1
|
Herrero-Fernández B, Ortega-Zapero M, Gómez-Bris R, Sáez A, Iborra S, Zorita V, Quintas A, Vázquez E, Dopazo A, Sánchez-Madrid F, Arribas SM, González-Granado JM. Role of lamin A/C on dendritic cell function in antiviral immunity. Cell Mol Life Sci 2024; 81:400. [PMID: 39264480 PMCID: PMC11393282 DOI: 10.1007/s00018-024-05423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Dendritic cells (DCs) play a crucial role in orchestrating immune responses, particularly in promoting IFNγ-producing-CD8 cytotoxic T lymphocytes (CTLs) and IFNγ-producing-CD4 T helper 1 (Th1) cells, which are essential for defending against viral infections. Additionally, the nuclear envelope protein lamin A/C has been implicated in T cell immunity. Nevertheless, the intricate interplay between innate and adaptive immunity in response to viral infections, particularly the role of lamin A/C in DC functions within this context, remains poorly understood. In this study, we demonstrate that mice lacking lamin A/C in myeloid LysM promoter-expressing cells exhibit a reduced capacity to induce Th1 and CD8 CTL responses, leading to impaired clearance of acute primary Vaccinia virus (VACV) infection. Remarkably, in vitro-generated granulocyte macrophage colony-stimulating factor bone marrow-derived DCs (GM-CSF BMDCs) show high levels of lamin A/C. Lamin A/C absence on GM-CSF BMDCs does not affect the expression of costimulatory molecules on the cell membrane but it reduces the cellular ability to form immunological synapses with naïve CD4 T cells. Lamin A/C deletion induces alterations in NFκB nuclear localization, thereby influencing NF-κB-dependent transcription. Furthermore, lamin A/C ablation modifies the gene accessibility of BMDCs, predisposing these cells to mount a less effective antiviral response upon TLR stimulation. This study highlights the critical role of DCs in interacting with CD4 T cells during antiviral responses and proposes some mechanisms through which lamin A/C may modulate DC function via gene accessibility and transcriptional regulation.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Marina Ortega-Zapero
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Raquel Gómez-Bris
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Angela Sáez
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Spain
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
- Fundacion Inmunotek, Alcalá de Henares, 28805, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Immunology Unit, Medicine Department, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Instituto Investigacion Sanitaria-Princesa IIS-IP, Madrid, Spain, Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain.
| | - Jose Maria González-Granado
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain.
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
2
|
Kafle S, Montoya B, Tang L, Tam YK, Muramatsu H, Pardi N, Sigal LJ. The roles of CD4 + T cell help, sex, and dose in the induction of protective CD8 + T cells against a lethal poxvirus by mRNA-LNP vaccines. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102279. [PMID: 39188304 PMCID: PMC11345529 DOI: 10.1016/j.omtn.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/16/2024] [Indexed: 08/28/2024]
Abstract
The role of CD4+ T cells in the induction of protective CD8+ T cells by mRNA lipid nanoparticle (LNP) vaccines is unknown. We used B6 or Tlr9 -/- mice depleted or not of CD4+ T cells and LNP vaccines loaded with mRNAs encoding the ectromelia virus (ECTV) MHC class I H-2 Kb-restricted immunodominant CD8+ T cell epitope TSYKFESV (TSYKFESV mRNA-LNPs) or the ECTV EVM158 protein, which contains TSYKFESV (EVM-158 mRNA-LNPs). Following prime and boost with 10 μg of either vaccine, Kb-TSYKFESV-specific CD8+ T cells fully protected male and female mice from ECTV at 29 (both mRNA-LNPs) or 90 days (EVM158 mRNA-LNPs) post boost (dpb) independently of CD4+ T cells. However, at 29 dpb with 1 μg mRNA-LNPs, males had lower frequencies of Kb-TSYKFESV-specific CD8+ T cells and were much less well protected than females from ECTV, also independently of CD4+ T cells. At 90 dpb with 1 μg EVM158 mRNA-LNPs, the frequencies of Kb-TSYKFESV-specific CD8+ T cells in males and females were similar, and both were similarly partially protected from ECTV, independently of CD4+ T cells. Therefore, at optimal or suboptimal doses of mRNA-LNP vaccines, CD4+ T cell help is unnecessary to induce protective anti-poxvirus CD8+ T cells specific to a dominant epitope. At suboptimal doses, protection of males requires more time to develop.
Collapse
Affiliation(s)
- Samita Kafle
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brian Montoya
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Montoya B, Melo-Silva CR, Tang L, Kafle S, Lidskiy P, Bajusz C, Vadovics M, Muramatsu H, Abraham E, Lipinszki Z, Chatterjee D, Scher G, Benitez J, Sung MMH, Tam YK, Catanzaro NJ, Schäfer A, Andino R, Baric RS, Martinez DR, Pardi N, Sigal LJ. mRNA-LNP vaccine-induced CD8 + T cells protect mice from lethal SARS-CoV-2 infection in the absence of specific antibodies. Mol Ther 2024; 32:1790-1804. [PMID: 38605519 PMCID: PMC11184341 DOI: 10.1016/j.ymthe.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
The role of CD8+ T cells in SARS-CoV-2 pathogenesis or mRNA-LNP vaccine-induced protection from lethal COVID-19 is unclear. Using mouse-adapted SARS-CoV-2 virus (MA30) in C57BL/6 mice, we show that CD8+ T cells are unnecessary for the intrinsic resistance of female or the susceptibility of male mice to lethal SARS-CoV-2 infection. Also, mice immunized with a di-proline prefusion-stabilized full-length SARS-CoV-2 Spike (S-2P) mRNA-LNP vaccine, which induces Spike-specific antibodies and CD8+ T cells specific for the Spike-derived VNFNFNGL peptide, are protected from SARS-CoV-2 infection-induced lethality and weight loss, while mice vaccinated with mRNA-LNPs encoding only VNFNFNGL are protected from lethality but not weight loss. CD8+ T cell depletion ablates protection in VNFNFNGL but not in S-2P mRNA-LNP-vaccinated mice. Therefore, mRNA-LNP vaccine-induced CD8+ T cells are dispensable when protective antibodies are present but essential for survival in their absence. Hence, vaccine-induced CD8+ T cells may be critical to protect against SARS-CoV-2 variants that mutate epitopes targeted by protective antibodies.
Collapse
Affiliation(s)
- Brian Montoya
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Carolina R Melo-Silva
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samita Kafle
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter Lidskiy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Csaba Bajusz
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Máté Vadovics
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edit Abraham
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary; MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zoltan Lipinszki
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary; MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Debotri Chatterjee
- Department of Neurosciences, Thomas Jefferson University Vickie and Jack Farber Institute for Neuroscience, Philadelphia, PA, USA
| | - Gabrielle Scher
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Juliana Benitez
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Nicholas J Catanzaro
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ralph S Baric
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Immunobiology, Center for Infection and Immunity, Yale School of Medicine, New Haven, CT 06520, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
4
|
Loss of Resistance to Mousepox during Chronic Lymphocytic Choriomeningitis Virus Infection Is Associated with Impaired T-Cell Responses and Can Be Rescued by Immunization. J Virol 2020; 94:JVI.01832-19. [PMID: 31826990 DOI: 10.1128/jvi.01832-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/29/2019] [Indexed: 01/21/2023] Open
Abstract
It is well established that chronic viral infections can cause immune suppression, resulting in increased susceptibility to other infectious diseases. However, the effects of chronic viral infection on T-cell responses and vaccination against highly pathogenic viruses are not well understood. We have recently shown that C57BL/6 (B6) mice lose their natural resistance to wild-type (WT) ectromelia virus (ECTV) when chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13). Here we compared the T-cell response to ECTV in previously immunologically naive mice that were chronically infected with CL13 or that were convalescent from acute infection with the Armstrong (Arm) strain of LCMV. Our results show that mice that were chronically infected with CL13 but not those that had recovered from Arm infection have highly defective ECTV-specific CD8+ and CD4+ T-cell responses to WT ECTV. These defects are at least partly due to the chronic infection environment. In contrast to mice infected with WT ECTV, mice chronically infected with CL13 survived without signs of disease when infected with ECTV-Δ036, a mutant ECTV strain that is highly attenuated. Strikingly, mice chronically infected with CL13 mounted a strong CD8+ T-cell response to ECTV-Δ036 and survived without signs of disease after a subsequent challenge with WT ECTV. Our work suggests that enhanced susceptibility to acute viral infections in chronically infected individuals can be partly due to poor T-cell responses but that sufficient T-cell function can be recovered and resistance to acute infection can be restored by immunization with highly attenuated vaccines.IMPORTANCE Chronic viral infections may result in immunosuppression and enhanced susceptibility to infections with other pathogens. For example, we have recently shown that mice chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) are highly susceptible to mousepox, a disease that is caused by ectromelia virus and that is the mouse homolog of human smallpox. Here we show chronic CL13 infection severely disrupts the expansion, proliferation, activation, and cytotoxicity of T cells in response due at least in part to the suppressive effects of the chronic infection milieu. Notably, despite this profound immunodeficiency, mice chronically infected with CL13 could be protected by vaccination with a highly attenuated variant of ECTV. These results demonstrate that protective vaccination of immunosuppressed individuals is possible, provided that proper immunization tools are used.
Collapse
|
5
|
Selective reconstitution of IFN‑γ gene function in Ncr1+ NK cells is sufficient to control systemic vaccinia virus infection. PLoS Pathog 2020; 16:e1008279. [PMID: 32023327 PMCID: PMC7028289 DOI: 10.1371/journal.ppat.1008279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 02/18/2020] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
IFN-γ is an enigmatic cytokine that shows direct anti-viral effects, confers upregulation of MHC-II and other components relevant for antigen presentation, and that adjusts the composition and balance of complex cytokine responses. It is produced during immune responses by innate as well as adaptive immune cells and can critically affect the course and outcome of infectious diseases, autoimmunity, and cancer. To selectively analyze the function of innate immune cell-derived IFN-γ, we generated conditional IFN-γOFF mice, in which endogenous IFN-γ expression is disrupted by a loxP flanked gene trap cassette inserted into the first intron of the IFN-γ gene. IFN-γOFF mice were intercrossed with Ncr1-Cre or CD4-Cre mice that express Cre mainly in NK cells (IFN-γNcr1-ON mice) or T cells (IFN-γCD4-ON mice), respectively. Rosa26RFP reporter mice intercrossed with Ncr1-Cre mice showed selective RFP expression in more than 80% of the NK cells, while upon intercrossing with CD4-Cre mice abundant RFP expression was detected in T cells, but also to a minor extent in other immune cell subsets. Previous studies showed that IFN-γ expression is needed to promote survival of vaccinia virus (VACV) infection. Interestingly, during VACV infection of wild type and IFN-γCD4-ON mice two waves of serum IFN-γ were induced that peaked on day 1 and day 3/4 after infection. Similarly, VACV infected IFN-γNcr1-ON mice mounted two waves of IFN-γ responses, of which the first one was moderately and the second one profoundly reduced when compared with WT mice. Furthermore, IFN-γNcr1-ON as well as IFN-γCD4-ON mice survived VACV infection, whereas IFN-γOFF mice did not. As expected, ex vivo analysis of splenocytes derived from VACV infected IFN-γNcr1-ON mice showed IFN-γ expression in NK cells, but not T cells, whereas IFN-γOFF mice showed IFN-γ expression neither in NK cells nor T cells. VACV infected IFN-γNcr1-ON mice mounted normal cytokine responses, restored neutrophil accumulation, and showed normal myeloid cell distribution in blood and spleen. Additionally, in these mice normal MHC-II expression was detected on peripheral macrophages, whereas IFN-γOFF mice did not show MHC-II expression on such cells. In conclusion, upon VACV infection Ncr1 positive cells including NK cells mount two waves of early IFN-γ responses that are sufficient to promote the induction of protective anti-viral immunity. Viral infections induce interferon (IFN) responses that constitute a first line of defense. Type II IFN (IFN-γ) is required for protection against lethal vaccinia virus (VACV) infection. To address the cellular origin of protective IFN-γ responses during VACV infection, we generated IFN-γOFF mice, in which the endogenous IFN-γ gene function can be reconstituted in a Cre-dependent manner. IFN-γOFF mice were intercrossed with Ncr1-Cre mice that express Cre selectively in Ncr1+ innate cell subsests such as NK cells. Surprisingly, VACV infected IFN-γNcr1-ON mice mounted two waves of IFN-γ responses. Reconstitution of innate IFN-γ was sufficient to restore cytokine responses that supported normal myeloid cell distribution and survival upon VACV infection. In conclusion, IFN-γ derived from Ncr1+ innate immune cells is sufficient to elicit fully effective immune responses upon VACV infection. Our new mouse model is suitable to further address the role of Ncr1+ cell-derived IFN-γ also in other models of infection, as well as of autoimmunity and cancer.
Collapse
|
6
|
Fernandes RA, Perez-Andres M, Blanco E, Jara-Acevedo M, Criado I, Almeida J, Botafogo V, Coutinho I, Paiva A, van Dongen JJM, Orfao A, Faria E. Complete Multilineage CD4 Expression Defect Associated With Warts Due to an Inherited Homozygous CD4 Gene Mutation. Front Immunol 2019; 10:2502. [PMID: 31781092 PMCID: PMC6856949 DOI: 10.3389/fimmu.2019.02502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Idiopathic T-CD4 lymphocytopenia (ICL) is a rare and heterogeneous syndrome characterized by opportunistic infections due to reduced CD4 T-lymphocytes (<300 cells/μl or <20% T-cells) in the absence of HIV infection and other primary causes of lymphopenia. Molecular testing of ICL has revealed defects in genes not specific to CD4 T-cells, with pleiotropic effects on other cell types. Here we report for the first time an absolute CD4 lymphocytopenia (<0.01 CD4+ T-cells/μl) due to an autosomal recessive CD4 gene mutation that completely abrogates CD4 protein expression on the surface membrane of T-cells, monocytes, and dendritic cells. A 45-year-old female born to consanguineous parents consulted because of exuberant, relapsing, and treatment-refractory warts on her hands and feet since the age of 10 years, in the absence of other recurrent infections or symptoms. Serological studies were negative for severe infections, including HIV 1/2, HTLV-1, and syphilis, but positive for CMV and EBV. Blood analysis showed the absence of CD4+ T-cells (<0.01%) with repeatedly increased counts of B-cells, naïve CD8+ T-lymphocytes, and particularly, CD4/CD8 double-negative (DN) TCRαβ+ TCRγδ- T-cells (30% of T-cells; 400 cells/μl). Flow cytometric staining of CD4 using monoclonal antibodies directed against five different epitopes, located in two different domains of the protein, confirmed no cell surface membrane or intracytoplasmic expression of CD4 on T-cells, monocytes, and dendritic cells but normal soluble CD4 plasma levels. DN T-cells showed a phenotypic and functional profile similar to normal CD4+ T-cells as regards expression of maturation markers, T-helper and T-regulatory chemokine receptors, TCRvβ repertoire, and in vitro cytokine production against polyclonal and antigen-specific stimuli. Sequencing of the CD4 gene revealed a homozygous (splicing) mutation affecting the last bp on intron 7-8, leading to deletion of the juxtamembrane and intracellular domains of the protein and complete abrogation of CD4 expression on the cell membrane. These findings support previous studies in CD4 KO mice suggesting that surrogate DN helper and regulatory T-cells capable of supporting antigen-specific immune responses are produced in the absence of CD4 signaling and point out the need for better understanding the role of CD4 on thymic selection and the immune response.
Collapse
Affiliation(s)
- Rosa Anita Fernandes
- Allergy and Clinical Immunology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Martin Perez-Andres
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Maria Jara-Acevedo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain.,Sequencing DNA Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Ignacio Criado
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Julia Almeida
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Vitor Botafogo
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Ines Coutinho
- Dermatology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit-Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Ciências Biomédicas Laboratoriais, ESTESC-Coimbra Health School, Instituto Politécnico de Coimbra, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Emilia Faria
- Allergy and Clinical Immunology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
CD4 + T help promotes influenza virus-specific CD8 + T cell memory by limiting metabolic dysfunction. Proc Natl Acad Sci U S A 2019; 116:4481-4488. [PMID: 30787194 DOI: 10.1073/pnas.1808849116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is continued interest in developing novel vaccine strategies that induce establish optimal CD8+ cytotoxic T lymphocyte (CTL) memory for pathogens like the influenza A viruses (IAVs), where the recall of IAV-specific T cell immunity is able to protect against serologically distinct IAV infection. While it is well established that CD4+ T cell help is required for optimal CTL responses and the establishment of memory, when and how CD4+ T cell help contributes to determining the ideal memory phenotype remains unclear. We assessed the quality of IAV-specific CD8+ T cell memory established in the presence or absence of a concurrent CD4+ T cell response. We demonstrate that CD4+ T cell help appears to be required at the initial priming phase of infection for the maintenance of IAV-specific CTL memory, with "unhelped" memory CTL exhibiting intrinsic dysfunction. High-throughput RNA-sequencing established that distinct transcriptional signatures characterize the helped vs. unhelped IAV-specific memory CTL phenotype, with the unhelped set showing a more "exhausted T cell" transcriptional profile. Moreover, we identify that unhelped memory CTLs exhibit defects in a variety of energetic pathways, leading to diminished spare respiratory capacity and diminished capacity to engage glycolysis upon reactivation. Hence, CD4+ T help at the time of initial priming promotes molecular pathways that limit exhaustion by channeling metabolic processes essential for the rapid recall of memory CD8+ T cells.
Collapse
|
8
|
Hobbs SJ, Osborn JF, Nolz JC. Activation and trafficking of CD8 + T cells during viral skin infection: immunological lessons learned from vaccinia virus. Curr Opin Virol 2018; 28:12-19. [PMID: 29080420 PMCID: PMC5835170 DOI: 10.1016/j.coviro.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/07/2017] [Indexed: 01/13/2023]
Abstract
Epicutaneous delivery of vaccinia virus (VacV) by scarification of the skin generates robust and durable protective immunity, which was ultimately responsible for eradicating smallpox from the human race. Therefore, infection of the skin with VacV is often used in experimental model systems to study the activation of adaptive immunity, as well as the development and functional features of immunological memory. Here, we describe recent advances using this viral infection to identify and characterize the mechanisms regulating the activation and trafficking of cytotoxic CD8+ T cells into the inflamed skin, the migratory features of CD8+ T cells within the skin microenvironment, and finally, their subsequent differentiation into tissue-resident memory cells.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Jossef F Osborn
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Jeffrey C Nolz
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
9
|
Cheng WY, Jia HJ, He XB, Chen GH, Feng Y, Wang CY, Wang XX, Jing ZZ. Comparison of Host Gene Expression Profiles in Spleen Tissues of Genetically Susceptible and Resistant Mice during ECTV Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6456180. [PMID: 29430463 PMCID: PMC5752998 DOI: 10.1155/2017/6456180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/19/2017] [Accepted: 11/22/2017] [Indexed: 12/31/2022]
Abstract
Ectromelia virus (ECTV), the causative agent of mousepox, has emerged as a valuable model for investigating the host-Orthopoxvirus relationship as it relates to pathogenesis and the immune response. ECTV is a mouse-specific virus and causes high mortality in susceptible mice strains, including BALB/c and C3H, whereas C57BL/6 and 129 strains are resistant to the disease. To understand the host genetic factors in different mouse strains during the ECTV infection, we carried out a microarray analysis of spleen tissues derived from BALB/c and C57BL/6 mice, respectively, at 3 and 10 days after ECTV infection. Differential Expression of Genes (DEGs) analyses revealed distinct differences in the gene profiles of susceptible and resistant mice. The susceptible BALB/c mice generated more DEGs than the resistant C57BL/6 mice. Additionally, gene ontology and KEGG pathway analysis showed the DEGs of susceptible mice were involved in innate immunity, apoptosis, metabolism, and cancer-related pathways, while the DEGs of resistant mice were largely involved in MAPK signaling and leukocyte transendothelial migration. Furthermore, the BALB/c mice showed a strong induction of interferon-induced genes, which, however, were weaker in the C57BL/6 mice. Collectively, the differential transcriptome profiles of susceptible and resistant mouse strains with ECTV infection will be crucial for further uncovering the molecular mechanisms of the host-Orthopoxvirus interaction.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Huai-Jie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Xiao-Bing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Guo-Hua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Yuan Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Chun-Yan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Xiao-Xia Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| |
Collapse
|
10
|
Jensen LE. Interleukin-36 cytokines may overcome microbial immune evasion strategies that inhibit interleukin-1 family signaling. Sci Signal 2017; 10:10/492/eaan3589. [DOI: 10.1126/scisignal.aan3589] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Navarro J, Gozalbo-López B, Méndez AC, Dantzer F, Schreiber V, Martínez C, Arana DM, Farrés J, Revilla-Nuin B, Bueno MF, Ampurdanés C, Galindo-Campos MA, Knobel PA, Segura-Bayona S, Martin-Caballero J, Stracker TH, Aparicio P, Del Val M, Yélamos J. PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. Sci Rep 2017; 7:41962. [PMID: 28181505 PMCID: PMC5299517 DOI: 10.1038/srep41962] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
The maintenance of T-cell homeostasis must be tightly regulated. Here, we have identified a coordinated role of Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in maintaining T-lymphocyte number and function. Mice bearing a T-cell specific deficiency of PARP-2 in a PARP-1-deficient background showed defective thymocyte maturation and diminished numbers of peripheral CD4+ and CD8+ T-cells. Meanwhile, peripheral T-cell number was not affected in single PARP-1 or PARP-2-deficient mice. T-cell lymphopenia was associated with dampened in vivo immune responses to synthetic T-dependent antigens and virus, increased DNA damage and T-cell death. Moreover, double-deficiency in PARP-1/PARP-2 in T-cells led to highly aggressive T-cell lymphomas with long latency. Our findings establish a coordinated role of PARP-1 and PARP-2 in T-cell homeostasis that might impact on the development of PARP-centred therapies.
Collapse
Affiliation(s)
- Judith Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Beatriz Gozalbo-López
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Andrea C Méndez
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Françoise Dantzer
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Valérie Schreiber
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Carlos Martínez
- Experimental Pathology Unit, IMIB-LAIB-Arrixaca, Murcia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - David M Arana
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jordi Farrés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Beatriz Revilla-Nuin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Genomic Unit. IMIB-LAIB-Arrixaca, Murcia, Spain
| | - María F Bueno
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Coral Ampurdanés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel A Galindo-Campos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Aparicio
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, Murcia, Spain
| | - Margarita Del Val
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Department of Immunology, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
12
|
Abstract
Ectromelia virus is a mouse-specific orthopoxvirus that, following footpad infection or natural transmission, causes mousepox in most strains of mice, while a few strains, such as C57BL/6, are resistant to the disease but not to the infection. Mousepox is an acute, systemic, highly lethal disease of remarkable semblance to smallpox, caused by the human-specific variola virus. Starting in 1929 with its discovery by Marchal, work with ECTV has provided essential information for our current understanding on how viruses spread lympho-hematogenously, the genetic control of antiviral resistance, the role of different components of the innate and adaptive immune system in the control of primary and secondary infections with acute viruses, and how the mechanisms of immune evasion deployed by the virus affect virulence in vivo. Here, I review the literature on the pathogenesis and immunobiology of ECTV infection in vivo.
Collapse
Affiliation(s)
- Luis J Sigal
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
13
|
Protective CD8+ T cell memory without help. Oncotarget 2015; 6:28529-30. [PMID: 26356572 PMCID: PMC4745671 DOI: 10.18632/oncotarget.5449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|