1
|
Sugiokto FG, Li R. Targeting EBV Episome for Anti-Cancer Therapy: Emerging Strategies and Challenges. Viruses 2025; 17:110. [PMID: 39861899 PMCID: PMC11768851 DOI: 10.3390/v17010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
As a ubiquitous human pathogen, the Epstein-Barr virus (EBV) has established lifelong persistent infection in about 95% of the adult population. The EBV infection is associated with approximately 200,000 human cancer cases and 140,000 deaths per year. The presence of EBV in tumor cells provides a unique advantage in targeting the viral genome (also known as episome), to develop anti-cancer therapeutics. In this review, we summarize current strategies targeting the viral episome in cancer cells. We also highlight emerging technologies, such as clustered regularly interspersed short palindromic repeat (CRISPR)-based gene editing or activation, which offer promising avenues for selective targeting of the EBV episome for anti-cancer therapy. We discuss the challenges, limitations, and future perspectives associated with these strategies, including potential off-target effects, anti-cancer efficacy and safety.
Collapse
Affiliation(s)
- Febri Gunawan Sugiokto
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA;
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Renfeng Li
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA;
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
2
|
Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 2023; 15:200260. [PMID: 37169175 DOI: 10.1016/j.tvr.2023.200260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
3
|
Casco A, Johannsen E. EBV Reactivation from Latency Is a Degrading Experience for the Host. Viruses 2023; 15:726. [PMID: 36992435 PMCID: PMC10054251 DOI: 10.3390/v15030726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
During reactivation from latency, gammaherpesviruses radically restructure their host cell to produce virion particles. To achieve this and thwart cellular defenses, they induce rapid degradation of cytoplasmic mRNAs, suppressing host gene expression. In this article, we review mechanisms of shutoff by Epstein-Barr virus (EBV) and other gammaherpesviruses. In EBV, canonical host shutoff is accomplished through the action of the versatile BGLF5 nuclease expressed during lytic reactivation. We explore how BGLF5 induces mRNA degradation, the mechanisms by which specificity is achieved, and the consequences for host gene expression. We also consider non-canonical mechanisms of EBV-induced host shutoff. Finally, we summarize the limitations and barriers to accurate measurements of the EBV host shutoff phenomenon.
Collapse
Affiliation(s)
- Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
4
|
Sun Y, Liu W, Luo B. Functional diversity: update of the posttranslational modification of Epstein-Barr virus coding proteins. Cell Mol Life Sci 2022; 79:590. [PMID: 36376593 PMCID: PMC11802978 DOI: 10.1007/s00018-022-04561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Epstein-Barr virus (EBV), a human oncogenic herpesvirus with a typical life cycle consisting of latent phase and lytic phase, is associated with many human diseases. EBV can express a variety of proteins that enable the virus to affect host cell processes and evade host immunity. Additionally, these proteins provide a basis for the maintenance of viral infection, contribute to the formation of tumors, and influence the occurrence and development of related diseases. Posttranslational modifications (PTMs) are chemical modifications of proteins after translation and are very important to guarantee the proper biological functions of these proteins. Studies in the past have intensely investigated PTMs of EBV-encoded proteins. EBV regulates the progression of the latent phase and lytic phase by affecting the PTMs of its encoded proteins, which are critical for the development of EBV-associated human diseases. In this review, we summarize the PTMs of EBV-encoded proteins that have been discovered and studied thus far with focus on their effects on the viral life cycle.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Trompet E, Temblador A, Gillemot S, Topalis D, Snoeck R, Andrei G. An MHV-68 Mutator Phenotype Mutant Virus, Confirmed by CRISPR/Cas9-Mediated Gene Editing of the Viral DNA Polymerase Gene, Shows Reduced Viral Fitness. Viruses 2021; 13:v13060985. [PMID: 34073189 PMCID: PMC8227558 DOI: 10.3390/v13060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/04/2022] Open
Abstract
Drug resistance studies on human γ-herpesviruses are hampered by the absence of an in vitro system that allows efficient lytic viral replication. Therefore, we employed murine γ-herpesvirus-68 (MHV-68) that efficiently replicates in vitro as a model to study the antiviral resistance of γ-herpesviruses. In this study, we investigated the mechanism of resistance to nucleoside (ganciclovir (GCV)), nucleotide (cidofovir (CDV), HPMP-5azaC, HPMPO-DAPy) and pyrophosphate (foscarnet (PFA)) analogues and the impact of these drug resistance mutations on viral fitness. Viral fitness was determined by dual infection competition assays, where MHV-68 drug-resistant viral clones competed with the wild-type virus in the absence and presence of antivirals. Using next-generation sequencing, the composition of the viral populations was determined at the time of infection and after 5 days of growth. Antiviral drug resistance selection resulted in clones harboring mutations in the viral DNA polymerase (DP), denoted Y383SGCV, Q827RHPMP-5azaC, G302WPFA, K442TPFA, G302W+K442TPFA, C297WHPMPO-DAPy and C981YCDV. Without antiviral pressure, viral clones Q827RHPMP-5azaC, G302WPFA, K442TPFA and G302W+K442TPFA grew equal to the wild-type virus. However, in the presence of antivirals, these mutants had a growth advantage over the wild-type virus that was moderately to very strongly correlated with antiviral resistance. The Y383SGCV mutant was more fit than the wild-type virus with and without antivirals, except in the presence of brivudin. The C297W and C981Y changes were associated with a mutator phenotype and had a severely impaired viral fitness in the absence and presence of antivirals. The mutator phenotype caused by C297W in MHV-68 DP was validated by using a CRISPR/Cas9 genome editing approach.
Collapse
|
6
|
Lee CP, Chen MR. Conquering the Nuclear Envelope Barriers by EBV Lytic Replication. Viruses 2021; 13:702. [PMID: 33919628 PMCID: PMC8073350 DOI: 10.3390/v13040702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
The nuclear envelope (NE) of eukaryotic cells has a highly structural architecture, comprising double lipid-bilayer membranes, nuclear pore complexes, and an underlying nuclear lamina network. The NE structure is held in place through the membrane-bound LINC (linker of nucleoskeleton and cytoskeleton) complex, spanning the inner and outer nuclear membranes. The NE functions as a barrier between the nucleus and cytoplasm and as a transverse scaffold for various cellular processes. Epstein-Barr virus (EBV) is a human pathogen that infects most of the world's population and is associated with several well-known malignancies. Within the nucleus, the replicated viral DNA is packaged into capsids, which subsequently egress from the nucleus into the cytoplasm for tegumentation and final envelopment. There is increasing evidence that viral lytic gene expression or replication contributes to the pathogenesis of EBV. Various EBV lytic proteins regulate and modulate the nuclear envelope structure in different ways, especially the viral BGLF4 kinase and the nuclear egress complex BFRF1/BFRF2. From the aspects of nuclear membrane structure, viral components, and fundamental nucleocytoplasmic transport controls, this review summarizes our findings and recently updated information on NE structure modification and NE-related cellular processes mediated by EBV.
Collapse
Affiliation(s)
- Chung-Pei Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
7
|
Song G, Lee EM, Pan J, Xu M, Rho HS, Cheng Y, Whitt N, Yang S, Kouznetsova J, Klumpp-Thomas C, Michael SG, Moore C, Yoon KJ, Christian KM, Simeonov A, Huang W, Xia M, Huang R, Lal-Nag M, Tang H, Zheng W, Qian J, Song H, Ming GL, Zhu H. An Integrated Systems Biology Approach Identifies the Proteasome as A Critical Host Machinery for ZIKV and DENV Replication. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:108-122. [PMID: 33610792 PMCID: PMC8498969 DOI: 10.1016/j.gpb.2020.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/04/2020] [Accepted: 08/06/2020] [Indexed: 01/22/2023]
Abstract
The Zika virus (ZIKV) and dengue virus (DENV) flaviviruses exhibit similar replicative processes but have distinct clinical outcomes. A systematic understanding of virus-host protein-protein interaction networks can reveal cellular pathways critical to viral replication and disease pathogenesis. Here we employed three independent systems biology approaches toward this goal. First, protein array analysis of direct interactions between individual ZIKV/DENV viral proteins and 20,240 human proteins revealed multiple conserved cellular pathways and protein complexes, including proteasome complexes. Second, an RNAi screen of 10,415 druggable genes identified the host proteins required for ZIKV infection and uncovered that proteasome proteins were crucial in this process. Third, high-throughput screening of 6016 bioactive compounds for ZIKV inhibition yielded 134 effective compounds, including six proteasome inhibitors that suppress both ZIKV and DENV replication. Integrative analyses of these orthogonal datasets pinpoint proteasomes as critical host machinery for ZIKV/DENV replication. Our study provides multi-omics datasets for further studies of flavivirus-host interactions, disease pathogenesis, and new drug targets.
Collapse
Affiliation(s)
- Guang Song
- Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Emily M. Lee
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jianbo Pan
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA,Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Hee-Sool Rho
- Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Nadia Whitt
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shu Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Kouznetsova
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel G. Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cedric Moore
- Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ki-Jun Yoon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimberly M. Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madhu Lal-Nag
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding authors.
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA,Corresponding authors.
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding authors.
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA,Corresponding authors.
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding authors.
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding authors.
| | - Heng Zhu
- Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA,Corresponding authors.
| |
Collapse
|
8
|
Conserved Herpesvirus Protein Kinases Target SAMHD1 to Facilitate Virus Replication. Cell Rep 2020; 28:449-459.e5. [PMID: 31291580 PMCID: PMC6668718 DOI: 10.1016/j.celrep.2019.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/14/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
To ensure a successful infection, herpesviruses have developed elegant strategies to counterbalance the host anti-viral responses. Sterile alpha motif and HD domain 1 (SAMHD1) was recently identified as an intrinsic restriction factor for a variety of viruses. Aside from HIV-2 and the related simian immunodeficiency virus (SIV) Vpx proteins, the direct viral countermeasures against SAMHD1 restriction remain unknown. Using Epstein-Barr virus (EBV) as a primary model, we discover that SAMHD1-mediated anti-viral restriction is antagonized by EBV BGLF4, a member of the conserved viral protein kinases encoded by all herpesviruses. Mechanistically, we find that BGLF4 phosphorylates SAMHD1 and thereby inhibits its deoxynucleotide triphosphate triphosphohydrolase (dNTPase) activity. We further demonstrate that the targeting of SAMHD1 for phosphorylation is a common feature shared by beta- and gamma-herpesviruses. Together, our findings uncover an immune evasion mechanism whereby herpesviruses exploit the phosphorylation of SAMHD1 to thwart host defenses. Herpesviruses have evolved elegant strategies to dampen the host anti-viral responses. Zhang et al. discover a mechanism by which herpesviruses evade SAMHD1-mediated host defenses through phosphorylation, expanding the functional repertoire of viral protein kinases in herpesvirus biology.
Collapse
|
9
|
Trompet E, Topalis D, Gillemot S, Snoeck R, Andrei G. Viral fitness of MHV-68 viruses harboring drug resistance mutations in the protein kinase or thymidine kinase. Antiviral Res 2020; 182:104901. [PMID: 32763314 DOI: 10.1016/j.antiviral.2020.104901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Murine γ-herpesvirus-68 (MHV-68), genetically and biologically related to human γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, can be easily propagated in vitro allowing drug resistance studies. Previously, we described specific changes in MHV-68 protein kinase (PK) or thymidine kinase (TK) associated with resistance to various purine or pyrimidine nucleoside analogues, respectively. To investigate how specific TK and PK mutations affect viral replication capacity, we performed dual infection competition assays in which wild-type and drug-resistant virus compete in absence or presence of antivirals in Vero cells. The composition of the mixed viral population was analyzed using next-generation sequencing and relative fitness of seven MHV-68 PK or TK mutants was calculated based on the frequency of viral variants at the time of infection and after 5-days growth. A MHV-68 mutant losing the PK function due to a 2-nucleotide deletion was less fit than the wild-type virus in absence of antivirals, consistent with the essential role of viral PKs during lytic replication, but overgrew the wild-type virus under pressure of purine nucleosides. TK mutant viruses, with frameshift or missense mutations, grew equal to wild-type virus in absence of antivirals, in accordance with the viral TK function only being essential in non-replicating or in TK-deficient cells, but were more fit when treated with pyrimidine nucleosides. Moreover, TK missense mutant viruses also increased fitness under pressure of antivirals other than pyrimidine nucleosides, indicating that MHV-68 TK mutations might influence viral fitness by acting on cellular and/or viral functions that are unrelated to nucleoside activation.
Collapse
Affiliation(s)
- Erika Trompet
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Sarah Gillemot
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Syu GD, Dunn J, Zhu H. Developments and Applications of Functional Protein Microarrays. Mol Cell Proteomics 2020; 19:916-927. [PMID: 32303587 PMCID: PMC7261817 DOI: 10.1074/mcp.r120.001936] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Protein microarrays are crucial tools in the study of proteins in an unbiased, high-throughput manner, as they allow for characterization of up to thousands of individually purified proteins in parallel. The adaptability of this technology has enabled its use in a wide variety of applications, including the study of proteome-wide molecular interactions, analysis of post-translational modifications, identification of novel drug targets, and examination of pathogen-host interactions. In addition, the technology has also been shown to be useful in profiling antibody specificity, as well as in the discovery of novel biomarkers, especially for autoimmune diseases and cancers. In this review, we will summarize the developments that have been made in protein microarray technology in both in basic and translational research over the past decade. We will also introduce a novel membrane protein array, the GPCR-VirD array, and discuss the future directions of functional protein microarrays.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C..
| | - Jessica Dunn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231.
| |
Collapse
|
11
|
|
12
|
Zou Z, Gan S, Liu S, Li R, Huang J. Investigation of differentially expressed genes in nasopharyngeal carcinoma by integrated bioinformatics analysis. Oncol Lett 2019; 18:916-926. [PMID: 31289570 DOI: 10.3892/ol.2019.10382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignancy of the head and neck. The aim of the present study was to conduct an integrated bioinformatics analysis of differentially expressed genes (DEGs) and to explore the molecular mechanisms of NPC. Two profiling datasets, GSE12452 and GSE34573, were downloaded from the Gene Expression Omnibus database and included 44 NPC specimens and 13 normal nasopharyngeal tissues. R software was used to identify the DEGs between NPC and normal nasopharyngeal tissues. Distributions of DEGs in chromosomes were explored based on the annotation file and the CYTOBAND database of DAVID. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied. Additionally, a protein-protein interaction (PPI) network, constructed using the STRING database and visualized by Cytoscape, was used to identify hub genes, key modules and important transcription factors (TFs). A total of 906 DEGs were identified; 434 (47.90%) DEGs were upregulated and 472 (52.10%) were downregulated. The DEGs were demonstrated to be enriched in chromosome 7p15-p14, 2q31, 1q21-q22, 1q21, 4q21 and 1p31-p22. DEGs were mainly enriched for the following GO terms: 'Cilium movement', 'microtubule bundle formation' and 'axoneme assembly'. KEGG pathway enrichment analysis revealed that pathways for 'cell cycle', 'DNA replication', 'interleukin-17 signaling', 'amoebiasis' and 'glutathione metabolism' were enriched. In addition, a PPI network comprising 867 nodes and 1,241 edges was constructed. Finally, five hub genes (aurora kinase A, cell division cycle 6, mitotic arrest deficient 2-like 1, DNA topoisomerase 2α and TPX2 microtubule nucleation factor), 8 modules, and 14 TFs were identified. Modules analysis revealed that cyclin-dependent kinase 1 and exportin 1 were involved in the pathway of Epstein-Barr virus infection. In summary, the hub genes, key modules and TFs identified in this study may promote our understanding of the pathogenesis of NPC and require further in-depth investigation.
Collapse
Affiliation(s)
- Zhenning Zou
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Siyuan Gan
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Jian Huang
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
13
|
S-Like-Phase Cyclin-Dependent Kinases Stabilize the Epstein-Barr Virus BDLF4 Protein To Temporally Control Late Gene Transcription. J Virol 2019; 93:JVI.01707-18. [PMID: 30700607 DOI: 10.1128/jvi.01707-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Temporally controlled gene expression is necessary for the propagation of herpesviruses. To achieve this, herpesviruses encode several transcriptional regulators. In Epstein-Barr virus, BcRF1 associates with five viral proteins (BDLF4, BGLF3, BFRF2, BVLF1, and BDLF3.5) to form the viral late (L) gene regulatory complex, which is called the viral preinitiation complex (vPIC), on TATT-containing promoters. However, regulation of the vPIC has been largely unexplored. In this study, we performed two screens using a kinase inhibitor library and identified a series of cyclin-dependent kinase (CDK) inhibitors that downregulated the expression of L genes without any impact on viral DNA replication through destabilization of the BDLF4 protein. Knockdown of CDK2 by short hairpin RNA (shRNA) and proteasome inhibitor treatment showed that phosphorylation of the BDLF4 protein prevented ubiquitin-mediated degradation. Moreover, we demonstrated that cyclin A- and E-associated CDK2 complexes phosphorylated BDLF4 in vitro, and we identified several serine/threonine phosphorylation sites in BDLF4. Phosphoinactive and phosphomimic mutants revealed that phosphorylation at threonine 91 plays a role in stabilizing BDLF4. Therefore, our findings indicate that S-like-phase CDKs mediate the regulation of L gene expression through stabilization of the BDLF4 protein, which makes the temporal L gene expression system more robust.IMPORTANCE Late (L) genes represent more than one-third of the herpesvirus genome, suggesting that many of these genes are indispensable for the life cycle of the virus. With the exception of BCRF1, BDLF2, and BDLF3, Epstein-Barr virus L genes are transcribed by viral regulators, which are known as the viral preinitiation complex (vPIC) and the host RNA polymerase II complex. Because the vPIC is conserved in beta- and gammaherpesviruses, studying the control of viral L gene expression by the vPIC contributes to the development of drugs that specifically inhibit these processes in beta- and gammaherpesvirus infections/diseases. In this study, we demonstrated that CDK inhibitors induced destabilization of the vPIC component BDLF4, leading to a reduction in L gene expression and subsequent progeny production. Our findings suggest that CDK inhibitors may be a therapeutic option against beta- and gammaherpesviruses in combination with existing inhibitors of herpesvirus lytic replication, such as ganciclovir.
Collapse
|
14
|
Shah K, Kim H. The significant others: Global search for direct kinase substrates using chemical approaches. IUBMB Life 2019; 71:721-737. [PMID: 30801966 DOI: 10.1002/iub.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/27/2019] [Indexed: 12/16/2022]
Abstract
Protein kinases function as key signaling hubs in the intricate network of biochemical signaling processes in the living cell. More than two-thirds of the human proteome is estimated to be phosphorylated at ~960,000 phosphosites, which makes it challenging to identify the direct contribution of any desired kinase in generating this phosphoproteome. In this review, we discuss some of the methods that have been developed over the years for global identification of kinase substrates. The methods are essentially categorized into two classes, namely, (i) direct tagging of kinase substrates and (ii) indirect phosphoproteomics-based approaches. We discuss the advantages and limitations entailed to each of the method introduced, with a special emphasis on the analog-sensitive (as) kinase approach method. © 2019 IUBMB Life, 71(6):721-737, 2019.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Hyunjin Kim
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Song G, Rho HS, Pan J, Ramos P, Yoon KJ, Medina FA, Lee EM, Eichinger D, Ming GL, Muñoz-Jordan JL, Tang H, Pino I, Song H, Qian J, Zhu H. Multiplexed Biomarker Panels Discriminate Zika and Dengue Virus Infection in Humans. Mol Cell Proteomics 2018; 17:349-356. [PMID: 29141913 PMCID: PMC5795396 DOI: 10.1074/mcp.ra117.000310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are closely related flaviviruses that cause widespread, acute febrile illnesses, notably microcephaly for fetuses of infected pregnant women. Detecting the viral cause of these illnesses is paramount to determine risks to patients, counsel pregnant women, and help fight outbreaks. A combined diagnostic algorithm for ZIKV and DENV requires Reverse transcription polymerase chain reaction (RT-PCR) and IgM antibody detection. RT-PCR differentiates between DENV and ZIKV infections during the acute phases of infection, but differentiation based on IgM antibodies is currently nearly impossible in endemic areas. We have developed a ZIKV/DENV protein array and tested it with serum samples collected from ZIKV- and DENV-infected patients and healthy subjects in Puerto Rico. Our analyses reveal a biomarker panel that are capable of discriminating ZIKV and DENV infections with high accuracy, including Capsid protein from African ZIKV strain MR766, and other 5 pair of proteins (NS1, NS2A, NS3, NS4B and NS5) from ZIKV and DENV respectively. Both sensitivity and specificity of the test for ZIKV from DENV are around 90%. We propose that the ZIKV/DENV protein array will be used in future studies to discriminate patients infected with ZIKV from DENV.
Collapse
Affiliation(s)
- Guang Song
- From the ‡Department of Pharmacology & Molecular Sciences; Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Hee-Sool Rho
- From the ‡Department of Pharmacology & Molecular Sciences; Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Jianbo Pan
- §Department of Ophthalmology; Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Pedro Ramos
- ¶CDI Laboratories, Inc. Mayaguez, Puerto Rico 00682
| | - Ki-Jun Yoon
- ‖Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- **Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Freddy A Medina
- ‡‡Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico 00920
| | - Emily M Lee
- §§Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | | | - Guo-Li Ming
- ‖Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- **Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- ¶¶The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- ‖‖Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- The Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jorge L Muñoz-Jordan
- ‡‡Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico 00920
| | - Hengli Tang
- §§Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Ignacio Pino
- ¶CDI Laboratories, Inc. Mayaguez, Puerto Rico 00682
| | - Hongjun Song
- ‖Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- **Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- ¶¶The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- ‖‖Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- The Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jiang Qian
- §Department of Ophthalmology; Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- From the ‡Department of Pharmacology & Molecular Sciences; Johns Hopkins School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
16
|
Noh KW, Park J, Joo EH, Lee EK, Choi EY, Kang MS. ERK2 phosphorylation of EBNA1 serine 383 residue is important for EBNA1-dependent transactivation. Oncotarget 2018; 7:25507-15. [PMID: 27009860 PMCID: PMC5041921 DOI: 10.18632/oncotarget.8177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
Abstract
Functional inhibition of Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) can cause the death of EBV infected cells. In this study, a bioinformatics tool predicted the existence of putative extracellular signal-regulated kinase (ERK) docking and substrate consensus sites on EBNA1, suggesting that ERK2 could bind to and phosphorylate EBNA1. In accordance, ERK2 was found to phosphorylate EBNA1 serine 383 in a reaction suppressed by H20 (a structural congener of the ERK inhibitor), U0126 (an inhibitor of MEK kinase), and mutations at substrate (S383A) or putative ERK docking sites. Wild-type (S383) and phosphomimetic (S383D) EBNA1 demonstrated comparable transactivation function, which was suppressed by H20 or U0126. In contrast, non-phosphorylated EBNA1 mutants displayed significantly impaired transactivation activity. ERK2 knock-down by siRNA, or treatment with U0126 or H20 repressed EBNA1-dependent transactivation. Collectively, these data indicate that blocking ERK2-directed phosphorylation can suppress EBNA1-transactivation function in latent EBV-infected cells, validating ERK2 as a drug target for EBV-associated disorders.
Collapse
Affiliation(s)
- Ka-Won Noh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Jihyun Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Eun Hye Joo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Eun Kyung Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Eun Young Choi
- BioMembrane Plasticity Research Center (MPRC), Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
| | - Myung-Soo Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute (SBRI), Samsung Medical Center and Sungkyunkwan University, Seoul, Korea.,BioMembrane Plasticity Research Center (MPRC), Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
| |
Collapse
|
17
|
Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins. Cell Stem Cell 2017; 21:349-358.e6. [PMID: 28826723 DOI: 10.1016/j.stem.2017.07.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/01/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022]
Abstract
Zika virus (ZIKV) directly infects neural progenitors and impairs their proliferation. How ZIKV interacts with the host molecular machinery to impact neurogenesis in vivo is not well understood. Here, by systematically introducing individual proteins encoded by ZIKV into the embryonic mouse cortex, we show that expression of ZIKV-NS2A, but not Dengue virus (DENV)-NS2A, leads to reduced proliferation and premature differentiation of radial glial cells and aberrant positioning of newborn neurons. Mechanistically, in vitro mapping of protein-interactomes and biochemical analysis suggest interactions between ZIKA-NS2A and multiple adherens junction complex (AJ) components. Functionally, ZIKV-NS2A, but not DENV-NS2A, destabilizes the AJ complex, resulting in impaired AJ formation and aberrant radial glial fiber scaffolding in the embryonic mouse cortex. Similarly, ZIKA-NS2A, but not DENV-NS2A, reduces radial glial cell proliferation and causes AJ deficits in human forebrain organoids. Together, our results reveal pathogenic mechanisms underlying ZIKV infection in the developing mammalian brain.
Collapse
|
18
|
Protein Array-based Approaches for Biomarker Discovery in Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:73-81. [PMID: 28392481 PMCID: PMC5414965 DOI: 10.1016/j.gpb.2017.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 01/15/2023]
Abstract
Biomarkers are deemed to be potential tools in early diagnosis, therapeutic monitoring, and prognosis evaluation for cancer, with simplicity as well as economic advantages compared with computed tomography and biopsy. However, most of the current cancer biomarkers present insufficient sensitivity as well as specificity. Therefore, there is urgent requirement for the discovery of biomarkers for cancer. As one of the most exciting emerging technologies, protein array provides a versatile and robust platform in cancer proteomics research because it shows tremendous advantages of miniaturized features, high throughput, and sensitive detections in last decades. Here, we will present a relatively complete picture on the characteristics and advance of different types of protein arrays in application for biomarker discovery in cancer, and give the future perspectives in this area of research.
Collapse
|
19
|
Yang Z, Hou Y, Hao T, Rho HS, Wan J, Luan Y, Gao X, Yao J, Pan A, Xie Z, Qian J, Liao W, Zhu H, Zhou X. A Human Proteome Array Approach to Identifying Key Host Proteins Targeted by Toxoplasma Kinase ROP18. Mol Cell Proteomics 2017; 16:469-484. [PMID: 28087594 DOI: 10.1074/mcp.m116.063602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface.
Collapse
Affiliation(s)
- Zhaoshou Yang
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongheng Hou
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Taofang Hao
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hee-Sool Rho
- the §Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jun Wan
- the ¶Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Yizhao Luan
- the ‖State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China.,the **School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Gao
- ‡‡The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; and
| | - Jianping Yao
- §§The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Aihua Pan
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhi Xie
- the ‖State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jiang Qian
- the ¶Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Wanqin Liao
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Heng Zhu
- the §Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Xingwang Zhou
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| |
Collapse
|
20
|
Discovery of a Coregulatory Interaction between Kaposi's Sarcoma-Associated Herpesvirus ORF45 and the Viral Protein Kinase ORF36. J Virol 2016; 90:5953-5964. [PMID: 27099309 DOI: 10.1128/jvi.00516-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further characterized the consequences of this interaction. We engineered ORF36 mutant viruses in order to investigate the functional roles of ORF36 in the context of KSHV lytic replication, and we confirmed that ORF36 is a component of KSHV virions. Moreover, we found that ORF36 mutants are defective in virion production and primary infection. In summary, we discovered and characterized a functionally important interaction between KSHV ORF36 and ORF45, and our results suggest a significant role of ORF36 in the production of infectious progeny virions, a process critical for KSHV pathogenesis.
Collapse
|
21
|
Applications in high-content functional protein microarrays. Curr Opin Chem Biol 2016; 30:21-27. [DOI: 10.1016/j.cbpa.2015.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/11/2015] [Indexed: 12/19/2022]
|
22
|
Li R, Liao G, Nirujogi RS, Pinto SM, Shaw PG, Huang TC, Wan J, Qian J, Gowda H, Wu X, Lv DW, Zhang K, Manda SS, Pandey A, Hayward SD. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling. PLoS Pathog 2015; 11:e1005346. [PMID: 26714015 PMCID: PMC4699913 DOI: 10.1371/journal.ppat.1005346] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/28/2015] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is etiologically linked to infectious mononucleosis and several human cancers. EBV encodes a conserved protein kinase BGLF4 that plays a key role in the viral life cycle. To provide new insight into the host proteins regulated by BGLF4, we utilized stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to compare site-specific phosphorylation in BGLF4-expressing Akata B cells. Our analysis revealed BGLF4-mediated hyperphosphorylation of 3,046 unique sites corresponding to 1,328 proteins. Frequency analysis of these phosphosites revealed a proline-rich motif signature downstream of BGLF4, indicating a broader substrate recognition for BGLF4 than its cellular ortholog cyclin-dependent kinase 1 (CDK1). Further, motif analysis of the hyperphosphorylated sites revealed enrichment in ATM, ATR and Aurora kinase substrates while functional analyses revealed significant enrichment of pathways related to the DNA damage response (DDR), mitosis and cell cycle. Phosphorylation of proteins associated with the mitotic spindle assembly checkpoint (SAC) indicated checkpoint activation, an event that inactivates the anaphase promoting complex/cyclosome, APC/C. Furthermore, we demonstrated that BGLF4 binds to and directly phosphorylates the key cellular proteins PP1, MPS1 and CDC20 that lie upstream of SAC activation and APC/C inhibition. Consistent with APC/C inactivation, we found that BGLF4 stabilizes the expression of many known APC/C substrates. We also noted hyperphosphorylation of 22 proteins associated the nuclear pore complex, which may contribute to nuclear pore disassembly and SAC activation. A drug that inhibits mitotic checkpoint activation also suppressed the accumulation of extracellular EBV virus. Taken together, our data reveal that, in addition to the DDR, manipulation of mitotic kinase signaling and SAC activation are mechanisms associated with lytic EBV replication. All MS data have been deposited in the ProteomeXchange with identifier PXD002411 (http://proteomecentral.proteomexchange.org/dataset/PXD002411). Epstein-Barr virus (EBV) is a herpesvirus that is associated with B cell and epithelial human cancers. Herpesviruses encode a protein kinase which is an important regulator of lytic virus replication and is consequently a target for anti-viral drug development. The EBV genome encodes for a serine/threonine protein kinase called BGLF4. Previous work on BGLF4 has largely focused on its cyclin-dependent kinase 1 (CDK1)-like activity. The range of BGLF4 cellular substrates and the full impact of BGLF4 on the intracellular microenvironment still remain to be elucidated. Here, we utilized unbiased quantitative phosphoproteomic approach to dissect the changes in the cellular phosphoproteome that are mediated by BGLF4. Our MS analyses revealed extensive hyperphosphorylation of substrates that are normally targeted by CDK1, Ataxia telangiectasia mutated (ATM), Ataxia telangiectasia and Rad3-related (ATR) proteins and Aurora kinases. The up-regulated phosphoproteins were functionally linked to the DNA damage response, mitosis and cell cycle pathways. Our data demonstrate widespread changes in the cellular phosphoproteome that occur upon BGLF4 expression and suggest that manipulation of the DNA damage and mitotic kinase signaling pathways are central to efficient EBV lytic replication.
Collapse
Affiliation(s)
- Renfeng Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: (RL); (AP); (SDH)
| | - Gangling Liao
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Sneha M. Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Patrick G. Shaw
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tai-Chung Huang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jun Wan
- Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Xinyan Wu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dong-Wen Lv
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kun Zhang
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Srikanth S. Manda
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Akhilesh Pandey
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, United States of America
- * E-mail: (RL); (AP); (SDH)
| | - S. Diane Hayward
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (RL); (AP); (SDH)
| |
Collapse
|
23
|
A Screen for Extracellular Signal-Regulated Kinase-Primed Glycogen Synthase Kinase 3 Substrates Identifies the p53 Inhibitor iASPP. J Virol 2015; 89:9232-41. [PMID: 26109723 DOI: 10.1128/jvi.01072-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein is essential for the replication and maintenance of virus genomes in latently KSHV-infected cells. LANA also drives dysregulated cell growth through a multiplicity of mechanisms that include altering the activity of the cellular kinases extracellular signal-regulated kinase (ERK) and glycogen synthase kinase 3 (GSK-3). To investigate the potential impact of these changes in enzyme activity, we used protein microarrays to identify cell proteins that were phosphorylated by the combination of ERK and GSK-3. The assays identified 58 potential ERK-primed GSK-3 substrates, of which 23 had evidence for in vivo phosphorylation in mass spectrometry databases. Two of these, SMAD4 and iASPP, were selected for further analysis and were confirmed as ERK-primed GSK-3 substrates. Cotransfection experiments revealed that iASPP, but not SMAD4, was targeted for degradation in the presence of GSK-3. iASPP interferes with apoptosis induced by p53 family members. To determine the importance of iASPP to KSHV-infected-cell growth, primary effusion lymphoma (PEL) cells were treated with an iASPP inhibitor in the presence or absence of the MDM2 inhibitor Nutlin-3. Drug inhibition of iASPP activity induced apoptosis in BC3 and BCBL1 PEL cells but did not induce poly(ADP-ribose) polymerase (PARP) cleavage in virus-negative BJAB cells. The effect of iASPP inhibition was additive with that of Nutlin-3. Interfering with iASPP function is therefore another mechanism that can sensitize KSHV-positive PEL cells to cell death. IMPORTANCE KSHV is associated with several malignancies, including primary effusion lymphoma (PEL). The KSHV-encoded LANA protein is multifunctional and promotes both cell growth and resistance to cell death. LANA is known to activate ERK and limit the activity of another kinase, GSK-3. To discover ways in which LANA manipulation of these two kinases might impact PEL cell survival, we screened a human protein microarray for ERK-primed GSK-3 substrates. One of the proteins identified, iASPP, showed reduced levels in the presence of GSK-3. Further, blocking iASPP activity increased cell death, particularly in p53 wild-type BC3 PEL cells.
Collapse
|
24
|
BGLF4 kinase modulates the structure and transport preference of the nuclear pore complex to facilitate nuclear import of Epstein-Barr virus lytic proteins. J Virol 2014; 89:1703-18. [PMID: 25410863 DOI: 10.1128/jvi.02880-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED BGLF4 kinase, the only Ser/Thr protein kinase encoded by the Epstein-Barr virus (EBV) genome, phosphorylates multiple viral and cellular substrates to optimize the cellular environment for viral DNA replication and the nuclear egress of nucleocapsids. Previously, we found that nuclear targeting of BGLF4 is through direct interaction with the FG repeat-containing nucleoporins (FG-Nups) Nup62 and Nup153 independently of cytosolic transport factors. Here, we investigated the regulatory effects of BGLF4 on the structure and biological functions of the nuclear pore complex (NPC). In EBV-positive NA cells, the distribution of FG-Nups was modified during EBV reactivation. In transfected cells, BGLF4 changed the staining pattern of Nup62 and Nup153 in a kinase activity-dependent manner. Detection with anti-phospho-Ser/Thr-Pro MPM-2 antibody demonstrated that BGLF4 induced the phosphorylation of Nup62 and Nup153. The nuclear targeting of importin β was attenuated in the presence of BGLF4, leading to inhibition of canonical nuclear localization signal (NLS)-mediated nuclear import. An in vitro nuclear import assay revealed that BGLF4 induced the nuclear import of larger molecules. Notably, we found that BGLF4 promoted the nuclear import of several non-NLS-containing EBV proteins, including the viral DNA-replicating enzymes BSLF1, BBLF2/3, and BBLF4 and the major capsid protein (VCA), in cotransfected cells. The data presented here suggest that BGLF4 interferes with the normal functions of Nup62 and Nup153 and preferentially helps the nuclear import of viral proteins for viral DNA replication and assembly. In addition, the nuclear import-promoting activity was found in cells expressing the BGLF4 homologs of another two gammaherpesviruses but not those from alpha- and betaherpesviruses. IMPORTANCE During lytic replication, many EBV genome-encoded proteins need to be transported into the nucleus, not only for viral DNA replication but also for the assembly of nucleocapsids. Because nuclear pore complexes are effective gateways that control nucleocytoplasmic traffic, most EBV proteins without canonical NLSs are retained in the cytoplasm until they form complexes with their NLS-containing partners for nuclear targeting. In this study, we found that EBV BGLF4 protein kinase interacts with the Nup62 and Nup153 and induces the redistribution of FG-Nups. BGLF4 modulates the function of the NPC to inhibit the nuclear import of host NLS-containing proteins. Simultaneously, the nuclear import of non-NLS-containing EBV lytic proteins was enhanced, possibly through phosphorylation of Nup62 and Nup153, nuclear pore dilation, or microtubule reorganization. Overall, our data suggest that BGLF4-induced modification of nuclear pore transport may block nuclear targeting of cellular proteins and increase the import of viral proteins to promote viral lytic replication.
Collapse
|
25
|
Gahoi N, Ray S, Srivastava S. Array-based proteomic approaches to study signal transduction pathways: prospects, merits and challenges. Proteomics 2014; 15:218-31. [PMID: 25266292 DOI: 10.1002/pmic.201400261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 01/17/2023]
Abstract
Very often dysfunctional aspects of various signalling networks are found to be associated with human diseases and disorders. The major characteristics of signal transduction pathways are specificity, amplification of the signal, desensitisation and integration, which is accomplished not solely, but majorly by proteins. Array-based profiling of protein-protein and other biomolecular interactions is a versatile approach, which holds immense potential for multiplex interactome mapping and provides an inclusive representation of the signal transduction pathways and networks. Protein microarrays such as analytical protein microarrays (antigen-antibody interactions, autoantibody screening), RP microarrays (interaction of a particular ligand with all the possible targets in cell), functional protein microarrays (protein-protein or protein-ligand interactions) are implemented for various applications, including analysis of protein interactions and their significance in signalling cascades. Additionally, successful amalgamation of the array-based approaches with different label-free detection techniques allows real-time analysis of interaction kinetics of multiple interaction events simultaneously. This review discusses the prospects, merits and limitations of different variants of array-based techniques and their promising applications for studying the modifications and interactions of biomolecules, and highlights the studies associated with signal transduction pathways and their impact on disease pathobiology.
Collapse
Affiliation(s)
- Nikita Gahoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | |
Collapse
|
26
|
A locus encompassing the Epstein-Barr virus bglf4 kinase regulates expression of genes encoding viral structural proteins. PLoS Pathog 2014; 10:e1004307. [PMID: 25166506 PMCID: PMC4148442 DOI: 10.1371/journal.ppat.1004307] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
Abstract
The mechanism regulating expression of late genes, encoding viral structural components, is an unresolved problem in the biology of DNA tumor viruses. Here we show that BGLF4, the only protein kinase encoded by Epstein-Barr virus (EBV), controls expression of late genes independent of its effect on viral DNA replication. Ectopic expression of BGLF4 in cells lacking the kinase gene stimulated the transcript levels of six late genes by 8- to 10-fold. Introduction of a BGLF4 mutant that eliminated its kinase activity did not stimulate late gene expression. In cells infected with wild-type EBV, siRNA to BGLF4 (siG4) markedly reduced late gene expression without compromising viral DNA replication. Synthesis of late products was restored upon expression of a form of BGLF4 resistant to the siRNA. Studying the EBV transcriptome using mRNA-seq during the late phase of the lytic cycle in the absence and presence of siG4 showed that BGLF4 controlled expression of 31 late genes. Analysis of the EBV transcriptome identified BGLF3 as a gene whose expression was reduced as a result of silencing BGLF4. Knockdown of BGLF3 markedly reduced late gene expression but had no effect on viral DNA replication or expression of BGLF4. Our findings reveal the presence of a late control locus encompassing BGLF3 and BGLF4 in the EBV genome, and provide evidence for the importance of both proteins in post-replication events that are necessary for expression of late genes.
Collapse
|
27
|
Kim ET, Kim YE, Kim YJ, Lee MK, Hayward GS, Ahn JH. Analysis of human cytomegalovirus-encoded SUMO targets and temporal regulation of SUMOylation of the immediate-early proteins IE1 and IE2 during infection. PLoS One 2014; 9:e103308. [PMID: 25050850 PMCID: PMC4106884 DOI: 10.1371/journal.pone.0103308] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/27/2014] [Indexed: 12/30/2022] Open
Abstract
Post-translational modification of proteins by members of the small ubiquitin-like modifier (SUMO) is involved in diverse cellular functions. Many viral proteins are SUMO targets and also interact with the cellular SUMOylation system. During human cytomegalovirus (HCMV) infection, the immediate-early (IE) proteins IE1 and IE2 are covalently modified by SUMO. IE2 SUMOylation promotes its transactivation activity, whereas the role of IE1 SUMOylation is not clear. We performed in silico, genome-wide analysis to identify possible SUMOylation sites in HCMV-encoded proteins and evaluated their modification using the E. coli SUMOylation system and in vitro assays. We found that only IE1 and IE2 are substantially modified by SUMO in E. coli, although US34A was also identified as a possible SUMO target in vitro. We also found that SUMOylation of IE1 and IE2 is temporally regulated during viral infection. Levels of SUMO-modified form of IE1 were increased during the early phase of infection, but decreased in the late phase when IE2 and its SUMO-modified forms were expressed at high levels. IE2 expression inhibited IE1 SUMOylation in cotransfection assays. As in IE2 SUMOylation, PIAS1, a SUMO E3 ligase, interacted with IE1 and enhanced IE1 SUMOylation. In in vitro assays, an IE2 fragment that lacked covalent and non-covalent SUMO attachment sites, but was sufficient for PIAS1 binding, effectively inhibited PIAS1-mediated SUMOylation of IE1, indicating that IE2 expression negatively regulates IE1 SUMOylation. We also found that the IE2-mediated downregulation of IE1 SUMOylation correlates with the IE1 activity to repress the promoter containing the interferon stimulated response elements. Taken together, our data demonstrate that IE1 and IE2 are the main viral SUMO targets in HCMV infection and that temporal regulation of their SUMOylation may be important in the progression of this infection.
Collapse
Affiliation(s)
- Eui Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young-Eui Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ye Ji Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Myoung Kyu Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Gary S. Hayward
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
28
|
Sutandy FXR, Hsiao FSH, Chen CS. High throughput platform to explore RNA-protein interactomes. Crit Rev Biotechnol 2014; 36:11-9. [PMID: 25025276 DOI: 10.3109/07388551.2014.922916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RNA binding proteins (RBPs) and RNA interaction is an emerging topic in molecular biology. Many reports showed that such interactions contribute to many cellular processes as well as disease development. Several standard in vitro and in vivo methods were developed to fulfill the needs of this RBP-RNA interaction study to explore their biological functions. However, these methods have their limitations in terms of throughput. In this review, we emphasize two important high throughput methods to studying RBP-RNA interactions, affinity purification and protein microarray. These methods have recently become robust techniques regarding their efficiency in systematically analyzing RBP-RNA interactions. Here, we provide technique overviews, strategies and applications of these methods during biological research. Although these technologies are just beginning to be explored, they will be most important methods in this study.
Collapse
Affiliation(s)
- F X Reymond Sutandy
- a Graduate Institute of Systems Biology and Bioinformatics, National Central University , Jhongli , Taiwan
| | - Felix Shih-Hsiang Hsiao
- a Graduate Institute of Systems Biology and Bioinformatics, National Central University , Jhongli , Taiwan
| | - Chien-Sheng Chen
- a Graduate Institute of Systems Biology and Bioinformatics, National Central University , Jhongli , Taiwan
| |
Collapse
|
29
|
Small molecule inhibition of Epstein-Barr virus nuclear antigen-1 DNA binding activity interferes with replication and persistence of the viral genome. Antiviral Res 2014; 104:73-83. [PMID: 24486954 DOI: 10.1016/j.antiviral.2014.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/12/2013] [Accepted: 01/06/2014] [Indexed: 11/20/2022]
Abstract
The replication and persistence of extra chromosomal Epstein-Barr virus (EBV) episome in latently infected cells are primarily dependent on the binding of EBV-encoded nuclear antigen 1 (EBNA1) to the cognate EBV oriP element. In continuation of the previous study, herein we characterized EBNA1 small molecule inhibitors (H20, H31) and their underlying inhibitory mechanisms. In silico docking analyses predicted that H20 fits into a pocket in the EBNA1 DNA binding domain (DBD). However, H20 did not significantly affect EBNA1 binding to its cognate sequence. A limited structure-relationship study of H20 identified a hydrophobic compound H31, as an EBNA1 inhibitor. An in vitro EBNA1 EMSA and in vivo EGFP-EBNA1 confocal microscopy analysis showed that H31 inhibited EBNA1-dependent oriP sequence-specific DNA binding activity, but not sequence-nonspecific chromosomal association. Consistent with this, H31 repressed the EBNA1-dependent transcription, replication, and persistence of an EBV oriP plasmid. Furthermore, H31 induced progressive loss of EBV episome. In addition, H31 selectively retarded the growth of EBV-infected LCL or Burkitt's lymphoma cells. These data indicate that H31 inhibition of EBNA1-dependent DNA binding decreases transcription from and persistence of EBV episome in EBV-infected cells. These new compounds might be useful probes for dissecting EBNA1 functions in vitro and in vivo.
Collapse
|
30
|
Stahl JA, Chavan SS, Sifford JM, MacLeod V, Voth DE, Edmondson RD, Forrest JC. Phosphoproteomic analyses reveal signaling pathways that facilitate lytic gammaherpesvirus replication. PLoS Pathog 2013; 9:e1003583. [PMID: 24068923 PMCID: PMC3777873 DOI: 10.1371/journal.ppat.1003583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 07/15/2013] [Indexed: 12/27/2022] Open
Abstract
Lytic gammaherpesvirus (GHV) replication facilitates the establishment of lifelong latent infection, which places the infected host at risk for numerous cancers. As obligate intracellular parasites, GHVs must control and usurp cellular signaling pathways in order to successfully replicate, disseminate to stable latency reservoirs in the host, and prevent immune-mediated clearance. To facilitate a systems-level understanding of phosphorylation-dependent signaling events directed by GHVs during lytic replication, we utilized label-free quantitative mass spectrometry to interrogate the lytic replication cycle of murine gammaherpesvirus-68 (MHV68). Compared to controls, MHV68 infection regulated by 2-fold or greater ca. 86% of identified phosphopeptides - a regulatory scale not previously observed in phosphoproteomic evaluations of discrete signal-inducing stimuli. Network analyses demonstrated that the infection-associated induction or repression of specific cellular proteins globally altered the flow of information through the host phosphoprotein network, yielding major changes to functional protein clusters and ontologically associated proteins. A series of orthogonal bioinformatics analyses revealed that MAPK and CDK-related signaling events were overrepresented in the infection-associated phosphoproteome and identified 155 host proteins, such as the transcription factor c-Jun, as putative downstream targets. Importantly, functional tests of bioinformatics-based predictions confirmed ERK1/2 and CDK1/2 as kinases that facilitate MHV68 replication and also demonstrated the importance of c-Jun. Finally, a transposon-mutant virus screen identified the MHV68 cyclin D ortholog as a viral protein that contributes to the prominent MAPK/CDK signature of the infection-associated phosphoproteome. Together, these analyses enhance an understanding of how GHVs reorganize and usurp intracellular signaling networks to facilitate infection and replication.
Collapse
Affiliation(s)
- James A. Stahl
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Shweta S. Chavan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- UALR/UAMS Joint Program in Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeffrey M. Sifford
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Veronica MacLeod
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Daniel E. Voth
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ricky D. Edmondson
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - J. Craig Forrest
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Woodard CL, Goodwin CR, Wan J, Xia S, Newman R, Hu J, Zhang J, Hayward SD, Qian J, Laterra J, Zhu H. Profiling the dynamics of a human phosphorylome reveals new components in HGF/c-Met signaling. PLoS One 2013; 8:e72671. [PMID: 24023761 PMCID: PMC3759380 DOI: 10.1371/journal.pone.0072671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 07/16/2013] [Indexed: 12/31/2022] Open
Abstract
Protein phosphorylation is a dynamic and reversible event that greatly influences cellular function. Identifying the key regulatory elements that determine cellular phenotypes during development and oncogenesis requires the ability to dynamically monitor proteome-wide events. Here, we report the development of a new strategy to monitor dynamic changes of protein phosphorylation in cells and tissues using functional protein microarrays as the readout. To demonstrate this technology's ability to identify condition-dependent phosphorylation events, human protein microarrays were incubated with lysates from cells or tissues under activation or inhibition of c-Met, a receptor tyrosine kinase involved in tissue morphogenesis and malignancy. By comparing the differences between the protein phosphorylation profiles obtained using the protein microarrays, we were able to recover many of the proteins that are known to be specifically activated (i.e., phosphorylated) upon c-Met activation by the hepatocyte growth factor (HGF). Most importantly, we discovered many proteins that were differentially phosphorylated by lysates from cells or tissues when the c-Met pathway was active. Using phosphorylation-specific antibodies, we were able to validate several candidate proteins as new downstream components of the c-Met signaling pathway in cells. We envision that this new approach, like its DNA microarray counterpart, can be further extended toward profiling dynamics of global protein phosphorylation under many different physiological conditions both in cellulo and in vivo in a high-throughput and cost-effective fashion.
Collapse
Affiliation(s)
- Crystal L. Woodard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - C. Rory Goodwin
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Jun Wan
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Shuli Xia
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Robert Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jianfei Hu
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - S. Diane Hayward
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - John Laterra
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- High Throughput Biology Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
32
|
Abstract
Emergence of proteome microarray provides a versatile platform to globally explore biological functions of broad significance. In the past decade, researchers have successfully fabricated functional proteome microarrays by printing individually purified proteins at a high-throughput, proteome-wide scale on one single slide. These arrays have been used to profile protein posttranslational modifications, including phosphorylation, ubiquitylation, acetylation, and nitrosylation. In this chapter, we summarize our work of using the yeast proteome microarrays to connect protein lysine acetylation substrates to their upstream modifying enzyme, the nucleosome acetyltransferase of H4 (NuA4), which is the only essential acetyltransferase in yeast. We further prove that the reversible acetylation on critical cell metabolism-related enzymes controls life span in yeast. Our studies represent a paradigm shift for the functional dissection of a crucial acetylation enzyme affecting aging and longevity pathways.
Collapse
|
33
|
Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol 2013; 87:10126-38. [PMID: 23843639 DOI: 10.1128/jvi.01671-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
All eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins. Furthermore, 17-DMAG treatment abrogates expression of the human cytomegalovirus (HCMV) kinase UL97 in HCMV-infected human fibroblasts. Importantly, 17-DMAG treatment decreased the EBV titer approximately 100-fold in lytically infected AGS-Akata cells without causing significant cellular toxicity during the same time frame. Increased EBV PK expression in 17-DMAG-treated AGS-Akata cells did not restore EBV titers, suggesting that 17-DMAG simultaneously targets multiple viral and/or cellular proteins required for efficient viral replication. These results suggest that Hsp90 inhibitors, including 17-DMAG, may be a promising group of drugs that could have profound antiviral effects on herpesviruses.
Collapse
|
34
|
Li R, Hayward SD. Potential of protein kinase inhibitors for treating herpesvirus-associated disease. Trends Microbiol 2013; 21:286-95. [PMID: 23608036 DOI: 10.1016/j.tim.2013.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 11/29/2022]
Abstract
Herpesviruses are ubiquitous human pathogens that establish lifelong persistent infections. Clinical manifestations range from mild self-limiting outbreaks such as childhood rashes and cold sores to the more severe and life-threatening outcomes of disseminated infection, encephalitis, and cancer. Nucleoside analog drugs that target viral DNA replication provide the primary means of treatment. However, extended use of these drugs can result in selection for drug-resistant strains, particularly in immunocompromised patients. In this review we will present recent observations about the participation of cellular protein kinases in herpesvirus biology and discuss the potential for targeting these protein kinases as well as the herpesvirus-encoded protein kinases as an anti-herpesvirus therapeutic strategy.
Collapse
Affiliation(s)
- Renfeng Li
- Viral Oncology Program, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
35
|
Abstract
Protein microarray technology is an emerging field that provides a versatile platform for the characterization of hundreds of thousands of proteins in a highly parallel and high-throughput manner. Protein microarrays are composed of two major classes: analytical and functional. In addition, tissue or cell lysates can also be fractionated and spotted on a slide to form a reverse-phase protein microarray. Applications of protein microarrays, especially functional protein microarrays, have flourished over the past decade as the fabrication technology has matured. In this unit, advances in protein microarray technologies are reviewed, and then a series of examples are presented to illustrate the applications of analytical and functional protein microarrays in both basic and clinical research. Relevant areas of research include the detection of various binding properties of proteins, the study of protein post-translational modifications, the analysis of host-microbe interactions, profiling antibody specificity, and the identification of biomarkers in autoimmune diseases.
Collapse
Affiliation(s)
- F X Reymond Sutandy
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| | | | | | | |
Collapse
|
36
|
Maribavir inhibits Epstein-Barr virus transcription through the EBV protein kinase. J Virol 2013; 87:5311-5. [PMID: 23449792 DOI: 10.1128/jvi.03505-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maribavir (MBV) inhibits Epstein-Barr virus (EBV) replication and the enzymatic activity of the viral protein kinase BGLF4. MBV also inhibits expression of multiple EBV transcripts during EBV lytic infection. Here we demonstrate, with the use of a BGLF4 knockout virus, that effects of MBV on transcription take place primarily through inhibition of BGLF4. MBV inhibits viral genome copy numbers and infectivity to levels similar to and exceeding levels produced by BGLF4 knockout virus.
Collapse
|
37
|
Newman RH, Hu J, Rho HS, Xie Z, Woodard C, Neiswinger J, Cooper C, Shirley M, Clark HM, Hu S, Hwang W, Seop Jeong J, Wu G, Lin J, Gao X, Ni Q, Goel R, Xia S, Ji H, Dalby KN, Birnbaum MJ, Cole PA, Knapp S, Ryazanov AG, Zack DJ, Blackshaw S, Pawson T, Gingras AC, Desiderio S, Pandey A, Turk BE, Zhang J, Zhu H, Qian J. Construction of human activity-based phosphorylation networks. Mol Syst Biol 2013; 9:655. [PMID: 23549483 PMCID: PMC3658267 DOI: 10.1038/msb.2013.12] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 03/01/2013] [Indexed: 01/04/2023] Open
Abstract
The landscape of human phosphorylation networks has not been systematically explored, representing vast, unchartered territories within cellular signaling networks. Although a large number of in vivo phosphorylated residues have been identified by mass spectrometry (MS)-based approaches, assigning the upstream kinases to these residues requires biochemical analysis of kinase-substrate relationships (KSRs). Here, we developed a new strategy, called CEASAR, based on functional protein microarrays and bioinformatics to experimentally identify substrates for 289 unique kinases, resulting in 3656 high-quality KSRs. We then generated consensus phosphorylation motifs for each of the kinases and integrated this information, along with information about in vivo phosphorylation sites determined by MS, to construct a high-resolution map of phosphorylation networks that connects 230 kinases to 2591 in vivo phosphorylation sites in 652 substrates. The value of this data set is demonstrated through the discovery of a new role for PKA downstream of Btk (Bruton's tyrosine kinase) during B-cell receptor signaling. Overall, these studies provide global insights into kinase-mediated signaling pathways and promise to advance our understanding of cellular signaling processes in humans.
Collapse
Affiliation(s)
- Robert H Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Jianfei Hu
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hee-Sool Rho
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for High-Throughput Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zhi Xie
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Crystal Woodard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for High-Throughput Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Neiswinger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for High-Throughput Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christopher Cooper
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Matthew Shirley
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hillary M Clark
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shaohui Hu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for High-Throughput Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Woochang Hwang
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jun Seop Jeong
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for High-Throughput Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - George Wu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jimmy Lin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xinxin Gao
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Qiang Ni
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Renu Goel
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Shuli Xia
- Hugo W. Moser Kennedy Krieger Institute, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kevin N Dalby
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Morris J Birnbaum
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Alexey G Ryazanov
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | - Donald J Zack
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sol H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Center for High-Throughput Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Hugo W. Moser Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tony Pawson
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephen Desiderio
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Akhilesh Pandey
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sol H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for High-Throughput Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Zhu H, Cox E, Qian J. Functional protein microarray as molecular decathlete: a versatile player in clinical proteomics. Proteomics Clin Appl 2012; 6:548-62. [PMID: 23027439 PMCID: PMC3600421 DOI: 10.1002/prca.201200041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/31/2022]
Abstract
Functional protein microarrays were developed as a high-throughput tool to overcome the limitations of DNA microarrays and to provide a versatile platform for protein functional analyses. Recent years have witnessed tremendous growth in the use of protein microarrays, particularly functional protein microarrays, to address important questions in the field of clinical proteomics. In this review, we will summarize some of the most innovative and exciting recent applications of protein microarrays in clinical proteomics, including biomarker identification, pathogen-host interactions, and cancer biology.
Collapse
Affiliation(s)
- Heng Zhu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, MD, USA.
| | | | | |
Collapse
|
39
|
Phosphorylation of the chromatin binding domain of KSHV LANA. PLoS Pathog 2012; 8:e1002972. [PMID: 23093938 PMCID: PMC3475679 DOI: 10.1371/journal.ppat.1002972] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/30/2012] [Indexed: 12/11/2022] Open
Abstract
The Kaposi sarcoma associated herpesvirus (KSHV) latency associated nuclear antigen (LANA) is expressed in all KSHV associated malignancies and is essential for maintenance of KSHV genomes in infected cells. To identify kinases that are potentially capable of modifying LANA, in vitro phosphorylation assays were performed using an Epstein Barr virus plus LANA protein microarray and 268 human kinases purified in active form from yeast. Interestingly, of the Epstein-Barr virus proteins on the array, the EBNA1 protein had the most similar kinase profile to LANA. We focused on nuclear kinases and on the N-terminus of LANA (amino acids 1–329) that contains the LANA chromatin binding domain. Sixty-three nuclear kinases phosphorylated the LANA N-terminus. Twenty-four nuclear kinases phosphorylated a peptide covering the LANA chromatin binding domain (amino acids 3–21). Alanine mutations of serine 10 and threonine 14 abolish or severely diminish chromatin and histone binding by LANA. However, conversion of these residues to the phosphomimetic glutamic acid restored histone binding suggesting that phosphorylation of serine 10 and threonine 14 may modulate LANA function. Serine 10 and threonine 14 were validated as substrates of casein kinase 1, PIM1, GSK-3 and RSK3 kinases. Short-term treatment of transfected cells with inhibitors of these kinases found that only RSK inhibition reduced LANA interaction with endogenous histone H2B. Extended treatment of PEL cell cultures with RSK inhibitor caused a decrease in LANA protein levels associated with p21 induction and a loss of PEL cell viability. The data indicate that RSK phosphorylation affects both LANA accumulation and function. The Kaposi sarcoma associated herpesvirus (KSHV) is associated with cancers that have an increased incidence in individuals with compromised immune systems. KSHV expresses a protein, LANA, that is needed to maintain KSHV genomes in infected cells and also promotes the growth of KSHV associated tumors. Kinases regulate protein function through phosphorylation. To identify kinases that may affect LANA function, we performed a screen in which 268 human kinases were isolated and tested for the ability to phosphorylate LANA in vitro. We focused on the region of LANA that contains the chromatin binding domain, a motif essential for tethering KSHV genomes to the cell chromatin and maintaining latent infection. We identified serine 10 and threonine 14 as amino acids within the chromatin binding domain whose phosphorylation was important for histone binding. Serine 10 and threonine 14 were targets of the CK1, PIM1, GSK-3 and RSK3 kinases. Treatment with an inhibitor of RSK kinase reduced LANA binding to histones, decreased LANA protein levels and caused a loss of KSHV infected PEL cell viability. Our experiments show that phosphorylation affects LANA function and suggest that KSHV infected cells may be particularly vulnerable to kinase inhibitors.
Collapse
|
40
|
Epstein-Barr virus BGLF4 kinase downregulates NF-κB transactivation through phosphorylation of coactivator UXT. J Virol 2012; 86:12176-86. [PMID: 22933289 DOI: 10.1128/jvi.01918-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) BGLF4 is a member of the conserved herpesvirus kinases that regulate multiple cellular and viral substrates and play an important role in the viral lytic cycles. BGLF4 has been found to phosphorylate several cellular and viral transcription factors, modulate their activities, and regulate downstream events. In this study, we identify an NF-κB coactivator, UXT, as a substrate of BGLF4. BGLF4 downregulates not only NF-κB transactivation in reporter assays in response to tumor necrosis factor alpha (TNF-α) and poly(I·C) stimulation, but also NF-κB-regulated cellular gene expression. Furthermore, BGLF4 attenuates NF-κB-mediated repression of the EBV lytic transactivators, Zta and Rta. In EBV-positive NA cells, knockdown of BGLF4 during lytic progression elevates NF-κB activity and downregulates the activity of the EBV oriLyt BHLF1 promoter, which is the first promoter activated upon lytic switch. We show that BGLF4 phosphorylates UXT at the Thr3 residue. This modification interferes with the interaction between UXT and NF-κB. The data also indicate that BGLF4 reduces the interaction between UXT and NF-κB and attenuates NF-κB enhanceosome activity. Upon infection with short hairpin RNA (shRNA) lentivirus to knock down UXT, a spontaneous lytic cycle was observed in NA cells, suggesting UXT is required for maintenance of EBV latency. Overexpression of wild-type, but not phosphorylation-deficient, UXT enhances the expression of lytic proteins both in control and UXT knockdown cells. Taking the data together, transcription involving UXT may also be important for EBV lytic protein expression, whereas BGLF4-mediated phosphorylation of UXT at Thr3 plays a critical role in promoting the lytic cycle.
Collapse
|
41
|
Chang YH, Lee CP, Su MT, Wang JT, Chen JY, Lin SF, Tsai CH, Hsieh MJ, Takada K, Chen MR. Epstein-Barr virus BGLF4 kinase retards cellular S-phase progression and induces chromosomal abnormality. PLoS One 2012; 7:e39217. [PMID: 22768064 PMCID: PMC3387188 DOI: 10.1371/journal.pone.0039217] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/17/2012] [Indexed: 11/26/2022] Open
Abstract
Epstein-Barr virus (EBV) induces an uncoordinated S-phase-like cellular environment coupled with multiple prophase-like events in cells replicating the virus. The EBV encoded Ser/Thr kinase BGLF4 has been shown to induce premature chromosome condensation through activation of condensin and topoisomerase II and reorganization of the nuclear lamina to facilitate the nuclear egress of nucleocapsids in a pathway mimicking Cdk1. However, the observation that RB is hyperphosphorylated in the presence of BGLF4 raised the possibility that BGLF4 may have a Cdk2-like activity to promote S-phase progression. Here, we investigated the regulatory effects of BGLF4 on cell cycle progression and found that S-phase progression and DNA synthesis were interrupted by BGLF4 in mammalian cells. Expression of BGLF4 did not compensate Cdk1 defects for DNA replication in S. cerevisiae. Using time-lapse microscopy, we found the fate of individual HeLa cells was determined by the expression level of BGLF4. In addition to slight cell growth retardation, BGLF4 elicits abnormal chromosomal structure and micronucleus formation in 293 and NCP-TW01 cells. In Saos-2 cells, BGLF4 induced the hyperphosphorylation of co-transfected RB, while E2F1 was not released from RB-E2F1 complexes. The E2F1 regulated activities of the cyclin D1 and ZBRK1 promoters were suppressed by BGLF4 in a dose dependent manner. Detection with phosphoamino acid specific antibodies revealed that, in addition to Ser780, phosphorylation of the DNA damage-responsive Ser612 on RB was enhanced by BGLF4. Taken together, our study indicates that BGLF4 may directly or indirectly induce a DNA damage signal that eventually interferes with host DNA synthesis and delays S-phase progression.
Collapse
Affiliation(s)
- Yu-Hsin Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Pei Lee
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- General Education Center, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiin-Tarng Wang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jen-Yang Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Min-Jei Hsieh
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kenzo Takada
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
42
|
Epstein-Barr virus protein kinase BGLF4 targets the nucleus through interaction with nucleoporins. J Virol 2012; 86:8072-85. [PMID: 22623767 DOI: 10.1128/jvi.01058-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BGLF4 of Epstein-Barr virus (EBV) encodes a serine/threonine protein kinase that phosphorylates multiple viral and cellular substrates to optimize the cellular environment for viral DNA replication and the nuclear egress of viral nucleocapsids. BGLF4 is expressed predominantly in the nucleus at early and late stages of virus replication, while a small portion of BGLF4 is distributed in the cytoplasm at the late stage of virus replication and packaged into the virion. Here, we analyzed systematically the functional domains crucial for nuclear localization of BGLF4 and found that both the N and C termini play important modulating roles. Analysis of amino acid substitution mutants revealed that the C terminus of BGLF4 does not contain a conventional nuclear localization signal (NLS). Additionally, deletion of the C-terminal putative helical regions at amino acids 386 to 393 and 410 to 419 diminished the nuclear translocation of BGLF4, indicating that the secondary structure of the C terminus is important for the localization of BGLF4. The green fluorescent protein-fused wild-type or C-terminal helical regions of BGLF4 associate with phenylalanine/glycine repeat-containing nucleoporins (Nups) in nuclear envelope fractionation. Both coimmunoprecipitation and in vitro pull-down assays further demonstrated that BGLF4 binds to Nup62 and Nup153. Remarkably, nuclear import assay with permeabilized HeLa cells demonstrated that BGLF4 translocated into nucleus independent of cytosolic factors. Data presented here suggest that BGLF4 employs a novel mechanism through direct interactions with nucleoporins for its nuclear targeting.
Collapse
|
43
|
SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol 2012; 86:5412-21. [PMID: 22398289 DOI: 10.1128/jvi.00314-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An Epstein-Barr virus (EBV) protein microarray was used to screen for proteins binding noncovalently to the small ubiquitin-like modifier SUMO2. Among the 11 SUMO binding proteins identified was the conserved protein kinase BGLF4. The mutation of potential SUMO interaction motifs (SIMs) in BGLF4 identified N- and C-terminal SIMs. The mutation of both SIMs changed the intracellular localization of BGLF4 from nuclear to cytoplasmic, while BGLF4 mutated in the N-terminal SIM remained predominantly nuclear. The mutation of the C-terminal SIM yielded an intermediate phenotype with nuclear and cytoplasmic staining. The transfer of BGLF4 amino acids 342 to 359 to a nuclear green fluorescent protein (GFP)-tagged reporter protein led to the relocalization of the reporter to the cytoplasm. Thus, the C-terminal SIM lies adjacent to a nuclear export signal, and coordinated SUMO binding by the N- and C-terminal SIMs blocks export and allows the nuclear accumulation of BGLF4. The mutation of either SIM prevented SUMO binding in vitro. The ability of BGLF4 to abolish the SUMOylation of the EBV lytic cycle transactivator ZTA was dependent on both BGLF4 SUMO binding and BGLF4 kinase activity. The global profile of SUMOylated cell proteins was also suppressed by BGLF4 but not by the SIM or kinase-dead BGLF4 mutant. The effective BGLF4-mediated dispersion of promyelocytic leukemia (PML) bodies was dependent on SUMO binding. The SUMO binding function of BGLF4 was also required to induce the cellular DNA damage response and to enhance the production of extracellular virus during EBV lytic replication. Thus, SUMO binding by BGLF4 modulates BGLF4 function and affects the efficiency of lytic EBV replication.
Collapse
|
44
|
Li R, Zhu J, Xie Z, Liao G, Liu J, Chen MR, Hu S, Woodard C, Lin J, Taverna SD, Desai P, Ambinder RF, Hayward GS, Qian J, Zhu H, Hayward SD. Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe 2012; 10:390-400. [PMID: 22018239 DOI: 10.1016/j.chom.2011.08.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/25/2011] [Accepted: 08/26/2011] [Indexed: 11/25/2022]
Abstract
Herpesviruses, which are major human pathogens, establish life-long persistent infections. Although the α, β, and γ herpesviruses infect different tissues and cause distinct diseases, they each encode a conserved serine/threonine kinase that is critical for virus replication and spread. The extent of substrate conservation and the key common cell-signaling pathways targeted by these kinases are unknown. Using a human protein microarray high-throughput approach, we identify shared substrates of the conserved kinases from herpes simplex virus, human cytomegalovirus, Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated herpesvirus. DNA damage response (DDR) proteins were statistically enriched, and the histone acetyltransferase TIP60, an upstream regulator of the DDR pathway, was required for efficient herpesvirus replication. During EBV replication, TIP60 activation by the BGLF4 kinase triggers EBV-induced DDR and also mediates induction of viral lytic gene expression. Identification of key cellular targets of the conserved herpesvirus kinases will facilitate the development of broadly effective antiviral strategies.
Collapse
Affiliation(s)
- Renfeng Li
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The protein microarray technology provides a versatile platform for characterization of hundreds of thousands of proteins in a highly parallel and high-throughput manner. It is viewed as a new tool that overcomes the limitation of DNA microarrays. On the basis of its application, protein microarrays fall into two major classes: analytical and functional protein microarrays. In addition, tissue or cell lysates can also be directly spotted on a slide to form the so-called "reverse-phase" protein microarray. In the last decade, applications of functional protein microarrays in particular have flourished in studying protein function and construction of networks and pathways. In this chapter, we will review the recent advancements in the protein microarray technology, followed by presenting a series of examples to illustrate the power and versatility of protein microarrays in both basic and clinical research. As a powerful technology platform, it would not be surprising if protein microarrays will become one of the leading technologies in proteomic and diagnostic fields in the next decade.
Collapse
Affiliation(s)
- Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
46
|
Mechanistic insights into the activation of oncogenic forms of EGF receptor. Nat Struct Mol Biol 2011; 18:1388-93. [PMID: 22101934 PMCID: PMC3230693 DOI: 10.1038/nsmb.2168] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/28/2011] [Indexed: 11/08/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly activated by mutation in non-small cell lung cancer. The mechanism of this oncogenic activation is not completely understood, but in contrast to that of the wild-type EGFR, it is proposed to be independent of kinase domain dimerization. Mechanistic studies on EGFR have mainly relied on cell-based assays or isolated kinase domain measurements. Here we show, using purified, near full-length human EGFR proteins (tEGFRs), that two oncogenic mutants are fully active independently of EGF and highly resistant to the therapeutic and endogenous inhibitors cetuximab, lapatinib and MIG6. Based on the pattern of inhibition and the effects of additional asymmetric kinase dimer interface mutations, we propose that these oncogenic EGFR mutants drive and strongly depend on the formation of the asymmetric kinase dimer for activation, which has implications for drug design and cancer treatment strategies.
Collapse
|
47
|
Zheng D, Wan J, Cho YG, Wang L, Chiou CJ, Pai S, Woodard C, Zhu J, Liao G, Martinez-Maza O, Qian J, Zhu H, Hayward GS, Ambinder RF, Hayward SD. Comparison of humoral immune responses to Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus using a viral proteome microarray. J Infect Dis 2011; 204:1683-91. [PMID: 21990424 PMCID: PMC3203236 DOI: 10.1093/infdis/jir645] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background. Epstein-Barr virus (EBV) is a ubiquitous herpesvirus, and Kaposi’s sarcoma–associated herpesvirus (KSHV) has a restricted seroprevalence. Both viruses are associated with malignancies that have an increased frequency in individuals who are coinfected with human immunodeficiency virus type 1 (HIV-1). Methods. To obtain an overview of humoral immune responses to these viruses, we generated a protein array that displayed 174 EBV and KSHV polypeptides purified from yeast. Antibody responses to EBV and KSHV were examined in plasma from healthy volunteers and patients with B cell lymphoma or with AIDS-related Kaposi’s sarcoma or lymphoma. Results. In addition to the commonly studied antigens, IgG responses were frequently detected to the tegument proteins KSHV ORF38 and EBV BBRF and BGLF2 and BNRF1 and to the EBV early lytic proteins BRRF1 and BORF2. The EBV vIL-10 protein was particularly well recognized by plasma IgA. The most intense IgG responses to EBV antigens occurred in HIV-1–positive patients. No clear correlation was observed between viral DNA load in plasma and antibody profile. Conclusions. The protein array provided a sensitive platform for global screening; identified new, frequently recognized viral antigens; and revealed a broader humoral response to EBV compared with KSHV in the same patients.
Collapse
Affiliation(s)
- Dasheng Zheng
- Viral Oncology Program, Sidney Kimmel Cancer Center, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gammaherpesvirus gene expression and DNA synthesis are facilitated by viral protein kinase and histone variant H2AX. Virology 2011; 420:73-81. [PMID: 21943826 DOI: 10.1016/j.virol.2011.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 08/03/2011] [Accepted: 08/25/2011] [Indexed: 11/22/2022]
Abstract
Gammaherpesvirus protein kinases are an attractive therapeutic target as they support lytic replication and latency. Via an unknown mechanism these kinases enhance expression of select viral genes and DNA synthesis. Importantly, the kinase phenotypes have not been examined in primary cell types. Mouse gammaherpesvirus-68 (MHV68) protein kinase orf36 activates the DNA damage response (DDR) and facilitates lytic replication in primary macrophages. Significantly, H2AX, a DDR component and putative orf36 substrate, enhances MHV68 replication. Here we report that orf36 facilitated expression of RTA, an immediate early MHV68 gene, and DNA synthesis during de novo infection of primary macrophages. H2AX expression supported efficient RTA transcription and phosphorylated H2AX associated with RTA promoter. Furthermore, viral DNA synthesis was attenuated in H2AX-deficient macrophages, suggesting that the DDR system was exploited throughout the replication cycle. The interactions between a cancer-associated gammaherpesvirus and host tumor suppressor system have important implications for the pathogenesis of gammaherpesvirus infection.
Collapse
|
49
|
Troiani S, Lupi R, Perego R, Depaolini SR, Thieffine S, Bosotti R, Rusconi L. Identification of candidate substrates for poly(ADP-ribose) polymerase-2 (PARP2) in the absence of DNA damage using high-density protein microarrays. FEBS J 2011; 278:3676-87. [PMID: 21812934 DOI: 10.1111/j.1742-4658.2011.08286.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Poly(ADP-ribose) polymerase-2 (PARP2) belongs to the ADP-ribosyltransferase family of enzymes that catalyze the addition of ADP-ribose units to acceptor proteins, thus affecting many diverse cellular processes. In particular, PARP2 shares with PARP1 and, as recently highlighted, PARP3 the sole property of being catalytically activated by DNA-strand breaks, implying key downstream functions in the cellular response to DNA damage for both enzymes. However, evidence from several studies suggests unique functions for PARP2 in additional processes, possibly mediated through its basal, DNA-damage unstimulated ADP-ribosylating activity. Here, we describe the development and application of a protein microarray-based approach tailored to identify proteins that are ADP-ribosylated by PARP2 in the absence of DNA damage mimetics and might thus represent useful entry points to the exploration of novel PARP2 functions. Several candidate substrates for PARP2 were identified and global hit enrichment analysis showed a clear enrichment in translation initiation and RNA helicase molecular functions. In addition, the top scoring candidates FK506-binding protein 3 and SH3 and cysteine-rich domain-containing protein 1 were selected and confirmed in a complementary assay format as substrates for unstimulated PARP2.
Collapse
Affiliation(s)
- Sonia Troiani
- Department of Biotechnology, BU Oncology, Nerviano Medical Sciences Srl, Nerviano (MI), Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Xie Z, Hu S, Qian J, Blackshaw S, Zhu H. Systematic characterization of protein-DNA interactions. Cell Mol Life Sci 2011; 68:1657-68. [PMID: 21207099 PMCID: PMC11115113 DOI: 10.1007/s00018-010-0617-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/29/2010] [Accepted: 12/16/2010] [Indexed: 12/13/2022]
Abstract
Sequence-specific protein-DNA interactions (PDIs) are critical for regulating many cellular processes, including transcription, DNA replication, repair, and rearrangement. We review recent experimental advances in high-throughput technologies designed to characterize PDIs and discuss recent studies that use these tools, including ChIP-chip/seq, SELEX-based approaches, yeast one-hybrid, bacterial one-hybrid, protein binding microarray, and protein microarray. The results of these studies have challenged some long-standing concepts of PDI and provide valuable insights into the complex transcriptional regulatory networks.
Collapse
Affiliation(s)
- Zhi Xie
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Present Address: The Center for Human Immunology, National Institutes of Health, Bethesda, MD USA
| | - Shaohui Hu
- The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Seth Blackshaw
- The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Heng Zhu
- The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Room 333, BRB, 733 N. Broadway, 21205 Baltimore, MD USA
| |
Collapse
|