1
|
Tang C, Flavel M, Londrigan SL, Mackenzie JM. Polyphenol rich sugarcane extract restricts select respiratory viruses depending on their mode of entry. Virology 2025; 606:110500. [PMID: 40121153 DOI: 10.1016/j.virol.2025.110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
We previously showed that Polyphenol rich sugarcane extract (PRSE) displayed significant inhibitory effect against influenza A virus (IAV). In this study, we investigated the mechanism of action (MOA) of PRSE against respiratory viruses in human-derived cells. We showed that PRSE treatment does not promote an antiviral state via expression of interferon stimulated genes (ISGs). We subsequently investigated any potential perturbation on the viral entry process and observed that PRSE treatment did not affect caveolin-mediated endocytosis but led to a significant attenuation in clathrin-mediated endocytosis. We confirmed this inhibitory effect on IAV entry, as infection was unaffected by PRSE when IAV fusion was induced at the plasma membrane, instead of endosomal membranes. Based on these findings we observed significant inhibitory effect of PRSE against respiratory syncytial virus and human metapneumovirus, which utilise clathrin-mediated endocytosis, but not human parainfluenza virus type 3, which fuses at the plasma membrane. In conclusion, we show that PRSE has broad antiviral activity and potentially perturbs virus entry via clathrin-mediated endocytosis to inhibit viral replication in vitro.
Collapse
Affiliation(s)
- Caolingzhi Tang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
| | - Matthew Flavel
- The Product Makers (Australia) Pty Ltd, Keysborough, VIC, 3173, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia.
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
2
|
Liu J, Gao L, Zhou N, Jiang Z, Che S, Deng Y, Zang N, Ren L, Xie X, Xie J, Liu E. p53 suppresses the inflammatory response following respiratory syncytial virus infection by inhibiting TLR2. Virology 2024; 593:110018. [PMID: 38368639 DOI: 10.1016/j.virol.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
-Respiratory syncytial virus (RSV) is a pivotal virus leading to acute lower respiratory tract infections in children under 5 years old. This study aimed to explore the correlation between p53 and Toll-like receptors (TLRs) post RSV infection. p53 levels exhibited a substantial decrease in nasopharyngeal aspirates (NPAs) from infants with RSV infection compared to control group. Manipulating p53 expression had no significant impact on RSV replication or interferon signaling pathway. Suppression of p53 expression led to heightened inflammation following RSV infection in A549 cells or airways of BALB/c mice. while stabilizing p53 expression using Nutlin-3a mitigated the inflammatory response in A549 cells. Additionally, Inhibiting p53 expression significantly increased Toll-like receptor 2 (TLR2) expression in RSV-infected epithelial cells and BALB/c mice. Furthermore, the TLR2 inhibitor, C29, effectively reduced inflammation mediated by p53 in A549 cells. Collectively, our results indicate that p53 modulates the inflammatory response after RSV infection through TLR2.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Leiqiong Gao
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Na Zhou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhenghong Jiang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Siyi Che
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Luo Ren
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jun Xie
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
3
|
Kryvenko V, Vadász I. Alveolar-capillary endocytosis and trafficking in acute lung injury and acute respiratory distress syndrome. Front Immunol 2024; 15:1360370. [PMID: 38533500 PMCID: PMC10963603 DOI: 10.3389/fimmu.2024.1360370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
4
|
Wang X, Cheng J, Shen L, Chen M, Sun K, Li J, Li M, Ma C, Wei L. Rab5c promotes RSV and ADV replication by autophagy in respiratory epithelial cells. Virus Res 2024; 341:199324. [PMID: 38242290 PMCID: PMC10830860 DOI: 10.1016/j.virusres.2024.199324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Respiratory system diseases caused by respiratory viruses are common and exert tremendous pressure on global healthcare system. In our previous studies, we found that Long non-coding RNA NRAV (Lnc NRAV) and its target molecule Rab5c plays a significant role in respiratory virus infection. However, the mechanism by which Rab5c affects virus replication remains unclear. Rab5c, a protein mainly localized on the cell membranes and in early endosomes and phagosomes, participates in endocytosis mediated by clathrin and regulates the fusion of early endosome, maturation of early phagosomes, and autophagy. Therefore, we inferred that Rab5c impacts virus replication, which might be related to endocytosis or autophagy. We selected RSV (respiratory syncytial virus) as a representative enveloped virus and ADV (Adenovirus) as a representative non-enveloped virus to explore the possible mechanism of RSV and ADV replication promoted by Rab5c in A549 cells and in Rab5c-overexpressing mice. Here, we confirmed that the activated Rab5c promotes RSV and ADV replication and the inactivated Rab5c inhibits their replication. However, Rab5c promoting RSV and ADV replication is not mediated by endocytosis rather by autophagy in respiratory epithelial cells. Our study showed that Rab5c upregulates LC3-Ⅱ (microtubule-associated protein 1 light chain 3 beta) protein expression levels by interacting with Beclin1, a key autophagy molecule, which can induce autophagy and promote replication of ADV and RSV. This study enriches the understanding of the interaction between respiratory viruses and Rab5c, providing new insights for virus prevention and treatment.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Cheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Linchao Shen
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Meixi Chen
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Keran Sun
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Jian Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
Bergeron HC, Hansen MR, Tripp RA. Interferons-Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023; 11:2179. [PMID: 37764023 PMCID: PMC10535750 DOI: 10.3390/microorganisms11092179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Interferons (IFN) are an assemblage of signaling proteins made and released by various host cells in response to stimuli, including viruses. Respiratory syncytial virus (RSV), influenza virus, and SARS-CoV-2 are major causes of respiratory disease that induce or antagonize IFN responses depending on various factors. In this review, the role and function of type I, II, and III IFN responses to respiratory virus infections are considered. In addition, the role of the viral proteins in modifying anti-viral immunity is noted, as are the specific IFN responses that underly the correlates of immunity and protection from disease.
Collapse
Affiliation(s)
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30605, USA; (H.C.B.); (M.R.H.)
| |
Collapse
|
6
|
Che S, Zhou N, Liu Y, Xie J, Liu E. Andrographolide exerts anti-respiratory syncytial virus activity by up-regulating heme oxygenase-1 independent of interferon responses in human airway epithelial cells. Mol Biol Rep 2023; 50:4261-4272. [PMID: 36918433 PMCID: PMC10013987 DOI: 10.1007/s11033-023-08346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the leading cause of mortality and morbidity in children under the age of five. Despite this, there is still a lack of safe and effective vaccines and antiviral agents for clinical use. Andrographolide exerts antiviral functions against a variety of viruses, but whether (and how) it exerts antiviral effects on RSV remains unclear. METHODS AND RESULTS In vitro RSV infection models using A549 and 16HBE cell lines were established, and the effects of andrographolide on RSV were analyzed via RSV N gene load and proinflammatory cytokine levels. The RNA transcriptome was sequenced, and data were analyzed by R software. Andrographolide-related target genes were extracted via network pharmacology using online databases. Lentiviral transfection was applied to knockdown the heme oxygenase-1 gene (Hmox1, HO-1). Results showed that andrographolide suppressed RSV replication and attenuated subsequent inflammation. Network pharmacology and RNA sequencing analysis indicated that the hub gene HO-1 may play a pivotal role in the anti-RSV effects of andrographolide. Furthermore, andrographolide exerted antiviral effects against RSV partially by inducing HO-1 but did not activate the antiviral interferon response. CONCLUSION Our findings demonstrated that andrographolide exerted anti-RSV activity by up-regulating HO-1 expression in human airway epithelial cells, providing novel insights into potential therapeutic targets and drug repurposing in RSV infection.
Collapse
Affiliation(s)
- Siyi Che
- Department of Respiratory Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Na Zhou
- Department of Respiratory Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Ying Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd, Ganzhou, 341000, China
| | - Jun Xie
- Department of Respiratory Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.
| | - Enmei Liu
- Department of Respiratory Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.
| |
Collapse
|
7
|
Tovo PA, Garazzino S, Savino F, Daprà V, Pruccoli G, Dini M, Filisetti G, Funiciello E, Galliano I, Bergallo M. Expressions of Type I and III Interferons, Endogenous Retroviruses, TRIM28, and SETDB1 in Children with Respiratory Syncytial Virus Bronchiolitis. Curr Issues Mol Biol 2023; 45:1197-1217. [PMID: 36826024 PMCID: PMC9954910 DOI: 10.3390/cimb45020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Interferons (IFNs) and IFN-stimulated genes (ISGs) play essential roles for the control of viral infections. Their expression in infants with respiratory syncytial virus (RSV) bronchiolitis is poorly defined. Human endogenous retroviruses (HERVs) represent 8% of our genome and modulate inflammatory and immune reactions. TRIM28 and SETDB1 participate in the epigenetic regulation of genes involved in the immune response, including IFNs and HERVs. No study has explored the expression of HERVs, TRIM28, and SETDB1 during RSV bronchiolitis. We assessed, through a PCR real-time Taqman amplification assay, the transcription levels of six IFN-I ISGs, four IFNλs, the pol genes of HERV-H, -K, and -W families, the env genes of Syncytin (SYN)1 and SYN2, and of TRIM28/SETDB1 in whole blood from 37 children hospitalized for severe RSV bronchiolitis and in healthy children (HC). The expression of most IFN-I ISGs was significantly higher in RSV+ patients than in age-matched HC, but it was inhibited by steroid therapy. The mRNA concentrations of IFN-λs were comparable between patients and age-matched HC. This lack of RSV-driven IFN-III activation may result in the defective protection of the airway mucosal surface leading to severe bronchiolitis. The expression of IFN-III showed a positive correlation with age in HC, that could account for the high susceptibility of young children to viral respiratory tract infections. The transcription levels of every HERV gene were significantly lower in RSV+ patients than in HC, while the expressions of TRIM28/SETDB1 were overlapping. Given the negative impact of HERVs and the positive effects of TRIM28/SETDB1 on innate and adaptive immune responses, the downregulation of the former and the normal expression of the latter may contribute to preserving immune functions against infection.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| | - Silvia Garazzino
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Francesco Savino
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Valentina Daprà
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giulia Pruccoli
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Maddalena Dini
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giacomo Filisetti
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Elisa Funiciello
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
8
|
Zhou H, Tang YD, Zheng C. Revisiting IRF1-mediated antiviral innate immunity. Cytokine Growth Factor Rev 2022; 64:1-6. [PMID: 35090813 DOI: 10.1016/j.cytogfr.2022.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
Many studies have been conducted over the last few decades to understand better the functions of IRF3 and IRF7 in antiviral immune responses. However, the precise underlying molecular mechanism of IRF1-mediated immune response remains largely unknown. Recent studies indicate that IRF1 exerts strong antiviral activities against several viral infections through diverse mechanisms, both in IFN-dependent and IFN-independent manners. Nevertheless, the efficacy and kinetics of inducing IFNs and ISGs remain unknown. Here we summarize the recent advances in IRF1 research and highlight its potential roles in initiating IFN immune responses and subsequent IRF1-triggering antiviral responses. Challenges regarding the IFN positive feedback mediated by IRF7 during infection will be discussed; this classical loop may also be mediated in part by IRF1. Therefore, we propose a revised model that may help decipher the functional roles of IRF1 in antiviral immunity.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Yan-Dong Tang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Feng Z, Xu L, Xie Z. Receptors for Respiratory Syncytial Virus Infection and Host Factors Regulating the Life Cycle of Respiratory Syncytial Virus. Front Cell Infect Microbiol 2022; 12:858629. [PMID: 35281439 PMCID: PMC8913501 DOI: 10.3389/fcimb.2022.858629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections and responsible for a large proportion of mortality in children and the elderly. There are no licensed vaccines available to date. Prophylaxis and therapeutic RSV-specific antibodies are limited to populations at high risk owing to high cost and uncertain clinical value. Receptors and host factors are two determinants important for virus entry and establishment of infection in vivo. The identification and understanding of viral receptors and host factors can help us to gain insight into the pathogenesis of RSV infection. Herein, we reviewed receptors and host factors that have been reported thus far. RSV could bind to CX3C chemokine receptor 1 and heparan sulfate proteoglycans via the G protein, and to nucleolin, insulin-like growth factor-1 receptor, epidermal growth factor, and intercellular adhesion molecule-1 via the F protein. Seven host restriction factors and 13 host factors essential for RSV infection were reviewed. We characterized the functions and their roles in the life cycle of RSV, trying to provide an update on the information of RSV-related receptors and host factors.
Collapse
Affiliation(s)
- Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Lili Xu,
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|