1
|
Chaudhary P, Proulx J, Park IW. Ubiquitin-protein ligase E3A (UBE3A) mediation of viral infection and human diseases. Virus Res 2023; 335:199191. [PMID: 37541588 PMCID: PMC10430597 DOI: 10.1016/j.virusres.2023.199191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The Ubiquitin-protein ligase E3A, UBE3A, also known as E6-associated protein (E6-AP), is known to play an essential role in regulating the degradation of various proteins by transferring Ub from E2 Ub conjugating enzymes to the substrate proteins. Several studies indicate that UBE3A regulates the stabilities of key viral proteins in the virus-infected cells and, thereby, the infected virus-mediated diseases, even if it were reported that UBE3A participates in non-viral-related human diseases. Furthermore, mutations such as deletions and duplications in the maternally inherited gene in the brain cause human neurodevelopmental disorders such as Angelman syndrome (AS) and autism. It is also known that UBE3A functions as a transcriptional coactivator for the expression of steroid hormone receptors. These reports establish that UBE3A is distinguished by its multitudinous functions that are paramount to viral pathology and human diseases. This review is focused on molecular mechanisms for such intensive participation of UBE3A in disease formation and virus regulation.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| | - Jessica Proulx
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
2
|
Singh D, Mahadik A, Surana S, Arora P. Proteochemometric Method for pIC50 Prediction of Flaviviridae. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7901791. [PMID: 36158882 PMCID: PMC9499780 DOI: 10.1155/2022/7901791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Viruses remain an area of concern despite constant development of antiviral drugs and therapies. One of the contributors is the Flaviviridae family of viruses causing diseases that need attention. Among other anitviral methods, antiviral peptides are being studied as viable candidates. Although antiviral peptides (AVPs) are emerging as potential therapeutics, it is important to assess the efficacy of a given peptide in terms of its bioactivity. Experimental identification of the bioactivity of each potential peptide is an expensive and time consuming task. Computational methods like proteochemometric modeling (PCM) is a promising method for prediction of bioactivity (pIC50) based on peptide and target sequence pair. In this study, we propose a prediction of pIC50 of AVP against the Flaviviridae family that may help make the decision to choose a peptide with desired efficacy. The peptides data was collected from a public database and target sequences were manually curated from literature. Features are calculated using peptide and target sequence PCM descriptors which consist of individual and cross-term features of peptide and respective target. The resultant R 2 and MAPE values are 0.85 and 8.44%, respectively, for prediction of pIC50 value of AVPs.
Collapse
Affiliation(s)
- Divye Singh
- Engineering for Research, Thoughtworks Technologies, Pune, Maharashtra 411006, India
| | - Avani Mahadik
- Engineering for Research, Thoughtworks Technologies, Pune, Maharashtra 411006, India
| | - Shraddha Surana
- Engineering for Research, Thoughtworks Technologies, Pune, Maharashtra 411006, India
| | - Pooja Arora
- Engineering for Research, Thoughtworks Technologies, Pune, Maharashtra 411006, India
| |
Collapse
|
3
|
Gentile D, Coco A, Patamia V, Zagni C, Floresta G, Rescifina A. Targeting the SARS-CoV-2 HR1 with Small Molecules as Inhibitors of the Fusion Process. Int J Mol Sci 2022; 23:10067. [PMID: 36077465 PMCID: PMC9456533 DOI: 10.3390/ijms231710067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 domain of SARS-CoV-2 as it is the most conserved component and controls the crucial fusion process of SARS-CoV-2 as a target for different databases of small organic compounds. Our in silico methodology, based on pharmacophore modeling, docking simulation and molecular dynamics simulations, was first validated with ADS-J1, a potent small-molecule HIV fusion inhibitor that has already proved effective in binding the HR1 domain and inhibiting the fusion core of SARS-CoV-1. It then focused on finding novel small molecules and new peptides as fusion inhibitors. Our methodology identified several small molecules and peptides as potential inhibitors of the fusion process. Among these, NF 023 hydrate (MolPort-006-822-583) is one of the best-scored compounds. Other compounds of interest are ZINC00097961973, Salvianolic acid, Thalassiolin A and marine_160925_88_2. Two interesting active peptides were also identified: AP00094 (Temporin A) and AVP1227 (GBVA5). The inhibition of the spike protein of SARS-CoV-2 is a valid target to inhibit the virus entry in human cells. The discussed compounds reported in this paper led to encouraging results for future in vitro tests against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e Della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
4
|
Identification of antiviral peptide inhibitors for receptor binding domain of SARS-CoV-2 omicron and its sub-variants: an in-silico approach. 3 Biotech 2022; 12:198. [PMID: 35923684 PMCID: PMC9342843 DOI: 10.1007/s13205-022-03258-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022] Open
Abstract
Omicron, a variant of concern (VOC) of SARS-CoV-2, emerged in South Africa in November 2021. Omicron has been continuously acquiring a series of new mutations, especially in the spike (S) protein that led to high infectivity and transmissibility. Peptides targeting the receptor-binding domain (RBD) of the spike protein by which omicron and its variants attach to the host receptor, angiotensin-converting enzyme (ACE2) can block the viral infection at the first step. This study aims to identify antiviral peptides from the Antiviral peptide database (AVPdb) and HIV-inhibitory peptide database (HIPdb) against the RBD of omicron by using a molecular docking approach. The lead RBD binder peptides obtained through molecular docking were screened for allergenicity and physicochemical criteria (isoelectric point (pI) and net charge) required for peptide-based drugs. The binding affinity of the best five peptide inhibitors with the RBD of omicron was validated further by molecular dynamics (MD) simulation. Our result introduces five antiviral peptides, including AVP1056, AVP1059, AVP1225, AVP1801, and HIP755, that may effectively hinder omicron-host interactions. It is worth mentioning that all the three major sub-variants of omicron, BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3), exhibits conserved ACE-2 interacting residues. Hence, the screened antiviral peptides with similar affinity can also interrupt the RBD-mediated invasion of different major sub-variants of omicron. Altogether, these peptides can be considered in the peptide-based therapeutics development for omicron treatment after further experimentation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03258-4.
Collapse
|
5
|
Brossard C, Vlach M, Jacquet L, Vène E, Dorcet V, Loyer P, Cammas-Marion S, Lepareur N. Hepatotropic Peptides Grafted onto Maleimide-Decorated Nanoparticles: Preparation, Characterization and In Vitro Uptake by Human HepaRG Hepatoma Cells. Polymers (Basel) 2022; 14:2447. [PMID: 35746020 PMCID: PMC9229302 DOI: 10.3390/polym14122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
We recently demonstrated the strong tropism of George Baker (GB) Virus A (GBVA10-9) and Plasmodium circumsporozoite protein (CPB) derived synthetic peptides towards hepatoma cells. In a first approach, these peptides were covalently bound to poly(benzyl malate) (PMLABe73) and poly(ethylene glycol)-block-PMLABe73 (PEG62-b-PMLABe73) (co)polymers, and corresponding peptide-decorated nanoparticles (NPs) were prepared by nanoprecipitation. We showed that peptide enhanced NPs internalization by hepatoma cells. In the present work, we set up a second strategy to functionalize NPs prepared from PMLABe73 derivates. First, maleimide-functionalized PMLABe73 (Mal-PMLABe73) and PEG62-b-PMLABe73 (Mal-PEG62-b-PMLABe73) were synthesized and corresponding NPs were prepared by nanoprecipitation. Then, peptides (GBVA10-9, CPB and their scramble controls GBVA10-9scr and CPBscr) with a thiol group were engrafted onto the NPs' maleimide groups using the Michael addition to obtain peptide functionalized NPs by post-formulation procedure. These peptide-modified NPs varied in diameter and dispersity depending on the considered peptides and/or (co)polymers but kept their spherical shape. The peptide-functionalized NPs were more efficiently internalized by HepaRG hepatoma cells than native and maleimide-NPs with various levels relying on the peptide's nature and the presence of PEG. We also observed important differences in internalization of NPs functionalized by the maleimide-thiol-peptide reaction compared to that of NPs prepared from peptide-functionalized PMLABe73 derivatives.
Collapse
Affiliation(s)
- Clarisse Brossard
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, 35000 Rennes, France; (C.B.); (L.J.); (V.D.)
| | - Manuel Vlach
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, 35000 Rennes, France; (M.V.); (E.V.)
- Institut Agro, INRAE, PEGASE, 35000 Rennes, France
| | - Lucas Jacquet
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, 35000 Rennes, France; (C.B.); (L.J.); (V.D.)
| | - Elise Vène
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, 35000 Rennes, France; (M.V.); (E.V.)
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35033 Rennes, France
| | - Vincent Dorcet
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, 35000 Rennes, France; (C.B.); (L.J.); (V.D.)
| | - Pascal Loyer
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, 35000 Rennes, France; (M.V.); (E.V.)
| | - Sandrine Cammas-Marion
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, 35000 Rennes, France; (C.B.); (L.J.); (V.D.)
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, 35000 Rennes, France; (M.V.); (E.V.)
| | - Nicolas Lepareur
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, 35000 Rennes, France; (M.V.); (E.V.)
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
| |
Collapse
|
6
|
Vène E, Jarnouen K, Ribault C, Vlach M, Verres Y, Bourgeois M, Lepareur N, Cammas-Marion S, Loyer P. Circumsporozoite Protein of Plasmodium berghei- and George Baker Virus A-Derived Peptides Trigger Efficient Cell Internalization of Bioconjugates and Functionalized Poly(ethylene glycol)- b-poly(benzyl malate)-Based Nanoparticles in Human Hepatoma Cells. Pharmaceutics 2022; 14:804. [PMID: 35456637 PMCID: PMC9028075 DOI: 10.3390/pharmaceutics14040804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
In order to identify the peptides, selected from the literature, that exhibit the strongest tropism towards human hepatoma cells, cell uptake assays were performed using biotinylated synthetic peptides bound to fluorescent streptavidin or engrafted onto nanoparticles (NPs), prepared from biotin-poly(ethylene glycol)-block-poly(benzyl malate) (Biot-PEG-b-PMLABe) via streptavidin bridging. Two peptides, derived from the circumsporozoite protein of Plasmodium berghei- (CPB) and George Baker (GB) Virus A (GBVA10-9), strongly enhanced the endocytosis of both streptavidin conjugates and NPs in hepatoma cells, compared to primary human hepatocytes and non-hepatic cells. Unexpectedly, the uptake of CPB- and GBVA10-9 functionalized PEG-b-PMLABe-based NPs by hepatoma cells involved, at least in part, the peptide binding to apolipoproteins, which would promote NP's interactions with cell membrane receptors of HDL particles. In addition, CPB and GBVA10-9 peptide-streptavidin conjugates favored the uptake by hepatoma cells over that of the human macrophages, known to strongly internalize nanoparticles by phagocytosis. These two peptides are promising candidate ligands for targeting hepatocellular carcinomas.
Collapse
Affiliation(s)
- Elise Vène
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, F-35033 Rennes, France
| | - Kathleen Jarnouen
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Catherine Ribault
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Manuel Vlach
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- INRAE, Institut AGRO, PEGASE UMR 1348, F-35590 Saint-Gilles, France
| | - Yann Verres
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Mickaël Bourgeois
- CRCINA, Inserm, CNRS, Université de Nantes, F-44000 Nantes, France;
- ARRONAX Cyclotron, F-44817 Saint Herblain, France
| | - Nicolas Lepareur
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Comprehensive Cancer Center Eugène Marquis, F-35000 Rennes, France
| | - Sandrine Cammas-Marion
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Institut des Sciences Chimiques de Rennes (ISCR), Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, University of Rennes, F-35042 Rennes, France
| | - Pascal Loyer
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| |
Collapse
|
7
|
Li B, Li L, Peng Z, Liu D, Si L, Wang J, Yuan B, Huang J, Proksch P, Lin W. Harzianoic acids A and B, new natural scaffolds with inhibitory effects against hepatitis C virus. Bioorg Med Chem 2019; 27:560-567. [DOI: 10.1016/j.bmc.2018.12.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023]
|
8
|
Batista MN, Sanches PRDS, Carneiro BM, Braga ACS, Campos GRF, Cilli EM, Rahal P. GA-Hecate antiviral properties on HCV whole cycle represent a new antiviral class and open the door for the development of broad spectrum antivirals. Sci Rep 2018; 8:14329. [PMID: 30254334 PMCID: PMC6156508 DOI: 10.1038/s41598-018-32176-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, synthetic peptides have been considered promising targets for drug development that possess low side-effects, are cost-effective and are susceptible to rational design. Hecate was initially described as a potent bacterial inhibitor and subsequently as an anticancer drug with functions related to its lipid interaction property. Viruses, such as hepatitis C virus (HCV), have a lipid-dependent life cycle and could be affected by Hecate in many ways. Here, we assessed modifications on Hecate’s N-terminus region and its effects on HCV and hepatotoxicity. Gallic acid-conjugated Hecate was the most efficient Hecate-derivative, presenting high potential as an antiviral and inhibiting between 50 to 99% of all major steps within the HCV infectious cycle. However, the most promising aspect was GA-Hecate’s mechanism of action, which was associated with a balanced lipid interaction with the viral envelope and lipid droplets, as well as dsRNA intercalation, allowing for the possibility to affect other ssRNA viruses and those with a lipid-dependent cycle.
Collapse
Affiliation(s)
- Mariana Nogueira Batista
- Institute of Bioscience, Language and Exact Science, UNESP - São Paulo State University, São José do Rio Preto, SP, Brazil
| | | | - Bruno Moreira Carneiro
- Institute of Bioscience, Language and Exact Science, UNESP - São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Ana Cláudia Silva Braga
- Institute of Bioscience, Language and Exact Science, UNESP - São Paulo State University, São José do Rio Preto, SP, Brazil
| | | | - Eduardo Maffud Cilli
- Institute of Chemistry, UNESP - São Paulo State University, Araraquara, SP, Brazil.
| | - Paula Rahal
- Institute of Bioscience, Language and Exact Science, UNESP - São Paulo State University, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
9
|
Jittavisutthikul S, Seesuay W, Thanongsaksrikul J, Thueng-in K, Srimanote P, Werner RG, Chaicumpa W. Human Transbodies to HCV NS3/4A Protease Inhibit Viral Replication and Restore Host Innate Immunity. Front Immunol 2016; 7:318. [PMID: 27617013 PMCID: PMC4999588 DOI: 10.3389/fimmu.2016.00318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/08/2016] [Indexed: 12/23/2022] Open
Abstract
A safe and effective direct acting anti-hepatitis C virus (HCV) agent is still needed. In this study, human single chain variable fragments of antibody (scFvs) that bound to HCV NS3/4A protein were produced by phage display technology. The engineered scFvs were linked to nonaarginines (R9) for making them cell penetrable. HCV-RNA-transfected Huh7 cells treated with the transbodies produced from four different transformed E. coli clones had reduced HCV-RNA inside the cells and in the cell spent media, as well as fewer HCV foci in the cell monolayer compared to the transfected cells in culture medium alone. The transbodies-treated transfected cells also had up-expression of the genes coding for the host innate immune response, including TRIF, TRAF3, IRF3, IL-28B, and IFN-β. Computerized homology modeling and intermolecular docking predicted that the effective transbodies interacted with several critical residues of the NS3/4A protease, including those that form catalytic triads, oxyanion loop, and S1 and S6 pockets, as well as a zinc-binding site. Although insight into molecular mechanisms of the transbodies need further laboratory investigation, it can be deduced from the current data that the transbodies blocked the HCV NS3/4A protease activities, leading to the HCV replication inhibition and restoration of the virally suppressed host innate immunity. The engineered antibodies should be tested further for treatment of HCV infection either alone, in combination with current therapeutics, or in a mixture with their cognates specific to other HCV proteins.
Collapse
Affiliation(s)
- Surasak Jittavisutthikul
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Jeeraphong Thanongsaksrikul
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathum-thani, Thailand
| | - Kanyarat Thueng-in
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima Province, Thailand
| | - Potjanee Srimanote
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathum-thani, Thailand
| | - Rolf G. Werner
- Industrial Technology, Faculty of Science, University of Tuebingen, Tuebingen, Germany
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathum-thani, Thailand
| |
Collapse
|
10
|
Identification of a Potent and Broad-Spectrum Hepatitis C Virus Fusion Inhibitory Peptide from the E2 Stem Domain. Sci Rep 2016; 6:25224. [PMID: 27121372 PMCID: PMC4848495 DOI: 10.1038/srep25224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) envelope proteins E1 and E2 play an essential role in virus entry. However, the fusion mechanisms of HCV remain largely unclear, hampering the development of efficient fusion inhibitors. Here, we developed two cell-based membrane fusion models that allow for screening a peptide library covering the full-length E1 and E2 amino acid sequences. A peptide from the E2 stem domain, named E27, was found to possess the ability to block E1E2-mediated cell-cell fusion and inhibit cell entry of HCV pseudoparticles and infection of cell culture-derived HCV at nanomolar concentrations. E27 demonstrated broad-spectrum inhibition of the major genotypes 1 to 6. A time-of-addition experiment revealed that E27 predominantly functions in the late steps during HCV entry, without influencing the expression and localization of HCV co-receptors. Moreover, we demonstrated that E27 interfered with hetero-dimerization of ectopically expressed E1E2 in cells, and mutational analysis suggested that E27 might target a conserved region in E1. Taken together, our findings provide a novel candidate as well as a strategy for developing potent and broad-spectrum HCV fusion inhibitors, which may complement the current direct-acting antiviral medications for chronic hepatitis C, and shed light on the mechanism of HCV membrane fusion.
Collapse
|
11
|
Li X, Niu Y, Cheng M, Chi X, Liu X, Yang W. AP1S3 is required for hepatitis C virus infection by stabilizing E2 protein. Antiviral Res 2016; 131:26-34. [PMID: 27079945 DOI: 10.1016/j.antiviral.2016.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 10/22/2022]
Abstract
Hepatitis C virus (HCV) infects 130 million people worldwide and is a leading cause of liver cirrhosis, end-stage liver disease and hepatocellular carcinoma. The interactions between viral elements and host factors play critical role on HCV invade, replication and release. Here, we identified adaptor protein complex 1 sigma 3 subunit (AP1S3) as a dependency factor for the efficient HCV infection in hepatoma cells. AP1S3 silencing in cultivated Huh7.5.1 cells significantly reduced the production of HCV progeny particles. Immunoprecipitation analysis revealed that AP1S3 interacted with the HCV E2 protein. With this interaction, AP1S3 could protect HCV E2 from ubiquitin-mediated proteasomal degradation. Using in vivo ubiquitylation assay, we identified that E6-Associated Protein (E6AP) was associated with HCV E2. In addition, treatment with synthetic peptide that contains the AP1S3-recognized motif inhibited HCV infection in Huh7.5.1 cells. Our data reveal AP1 as a novel host network that is required by viruses during infection and provides a potential target for developing broad-spectrum anti-virus strategies.
Collapse
Affiliation(s)
- Xiang Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Yuqiang Niu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Min Cheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Xiaojing Chi
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Xiuying Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Wei Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China.
| |
Collapse
|
12
|
Ye F, Xin Z, Han W, Fan J, Yin B, Wu S, Yang W, Yuan J, Qiang B, Sun W, Peng X. Quantitative Proteomics Analysis of the Hepatitis C Virus Replicon High-Permissive and Low-Permissive Cell Lines. PLoS One 2015; 10:e0142082. [PMID: 26544179 PMCID: PMC4636247 DOI: 10.1371/journal.pone.0142082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/16/2015] [Indexed: 01/16/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is one of the leading causes of severe hepatitis. The molecular mechanisms underlying HCV replication and pathogenesis remain unclear. The development of the subgenome replicon model system significantly enhanced study of HCV. However, the permissiveness of the HCV subgenome replicon greatly differs among different hepatoma cell lines. Proteomic analysis of different permissive cell lines might provide new clues in understanding HCV replication. In this study, to detect potential candidates that might account for the differences in HCV replication. Label-free and iTRAQ labeling were used to analyze the differentially expressed protein profiles between Huh7.5.1 wt and HepG2 cells. A total of 4919 proteins were quantified in which 114 proteins were commonly identified as differentially expressed by both quantitative methods. A total of 37 differential proteins were validated by qRT-PCR. The differential expression of Glutathione S-transferase P (GSTP1), Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), carboxylesterase 1 (CES1), vimentin, Proteasome activator complex subunit1 (PSME1), and Cathepsin B (CTSB) were verified by western blot. And over-expression of CTSB or knock-down of vimentin induced significant changes to HCV RNA levels. Additionally, we demonstrated that CTSB was able to inhibit HCV replication and viral protein translation. These results highlight the potential role of CTSB and vimentin in virus replication.
Collapse
Affiliation(s)
- Fei Ye
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongshuai Xin
- Division of Hormone, National Institute for Food and Drug Control, Beijing, China
| | - Wei Han
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Fan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuzhen Wu
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangang Yuan
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (XP); (WS)
| | - Xiaozhong Peng
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (XP); (WS)
| |
Collapse
|
13
|
Zhang J, Garrison JC, Poluektova LY, Bronich TK, Osna NA. Liver-targeted antiviral peptide nanocomplexes as potential anti-HCV therapeutics. Biomaterials 2015; 70:37-47. [PMID: 26298393 PMCID: PMC4562313 DOI: 10.1016/j.biomaterials.2015.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 02/05/2023]
Abstract
Great success in HCV therapy was achieved by the development of direct-acting antivirals (DAA). However, the unsolved issues such as high cost and genotype dependency drive us to pursue additional therapeutic agents to be used instead or in combination with DAA. The cationic peptide p41 is one of such candidates displaying submicromolar anti-HCV potency. By electrostatic coupling of p41 with anionic poly(amino acid)-based block copolymers, antiviral peptide nanocomplexes (APN) platform was developed to improve peptide stability and to reduce cytotoxicity associated with positive charge. Herein, we developed a facile method to prepare galactosylated Gal-APN and tested their feasibility as liver-specific delivery system. In vitro, Gal-APN displayed specific internalization in hepatoma cell lines. Even though liver-targeted and non-targeted APN displayed comparable antiviral activity, Gal-APN offered prominent advantages to prevent HCV association with lipid droplets and suppress intracellular expression of HCV proteins. Moreover, in vivo preferential liver accumulation of Gal-APN was revealed in the biodistribution study. Altogether, this work illustrates the potential of Gal-APN as a novel liver-targeted therapy against HCV.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Natalia A Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System Medical Center, 4101 Woolworth Avenue, Omaha, NE 68105, USA.
| |
Collapse
|
14
|
Hong W, Lang Y, Li T, Zeng Z, Song Y, Wu Y, Li W, Cao Z. A p7 Ion Channel-derived Peptide Inhibits Hepatitis C Virus Infection in Vitro. J Biol Chem 2015; 290:23254-63. [PMID: 26251517 DOI: 10.1074/jbc.m115.662452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Viral infection is an early stage of its life cycle and represents a promising target for antiviral drug development. Here we designed and characterized three peptide inhibitors of hepatitis C virus (HCV) infection based on the structural features of the membrane-associated p7 polypeptide of HCV. The three peptides exhibited low toxicity and high stability while potently inhibiting initial HCV infection and suppressed established HCV infection at non-cytotoxic concentrations in vitro. The most efficient peptide (designated H2-3), which is derived from the H2 helical region of HCV p7 ion channel, inhibited HCV infection by inactivating both intracellular and extracellular viral particles. The H2-3 peptide inactivated free HCV with an EC50 (50% effective concentration) of 82.11 nm, which is >1000-fold lower than the CC50 (50% cytotoxic concentration) of Huh7.5.1 cells. H2-3 peptide also bound to cell membrane and protected host cells from viral infection. The peptide H2-3 did not alter the normal electrophysiological profile of the p7 ion channel or block viral release from Huh7.5.1 cells. Our work highlights a new anti-viral peptide design strategy based on ion channel, giving the possibility that ion channels are potential resources to generate antiviral peptides.
Collapse
Affiliation(s)
- Wei Hong
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yange Lang
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tian Li
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhengyang Zeng
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Song
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingliang Wu
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxin Li
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhijian Cao
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Si Y, Li J, Niu Y, Liu X, Ren L, Guo L, Cheng M, Zhou H, Wang J, Jin Q, Yang W. Entry properties and entry inhibitors of a human H7N9 influenza virus. PLoS One 2014; 9:e107235. [PMID: 25222852 PMCID: PMC4164620 DOI: 10.1371/journal.pone.0107235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
The recently identified human infections with a novel avian influenza H7N9 virus in China raise important questions regarding possible risk to humans. However, the entry properties and tropism of this H7N9 virus were poorly understood. Moreover, neuraminidase inhibitor resistant H7N9 isolates were recently observed in two patients and correlated with poor clinical outcomes. In this study, we aimed to elucidate the entry properties of H7N9 virus, design and evaluate inhibitors for H7N9 virus entry. We optimized and developed an H7N9-pseudotyped particle system (H7N9pp) that could be neutralized by anti-H7 antibodies and closely mimicked the entry process of the H7N9 virus. Avian, human and mouse-derived cultured cells showed high, moderate and low permissiveness to H7N9pp, respectively. Based on influenza virus membrane fusion mechanisms, a potent anti-H7N9 peptide (P155-185-chol) corresponding to the C-terminal ectodomain of the H7N9 hemagglutinin protein was successfully identified. P155-185-chol demonstrated H7N9pp-specific inhibition of infection with IC50 of 0.19 µM. Importantly, P155-185-chol showed significant suppression of A/Anhui/1/2013 H7N9 live virus propagation in MDCK cells and additive effects with NA inhibitors Oseltamivir and Zanamivir. These findings expand our knowledge of the entry properties of the novel H7N9 viruses, and they highlight the potential for developing a new class of inhibitors targeting viral entry for use in the next pandemic.
Collapse
Affiliation(s)
- Youhui Si
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianguo Li
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuqiang Niu
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuying Liu
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lili Ren
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Guo
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Cheng
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongli Zhou
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (WY); (QJ); (JW)
| | - Qi Jin
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (WY); (QJ); (JW)
| | - Wei Yang
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (WY); (QJ); (JW)
| |
Collapse
|
16
|
Redwan EM, EL-Fakharany EM, Uversky VN, Linjawi MH. Screening the anti infectivity potentials of native N- and C-lobes derived from the camel lactoferrin against hepatitis C virus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:219. [PMID: 24993815 PMCID: PMC4086701 DOI: 10.1186/1472-6882-14-219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection represents a worldwide health threat that still needs efficient protective vaccine and/or effective drug. The traditional medicine, such as camel milk, is heavily used by the large sector of HCV patients to control the infection due to the high cost of the available standard therapy. Camel milk contains lactoferrin, which plays an important and multifunctional role in innate immunity and specific host defense against microbial infection. Continuing the analysis of the effectiveness of camel lactoferrin against HCV, the current study aimed to separate and purify the native N- and C-lobes from the proteolytically cleaved camel lactoferrin (cLF) and to compare their in vitro activities against the HCV infection in Huh7.5 cells in order to determine the most active domain. METHODS Lactoferrin and its digested N- and C-lobes were purified by Mono S 5/50 GL column and Superdex 200 5/150 column. The purified proteins were assessed through three venues: 1. To inhibit intracellular replication, HCV infected cells were treated with the proteins at different concentrations and time intervals; 2. The proteins were directly incubated with the viral particles (neutralization) and then such neutralized viruses were used to infect cells; 3. The cells were protected with proteins before exposure to the virus. The antiviral potentials of the cLf and its lobes were determined using three techniques: 1. RT-nested PCR, 2. Real-time PCR, and 3. Flow cytometry. RESULTS N- and C-lobes were purified in two consecutive steps; using Mono-S and Superdex 200 columns. The molecular mass of N- and C-lobes was about 40 kDa. cLF and its lobes could prevent HCV entry into Huh 7.5 cells with activity reached 100% through direct interaction with the virus. The inhibition of intracellular viral replication by N-lobe is 2-fold and 3-fold more effective than that of the cLF and C-lobe, respectively. CONCLUSION Generated native N- and C-lobes from camel lactoferrin demonstrated a range of noticeably different potentials against HCV cellular infectivity. The anti-HCV activities were sorted as N-lobe > cLf > C-lobe.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21394, Egypt
| | - Esmail M EL-Fakharany
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21394, Egypt
| | - Vladimir N Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mustafa H Linjawi
- College of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Jackman JA, Zan GH, Zhdanov VP, Cho NJ. Rupture of Lipid Vesicles by a Broad-Spectrum Antiviral Peptide: Influence of Vesicle Size. J Phys Chem B 2013; 117:16117-28. [DOI: 10.1021/jp409716p] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua A. Jackman
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre
for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang
Drive 637553, Singapore
| | - Goh Haw Zan
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre
for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang
Drive 637553, Singapore
| | - Vladimir P. Zhdanov
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre
for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang
Drive 637553, Singapore
- Boreskov
Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nam-Joon Cho
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre
for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang
Drive 637553, Singapore
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
| |
Collapse
|