1
|
Nash D, Palermo CN, Inamoto I, Charles TC, Nissimov JI, Short SM. Hybrid sequencing reveals the genome of a Chrysochromulina parva virus and highlight its distinct replication strategy. BMC Genomics 2025; 26:498. [PMID: 40382578 PMCID: PMC12085832 DOI: 10.1186/s12864-025-11700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
Chrysochromulina parva (C. parva) is a eukaryotic freshwater haptophyte algae found in lakes and rivers worldwide. It is known to be infected by viruses, yet knowledge of the diversity and activity of these viruses is still very limited. Based on sequences of PCR-amplified DNA polymerase B (polB) gene fragments, Chrysochromulina parva virus BQ1 (CpV-BQ1) was the first known lytic agent of C. parva, and was considered a member of the virus family Phycodnaviridae, order Algavirales. However, the genome of a different C. parva-infecting virus (CpV-BQ2, or Tethysvirus ontarioense) from another virus family, the Mesomimiviridae, order Imitervirales, was the first sequenced. Here, we report the complete genome sequence of the putative phycodnavirus CpV-BQ1, accession PQ783904. The complete CpV-BQ1 genome sequence is 165,454 bp with a GC content of 32.32% and it encodes 193 open reading frames. Phylogenetic analyses of several virus hallmark genes including the polB, the late gene transcription factor (VLTF-3), and the putative A32-like virion packaging ATPase (Viral A32) all demonstrate that CpV-BQ1 is most closely related to other viruses in the phylum Megaviricetes within the order Algavirales, family Phycodnaviridae.
Collapse
Affiliation(s)
- Delaney Nash
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Christine N Palermo
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Ichiro Inamoto
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Steven M Short
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
2
|
Lamb DC, Goldstone JV, Belhaouari DB, Andréani J, Farooqi A, Allen MJ, Kelly SL, La Scola B, Stegeman JJ. Cytochrome b5 occurrence in giant and other viruses belonging to the phylum Nucleocytoviricota. NPJ VIRUSES 2025; 3:8. [PMID: 40295896 PMCID: PMC11814380 DOI: 10.1038/s44298-025-00091-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/22/2025] [Indexed: 04/30/2025]
Abstract
Cytochrome b5 is an electron transport protein found in eukaryotes and bacteria, and plays roles in energy production, lipid biosynthesis and cytochrome P450 biochemistry. Here we report that genes for cytochrome b5 occur broadly among viruses in the class Megaviricetes isolated from the deep ocean, freshwater and terrestrial sources, and human patients. Transcriptional analysis showed that Mimivirus bradfordmassiliense cytochrome b5 is expressed in the host and has characteristic spectral properties. Viral cytochrome b5s have either a unique N-terminal transmembrane anchor or are predicted to be soluble proteins. Virus cytochrome b5 proteins share 45-95% sequence identity with one another but no more than 25% identity with that in Acanthamoeba castellanii, a host for many giant viruses. Thus, the origin of cytochrome b5 genes in giant viruses remains unknown. Our findings raise questions regarding the evolution and diversity of cytochrome b5, and about the origin of viral haemoproteins in general.
Collapse
Affiliation(s)
- David C Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA
| | - Djamal Brahim Belhaouari
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Julien Andréani
- Microbes Evolution Phylogeny and Infection (MEPHI), UR D-258, Aix-Marseille University, Marseille, France
- IHU Méditerranée Infection, Timone Hospital, 19-21 Bd Jean Moulin, Marseille, 13005, France
| | - Ayesha Farooqi
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Michael J Allen
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Bernard La Scola
- Microbes Evolution Phylogeny and Infection (MEPHI), UR D-258, Aix-Marseille University, Marseille, France
- IHU Méditerranée Infection, Timone Hospital, 19-21 Bd Jean Moulin, Marseille, 13005, France
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA.
| |
Collapse
|
3
|
Lamb DC, Goldstone JV, Belhaouari DB, Andréani J, Farooqi A, Allen MJ, Kelly SL, La Scola B, Stegeman JJ. Cytochromes b5 Occurrence in Viruses Belonging to the Order Megavirales. RESEARCH SQUARE 2024:rs.3.rs-5246363. [PMID: 39502774 PMCID: PMC11537341 DOI: 10.21203/rs.3.rs-5246363/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Cytochrome b5 is a small electron transport protein that is found in animals, plants, fungi and photosynthetic proteobacteria where it plays key metabolic roles in energy production, lipid and sterol biosynthesis and cytochrome P450 biochemistry. Previously it was shown that a gene encoding a soluble and functional cytochrome b5 protein was encoded in the large double stranded DNA virus OtV2 that infects the unicellular marine green alga Ostreococcus tauri, the smallest free-living eukaryote described to-date. This single gene represented a unique finding in the virosphere. We now report that genes for soluble and membrane-bound cytochromes b5 also occur in giant viruses in the proposed order Megavirales, particularly the AT-rich Mimiviridae and Tupanviruses. Conversely, other members of the Megavirales taxa such as the GC-rich Pandoraviridae have not been found to encode cytochrome b5 as yet. Megaviruses encoding cytochrome b5 have been isolated from the deep ocean, from freshwater and terrestrial sources, as well as from human patients. Giant virus cytochrome b5 proteins share high sequence identity with one another (45-95% depending on group) but no more than 25% identity with the cytochrome b5 gene product we identified in Acanthamoeba castellanii, an amoeba host for many giant viruses. Thus, the origin of the unique cytochrome b5 genes in giant viruses remains unknown. Examination of viral cytochrome b5 primary amino acid sequences revealed that some have either a N- or C-terminal transmembrane anchor, whilst others lack a membrane anchor and are thus predicted to be soluble proteins. This cytochrome b5 topography suggests adapted biochemical functions in those viruses. Our findings raise questions regarding the evolution and diversity of cytochrome b5 proteins in nature, adding to questions about the origin of viral haemoproteins in general.
Collapse
Affiliation(s)
- David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales SA2 8PP, UK
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Djamal Brahim Belhaouari
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Julien Andréani
- Aix Marseille Univ, MEPHI, Marseille, France
- IHU-Méditerranée infection, Marseille, France
| | - Ayesha Farooqi
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales SA2 8PP, UK
| | - Michael J. Allen
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road EX4 4QD, UK
| | - Steven L. Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales SA2 8PP, UK
| | - Bernard La Scola
- Aix Marseille Univ, MEPHI, Marseille, France
- IHU-Méditerranée infection, Marseille, France
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
4
|
Thomy J, Schvarcz CR, McBeain KA, Edwards KF, Steward GF. Eukaryotic viruses encode the ribosomal protein eL40. NPJ VIRUSES 2024; 2:51. [PMID: 39464202 PMCID: PMC11499249 DOI: 10.1038/s44298-024-00060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
Viruses in the phylum Nucleocytoviricota are large, complex and have an exceptionally diverse metabolic repertoire. Some encode hundreds of products involved in the translation of mRNA into protein, but none was known to encode any of the proteins in ribosomes, the central engines of translation. With the discovery of the eL40 gene in FloV-SA2, we report the first example of a eukaryotic virus encoding a ribosomal protein and show that this gene is also present and expressed in other uncultivated marine giant viruses. FloV-SA2 also encodes a "group II" viral rhodopsin, a viral light-activated protein of unknown function previously only reported in metagenomes. FloV-SA2 is thus a valuable model system for investigating new mechanisms by which viruses manipulate eukaryotic cell metabolism.
Collapse
Affiliation(s)
- Julie Thomy
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Christopher R. Schvarcz
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Kelsey A. McBeain
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Kyle F. Edwards
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Grieg F. Steward
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| |
Collapse
|
5
|
Rey Redondo E, Leung SKK, Yung CCM. Genomic and biogeographic characterisation of the novel prasinovirus Mantoniella tinhauana virus 1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70020. [PMID: 39392286 PMCID: PMC11467894 DOI: 10.1111/1758-2229.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Mamiellophyceae are a ubiquitous class of unicellular green algae in the global ocean. Their ecological importance is highlighted in studies focused on the prominent genera Micromonas, Ostreococcus, and Bathycoccus. Mamiellophyceae are susceptible to prasinoviruses, double-stranded DNA viruses belonging to the nucleocytoplasmic large DNA virus group. Our study represents the first isolation of a prasinovirus in the South China Sea and the only one to infect the globally distributed genus Mantoniella. We conducted a comparative analysis with previously identified viral relatives, encompassing morphological characteristics, host specificity, marker-based phylogenetic placement, and whole-genome sequence comparisons. Although it shares morphological and genetic similarities with established prasinoviruses, this novel virus showed distinct genetic traits, confining its infection to the species Mantoniella tinhauana. We also explored the global biogeography of this prasinovirus and its host by mapping metagenomic data and analysing their relationship with various environmental parameters. Our results demonstrate a pronounced link between the virus and its host, both found predominantly in higher latitudes in the surface ocean. By gaining an increased understanding of the relationships between viruses, hosts, and environments, researchers can better make predictions and potentially implement measures to mitigate the consequences of climate change on oceanic processes.
Collapse
Affiliation(s)
- Elvira Rey Redondo
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyHong KongHong Kong SAR
| | - Shara Ka Kiu Leung
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyHong KongHong Kong SAR
| | - Charmaine Cheuk Man Yung
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyHong KongHong Kong SAR
| |
Collapse
|
6
|
Foresi N, De Marco MA, Del Castello F, Ramirez L, Nejamkin A, Calo G, Grimsley N, Correa-Aragunde N, Martínez-Noël GMA. The tiny giant of the sea, Ostreococcus's unique adaptations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108661. [PMID: 38735153 DOI: 10.1016/j.plaphy.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Ostreococcus spp. are unicellular organisms with one of the simplest cellular organizations. The sequencing of the genomes of different Ostreococcus species has reinforced this status since Ostreococcus tauri has one most compact nuclear genomes among eukaryotic organisms. Despite this, it has retained a number of genes, setting it apart from other organisms with similar small genomes. Ostreococcus spp. feature a substantial number of selenocysteine-containing proteins, which, due to their higher catalytic activity compared to their selenium-lacking counterparts, may require a reduced quantity of proteins. Notably, O. tauri encodes several ammonium transporter genes, that may provide it with a competitive edge for acquiring nitrogen (N). This characteristic makes it an intriguing model for studying the efficient use of N in eukaryotes. Under conditions of low N availability, O. tauri utilizes N from abundant proteins or amino acids, such as L-arginine, similar to higher plants. However, the presence of a nitric oxide synthase (L-arg substrate) sheds light on a new metabolic pathway for L-arg in algae. The metabolic adaptations of O. tauri to day and night cycles offer valuable insights into carbon and iron metabolic configuration. O. tauri has evolved novel strategies to optimize iron uptake, lacking the classic components of the iron absorption mechanism. Overall, the cellular and genetic characteristics of Ostreococcus contribute to its evolutionary success, making it an excellent model for studying the physiological and genetic aspects of how green algae have adapted to the marine environment. Furthermore, given its potential for lipid accumulation and its marine habitat, it may represent a promising avenue for third-generation biofuels.
Collapse
Affiliation(s)
- Noelia Foresi
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina.
| | - María Agustina De Marco
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | | | - Leonor Ramirez
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Andres Nejamkin
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina
| | - Gonzalo Calo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | - Nigel Grimsley
- CNRS, LBBM, Sorbonne Université OOB, 1 Avenue de Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | | | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina.
| |
Collapse
|
7
|
Cho A, Lax G, Livingston SJ, Masukagami Y, Naumova M, Millar O, Husnik F, Keeling PJ. Genomic analyses of Symbiomonas scintillans show no evidence for endosymbiotic bacteria but does reveal the presence of giant viruses. PLoS Genet 2024; 20:e1011218. [PMID: 38557755 PMCID: PMC11008856 DOI: 10.1371/journal.pgen.1011218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 μm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel J. Livingston
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yumiko Masukagami
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mariia Naumova
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Olivia Millar
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Filip Husnik
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Thomy J, Sanchez F, Prioux C, Yau S, Xu Y, Mak J, Sun R, Piganeau G, Yung CCM. Unveiling Prasinovirus diversity and host specificity through targeted enrichment in the South China Sea. ISME COMMUNICATIONS 2024; 4:ycae109. [PMID: 39296779 PMCID: PMC11408933 DOI: 10.1093/ismeco/ycae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/16/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024]
Abstract
Unicellular green picophytoplankton from the Mamiellales order are pervasive in marine ecosystems and susceptible to infections by prasinoviruses, large double-stranded DNA viruses within the Nucleocytoviricota phylum. We developed a double-stranded DNA virus enrichment and shotgun sequencing method, and successfully assembled 80 prasinovirus genomes from 43 samples in the South China Sea. Our research delivered the first direct estimation of 94% accuracy in correlating genome similarity to host range. Stirkingly, our analyses uncovered unexpected host-switching across diverse algal lineages, challenging the existing paradigms of host-virus co-speciation and revealing the dynamic nature of viral evolution. We also detected six instances of horizontal gene transfer between prasinoviruses and their hosts, including a novel alternative oxidase. Additionally, diversifying selection on a major capsid protein suggests an ongoing co-evolutionary arms race. These insights not only expand our understanding of prasinovirus genomic diversity but also highlight the intricate evolutionary mechanisms driving their ecological success and shaping broader virus-host interactions in marine environments.
Collapse
Affiliation(s)
- Julie Thomy
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Frederic Sanchez
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), UMR 7232, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Camille Prioux
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Sheree Yau
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Yangbing Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Julian Mak
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ruixian Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Charmaine C M Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
9
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
10
|
Isolation and Characterization of a Novel Cyanophage Encoding Multiple Auxiliary Metabolic Genes. Viruses 2022; 14:v14050887. [PMID: 35632629 PMCID: PMC9146016 DOI: 10.3390/v14050887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
As significant drivers of cyanobacteria mortality, cyanophages have been known to regulate the population dynamics, metabolic activities, and community structure of this most important marine autotrophic picoplankton and, therefore, influence the global primary production and biogeochemical cycle in aquatic ecosystems. In the present study, a lytic Synechococcus phage, namely S-SZBM1, was isolated and identified. Cyanophage S-SZBM1 has a double-stranded DNA genome of 177,834 bp with a G+C content of 43.31% and contains a total of 218 predicted ORFs and six tRNA genes. Phylogenetic analysis and nucleotide-based intergenomic similarity suggested that cyanophage S-SZBM1 belongs to a new genus under the family Kyanoviridae. A variety of auxiliary metabolic genes (AMGs) that have been proved or speculated to relate to photosynthesis, carbon metabolism, nucleotide synthesis and metabolism, cell protection, and other cell metabolism were identified in cyanophage S-SZBM1 genome and may affect host processes during infection. In addition, 24 of 32 predicted structural proteins were identified by a high-throughput proteome analysis which were potentially involved in the assembly processes of virion. The genomic and proteomic analysis features of cyanophage S-SZBM1 offer a valuable insight into the interactions between cyanophages and their hosts during infection.
Collapse
|
11
|
Diversity and Evolution of Mamiellophyceae: Early-Diverging Phytoplanktonic Green Algae Containing Many Cosmopolitan Species. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genomic revolution has bridged a gap in our knowledge about the diversity, biology and evolution of unicellular photosynthetic eukaryotes, which bear very few discriminating morphological features among species from the same genus. The high-quality genome resources available in the class Mamiellophyceae (Chlorophyta) have been paramount to estimate species diversity and screen available metagenomic data to assess the biogeography and ecological niches of different species on a global scale. Here we review the current knowledge about the diversity, ecology and evolution of the Mamiellophyceae and the large double-stranded DNA prasinoviruses infecting them, brought by the combination of genomic and metagenomic analyses, including 26 metabarcoding environmental studies, as well as the pan-oceanic GOS and the Tara Oceans expeditions.
Collapse
|
12
|
Aylward FO, Moniruzzaman M, Ha AD, Koonin EV. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol 2021; 19:e3001430. [PMID: 34705818 PMCID: PMC8575486 DOI: 10.1371/journal.pbio.3001430] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/08/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022] Open
Abstract
Large DNA viruses of the phylum Nucleocytoviricota have recently emerged as important members of ecosystems around the globe that challenge traditional views of viral complexity. Numerous members of this phylum that cannot be classified within established families have recently been reported, and there is presently a strong need for a robust phylogenomic and taxonomic framework for these viruses. Here, we report a comprehensive phylogenomic analysis of the Nucleocytoviricota, present a set of giant virus orthologous groups (GVOGs) together with a benchmarked reference phylogeny, and delineate a hierarchical taxonomy within this phylum. We show that the majority of Nucleocytoviricota diversity can be partitioned into 6 orders, 32 families, and 344 genera, substantially expanding the number of currently recognized taxonomic ranks for these viruses. We integrate our results within a taxonomy that has been adopted for all viruses to establish a unifying framework for the study of Nucleocytoviricota diversity, evolution, and environmental distribution. Giant viruses have transformed our understanding of viral complexity, but we lack a framework for examining their diversity in the biosphere. This study presents a phylogenomic resource for charting the diversity, ecology, and evolution of giant viruses.
Collapse
Affiliation(s)
- Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| | - Mohammad Moniruzzaman
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
13
|
Mönttinen HAM, Bicep C, Williams TA, Hirt RP. The genomes of nucleocytoplasmic large DNA viruses: viral evolution writ large. Microb Genom 2021; 7. [PMID: 34542398 PMCID: PMC8715426 DOI: 10.1099/mgen.0.000649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleocytoplasmic large DNA viruses (NCLDVs) are a diverse group that currently contain the largest known virions and genomes, also called giant viruses. The first giant virus was isolated and described nearly 20 years ago. Their genome sizes were larger than for any other known virus at the time and it contained a number of genes that had not been previously described in any virus. The origin and evolution of these unusually complex viruses has been puzzling, and various mechanisms have been put forward to explain how some NCLDVs could have reached genome sizes and coding capacity overlapping with those of cellular microbes. Here we critically discuss the evidence and arguments on this topic. We have also updated and systematically reanalysed protein families of the NCLDVs to further study their origin and evolution. Our analyses further highlight the small number of widely shared genes and extreme genomic plasticity among NCLDVs that are shaped via combinations of gene duplications, deletions, lateral gene transfers and de novo creation of protein-coding genes. The dramatic expansions of the genome size and protein-coding gene capacity characteristic of some NCLDVs is now increasingly understood to be driven by environmental factors rather than reflecting relationships to an ancient common ancestor among a hypothetical cellular lineage. Thus, the evolution of NCLDVs is writ large viral, and their origin, like all other viral lineages, remains unknown.
Collapse
Affiliation(s)
- Heli A M Mönttinen
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Viikki Biocenter 2, Helsinki 00014, Finland
| | - Cedric Bicep
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont Ferrand, France
| | - Tom A Williams
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,School of Biological Sciences, University of Bristol, 24 Tyndall Ave., Bristol, BS8 1TH, UK
| | - Robert P Hirt
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
14
|
Nelson DR, Hazzouri KM, Lauersen KJ, Jaiswal A, Chaiboonchoe A, Mystikou A, Fu W, Daakour S, Dohai B, Alzahmi A, Nobles D, Hurd M, Sexton J, Preston MJ, Blanchette J, Lomas MW, Amiri KMA, Salehi-Ashtiani K. Large-scale genome sequencing reveals the driving forces of viruses in microalgal evolution. Cell Host Microbe 2021; 29:250-266.e8. [PMID: 33434515 DOI: 10.1016/j.chom.2020.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023]
Abstract
Being integral primary producers in diverse ecosystems, microalgal genomes could be mined for ecological insights, but representative genome sequences are lacking for many phyla. We cultured and sequenced 107 microalgae species from 11 different phyla indigenous to varied geographies and climates. This collection was used to resolve genomic differences between saltwater and freshwater microalgae. Freshwater species showed domain-centric ontology enrichment for nuclear and nuclear membrane functions, while saltwater species were enriched in organellar and cellular membrane functions. Further, marine species contained significantly more viral families in their genomes (p = 8e-4). Sequences from Chlorovirus, Coccolithovirus, Pandoravirus, Marseillevirus, Tupanvirus, and other viruses were found integrated into the genomes of algal from marine environments. These viral-origin sequences were found to be expressed and code for a wide variety of functions. Together, this study comprehensively defines the expanse of protein-coding and viral elements in microalgal genomes and posits a unified adaptive strategy for algal halotolerance.
Collapse
Affiliation(s)
- David R Nelson
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Khaled M Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), UAE University, Al Ain, Abu Dhabi, UAE; Biology Department, College of Science, UAE University, Al Ain, Abu Dhabi, UAE
| | - Kyle J Lauersen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ashish Jaiswal
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Alexandra Mystikou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sarah Daakour
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Bushra Dohai
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Amnah Alzahmi
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - David Nobles
- UTEX Culture Collection of Algae at the University of Texas at Austin, Austin, TX, USA
| | - Mark Hurd
- National Center for Marine Algae and Microbiota, East Boothbay, ME, USA
| | - Julie Sexton
- National Center for Marine Algae and Microbiota, East Boothbay, ME, USA
| | - Michael J Preston
- National Center for Marine Algae and Microbiota, East Boothbay, ME, USA
| | - Joan Blanchette
- National Center for Marine Algae and Microbiota, East Boothbay, ME, USA
| | - Michael W Lomas
- National Center for Marine Algae and Microbiota, East Boothbay, ME, USA
| | - Khaled M A Amiri
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), UAE University, Al Ain, Abu Dhabi, UAE; Biology Department, College of Science, UAE University, Al Ain, Abu Dhabi, UAE
| | - Kourosh Salehi-Ashtiani
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE; Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
15
|
Castillo YM, Forn I, Yau S, Morán XAG, Alonso-Sáez L, Arandia-Gorostidi N, Vaqué D, Sebastián M. Seasonal dynamics of natural Ostreococcus viral infection at the single cell level using VirusFISH. Environ Microbiol 2021; 23:3009-3019. [PMID: 33817943 DOI: 10.1111/1462-2920.15504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/03/2021] [Indexed: 11/28/2022]
Abstract
Ostreococcus is a cosmopolitan marine genus of phytoplankton found in mesotrophic and oligotrophic waters, and the smallest free-living eukaryotes known to date, with a cell diameter close to 1 μm. Ostreococcus has been extensively studied as a model system to investigate viral-host dynamics in culture, yet the impact of viruses in naturally occurring populations is largely unknown. Here, we used Virus Fluorescence in situ Hybridization (VirusFISH) to visualize and quantify viral-host dynamics in natural populations of Ostreococcus during a seasonal cycle in the central Cantabrian Sea (Southern Bay of Biscay). Ostreococcus were predominantly found during summer and autumn at surface and 50 m depth, in coastal, mid-shelf and shelf waters, representing up to 21% of the picoeukaryotic communities. Viral infection was only detected in surface waters, and its impact was variable but highest from May to July and November to December, when up to half of the population was infected. Metatranscriptomic data available from the mid-shelf station unveiled that the Ostreococcus population was dominated by the species O. lucimarinus. This work represents a proof of concept that the VirusFISH technique can be used to quantify the impact of viruses on targeted populations of key microbes from complex natural communities.
Collapse
Affiliation(s)
- Yaiza M Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Sheree Yau
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Xosé Anxelu G Morán
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Laura Alonso-Sáez
- Centro Oceanográfico de Gijón/Xixón, IEO, Gijón/Xixón, Spain.,AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, Sukarrieta, Spain
| | - Néstor Arandia-Gorostidi
- Centro Oceanográfico de Gijón/Xixón, IEO, Gijón/Xixón, Spain.,Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| |
Collapse
|
16
|
Castillo YM, Sebastián M, Forn I, Grimsley N, Yau S, Moraru C, Vaqué D. Visualization of Viral Infection Dynamics in a Unicellular Eukaryote and Quantification of Viral Production Using Virus Fluorescence in situ Hybridization. Front Microbiol 2020; 11:1559. [PMID: 32765451 PMCID: PMC7379908 DOI: 10.3389/fmicb.2020.01559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/16/2020] [Indexed: 11/13/2022] Open
Abstract
One of the major challenges in viral ecology is to assess the impact of viruses in controlling the abundance of specific hosts in the environment. To this end, techniques that enable the detection and quantification of virus-host interactions at the single-cell level are essential. With this goal in mind, we implemented virus fluorescence in situ hybridization (VirusFISH) using as a model the marine picoeukaryote Ostreococcus tauri and its virus Ostreococcus tauri virus 5 (OtV5). VirusFISH allowed the visualization and quantification of the proportion of infected cells during an infection cycle in experimental conditions. We were also able to quantify the abundance of free viruses released during cell lysis, discriminating OtV5 from other mid-level fluorescence phages in our non-axenic infected culture that were not easily distinguishable with flow cytometry. Our results showed that although the major lysis of the culture occurred between 24 and 48 h after OtV5 inoculation, some new viruses were already produced between 8 and 24 h. With this work, we demonstrate that VirusFISH is a promising technique to study specific virus-host interactions in non-axenic cultures and establish a framework for its application in complex natural communities.
Collapse
Affiliation(s)
- Yaiza M Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Nigel Grimsley
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanographic Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Sheree Yau
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanographic Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Cristina Moraru
- Department of the Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| |
Collapse
|
17
|
Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME JOURNAL 2019; 13:2817-2833. [PMID: 31320727 PMCID: PMC6794264 DOI: 10.1038/s41396-019-0472-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 01/06/2023]
Abstract
Phytoplankton and associated microbial communities provide organic carbon to oceanic food webs and drive ecosystem dynamics. However, capturing those dynamics is challenging. Here, an in situ, semi-Lagrangian, robotic sampler profiled pelagic microbes at 4 h intervals over ~2.6 days in North Pacific high-nutrient, low-chlorophyll waters. We report on the community structure and transcriptional dynamics of microbes in an operationally large size class (>5 μm) predominantly populated by dinoflagellates, ciliates, haptophytes, pelagophytes, diatoms, cyanobacteria (chiefly Synechococcus), prasinophytes (chiefly Ostreococcus), fungi, archaea, and proteobacteria. Apart from fungi and archaea, all groups exhibited 24-h periodicity in some transcripts, but larger portions of the transcriptome oscillated in phototrophs. Periodic photosynthesis-related transcripts exhibited a temporal cascade across the morning hours, conserved across diverse phototrophic lineages. Pronounced silica:nitrate drawdown, a high flavodoxin to ferredoxin transcript ratio, and elevated expression of other Fe-stress markers indicated Fe-limitation. Fe-stress markers peaked during a photoperiodically adaptive time window that could modulate phytoplankton response to seasonal Fe-limitation. Remarkably, we observed viruses that infect the majority of abundant taxa, often with total transcriptional activity synchronized with putative hosts. Taken together, these data reveal a microbial plankton community that is shaped by recycled production and tightly controlled by Fe-limitation and viral activity.
Collapse
|
18
|
Zimmerman AE, Bachy C, Ma X, Roux S, Jang HB, Sullivan MB, Waldbauer JR, Worden AZ. Closely related viruses of the marine picoeukaryotic alga Ostreococcus lucimarinus exhibit different ecological strategies. Environ Microbiol 2019; 21:2148-2170. [PMID: 30924271 PMCID: PMC6851583 DOI: 10.1111/1462-2920.14608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/16/2019] [Accepted: 03/23/2019] [Indexed: 01/01/2023]
Abstract
In marine ecosystems, viruses are major disrupters of the direct flow of carbon and nutrients to higher trophic levels. Although the genetic diversity of several eukaryotic phytoplankton virus groups has been characterized, their infection dynamics are less understood, such that the physiological and ecological implications of their diversity remain unclear. We compared genomes and infection phenotypes of the two most closely related cultured phycodnaviruses infecting the widespread picoprasinophyte Ostreococcus lucimarinus under standard- (1.3 divisions per day) and limited-light (0.41 divisions per day) nutrient replete conditions. OlV7 infection caused early arrest of the host cell cycle, coinciding with a significantly higher proportion of infected cells than OlV1-amended treatments, regardless of host growth rate. OlV7 treatments showed a near-50-fold increase of progeny virions at the higher host growth rate, contrasting with OlV1's 16-fold increase. However, production of OlV7 virions was more sensitive than OlV1 production to reduced host growth rate, suggesting fitness trade-offs between infection efficiency and resilience to host physiology. Moreover, although organic matter released from OlV1- and OlV7-infected hosts had broadly similar chemical composition, some distinct molecular signatures were observed. Collectively, these results suggest that current views on viral relatedness through marker and core gene analyses underplay operational divergence and consequences for host ecology.
Collapse
Affiliation(s)
| | - Charles Bachy
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
| | - Xiufeng Ma
- Department of the Geophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Simon Roux
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | - Ho Bin Jang
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
- Department of CivilEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | - Matthew B. Sullivan
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
- Department of CivilEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | | | - Alexandra Z. Worden
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
- Ocean EcoSystems Biology Unit, Marine Ecology DivisionGEOMAR Helmholtz Centre for Ocean Research KielKielDE
| |
Collapse
|
19
|
Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions. Viruses 2018; 10:v10090487. [PMID: 30208617 PMCID: PMC6165237 DOI: 10.3390/v10090487] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
The scope for ecological studies of eukaryotic algal viruses has greatly improved with the development of molecular and bioinformatic approaches that do not require algal cultures. Here, we review the history and perceived future opportunities for research on eukaryotic algal viruses. We begin with a summary of the 65 eukaryotic algal viruses that are presently in culture collections, with emphasis on shared evolutionary traits (e.g., conserved core genes) of each known viral type. We then describe how core genes have been used to enable molecular detection of viruses in the environment, ranging from PCR-based amplification to community scale "-omics" approaches. Special attention is given to recent studies that have employed network-analyses of -omics data to predict virus-host relationships, from which a general bioinformatics pipeline is described for this type of approach. Finally, we conclude with acknowledgement of how the field of aquatic virology is adapting to these advances, and highlight the need to properly characterize new virus-host systems that may be isolated using preliminary molecular surveys. Researchers can approach this work using lessons learned from the Chlorella virus system, which is not only the best characterized algal-virus system, but is also responsible for much of the foundation in the field of aquatic virology.
Collapse
|
20
|
Yau S, Caravello G, Fonvieille N, Desgranges É, Moreau H, Grimsley N. Rapidity of Genomic Adaptations to Prasinovirus Infection in a Marine Microalga. Viruses 2018; 10:v10080441. [PMID: 30126244 PMCID: PMC6116238 DOI: 10.3390/v10080441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022] Open
Abstract
Prasinoviruses are large dsDNA viruses commonly found in aquatic systems worldwide, where they can infect and lyse unicellular prasinophyte algae such as Ostreococcus. Host susceptibility is virus strain-specific, but resistance of susceptible Ostreococcus tauri strains to a virulent virus arises frequently. In clonal resistant lines that re-grow, viruses are usually present for many generations, and genes clustered on chromosome 19 show physical rearrangements and differential expression. Here, we investigated changes occurring during the first two weeks after inoculation of the prasinovirus OtV5. By serial dilutions of cultures at the time of inoculation, we estimated the frequency of resistant cells arising in virus-challenged O. tauri cultures to be 10-3⁻10-4 of the inoculated population. Re-growing resistant cells were detectable by flow cytometry 3 days post-inoculation (dpi), visible re-greening of cultures occurred by 6 dpi, and karyotypic changes were visually detectable at 8 dpi. Resistant cell lines showed a modified spectrum of host-virus specificities and much lower levels of OtV5 adsorption.
Collapse
Affiliation(s)
- Sheree Yau
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| | - Gaëtan Caravello
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| | - Nadège Fonvieille
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| | - Élodie Desgranges
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| | - Hervé Moreau
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| | - Nigel Grimsley
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| |
Collapse
|
21
|
Prasinovirus Attack of Ostreococcus Is Furtive by Day but Savage by Night. J Virol 2018; 92:JVI.01703-17. [PMID: 29187539 PMCID: PMC5790953 DOI: 10.1128/jvi.01703-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Prasinoviruses are large DNA viruses that infect diverse genera of green microalgae worldwide in aquatic ecosystems, but molecular knowledge of their life cycles is lacking. Several complete genomes of both these viruses and their marine algal hosts are now available and have been used to show the pervasive presence of these species in microbial metagenomes. We have analyzed the life cycle of Ostreococcus tauri virus 5 (OtV5), a lytic virus, using transcriptome sequencing (RNA-Seq) from 12 time points of healthy or infected Ostreococcus tauri cells over a day/night cycle in culture. In the day, viral gene transcription remained low while host nitrogen metabolism gene transcription was initially strongly repressed for two successive time points before being induced for 8 h, but during the night, viral transcription increased steeply while host nitrogen metabolism genes were repressed and many host functions that are normally reduced in the dark appeared to be compensated either by genes expressed from the virus or by increased expression of a subset of 4.4% of the host's genes. Some host cells underwent lysis progressively during the night, but a larger proportion were lysed the following morning. Our data suggest that the life cycles of algal viruses mirror the diurnal rhythms of their hosts.IMPORTANCE Prasinoviruses are common in marine environments, and although several complete genomes of these viruses and their hosts have been characterized, little is known about their life cycles. Here we analyze in detail the transcriptional changes occurring over a 27-h-long experiment in a natural diurnal rhythm, in which the growth of host cells is to some extent synchronized, so that host DNA replication occurs late in the day or early in the night and cell division occurs during the night. Surprisingly, viral transcription remains quiescent over the daytime, when the most energy (from light) is available, but during the night viral transcription activates, accompanied by expression of a few host genes that are probably required by the virus. Although our experiment was accomplished in the lab, cyclical changes have been documented in host transcription in the ocean. Our observations may thus be relevant for eukaryotic phytoplankton in natural environments.
Collapse
|
22
|
Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. Proc Natl Acad Sci U S A 2017; 114:E7489-E7498. [PMID: 28827361 DOI: 10.1073/pnas.1708097114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytoplankton community structure is shaped by both bottom-up factors, such as nutrient availability, and top-down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer.
Collapse
|
23
|
Weynberg KD, Allen MJ, Wilson WH. Marine Prasinoviruses and Their Tiny Plankton Hosts: A Review. Viruses 2017; 9:E43. [PMID: 28294997 PMCID: PMC5371798 DOI: 10.3390/v9030043] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022] Open
Abstract
Viruses play a crucial role in the marine environment, promoting nutrient recycling and biogeochemical cycling and driving evolutionary processes. Tiny marine phytoplankton called prasinophytes are ubiquitous and significant contributors to global primary production and biomass. A number of viruses (known as prasinoviruses) that infect these important primary producers have been isolated and characterised over the past decade. Here we review the current body of knowledge about prasinoviruses and their interactions with their algal hosts. Several genes, including those encoding for glycosyltransferases, methyltransferases and amino acid synthesis enzymes, which have never been identified in viruses of eukaryotes previously, have been detected in prasinovirus genomes. The host organisms are also intriguing; most recently, an immunity chromosome used by a prasinophyte in response to viral infection was discovered. In light of such recent, novel discoveries, we discuss why the cellular simplicity of prasinophytes makes for appealing model host organism-virus systems to facilitate focused and detailed investigations into the dynamics of marine viruses and their intimate associations with host species. We encourage the adoption of the prasinophyte Ostreococcus and its associated viruses as a model host-virus system for examination of cellular and molecular processes in the marine environment.
Collapse
Affiliation(s)
- Karen D Weynberg
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia.
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
| | - William H Wilson
- Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
24
|
Yau S, Hemon C, Derelle E, Moreau H, Piganeau G, Grimsley N. A Viral Immunity Chromosome in the Marine Picoeukaryote, Ostreococcus tauri. PLoS Pathog 2016; 12:e1005965. [PMID: 27788272 PMCID: PMC5082852 DOI: 10.1371/journal.ppat.1005965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Micro-algae of the genus Ostreococcus and related species of the order Mamiellales are globally distributed in the photic zone of world's oceans where they contribute to fixation of atmospheric carbon and production of oxygen, besides providing a primary source of nutrition in the food web. Their tiny size, simple cells, ease of culture, compact genomes and susceptibility to the most abundant large DNA viruses in the sea render them attractive as models for integrative marine biology. In culture, spontaneous resistance to viruses occurs frequently. Here, we show that virus-producing resistant cell lines arise in many independent cell lines during lytic infections, but over two years, more and more of these lines stop producing viruses. We observed sweeping over-expression of all genes in more than half of chromosome 19 in resistant lines, and karyotypic analyses showed physical rearrangements of this chromosome. Chromosome 19 has an unusual genetic structure whose equivalent is found in all of the sequenced genomes in this ecologically important group of green algae. We propose that chromosome 19 of O. tauri is specialized in defence against viral attack, a constant threat for all planktonic life, and that the most likely cause of resistance is the over-expression of numerous predicted glycosyltransferase genes. O. tauri thus provides an amenable model for molecular analysis of genome evolution under environmental stress and for investigating glycan-mediated host-virus interactions, such as those seen in herpes, influenza, HIV, PBCV and mimivirus.
Collapse
Affiliation(s)
- Sheree Yau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Claire Hemon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Evelyne Derelle
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Hervé Moreau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Gwenaël Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Nigel Grimsley
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
- * E-mail:
| |
Collapse
|
25
|
Heath SE, Collins S. Mode of resistance to viral lysis affects host growth across multiple environments in the marine picoeukaryote Ostreococcus tauri. Environ Microbiol 2016; 18:4628-4639. [PMID: 27768828 DOI: 10.1111/1462-2920.13586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/17/2016] [Indexed: 11/27/2022]
Abstract
Viruses play important roles in population dynamics and as drivers of evolution in single-celled marine phytoplankton. Viral infection of Ostreococcus tauri often causes cell lysis, but two spontaneously arising resistance mechanisms occur: resistant cells that cannot become infected and resistant producer cells that are infected but not lysed, and which may slowly release viruses. As of yet, little is known about how consistent the effects of viruses on their hosts are across different environments. To measure the effect of host resistance on host growth, and to determine whether this effect is environmentally dependent, we compared the growth and survival of susceptible, resistant and resistant producer O. tauri cells under five environmental conditions with and without exposure to O. tauri virus. While the effects of exposure to virus on growth rates did not show a consistent pattern in populations of resistant cells, there were several cases where exposure to virus affected growth in resistant hosts, sometimes positively. In the absence of virus, there was no detectable cost of resistance in any environment, as measured by growth rate. In fact, the opposite was the case, with populations of resistant producer cells having the highest growth rates across four of the five environments.
Collapse
Affiliation(s)
- Sarah E Heath
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, West Mains Road, Edinburgh, EH9 3FL, UK
| | - Sinead Collins
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, West Mains Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
26
|
Huang W, de Araujo Campos PR, Moraes de Oliveira V, Fagundes Ferrreira F. A resource-based game theoretical approach for the paradox of the plankton. PeerJ 2016; 4:e2329. [PMID: 27602293 PMCID: PMC4994083 DOI: 10.7717/peerj.2329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022] Open
Abstract
The maintenance of species diversity is a central focus in ecology. It is not rare to observe more species than the number of limiting resources, especially in plankton communities. However, such high species diversity is hard to achieve in theory under the competitive exclusion principles, known as the plankton paradox. Previous studies often focus on the coexistence of predefined species and ignore the fact that species can evolve. We model multi-resource competitions using evolutionary games, where the number of species fluctuates under extinction and the appearance of new species. The interspecific and intraspecific competitions are captured by a dynamical payoff matrix, which has a size of the number of species. The competition strength (payoff entries) is obtained from comparing the capability of species in consuming resources, which can change over time. This allows for the robust coexistence of a large number of species, providing a possible solution to the plankton paradox.
Collapse
Affiliation(s)
- Weini Huang
- Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | | | | |
Collapse
|
27
|
The 474-Kilobase-Pair Complete Genome Sequence of CeV-01B, a Virus Infecting Haptolina (Chrysochromulina) ericina (Prymnesiophyceae). GENOME ANNOUNCEMENTS 2015; 3:3/6/e01413-15. [PMID: 26634761 PMCID: PMC4669402 DOI: 10.1128/genomea.01413-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We report the complete genome sequence of CeV-01B, a large double-stranded DNA virus infecting the unicellular marine phytoplankton Haptolina (formerly Chrysochromulina) ericina. CeV-01B and its closest relative Phaeocystis globosa virus define an emerging subclade of the Megaviridae family with smaller genomes and particles than the originally described giant Mimiviridae infecting Acanthamoeba.
Collapse
|
28
|
Clerissi C, Desdevises Y, Romac S, Audic S, de Vargas C, Acinas SG, Casotti R, Poulain J, Wincker P, Hingamp P, Ogata H, Grimsley N. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:979-989. [PMID: 26472079 DOI: 10.1111/1758-2229.12345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
High-throughput sequencing of Prasinovirus DNA polymerase and host green algal (Mamiellophyceae) ribosomal RNA genes was used to analyse the diversity and distribution of these taxa over a ∼10 000 km latitudinal section of the Indian Ocean. New viral and host groups were identified among the different trophic conditions observed, and highlighted that although unknown prasinoviruses are diverse, the cosmopolitan algal genera Bathycoccus, Micromonas and Ostreococcus represent a large proportion of the host diversity. While Prasinovirus communities were correlated to both the geography and the environment, host communities were not, perhaps because the genetic marker used lacked sufficient resolution. Nevertheless, analysis of single environmental variables showed that eutrophic conditions strongly influence the distributions of both hosts and viruses. Moreover, these communities were not correlated, in their composition or specific richness. These observations could result from antagonistic dynamics, such as that illustrated in a prey-predator model, and/or because hosts might be under a complex set of selective pressures. Both of these reasons must be considered to interpret environmental surveys of viruses and hosts, because covariation does not always imply interaction.
Collapse
Affiliation(s)
- Camille Clerissi
- Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
- Biologie Intégrative des Organismes Marins, CNRS, UMR 7232, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
| | - Yves Desdevises
- Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
- Biologie Intégrative des Organismes Marins, CNRS, UMR 7232, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
| | - Sarah Romac
- Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
- Equipe Evolution du Plancton et Paleo-Ocean, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Stéphane Audic
- Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
- Equipe Evolution du Plancton et Paleo-Ocean, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Colomban de Vargas
- Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
- Equipe Evolution du Plancton et Paleo-Ocean, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Science (ICM), CSIC, Pg Marítim de la Barceloneta 37-49, Barcelona, Spain
| | - Raffaella Casotti
- Stazione Zoologica, Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Julie Poulain
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, BP5706, Evry, 91057, France
| | - Patrick Wincker
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, BP5706, Evry, 91057, France
| | - Pascal Hingamp
- CNRS, Université Aix-Marseille, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), 13288, Marseille, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Nigel Grimsley
- Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
- Biologie Intégrative des Organismes Marins, CNRS, UMR 7232, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
| |
Collapse
|
29
|
Abstract
Viral ecology is a rapidly progressing area of research, as molecular methods have improved significantly for targeted research on specific populations and whole communities. To interpret and synthesize global viral diversity and distribution, it is feasible to assess whether macroecology concepts can apply to marine viruses. We review how viral and host life history and physical properties can influence viral distribution in light of biogeography and metacommunity ecology paradigms. We highlight analytical approaches that can be applied to emerging global data sets and meta-analyses to identify individual taxa with global influence and drivers of emergent properties that influence microbial community structure by drawing on examples across the spectrum of viral taxa, from RNA to ssDNA and dsDNA viruses.
Collapse
Affiliation(s)
| | - Curtis A Suttle
- Department of Earth, Ocean, and Atmospheric Sciences.,Department of Botany, and.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; .,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
30
|
Wood-Charlson EM, Weynberg KD, Suttle CA, Roux S, van Oppen MJH. Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise. Environ Microbiol 2015; 17:3440-9. [DOI: 10.1111/1462-2920.12803] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/23/2015] [Accepted: 01/31/2015] [Indexed: 12/16/2022]
Affiliation(s)
| | - Karen D. Weynberg
- Australian Institute of Marine Science; PMB 3 Townsville MC Townsville Qld 4810 Australia
| | - Curtis A. Suttle
- Departments of Earth, Ocean and Atmospheric Sciences; Microbiology and Immunology; Botany and the Canadian Institute for Advanced Research; University of British Columbia; Vancouver BC Canada
| | - Simon Roux
- Laboratoire Micro-organismes: Genome and Environment; Université Blaise Pascal; Clermont Université; Clermont-Ferrand France
| | | |
Collapse
|
31
|
Diversity of Viruses Infecting the Green Microalga Ostreococcus lucimarinus. J Virol 2015; 89:5812-21. [PMID: 25787287 DOI: 10.1128/jvi.00246-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/06/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The functional diversity of eukaryotic viruses infecting a single host strain from seawater samples originating from distant marine locations is unknown. To estimate this diversity, we used lysis plaque assays to detect viruses that infect the widespread species Ostreococcus lucimarinus, which is found in coastal and mesotrophic systems, and O. tauri, which was isolated from coastal and lagoon sites from the northwest Mediterranean Sea. Detection of viral lytic activities against O. tauri was not observed using seawater from most sites, except those close to the area where the host strain was isolated. In contrast, the more cosmopolitan O. lucimarinus species recovered viruses from locations in the Atlantic and Pacific Oceans and the Mediterranean Sea. Six new O. lucimarinus viruses (OlVs) then were characterized and their genomes sequenced. Two subgroups of OlVs were distinguished based on their genetic distances and on the inversion of a central 32-kb-long DNA fragment, but overall their genomes displayed a high level of synteny. The two groups did not correspond to proximity of isolation sites, and the phylogenetic distance between these subgroups was higher than the distances observed among viruses infecting O. tauri. Our study demonstrates that viruses originating from very distant sites are able to infect the same algal host strain and can be more diverse than those infecting different species of the same genus. Finally, distinctive features and evolutionary distances between these different viral subgroups does not appear to be linked to biogeography of the viral isolates. IMPORTANCE Marine eukaryotic phytoplankton virus diversity has yet to be addressed, and more specifically, it is unclear whether diversity is connected to geographical distance and whether differential infection and lysis patterns exist among such viruses that infect the same host strain. Here, we assessed the genetic distance of geographically segregated viruses that infect the ubiquitous green microalga Ostreococcus. This study provides the first glimpse into the diversity of predicted gene functions in Ostreococcus viruses originating from distant sites and provides new insights into potential host distributions and restrictions in the world oceans.
Collapse
|
32
|
Clerissi C, Grimsley N, Subirana L, Maria E, Oriol L, Ogata H, Moreau H, Desdevises Y. Prasinovirus distribution in the Northwest Mediterranean Sea is affected by the environment and particularly by phosphate availability. Virology 2014; 466-467:146-57. [PMID: 25109909 DOI: 10.1016/j.virol.2014.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/13/2014] [Accepted: 07/08/2014] [Indexed: 10/24/2022]
Abstract
Numerous seawater lagoons punctuate the southern coastline of France. Exchanges of seawater between these lagoons and the open sea are limited by narrow channels connecting them. Lagoon salinities vary according to evaporation and to the volume of freshwater arriving from influent streams, whose nutrients also promote the growth of algae. We compared Prasinovirus communities, whose replication is supported by microscopic green algae, in four lagoons and at a coastal sampling site. Using high-throughput sequencing of DNA from a giant virus-specific marker gene, we show that the environmental conditions significantly affect the types of detectable viruses across samples. In spatial comparisons between 5 different sampling sites, higher levels of phosphates, nitrates, nitrites, ammonium and silicates tend to increase viral community richness independently of geographical distances between the sampling sites. Finally, comparisons of Prasinovirus communities at 2 sampling sites over a period of 10 months highlighted seasonal effects and the preponderant nature of phosphate concentrations in constraining viral distribution.
Collapse
Affiliation(s)
- Camille Clerissi
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7232, Biologie Intégrative des Organismes Marin, Observatoire Océanologique, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France; Sorbonne Universités, CNRS, UMR 7232, Observatoire Océanologique, Biologie Intégrative des Organismes Marins, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7232, Biologie Intégrative des Organismes Marin, Observatoire Océanologique, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France; Sorbonne Universités, CNRS, UMR 7232, Observatoire Océanologique, Biologie Intégrative des Organismes Marins, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France.
| | - Lucie Subirana
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7232, Biologie Intégrative des Organismes Marin, Observatoire Océanologique, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France; Sorbonne Universités, CNRS, UMR 7232, Observatoire Océanologique, Biologie Intégrative des Organismes Marins, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France
| | - Eric Maria
- Sorbonne Universités, UPMC Univ Paris 06, UMS 2348, Observatoire Océanologique, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France
| | - Louise Oriol
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire d׳Océanographie Microbienne, Observatoire Océanologique, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France; Sorbonne Universités, CNRS, UMR 7621, Observatoire Océanologique, Laboratoire d׳Océanographie Microbienne, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hervé Moreau
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7232, Biologie Intégrative des Organismes Marin, Observatoire Océanologique, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France; Sorbonne Universités, CNRS, UMR 7232, Observatoire Océanologique, Biologie Intégrative des Organismes Marins, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France
| | - Yves Desdevises
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7232, Biologie Intégrative des Organismes Marin, Observatoire Océanologique, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France; Sorbonne Universités, CNRS, UMR 7232, Observatoire Océanologique, Biologie Intégrative des Organismes Marins, Avenue du Fontaulé, F-66650 Banyuls-sur-Mer, France
| |
Collapse
|
33
|
Brown CM, Bidle KD. Attenuation of virus production at high multiplicities of infection in Aureococcus anophagefferens. Virology 2014; 466-467:71-81. [PMID: 25104555 DOI: 10.1016/j.virol.2014.07.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/16/2023]
Abstract
Infection dynamics (saturation kinetics, infection efficiency, adsorption and burst size) for the Aureococcus anophagefferens-Brown Tide virus (AaV) system were investigated using susceptible and resistant strains. Adsorption assays revealed that virus affinity to the cell surface is a key determinant of infectivity. Saturation of infection occurred at a multiplicity of infection (MOI) of 8 viruses per host and resulted in ~90-95% of infected cells, with burst sizes ranging from 164 to 191. Insight from the AaV genome implicates recycling of host nucleotides rather than de novo synthesis as a constraint on viral replication. Viral yields and mean burst sizes were significantly diminished with increasing MOI. This phenomenon, which was reminiscent of phage-induced 'lysis from without', appeared to be caused by viral contact and was unrelated to bacteria, signaling/toxic compounds, or defective interfering viruses. We posit that high-MOI effects attenuate viral proliferation in natural systems providing a negative feedback on virus-induced bloom collapse.
Collapse
Affiliation(s)
- Christopher M Brown
- Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901, USA
| | - Kay D Bidle
- Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
34
|
Weynberg KD, Wood-Charlson EM, Suttle CA, van Oppen MJH. Generating viral metagenomes from the coral holobiont. Front Microbiol 2014; 5:206. [PMID: 24847321 PMCID: PMC4019844 DOI: 10.3389/fmicb.2014.00206] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
Reef-building corals comprise multipartite symbioses where the cnidarian animal is host to an array of eukaryotic and prokaryotic organisms, and the viruses that infect them. These viruses are critical elements of the coral holobiont, serving not only as agents of mortality, but also as potential vectors for lateral gene flow, and as elements encoding a variety of auxiliary metabolic functions. Consequently, understanding the functioning and health of the coral holobiont requires detailed knowledge of the associated viral assemblage and its function. Currently, the most tractable way of uncovering viral diversity and function is through metagenomic approaches, which is inherently difficult in corals because of the complex holobiont community, an extracellular mucus layer that all corals secrete, and the variety of sizes and structures of nucleic acids found in viruses. Here we present the first protocol for isolating, purifying and amplifying viral nucleic acids from corals based on mechanical disruption of cells. This method produces at least 50% higher yields of viral nucleic acids, has very low levels of cellular sequence contamination and captures wider viral diversity than previously used chemical-based extraction methods. We demonstrate that our mechanical-based method profiles a greater diversity of DNA and RNA genomes, including virus groups such as Retro-transcribing and ssRNA viruses, which are absent from metagenomes generated via chemical-based methods. In addition, we briefly present (and make publically available) the first paired DNA and RNA viral metagenomes from the coral Acropora tenuis.
Collapse
Affiliation(s)
| | | | - Curtis A. Suttle
- Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British ColumbiaVancouver, BC, Canada
- Department of Botany, University of British ColumbiaVancouver, BC, Canada
- Canadian Institute for Advanced Research, University of British ColumbiaVancouver, BC, Canada
| | | |
Collapse
|
35
|
Permanent draft genomes of four new coccolithoviruses: EhV-18, EhV-145, EhV-156 and EhV-164. Mar Genomics 2014; 15:7-8. [PMID: 24631268 DOI: 10.1016/j.margen.2014.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/18/2014] [Accepted: 02/26/2014] [Indexed: 11/21/2022]
Abstract
Coccolithoviruses infect the marine coccolithophorid microalga Emiliania huxleyi. Here, we describe the genomes of four new coccolithoviruses isolated from UK coastal locations. Of particular interest, EhV-18 and EhV-145 encode serine palmitoyltransferase function via two distinct genes, whereas all other coccolithoviruses have SPT as a gene fusion of LCB1/LCB2 domains.
Collapse
|
36
|
Unveiling of the diversity of Prasinoviruses (Phycodnaviridae) in marine samples by using high-throughput sequencing analyses of PCR-amplified DNA polymerase and major capsid protein genes. Appl Environ Microbiol 2014; 80:3150-60. [PMID: 24632251 DOI: 10.1128/aem.00123-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses strongly influence the ecology and evolution of their eukaryotic hosts in the marine environment, but little is known about their diversity and distribution. Prasinoviruses infect an abundant and widespread class of phytoplankton, the Mamiellophyceae, and thereby exert a specific and important role in microbial ecosystems. However, molecular tools to specifically identify this viral genus in environmental samples are still lacking. We developed two primer sets, designed for use with polymerase chain reactions and 454 pyrosequencing technologies, to target two conserved genes, encoding the DNA polymerase (PolB gene) and the major capsid protein (MCP gene). While only one copy of the PolB gene is present in Prasinovirus genomes, there are at least seven paralogs for MCP, the copy we named number 6 being shared with other eukaryotic alga-infecting viruses. Primer sets for PolB and MCP6 were thus designed and tested on 6 samples from the Tara Oceans project. The results suggest that the MCP6 amplicons show greater richness but that PolB gave a wider coverage of Prasinovirus diversity. As a consequence, we recommend use of the PolB primer set, which will certainly reveal exciting new insights about the diversity and distribution of prasinoviruses at the community scale.
Collapse
|
37
|
Seasonal variations in PCR-DGGE fingerprinted viruses infecting phytoplankton in large and deep peri-alpine lakes. Ecol Res 2014. [DOI: 10.1007/s11284-013-1121-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Zhong X, Ram ASP, Colombet J, Jacquet S. Variations in abundance, genome size, morphology, and functional role of the virioplankton in Lakes Annecy and Bourget over a 1-year period. MICROBIAL ECOLOGY 2014; 67:66-82. [PMID: 24253662 DOI: 10.1007/s00248-013-0320-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
We sampled the surface waters (2-50 m) of two deep peri-alpine lakes over a 1-year period in order to examine (1) the abundance, vertical distribution, genome size, and morphology structures of the virioplankton; (2) the virus-mediated bacterial mortality; and (3) the specific genome size range of double-stranded DNA (dsDNA) phytoplankton viruses. Virus-like particle (VLP) concentrations varied between 4.16 × 10(7) (January) and 2.08 × 10(8) part mL(-1) (May) in Lake Bourget and between 2.7 × 10(7) (June) and 8.39 × 10(7) part mL(-1) (November) in Lake Annecy. Our flow cytometry analysis revealed at least three viral groups (referred to as virus-like particles 1, 2, and 3) that exhibited distinctive dynamics suggestive of different host types. Phage-induced bacterial mortality varied between 6.1% (June) and 33.2% (October) in Lake Bourget and between 7.4% (June) and 52.6% (November) in Lake Annecy, suggesting that viral lysis may be a key cause of mortality of the bacterioplankton. Virioplankton genome size ranged from 27 to 486 kb in Lake Bourget, while it reached 620 kb in Lake Annecy for which larger genome sizes were recorded. Our analysis of pulsed field gel electrophoresis bands using different PCR primers targeting both cyanophages and algal viruses showed that (1) dsDNA viruses infecting phytoplankton may range from 65 to 486 kb, and (2) both cyanophage and algal "diversity" were higher in Lake Annecy. Lakes Annecy and Bourget also differed regarding the proportions of both viral families (with the dominance of myoviruses vs. podoviruses) and infected bacterial morphotypes (short rods vs. elongated rods), in each of these lakes, respectively. Overall, our results reveal that (1) viruses displayed distinct temporal and vertical distribution, dynamics, community structure in terms of genome size and morphology, and viral activity in the two lakes; (2) the Myoviridae seemed to be the main cause of bacterial mortality in both lakes and this group seemed to be related to VLP2; and (3) phytoplankton viruses may have a broader range of genome size than previously thought. This study adds to growing evidence that viruses are diverse and play a significant role in freshwater microbial dynamics and more globally lake functioning. It highlights the importance of further considering this biological compartment for a better understanding of plankton ecology in peri-alpine lakes.
Collapse
Affiliation(s)
- Xu Zhong
- INRA, UMR 042 CARRTEL, 75 Avenue de Corzent, 74203, Thonon-les-Bains cx, France
| | | | | | | |
Collapse
|
39
|
Collins S, Rost B, Rynearson TA. Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl 2013; 7:140-55. [PMID: 24454553 PMCID: PMC3894903 DOI: 10.1111/eva.12120] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/12/2013] [Indexed: 01/22/2023] Open
Abstract
Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually.
Collapse
Affiliation(s)
- Sinéad Collins
- Ashworth Laboratories, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | - Björn Rost
- Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island Narragansett, RI, USA
| |
Collapse
|
40
|
Redrejo-Rodríguez M, Salas ML. Repair of base damage and genome maintenance in the nucleo-cytoplasmic large DNA viruses. Virus Res 2013; 179:12-25. [PMID: 24184318 DOI: 10.1016/j.virusres.2013.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 11/27/2022]
Abstract
Among the DNA viruses, the so-called nucleo-cytoplasmic large DNA viruses (NCLDV) constitute a monophyletic group that currently consists of seven families of viruses infecting a very broad variety of eukaryotes, from unicellular marine protists to humans. Many recent papers have analyzed the sequence and structure of NCLDV genomes and their phylogeny, providing detailed analysis about their genomic structure and evolutionary history and proposing their inclusion in a new viral order named Megavirales that, according to some authors, should be considered as a fourth domain of life, aside from Bacteria, Archaea and Eukarya. The maintenance of genetic information protected from environmental attacks and mutations is essential not only for the survival of cellular organisms but also viruses. In cellular organisms, damaged DNA bases are removed in two major repair pathways: base excision repair (BER) and nucleotide incision repair (NIR) that constitute the major pathways responsible for repairing most endogenous base lesions and abnormal bases in the genome by precise repair procedures. Like cells, many NCLDV encode proteins that might constitute viral DNA repair pathways that would remove damages through BER/NIR pathways. However, the molecular mechanisms and, specially, the biological roles of those viral repair pathways have not been deeply addressed in the literature so far. In this paper, we review viral-encoded BER proteins and the genetic and biochemical data available about them. We propose and discuss probable viral-encoded DNA repair mechanisms and pathways, as compared with the functional and molecular features of known homologs proteins.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - María L Salas
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
41
|
Manrique JM, Jones LR. Genetic data generated from virus-host complexes obtained by membrane co-immobilization are equivalent to data obtained from tangential filtrate virus concentrates and virus cultures. Virus Genes 2013; 48:160-7. [PMID: 24166738 DOI: 10.1007/s11262-013-0999-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
The sieving and immobilization of virus-host complexes using impact filtration (aka membrane co-immobilization or MCI) is a novel approach to the study of plankton viruses. One of the most interesting characteristics of the method is the possibility of generating data on potential viral hosts without the need of culturing hosts cells. MCI has demonstrated to be useful for studying viruses of picoalgae, but studies comparing data generated by MCI to data obtained by other techniques are lacking. In this work, Ostreococcus virus (OV) and Ostreococcus sp. sequences generated from virus-host complexes obtained by MCI were compared to sequences obtained from tangential filtration (TF) concentrates and virus cultures (VC). Statistical parsimony, phylogenetic analyses, pairwise distance comparisons, and analysis of molecular variance showed that the viral and host sequences obtained by the three methods were highly related to each other, indicating that MCI, TF, and VC produce equivalent results. Minor differences were observed among viral sequences obtained from VC and TF concentrates as well as among host sequences generated from VC and MCI. As discussed in the body of the paper, the divergence observed for cultured cells could be due to selective pressures exerted by culture conditions, whereas the correlate observed for the corresponding viral sequences could obey to a hitchhiking effect.
Collapse
Affiliation(s)
- J M Manrique
- Laboratory of Virology and Molecular Genetics, Faculty of Natural Sciences, Trelew seat, National University of Patagonia "San Juan Bosco", Av. 9 de Julio 25, 9100, Trelew, Chubut, Argentina
| | | |
Collapse
|
42
|
Functional and structural characterisation of a viral cytochrome b5. FEBS Lett 2013; 587:3633-9. [PMID: 24100138 DOI: 10.1016/j.febslet.2013.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 11/21/2022]
Abstract
Cytochrome b5 is a ubiquitous electron transport protein. The sequenced viral OtV-2 genome, which infects Ostreococcus tauri, was predicted to encode a putative cytochrome b5 enzyme. Using purified OtV-2 cytochrome b5 we confirm this protein has identical spectral properties to purified human cytochrome b5 and additionally that the viral enzyme can substitute for yeast cytochrome b5 in yeast cytochrome P450 51 mediated sterol 14α-demethylation. The crystal structure of the OtV-2 cytochrome b5 enzyme reveals a single domain, comprising four β sheets, four α helices and a haem moiety, which is similar to that found in larger eukaryotic cytochrome proteins. As a product of a horizontal gene transfer event involving a subdomain of the host fumarate reductase-like protein, OtV-2 cytochrome b5 appears to have diverged in function and is likely to have evolved an entirely new role for the virus during infection. Indeed, lacking a hydrophobic C-terminal anchor, OtV-2 encodes the first cytosolic cytochrome b5 characterised. The lack of requirement for membrane attachment (in contrast to all other microsomal cytochrome b5s) may be a reflection of the small size of the host cell, further emphasizes the unique nature of this virus gene product and draws attention to the potential importance of cytochrome b5 metabolic activity at the extremes of cellular scale.
Collapse
|
43
|
Structure of N-linked oligosaccharides attached to chlorovirus PBCV-1 major capsid protein reveals unusual class of complex N-glycans. Proc Natl Acad Sci U S A 2013; 110:13956-60. [PMID: 23918378 DOI: 10.1073/pnas.1313005110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a β-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm. The four glycoforms share a common core structure, and the differences are related to the nonstoichiometric presence of two monosaccharides. The most abundant glycoform consists of nine neutral monosaccharide residues, organized in a highly branched fashion. Among the most distinctive features of the glycoforms are (i) a dimethylated rhamnose as the capping residue of the main chain, (ii) a hyperbranched fucose unit, and (iii) two rhamnose residues with opposite absolute configurations. These glycoforms differ from what has been reported so far in the three domains of life. Considering that chloroviruses and other members of the family Phycodnaviridae may have a long evolutionary history, we suggest that the chlorovirus glycosylation pathway is ancient, possibly existing before the development of the endoplasmic reticulum and Golgi pathway, and involves still unexplored mechanisms.
Collapse
|
44
|
Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME JOURNAL 2013; 7:1738-51. [PMID: 23635867 DOI: 10.1038/ismej.2013.67] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/16/2013] [Accepted: 03/19/2013] [Indexed: 11/08/2022]
Abstract
Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world's oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world's oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51-92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research.
Collapse
|
45
|
Jeanniard A, Dunigan DD, Gurnon JR, Agarkova IV, Kang M, Vitek J, Duncan G, McClung OW, Larsen M, Claverie JM, Van Etten JL, Blanc G. Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses. BMC Genomics 2013; 14:158. [PMID: 23497343 PMCID: PMC3602175 DOI: 10.1186/1471-2164-14-158] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/22/2013] [Indexed: 11/29/2022] Open
Abstract
Background Giant viruses in the genus Chlorovirus (family Phycodnaviridae) infect eukaryotic green microalgae. The prototype member of the genus, Paramecium bursaria chlorella virus 1, was sequenced more than 15 years ago, and to date there are only 6 fully sequenced chloroviruses in public databases. Presented here are the draft genome sequences of 35 additional chloroviruses (287 – 348 Kb/319 – 381 predicted protein encoding genes) collected across the globe; they infect one of three different green algal species. These new data allowed us to analyze the genomic landscape of 41 chloroviruses, which revealed some remarkable features about these viruses. Results Genome colinearity, nucleotide conservation and phylogenetic affinity were limited to chloroviruses infecting the same host, confirming the validity of the three previously known subgenera. Clues for the existence of a fourth new subgenus indicate that the boundaries of chlorovirus diversity are not completely determined. Comparison of the chlorovirus phylogeny with that of the algal hosts indicates that chloroviruses have changed hosts in their evolutionary history. Reconstruction of the ancestral genome suggests that the last common chlorovirus ancestor had a slightly more diverse protein repertoire than modern chloroviruses. However, more than half of the defined chlorovirus gene families have a potential recent origin (after Chlorovirus divergence), among which a portion shows compositional evidence for horizontal gene transfer. Only a few of the putative acquired proteins had close homologs in databases raising the question of the true donor organism(s). Phylogenomic analysis identified only seven proteins whose genes were potentially exchanged between the algal host and the chloroviruses. Conclusion The present evaluation of the genomic evolution pattern suggests that chloroviruses differ from that described in the related Poxviridae and Mimiviridae. Our study shows that the fixation of algal host genes has been anecdotal in the evolutionary history of chloroviruses. We finally discuss the incongruence between compositional evidence of horizontal gene transfer and lack of close relative sequences in the databases, which suggests that the recently acquired genes originate from a still largely un-sequenced reservoir of genomes, possibly other unknown viruses that infect the same hosts.
Collapse
Affiliation(s)
- Adrien Jeanniard
- Information Génomique & Structurale, IGS UMR7256, CNRS, Aix-Marseille Université, FR-13288, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Clerissi C, Grimsley N, Desdevises Y. GENETIC EXCHANGES OF INTEINS BETWEENPRASINOVIRUSES(PHYCODNAVIRIDAE). Evolution 2012; 67:18-33. [DOI: 10.1111/j.1558-5646.2012.01738.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Morozov SY, Solovyev AG. Did silencing suppression counter-defensive strategy contribute to origin and evolution of the triple gene block coding for plant virus movement proteins? FRONTIERS IN PLANT SCIENCE 2012; 3:136. [PMID: 22783263 PMCID: PMC3390553 DOI: 10.3389/fpls.2012.00136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 05/25/2023]
Affiliation(s)
- Sergey Y. Morozov
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| | - Andrey G. Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| |
Collapse
|
48
|
Manrique JM, Calvo AY, Jones LR. Phylogenetic analysis of Ostreococcus virus sequences from the Patagonian Coast. Virus Genes 2012; 45:316-26. [PMID: 22674355 DOI: 10.1007/s11262-012-0762-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/11/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Julieta M Manrique
- Division of Molecular Biology, Estación de Fotobiología Playa Unión, CC 15 (9103), Playa Unión, Rawson, Chubut, Argentina
| | | | | |
Collapse
|
49
|
Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species specific. J Virol 2012; 86:4611-9. [PMID: 22318150 DOI: 10.1128/jvi.07221-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prasinoviruses infecting unicellular green algae in the order Mamiellales (class Mamiellophyceae) are commonly found in coastal marine waters where their host species frequently abound. We tested 40 Ostreococcus tauri viruses on 13 independently isolated wild-type O. tauri strains, 4 wild-type O. lucimarinus strains, 1 Ostreococcus sp. ("Ostreococcus mediterraneus") clade D strain, and 1 representative species of each of two other related species of Mamiellales, Bathycoccus prasinos and Micromonas pusilla. Thirty-four out of 40 viruses infected only O. tauri, 5 could infect one other species of the Ostreococcus genus, and 1 infected two other Ostreococcus spp., but none of them infected the other genera. We observed that the overall susceptibility pattern of Ostreococcus strains to viruses was related to the size of two host chromosomes known to show intraspecific size variations, that genetically related viruses tended to infect the same host strains, and that viruses carrying inteins were strictly strain specific. Comparison of two complete O. tauri virus proteomes revealed at least three predicted proteins to be candidate viral specificity determinants.
Collapse
|
50
|
Monier A, Welsh RM, Gentemann C, Weinstock G, Sodergren E, Armbrust EV, Eisen JA, Worden AZ. Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral-host gene exchanges. Environ Microbiol 2012; 14:162-76. [PMID: 21914098 PMCID: PMC3429862 DOI: 10.1111/j.1462-2920.2011.02576.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/27/2011] [Indexed: 11/28/2022]
Abstract
Phosphate (PO(4)) is an important limiting nutrient in marine environments. Marine cyanobacteria scavenge PO(4) using the high-affinity periplasmic phosphate binding protein PstS. The pstS gene has recently been identified in genomes of cyanobacterial viruses as well. Here, we analyse genes encoding transporters in genomes from viruses that infect eukaryotic phytoplankton. We identified inorganic PO(4) transporter-encoding genes from the PHO4 superfamily in several virus genomes, along with other transporter-encoding genes. Homologues of the viral pho4 genes were also identified in genome sequences from the genera that these viruses infect. Genome sequences were available from host genera of all the phytoplankton viruses analysed except the host genus Bathycoccus. Pho4 was recovered from Bathycoccus by sequencing a targeted metagenome from an uncultured Atlantic Ocean population. Phylogenetic reconstruction showed that pho4 genes from pelagophytes, haptophytes and infecting viruses were more closely related to homologues in prasinophytes than to those in what, at the species level, are considered to be closer relatives (e.g. diatoms). We also identified PHO4 superfamily members in ocean metagenomes, including new metagenomes from the Pacific Ocean. The environmental sequences grouped with pelagophytes, haptophytes, prasinophytes and viruses as well as bacteria. The analyses suggest that multiple independent pho4 gene transfer events have occurred between marine viruses and both eukaryotic and bacterial hosts. Additionally, pho4 genes were identified in available genomes from viruses that infect marine eukaryotes but not those that infect terrestrial hosts. Commonalities in marine host-virus gene exchanges indicate that manipulation of host-PO(4) uptake is an important adaptation for viral proliferation in marine systems. Our findings suggest that PO(4) -availability may not serve as a simple bottom-up control of marine phytoplankton.
Collapse
Affiliation(s)
- Adam Monier
- Monterey Bay Aquarium Research Institute7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Rory M Welsh
- Monterey Bay Aquarium Research Institute7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Chelle Gentemann
- Remote Sensing Systems444 Tenth Street, Suite 200, Santa Rosa, CA, 95401, USA
| | - George Weinstock
- The Genome Center, Washington University School of Medicine4444 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Erica Sodergren
- The Genome Center, Washington University School of Medicine4444 Forest Park Avenue, St. Louis, MO 63108, USA
| | | | - Jonathan A Eisen
- University of California DavisDavis, CA 95616DOE Joint Genome Institute Walnut CreekCA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|