Virol 2020; 94:JVI.01641-20. [PMID: 32999027 DOI: 10.1128/jvi.01641-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
Infections with varicella-zoster virus (VZV) are associated with a range of clinical manifestations. Primary infection with VZV causes chicken pox. The virus remains latent in neurons, and it can reactivate later in life, causing herpes zoster (HZ). Two different vaccines have been developed to prevent HZ; one is based on a live attenuated VZV strain (Zostavax), and the other is based on adjuvanted gE recombinant protein (Shingrix). While Zostavax efficacy wanes with age, Shingrix protection retains its efficacy in elderly subjects (individuals 80 years of age and older). In this context, it is of much interest to understand if there is a role for T cell immunity in the differential clinical outcome and if there is a correlate of protection between T cell immunity and Shingrix efficacy. In this study, we characterized the Shingrix-specific ex vivo CD4 T cell responses in the context of natural exposure and HZ vaccination using pools of predicted epitopes. We show that T cell reactivity following natural infection and Zostavax vaccination dominantly targets nonstructural (NS) proteins, while Shingrix vaccination redirects dominant reactivity to target gE. We mapped the gE-specific responses following Shingrix vaccination to 89 different gE epitopes, 34 of which accounted for 80% of the response. Using antigen presentation assays and single HLA molecule-transfected lines, we experimentally determined HLA restrictions for 94 different donor/peptide combinations. Finally, we used our results as a training set to assess strategies to predict restrictions based on measured or predicted HLA binding and the corresponding HLA types of the responding subjects.IMPORTANCE Understanding the T cell profile associated with the protection observed in elderly vaccinees following Shingrix vaccination is relevant to the general definition of correlates of vaccine efficacy. Our study enables these future studies by clarifying the patterns of immunodominance associated with Shingrix vaccination, as opposed to natural infection or Zostavax vaccination. Identification of epitopes recognized by Shingrix-induced CD4 T cells and their associated HLA restrictions enables the generation of tetrameric staining reagents and, more broadly, the capability to characterize the specificity, magnitude, and phenotype of VZV-specific T cells.
Collapse
|
16
|
Davis CW, Jackson KJL, McCausland MM, Darce J, Chang C, Linderman SL, Chennareddy C, Gerkin R, Brown SJ, Wrammert J, Mehta AK, Cheung WC, Boyd SD, Waller EK, Ahmed R. Influenza vaccine-induced human bone marrow plasma cells decline within a year after vaccination. Science 2020; 370:237-241. [PMID: 32792465 PMCID: PMC10155619 DOI: 10.1126/science.aaz8432] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 08/02/2020] [Indexed: 01/09/2023]
Abstract
A universal vaccine against influenza would ideally generate protective immune responses that are not only broadly reactive against multiple influenza strains but also long-lasting. Because long-term serum antibody levels are maintained by bone marrow plasma cells (BMPCs), we investigated the production and maintenance of these cells after influenza vaccination. We found increased numbers of influenza-specific BMPCs 4 weeks after immunization with the seasonal inactivated influenza vaccine, but numbers returned to near their prevaccination levels after 1 year. This decline was driven by the loss of BMPCs induced by the vaccine, whereas preexisting BMPCs were maintained. Our results suggest that most BMPCs generated by influenza vaccination in adults are short-lived. Designing strategies to enhance their persistence will be a key challenge for the next generation of influenza vaccines.
Collapse
Affiliation(s)
- Carl W Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.,Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta GA, USA
| | | | - Megan M McCausland
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.,Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta GA, USA
| | - Jaime Darce
- Cell Signaling Technology, Inc., Danvers, MA, USA
| | - Cathy Chang
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.,Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta GA, USA
| | - Susanne L Linderman
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.,Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta GA, USA
| | - Chakravarthy Chennareddy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.,Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta GA, USA
| | - Rebecca Gerkin
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta GA, USA.,Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Shantoria J Brown
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta GA, USA.,Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Jens Wrammert
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.,Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Aneesh K Mehta
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta GA, USA.,Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Edmund K Waller
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta GA, USA.,Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA. .,Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta GA, USA
| |
Collapse
|