1
|
Ke PY, Yeh CT. Functional Role of Hepatitis C Virus NS5A in the Regulation of Autophagy. Pathogens 2024; 13:980. [PMID: 39599533 PMCID: PMC11597459 DOI: 10.3390/pathogens13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Many types of RNA viruses, including the hepatitis C virus (HCV), activate autophagy in infected cells to promote viral growth and counteract the host defense response. Autophagy acts as a catabolic pathway in which unnecessary materials are removed via the lysosome, thus maintaining cellular homeostasis. The HCV non-structural 5A (NS5A) protein is a phosphoprotein required for viral RNA replication, virion assembly, and the determination of interferon (IFN) sensitivity. Recently, increasing evidence has shown that HCV NS5A can induce autophagy to promote mitochondrial turnover and the degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) and diacylglycerol acyltransferase 1 (DGAT1). In this review, we summarize recent progress in understanding the detailed mechanism by which HCV NS5A triggers autophagy, and outline the physiological significance of the balance between host-virus interactions.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| |
Collapse
|
2
|
Smirnov A, Magri A, Lotz R, Han X, Yin C, Harris M, Osterburg C, Dötsch V, McKeating JA, Lu X. ASPP2 binds to hepatitis C virus NS5A protein via an SH3 domain/PxxP motif-mediated interaction and potentiates infection. J Gen Virol 2023; 104:10.1099/jgv.0.001895. [PMID: 37750869 PMCID: PMC7615710 DOI: 10.1099/jgv.0.001895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Hepatitis C virus (HCV) infects millions of people worldwide and is a leading cause of liver disease. Despite recent advances in antiviral therapies, viral resistance can limit drug efficacy and understanding the mechanisms that confer viral escape is important. We employ an unbiased interactome analysis to discover host binding partners of the HCV non-structural protein 5A (NS5A), a key player in viral replication and assembly. We identify ASPP2, apoptosis-stimulating protein of p53, as a new host co-factor that binds NS5A via its SH3 domain. Importantly, silencing ASPP2 reduces viral replication and spread. Our study uncovers a previously unknown role for ASPP2 to potentiate HCV RNA replication.
Collapse
Affiliation(s)
- Artem Smirnov
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Rome 00133, Italy
| | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Xiaoyue Han
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Chunhong Yin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Jane A. McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
3
|
Characterization of a multipurpose NS3 surface patch coordinating HCV replicase assembly and virion morphogenesis. PLoS Pathog 2022; 18:e1010895. [PMID: 36215335 PMCID: PMC9616216 DOI: 10.1371/journal.ppat.1010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
The hepatitis C virus (HCV) life cycle is highly regulated and characterized by a step-wise succession of interactions between viral and host cell proteins resulting in the assembly of macromolecular complexes, which catalyse genome replication and/or virus production. Non-structural (NS) protein 3, comprising a protease and a helicase domain, is involved in orchestrating these processes by undergoing protein interactions in a temporal fashion. Recently, we identified a multifunctional NS3 protease surface patch promoting pivotal protein-protein interactions required for early steps of the HCV life cycle, including NS3-mediated NS2 protease activation and interactions required for replicase assembly. In this work, we extend this knowledge by identifying further NS3 surface determinants important for NS5A hyperphosphorylation, replicase assembly or virion morphogenesis, which map to protease and helicase domain and form a contiguous NS3 surface area. Functional interrogation led to the identification of phylogenetically conserved amino acid positions exerting a critical function in virion production without affecting RNA replication. These findings illustrate that NS3 uses a multipurpose protein surface to orchestrate the step-wise assembly of functionally distinct multiprotein complexes. Taken together, our data provide a basis to dissect the temporal formation of viral multiprotein complexes required for the individual steps of the HCV life cycle.
Collapse
|
4
|
Shanmugam S, Nichols AK, Saravanabalaji D, Welsch C, Yi M. HCV NS5A dimer interface residues regulate HCV replication by controlling its self-interaction, hyperphosphorylation, subcellular localization and interaction with cyclophilin A. PLoS Pathog 2018; 14:e1007177. [PMID: 30036383 PMCID: PMC6072203 DOI: 10.1371/journal.ppat.1007177] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/02/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
The HCV NS5A protein plays multiple roles during viral replication, including viral genome replication and virus particle assembly. The crystal structures of the NS5A N-terminal domain indicated the potential existence of the NS5A dimers formed via at least two or more distinct dimeric interfaces. However, it is unknown whether these different forms of NS5A dimers are involved in its numerous functions. To address this question, we mutated the residues lining the two different NS5A dimer interfaces and determined their effects on NS5A self-interaction, NS5A-cyclophilin A (CypA) interaction, HCV RNA replication and infectious virus production. We found that the mutations targeting either of two dimeric interfaces disrupted the NS5A self-interaction in cells. The NS5A dimer-interrupting mutations also inhibited both viral RNA replication and infectious virus production with some genotypic differences. We also determined that reduced NS5A self-interaction was associated with altered NS5A-CypA interaction, NS5A hyperphosphorylation and NS5A subcellular localization, providing the mechanistic bases for the role of NS5A self-interaction in multiple steps of HCV replication. The NS5A oligomers formed via different interfaces are likely its functional form, since the residues at two different dimeric interfaces played similar roles in different aspects of NS5A functions and, consequently, HCV replication. In conclusion, this study provides novel insight into the functional significance of NS5A self-interaction in different steps of the HCV replication, potentially, in the form of oligomers formed via multiple dimeric interfaces. HCV NS5A is a multifunctional protein involved in both viral RNA replication and infectious virus production, and is a target of one of the most potent antivirals available to date. However, the mode of action of NS5A inhibitors is still unclear due to the lack of mechanistic detail regarding NS5A functions during HCV life cycles. In this study, we have provided evidence that surface-exposed NS5A residues involved in two different dimeric interactions in crystal structures are indeed involved in NS5A self-interactions in cells. We also showed that these NS5A residues play critical role in HCV RNA replication and infectious virus production by regulating NS5A hyperphosphorylation, its subcellular localization and its interaction with host protein CypA. Overall, our data support the functional significance of “NS5A oligomers” formed via multiple interfaces in HCV replication. We speculate that the NS5A inhibitors exploited the NS5A oligomer-dependent functions during HCV replication, rather than targeting individual NS5A, which consequently resulted in their high potency.
Collapse
Affiliation(s)
- Saravanabalaji Shanmugam
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Alyssa K. Nichols
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Dhanaranjani Saravanabalaji
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Christoph Welsch
- Department of Internal Medicine I, Goethe University, Frankfurt/Main, Germany
| | - MinKyung Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
A role for domain I of the hepatitis C virus NS5A protein in virus assembly. PLoS Pathog 2018; 14:e1006834. [PMID: 29352312 PMCID: PMC5792032 DOI: 10.1371/journal.ppat.1006834] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/31/2018] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
The NS5A protein of hepatitis C virus (HCV) plays roles in both virus genome replication and assembly. NS5A comprises three domains, of these domain I is believed to be involved exclusively in genome replication. In contrast, domains II and III are required for the production of infectious virus particles and are largely dispensable for genome replication. Domain I is highly conserved between HCV and related hepaciviruses, and is highly structured, exhibiting different dimeric conformations. To investigate the functions of domain I in more detail, we conducted a mutagenic study of 12 absolutely conserved and surface-exposed residues within the context of a JFH-1-derived sub-genomic replicon and infectious virus. Whilst most of these abrogated genome replication, three mutants (P35A, V67A and P145A) retained the ability to replicate but showed defects in virus assembly. P35A exhibited a modest reduction in infectivity, however V67A and P145A produced no infectious virus. Using a combination of density gradient fractionation, biochemical analysis and high resolution confocal microscopy we demonstrate that V67A and P145A disrupted the localisation of NS5A to lipid droplets. In addition, the localisation and size of lipid droplets in cells infected with these two mutants were perturbed compared to wildtype HCV. Biophysical analysis revealed that V67A and P145A abrogated the ability of purified domain I to dimerize and resulted in an increased affinity of binding to HCV 3’UTR RNA. Taken together, we propose that domain I of NS5A plays multiple roles in assembly, binding nascent genomic RNA and transporting it to lipid droplets where it is transferred to Core. Domain I also contributes to a change in lipid droplet morphology, increasing their size. This study reveals novel functions of NS5A domain I in assembly of infectious HCV and provides new perspectives on the virus lifecycle. Hepatitis C virus infects 170 million people worldwide, causing long term liver disease. Recently new therapies comprising direct-acting antivirals (DAAs), small molecule inhibitors of virus proteins, have revolutionised treatment for infected patients. Despite this, we have a limited understanding of how the virus replicates in infected liver cells. Here we identify a previously uncharacterised function of the NS5A protein–a target for one class of DAAs. NS5A is comprised of three domains–we show that the first of these (domain I) plays a role in the production of new, infectious virus particles. Previously it was thought that domain I was only involved in replicating the virus genome. Mutations in domain I perturb dimer formation, enhanced binding to the 3’ end of the virus RNA genome and prevented NS5A from interacting with lipid droplets, cellular lipid storage organelles that are required for assembly of new viruses. We propose that domain I of NS5A plays multiple roles in virus assembly. As domain I is the putative target for one class of DAAs, our observations may have implications for the as yet undefined mode of action of these compounds.
Collapse
|
6
|
ISG12a Restricts Hepatitis C Virus Infection through the Ubiquitination-Dependent Degradation Pathway. J Virol 2016; 90:6832-45. [PMID: 27194766 DOI: 10.1128/jvi.00352-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/11/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Interferons (IFNs) restrict various kinds of viral infection via induction of hundreds of IFN-stimulated genes (ISGs), while the functions of the majority of ISGs are broadly unclear. Here, we show that a high-IFN-inducible gene, ISG12a (also known as IFI27), exhibits a nonapoptotic antiviral effect on hepatitis C virus (HCV) infection. Viral NS5A protein is targeted specifically by ISG12a, which mediates NS5A degradation via a ubiquitination-dependent proteasomal pathway. K374R mutation in NS5A domain III abrogates ISG12a-induced ubiquitination and degradation of NS5A. S-phase kinase-associated protein 2 (SKP2) is identified as an ubiquitin E3 ligase for NS5A. ISG12a functions as a crucial adaptor that promotes SKP2 to interact with and degrade viral protein. Moreover, the antiviral effect of ISG12a is dependent on the E3 ligase activity of SKP2. These findings uncover an intriguing mechanism by which ISG12a restricts viral infection and provide clues for understanding the actions of innate immunity. IMPORTANCE Upon virus invasion, IFNs induce numerous ISGs to control viral spread, while the functions of the majority of ISGs are broadly unclear. The present study shows a novel antiviral mechanism of ISGs and elucidated that ISG12a recruits an E3 ligase, SKP2, for ubiquitination and degradation of viral protein and restricts viral infection. These findings provide important insights into exploring the working principles of innate immunity.
Collapse
|
7
|
Talley DC, Delang L, Neyts J, Leyssen P, Smith PJ. Exploring the importance of zinc binding and steric/hydrophobic factors in novel HCV replication inhibitors. Bioorg Med Chem Lett 2016; 26:1196-9. [PMID: 26804234 DOI: 10.1016/j.bmcl.2016.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
Several novel compounds have been identified that inhibit the replication of hepatitis C virus in a replicon assay with EC50 values as low as 0.6 μM. Lead compounds were modified to investigate the possible role that zinc binding may play in inhibitor efficacy. In addition, the structure-activity relationship was explored to increase inhibitor efficacy and possibly identify favorable interactions within the currently unknown inhibitor binding pocket. The rationale for inhibitor design and biological results are presented herein.
Collapse
Affiliation(s)
- Daniel C Talley
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Leen Delang
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Johan Neyts
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Paul J Smith
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| |
Collapse
|
8
|
Vinexin β Interacts with Hepatitis C Virus NS5A, Modulating Its Hyperphosphorylation To Regulate Viral Propagation. J Virol 2015; 89:7385-400. [PMID: 25972535 DOI: 10.1128/jvi.00567-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is essential for HCV genome replication and virion production and is involved in the regulation of multiple host signaling pathways. As a proline-rich protein, NS5A is capable of interacting with various host proteins containing Src homology 3 (SH3) domains. Previous studies have suggested that vinexin, a member of the sorbin homology (SoHo) adaptor family, might be a potential binding partner of NS5A by yeast two-hybrid screening. However, firm evidence for this interaction is lacking, and the significance of vinexin in the HCV life cycle remains unclear. In this study, we demonstrated that endogenously and exogenously expressed vinexin β coimmunoprecipitated with NS5A derived from different HCV genotypes. Two residues, tryptophan (W307) and tyrosine (Y325), in the third SH3 domain of vinexin β and conserved Pro-X-X-Pro-X-Arg motifs at the C terminus of NS5A were indispensable for the vinexin-NS5A interaction. Furthermore, downregulation of endogenous vinexin β significantly suppressed NS5A hyperphosphorylation and decreased HCV replication, which could be rescued by expressing a vinexin β short hairpin RNA-resistant mutant. We also found that vinexin β modulated the hyperphosphorylation of NS5A in a casein kinase 1α-dependent on manner. Taken together, our findings suggest that vinexin β modulates NS5A phosphorylation via its interaction with NS5A, thereby regulating HCV replication, implicating vinexin β in the viral life cycle. IMPORTANCE Hepatitis C virus (HCV) nonstructural protein NS5A is a phosphoprotein, and its phosphorylation states are usually modulated by host kinases and other viral nonstructural elements. Additionally, cellular factors containing Src homology 3 (SH3) domains have been reported to interact with proline-rich regions of NS5A. However, it is unclear whether there are any relationships between NS5A phosphorylation and the NS5A-SH3 interaction, and little is known about the significance of this interaction in the HCV life cycle. In this work, we demonstrate that vinexin β modulates NS5A hyperphosphorylation through the NS5A-vinexin β interaction. Hyperphosphorylated NS5A induced by vinexin β is casein kinase 1α dependent and is also crucial for HCV propagation. Overall, our findings not only elucidate the relationships between NS5A phosphorylation and the NS5A-SH3 interaction but also shed new mechanistic insight on Flaviviridae NS5A (NS5) phosphorylation. We believe that our results may afford the potential to offer an antiviral therapeutic strategy.
Collapse
|
9
|
Igloi Z, Kazlauskas A, Saksela K, Macdonald A, Mankouri J, Harris M. Hepatitis C virus NS5A protein blocks epidermal growth factor receptor degradation via a proline motif- dependent interaction. J Gen Virol 2015; 96:2133-2144. [PMID: 25872741 PMCID: PMC4681064 DOI: 10.1099/vir.0.000145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) establishes a persistent infection that in many cases leads to cirrhosis and hepatocellular carcinoma. The non-structural 5A protein (NS5A) has been implicated in this process as it contains a C-terminal polyproline motif (termed P2) that binds to Src homology 3 (SH3) domains to regulate cellular signalling and trafficking pathways. We have shown previously that NS5A impaired epidermal growth factor (EGF) receptor (EGFR) endocytosis, thereby inhibiting EGF-stimulated EGFR degradation by a mechanism that remained unclear. As EGFR has been implicated in HCV cell entry and trafficking of the receptor involves several SH3-domain containing proteins, we investigated in more detail the mechanisms by which NS5A perturbs EGFR trafficking. We demonstrated that the P2 motif was required for the NS5A-mediated disruption to EGFR trafficking. We further demonstrated that the P2 motif was required for an interaction between NS5A and CMS, a homologue of CIN85 that has previously been implicated in EGFR endocytosis. We provided evidence that CMS was involved in the NS5A-mediated perturbation of EGFR trafficking. We also showed that NS5A effected a loss of EGFR ubiquitination in a P2-motif-dependent fashion. These data provide clues to the mechanism by which NS5A regulates the trafficking of a key cellular receptor and demonstrate for the first time the ability of NS5A to regulate host cell ubiquitination pathways.
Collapse
Affiliation(s)
- Zsofia Igloi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Arunas Kazlauskas
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland
| | - Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Ross-Thriepland D, Harris M. Hepatitis C virus NS5A: enigmatic but still promiscuous 10 years on! J Gen Virol 2014; 96:727-738. [PMID: 25481754 DOI: 10.1099/jgv.0.000009] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since one of us co-authored a review on NS5A a decade ago, the hepatitis C virus (HCV) field has changed dramatically, primarily due to the advent of the JFH-1 cell culture infectious clone, which allowed the study of all aspects of the virus life cycle from entry to exit. This review will describe advances in our understanding of NS5A biology over the past decade, highlighting how the JFH-1 system has allowed us to determine that NS5A is essential not only in genome replication but also in the assembly of infectious virions. We shall review the recent structural insights - NS5A is predicted to comprise three domains; X-ray crystallography has revealed the structure of domain I but there is a lack of detailed structural information about the other two domains, which are predicted to be largely unstructured. Recent insights into the phosphorylation of NS5A will be discussed, and we shall highlight a few pertinent examples from the ever-expanding list of NS5A-binding partners identified over the past decade. Lastly, we shall review the literature showing that NS5A is a potential target for a new class of highly potent small molecules that function to inhibit virus replication. These direct-acting antivirals (DAAs) are now either licensed, or in the late stages of approval for clinical use both in the USA and in the UK/Europe. In combination with other DAAs targeting the viral protease (NS3) and polymerase (NS5B), they are revolutionizing treatment for HCV infection.
Collapse
Affiliation(s)
- Douglas Ross-Thriepland
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Bacarizo J, Martínez-Rodríguez S, Cámara-Artigas A. Structure of the c-Src-SH3 domain in complex with a proline-rich motif of NS5A protein from the hepatitis C virus. J Struct Biol 2014; 189:67-72. [PMID: 25447263 DOI: 10.1016/j.jsb.2014.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
The non-structural hepatitis C virus proteins NS5A and NS5B form a complex through interaction with the SH2 and SH3 domains of the non-receptor Src tyrosine kinase, which seems essential for viral replication. We have crystallized the complex between the SH3 domain of the c-Src tyrosine kinase and the C-terminal proline rich motif of the NS5A protein (A349PPIPPPRRKR359). Crystals obtained at neutral pH belong to the space group I41, with a single molecule of the SH3/NS5A complex at the asymmetric unit. The NS5A peptide is bound in a reverse orientation (class II) and the comparison of this structure with those of the high affinity synthetic peptides APP12 and VSL12 shows some important differences at the salt bridge that drives the peptide orientation. Further conformational changes in residues placed apart from the binding site also seem to play an important role in the binding orientation of this peptide. Our results show the interaction of the SH3 domain of the c-Src tyrosine kinase with a proline rich motif in the NS5A protein and point to their potential interaction in vivo.
Collapse
Affiliation(s)
- Julio Bacarizo
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Carretera de Sacramento s/n, Almería 04120, Spain
| | - Sergio Martínez-Rodríguez
- Department of Physical Chemistry, University of Granada, Avda. de Fuentenueva s/n, Granada 18071, Spain
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Carretera de Sacramento s/n, Almería 04120, Spain.
| |
Collapse
|
12
|
Cordek DG, Croom-Perez TJ, Hwang J, Hargittai MRS, Subba-Reddy CV, Han Q, Lodeiro MF, Ning G, McCrory TS, Arnold JJ, Koc H, Lindenbach BD, Showalter SA, Cameron CE. Expanding the proteome of an RNA virus by phosphorylation of an intrinsically disordered viral protein. J Biol Chem 2014; 289:24397-416. [PMID: 25031324 DOI: 10.1074/jbc.m114.589911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human proteome contains myriad intrinsically disordered proteins. Within intrinsically disordered proteins, polyproline-II motifs are often located near sites of phosphorylation. We have used an unconventional experimental paradigm to discover that phosphorylation by protein kinase A (PKA) occurs in the intrinsically disordered domain of hepatitis C virus non-structural protein 5A (NS5A) on Thr-2332 near one of its polyproline-II motifs. Phosphorylation shifts the conformational ensemble of the NS5A intrinsically disordered domain to a state that permits detection of the polyproline motif by using (15)N-, (13)C-based multidimensional NMR spectroscopy. PKA-dependent proline resonances were lost in the presence of the Src homology 3 domain of c-Src, consistent with formation of a complex. Changing Thr-2332 to alanine in hepatitis C virus genotype 1b reduced the steady-state level of RNA by 10-fold; this change was lethal for genotype 2a. The lethal phenotype could be rescued by changing Thr-2332 to glutamic acid, a phosphomimetic substitution. Immunofluorescence and transmission electron microscopy showed that the inability to produce Thr(P)-2332-NS5A caused loss of integrity of the virus-induced membranous web/replication organelle. An even more extreme phenotype was observed in the presence of small molecule inhibitors of PKA. We conclude that the PKA-phosphorylated form of NS5A exhibits unique structure and function relative to the unphosphorylated protein. We suggest that post-translational modification of viral proteins containing intrinsic disorder may be a general mechanism to expand the viral proteome without a corresponding expansion of the genome.
Collapse
Affiliation(s)
| | | | - Jungwook Hwang
- the Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 133-791, Korea
| | | | - Chennareddy V Subba-Reddy
- the Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, and
| | - Qingxia Han
- From the Department of Biochemistry and Molecular Biology
| | | | - Gang Ning
- the Huck Institutes of the Life Sciences, and
| | | | - Jamie J Arnold
- From the Department of Biochemistry and Molecular Biology
| | - Hasan Koc
- the Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, Huntington, West Virginia 25755
| | - Brett D Lindenbach
- the Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, and
| | - Scott A Showalter
- the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
13
|
Atoom AM, Taylor NGA, Russell RS. The elusive function of the hepatitis C virus p7 protein. Virology 2014; 462-463:377-87. [PMID: 25001174 PMCID: PMC7112009 DOI: 10.1016/j.virol.2014.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a major global health burden with 2–3% of the world׳s population being chronically infected. Persistent infection can lead to cirrhosis and hepatocellular carcinoma. Recently available treatment options show enhanced efficacy of virus clearance, but are associated with resistance and significant side effects. This warrants further research into the basic understanding of viral proteins and their pathophysiology. The p7 protein of HCV is an integral membrane protein that forms an ion-channel. The role of p7 in the HCV life cycle is presently uncertain, but most of the research performed to date highlights its role in the virus assembly process. The aim of this review is to provide an overview of the literature investigating p7, its structural and functional details, and to summarize the developments to date regarding potential anti-p7 compounds. A better understanding of this protein may lead to development of a new and effective therapy. This review paper provides an overview of the literature investigating HCV. The content focuses on p7 structural and functional details. We summarize the developments to date regarding potential anti-p7 compounds.
Collapse
Affiliation(s)
- Ali M Atoom
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Nathan G A Taylor
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Rodney S Russell
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada.
| |
Collapse
|
14
|
El-Shamy A, Hotta H. Impact of hepatitis C virus heterogeneity on interferon sensitivity: an overview. World J Gastroenterol 2014; 20:7555-69. [PMID: 24976696 PMCID: PMC4069287 DOI: 10.3748/wjg.v20.i24.7555] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/18/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease worldwide. HCV is able to evade host defense mechanisms, including both innate and acquired immune responses, to establish persistent infection, which results in a broad spectrum of pathogenicity, such as lipid and glucose metabolism disorders and hepatocellular carcinoma development. The HCV genome is characterized by a high degree of genetic diversity, which can be associated with viral sensitivity or resistance (reflected by different virological responses) to interferon (IFN)-based therapy. In this regard, it is of importance to note that polymorphisms in certain HCV genomic regions have shown a close correlation with treatment outcome. In particular, among the HCV proteins, the core and nonstructural proteins (NS) 5A have been extensively studied for their correlation with responses to IFN-based treatment. This review aims to cover updated information on the impact of major HCV genetic factors, including HCV genotype, mutations in amino acids 70 and 91 of the core protein and sequence heterogeneity in the IFN sensitivity-determining region and IFN/ribavirin resistance-determining region of NS5A, on virological responses to IFN-based therapy.
Collapse
|
15
|
Yu X, Gao Y, Xue B, Wang X, Yang D, Qin Y, Yu R, Liu N, Xu L, Fang X, Zhu H. Inhibition of hepatitis C virus infection by NS5A-specific aptamer. Antiviral Res 2014; 106:116-24. [PMID: 24713119 DOI: 10.1016/j.antiviral.2014.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 12/24/2022]
Abstract
To increase efficacy of hepatitis C treatment, future regiments will incorporate multiple direct-acting antiviral drugs. HCV NS5A protein was expressed and purified. Aptamers against NS5A were screened and obtained by the selective evolution of ligands by exponential enrichment approach and the antiviral actions of the aptamers were tested. The mechanisms through which the aptamers exert their antiviral activity were explored. The aptamers NS5A-4 and NS5A-5 inhibit HCV RNA replication and infectious virus production without causing cytotoxicity in human hepatocytes. The aptamers do not affect hepatitis B virus replication in HepG2.2.15 cells. Interferon beta (IFN-β) and interferon-stimulated genes (ISGs) are not induced by the aptamers in HCV-infected hepatocytes. Further study shows that domain I and domain III of NS5A protein are involved in the suppression of HCV RNA replication and infectious virus production by NS5A-4. Y2105H within NS5A is the major resistance mutation identified. NS5A aptamer disrupts the interaction of NS5A with core protein. The data suggest that the aptamers against NS5A protein may exert antiviral effects through inhibiting viral RNA replication, preventing the interaction of NS5A with core protein. Aptamers for NS5A may be used to understand the mechanisms of virus replication and assembly and served as potential therapeutic agents for hepatitis C.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Yimin Gao
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Binbin Xue
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xiaohong Wang
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Darong Yang
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China; Research Center of Cancer Prevention & Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital (Affiliated Tumor Hospital of Xiangya Medical School of Central South University), Changsha, China
| | - Yuwen Qin
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Rong Yu
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Nianli Liu
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China; Research Center of Cancer Prevention & Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital (Affiliated Tumor Hospital of Xiangya Medical School of Central South University), Changsha, China
| | - Li Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Haizhen Zhu
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China; Research Center of Cancer Prevention & Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital (Affiliated Tumor Hospital of Xiangya Medical School of Central South University), Changsha, China.
| |
Collapse
|
16
|
Functional characterization of bovine viral diarrhea virus nonstructural protein 5A by reverse genetic analysis and live cell imaging. J Virol 2013; 88:82-98. [PMID: 24131714 DOI: 10.1128/jvi.01957-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nonstructural protein 5A (NS5A) of bovine viral diarrhea virus (BVDV) is a hydrophilic phosphoprotein with RNA binding activity and a critical component of the viral replicase. In silico analysis suggests that NS5A encompasses three domains interconnected by two low-complexity sequences (LCSs). While domain I harbors two functional determinants, an N-terminal amphipathic helix important for membrane association, and a Zn-binding site essential for RNA replication, the structure and function of the C-terminal half of NS5A are still ill defined. In this study, we introduced a panel of 10 amino acid deletions covering the C-terminal half of NS5A. In the context of a highly efficient monocistronic replicon, deletions in LCS I and the N-terminal part of domain II, as well as in domain III, were tolerated with regard to RNA replication. When introduced into a bicistronic replicon, only deletions in LCS I and the N-terminal part of domain II were tolerated. In the context of the viral full-length genome, these mutations allowed residual virion morphogenesis. Based on these data, a functional monocistronic BVDV replicon coding for an NS5A variant with an insertion of the fluorescent protein mCherry was constructed. Live cell imaging demonstrated that a fraction of NS5A-mCherry localizes to the surface of lipid droplets. Taken together, this study provides novel insights into the functions of BVDV NS5A. Moreover, we established the first pestiviral replicon expressing fluorescent NS5A-mCherry to directly visualize functional viral replication complexes by live cell imaging.
Collapse
|
17
|
Amako Y, Igloi Z, Mankouri J, Kazlauskas A, Saksela K, Dallas M, Peers C, Harris M. Hepatitis C virus NS5A inhibits mixed lineage kinase 3 to block apoptosis. J Biol Chem 2013; 288:24753-63. [PMID: 23857585 PMCID: PMC3750171 DOI: 10.1074/jbc.m113.491985] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/12/2013] [Indexed: 01/28/2023] Open
Abstract
Hepatitis C virus (HCV) infection results in the activation of numerous stress responses including oxidative stress, with the potential to induce an apoptotic state. Previously we have shown that HCV attenuates the stress-induced, p38MAPK-mediated up-regulation of the K(+) channel Kv2.1, to maintain the survival of infected cells in the face of cellular stress. We demonstrated that this effect was mediated by HCV non-structural 5A (NS5A) protein, which impaired p38MAPK activity through a polyproline motif-dependent interaction, resulting in reduction of phosphorylation activation of Kv2.1. In this study, we investigated the host cell proteins targeted by NS5A to mediate Kv2.1 inhibition. We screened a phage-display library expressing the entire complement of human SH3 domains for novel NS5A-host cell interactions. This analysis identified mixed lineage kinase 3 (MLK3) as a putative NS5A interacting partner. MLK3 is a serine/threonine protein kinase that is a member of the MAPK kinase kinase (MAP3K) family and activates p38MAPK. An NS5A-MLK3 interaction was confirmed by co-immunoprecipitation and Western blot analysis. We further demonstrate a novel role of MLK3 in the modulation of Kv2.1 activity, whereby MLK3 overexpression leads to the up-regulation of channel activity. Accordingly, coexpression of NS5A suppressed this stimulation. Additionally we demonstrate that overexpression of MLK3 induced apoptosis, which was also counteracted by NS5A. We conclude that NS5A targets MLK3 with multiple downstream consequences for both apoptosis and K(+) homeostasis.
Collapse
Affiliation(s)
- Yutaka Amako
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Zsofia Igloi
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Jamel Mankouri
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Arunas Kazlauskas
- the Department of Virology, Haartman Institute, University of Helsinki Central Hospital, University of Helsinki and HUSLAB, FI-00014 Helsinki, Finland
| | - Kalle Saksela
- the Department of Virology, Haartman Institute, University of Helsinki Central Hospital, University of Helsinki and HUSLAB, FI-00014 Helsinki, Finland
| | - Mark Dallas
- the Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Chris Peers
- the Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Mark Harris
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| |
Collapse
|
18
|
Bentham MJ, Foster TL, McCormick C, Griffin S. Mutations in hepatitis C virus p7 reduce both the egress and infectivity of assembled particles via impaired proton channel function. J Gen Virol 2013; 94:2236-2248. [PMID: 23907396 DOI: 10.1099/vir.0.054338-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hepatitis C virus (HCV) p7 protein is critical for the efficient production of infectious virions in culture. p7 undergoes genotype-specific protein-protein interactions as well as displaying channel-forming activity, making it unclear whether the phenotypes of deleterious p7 mutations result from the disruption of one or both of these functions. Here, we showed that proton channel activity alone, provided in trans by either influenza virus M2 or genotype 1b HCV p7, was both necessary and sufficient to restore infectious particle production to genotype 2a HCV (JFH-1 isolate) carrying deleterious p7 alanine substitutions within the p7 dibasic loop (R33A, R35A), and the N-terminal trans-membrane region (N15 : C16 : H17/AAA). Both mutations markedly reduced mature p7 abundance, with those in the dibasic loop also significantly reducing levels of mature E2 and NS2. Interestingly, whilst M2 and genotype 1b p7 restored the same level of intracellular infectivity as JFH-1 p7, supplementing with the isogenic protein led to a further increase in secreted infectivity, suggesting a late-acting role for genotype-specific p7 protein interactions. Finally, cells infected by viruses carrying p7 mutations contained non-infectious core-containing particles with densities equivalent to WT HCV, indicating a requirement for p7 proton channel activity in conferring an infectious phenotype to virions.
Collapse
Affiliation(s)
- Matthew J Bentham
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
| | - Toshana L Foster
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
| | - Christopher McCormick
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
| |
Collapse
|
19
|
Ross-Thriepland D, Amako Y, Harris M. The C terminus of NS5A domain II is a key determinant of hepatitis C virus genome replication, but is not required for virion assembly and release. J Gen Virol 2013; 94:1009-1018. [PMID: 23324467 PMCID: PMC3709587 DOI: 10.1099/vir.0.050633-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/11/2013] [Indexed: 12/12/2022] Open
Abstract
The NS5A protein of hepatitis C virus (HCV) plays roles in both virus genome replication and the assembly of infectious virus particles. NS5A comprises three domains, separated by low-complexity sequences. Whilst the function of domain I appears to be predominantly involved with genome replication, the roles of domains II and III are less well defined. It has been reported previously that a deletion spanning the majority of domain II but retaining the C-terminal 35 residues had no effect on virus production; however, deletion of the entire domain II eliminated genome replication, pointing to a key role for the C terminus of this domain. Recent work has also highlighted this region as the potential binding site of the host factor cyclophilin A (CypA). To define this requirement for replication in more detail, and to investigate the involvement of CypA, we conducted a mutagenic study of the C-terminal 30 residues of domain II within the context of both the infectious JFH-1 virus and a JFH-1-derived subgenomic replicon. We showed that 12 of these residues were absolutely required for virus genome replication, whilst mutations of the remainder either had no phenotype or exhibited a partial reduction in genome replication. There was an absolute correlation between the datasets for virus and subgenomic replicon, indicating that this region is involved solely in the process of genome replication. Comparison of our data with a previously published analysis of the same region in genotype 1b revealed some important differences between the two genotypes of HCV.
Collapse
Affiliation(s)
- Douglas Ross-Thriepland
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Yutaka Amako
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
20
|
Abstract
The hepatitis C virus NS5A protein is essential for RNA replication and virion assembly. NS5A is phosphorylated on multiple residues during infections, but these sites remain uncharacterized. Here we identify serine 222 of genotype 2a NS5A as a phosphorylation site that functions as a negative regulator of RNA replication. This site is a component of the hyperphosphorylated form of NS5A, which is in good agreement with previous observations that hyperphosphorylation negatively affects replication.
Collapse
|
21
|
Alaee M, Rajabi P, Sharifi Z, Farajollahi MM. Immunoreactivity assessment of hepatitis C virus NS3 protease and NS5A proteins expressed in TOPO cloning system. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2012; 47:282-91. [PMID: 23040046 DOI: 10.1016/j.jmii.2012.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/30/2012] [Accepted: 08/09/2012] [Indexed: 01/29/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) is a major cause of acute and chronic liver disease. Numerous screening assays based on the detection of immunoresponses to HCV structural and nonstructural proteins have been designed. Various studies have demonstrated genotype-specific differences in anti-HCV antibody responses to different HCV proteins. METHODS Full-length NS3 protease and N-terminally truncated NS5A were expressed using pET TOPO 102/D system. Antigenicity of the purified recombinant proteins was assessed by immunoblotting and indirect enzyme-linked immunosorbent assay (ELISA). Furthermore, anti-HCV antibody responses to the recombinant proteins were evaluated in three prevalent genotypes in Iran. RESULTS We were able to express and purify NS5A and NS3 protease using TOPO cloning system. The HCV NS3 protease and NS5A produced in BL21 Star (DE3) was immunoreactive. Our results demonstrate that NS3 protease and NS5A have good immunoreactivity, but they are not sufficient for detecting all HCV-positive sera. No significant genotype-specific differences were detected in immunoresponses to the recombinant proteins. CONCLUSION In conclusion, we successfully isolated, expressed, and purified substantial amount of HCV NS3 protease and N-terminally truncated NS5A, and used them as capturing antigens in a screening ELISA assay with high sensitivity, reproducibility, and specificity. Accordingly, it is well confirmed that TOPO cloning system can be used as a dynamic system in order to express higher amount of immunoreactive viral proteins.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Rajabi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Morad Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Kim SR, El-Shamy A, Imoto S, Kim KI, Ide YH, Deng L, Shoji I, Tanaka Y, Hasegawa Y, Ota M, Hotta H. Prediction of response to pegylated interferon/ribavirin combination therapy for chronic hepatitis C genotype 1b and high viral load. J Gastroenterol 2012; 47:1143-1151. [PMID: 22441534 DOI: 10.1007/s00535-012-0578-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/27/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND This study explores pretreatment predictive factors for ultimate virological responses to pegylated interferon-α (1.5 μg/kg/week) and ribavirin (600-1000 mg/day) (PEG-IFN/RBV) combination therapy for patients infected with hepatitis C virus (HCV)-1b and a high viral load. METHODS A total of 75 patients underwent PEG-IFN/RBV combination therapy for 48 weeks. HCV amino acid (aa) substitutions in non-structural protein 5a, including those in the IFN/RBV resistance-determining region (IRRDR) and the IFN sensitivity-determining region and the core regions, as well as the genetic variation (rs8099917) near the interleukin 28B (IL28B) gene (genotype TT) were analyzed. RESULTS Of the 75 patients, 49 % (37/75) achieved a sustained virological response (SVR), 27 % (20/75) showed relapse, and 24 % (18/75) showed null virological response (NVR). Multivariate logistic regression analysis identified IRRDR with 6 or more mutations (IRRDR ≥6) [odds ratio (OR) 11.906, p < 0.0001] and age <60 years (OR 0.228, p = 0.015) as significant determiners of SVR and IL28B minor (OR 14.618, p = 0.0019) and platelets <15 × 10(4)/mm(3) (OR 0.113, p = 0.0096) as significant determiners of NVR. A combination of IRRDR ≥6 and age <60 years improved SVR predictability (93.3 %), and that of IRRDR ≤5 and age ≥60 years improved non-SVR predictability (84.0 %). Similarly, a combination of IL28B minor and platelets <15 × 10(4)/mm(3) improved NVR predictability (85.7 %), and that of IL28B major and platelets ≥15 × 10(4)/mm(3) improved non-NVR (response) (97.1 %) predictability. CONCLUSION IRRDR ≥6 and age <60 years were significantly associated with SVR. IL28B minor and platelets <15 × 10(4)/mm(3) were significantly associated with NVR. Certain combinations of these factors improved SVR and NVR predictability and could, therefore, be used to design therapeutic strategies.
Collapse
Affiliation(s)
- Soo Ryang Kim
- Department of Gastroenterology, Kobe Asahi Hospital, 3-5-25 Bououji-cho, Nagata-ku, Kobe 653-0801, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
A cell culture adapted HCV JFH1 variant that increases viral titers and permits the production of high titer infectious chimeric reporter viruses. PLoS One 2012; 7:e44965. [PMID: 23028707 PMCID: PMC3441746 DOI: 10.1371/journal.pone.0044965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/16/2012] [Indexed: 12/17/2022] Open
Abstract
The unique properties of the hepatitis C virus (HCV) JFH1 isolate have made it possible to produce and study HCV in an infectious cell culture system. However, relatively low virus titers restrict some of the uses of this system and preparing infectious chimeric reporter viruses have been difficult. In this study, we report cell culture-adapted mutations in wild-type JFH1 yielding higher titers of infectious particles of both JFH1 and chimeric JFH1 viruses carrying reporter genes. Sequencing analyses determined that ten of the sixteen nonsynonymous mutations were in the NS5A region. Individual viruses harboring specific adaptive mutations were prepared and studied. The mutations in the NS5A region, which included all three domains, were most effective in increasing infectious virus production. Insertion of two reporter genes in JFH1 without the adaptive mutations ablated the production of infectious HCV particles. However, the introduction of specific adaptive mutations in the NS5A region permitted reporter genes, Renilla luciferase (Rluc) and EGFP, to be introduced into JHF1 to produce chimeric HCV-NS5A-EGFP and HCV-NS5A-Rluc reporter viruses at relatively high titers of infectious virus. The quantity of hyperphosphorylated NS5A (p58) was decreased in the adapted JFH1 compared wild type JFH1 and is likely be involved in increased production of infectious virus based on previous studies of p58. The JFH1-derived mutant viruses and chimeric reporter viruses described here provide new tools for studying HCV biology, identifying HCV antivirals, and enable new ways of engineering additional infectious chimeric viruses.
Collapse
|
24
|
Martin-Garcia JM, Luque I, Ruiz-Sanz J, Camara-Artigas A. The promiscuous binding of the Fyn SH3 domain to a peptide from the NS5A protein. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1030-40. [PMID: 22868769 DOI: 10.1107/s0907444912019798] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/02/2012] [Indexed: 12/27/2022]
Abstract
The hepatitis C virus nonstructural 5A (NS5A) protein is a large zinc-binding phosphoprotein that plays an important role in viral RNA replication and is involved in altering signal transduction pathways in the host cell. This protein interacts with Fyn tyrosine kinase in vivo and regulates its kinase activity. The 1.5 Å resolution crystal structure of a complex between the SH3 domain of the Fyn tyrosine kinase and the C-terminal proline-rich motif of the NS5A-derived peptide APPIPPPRRKR has been solved. Crystals were obtained in the presence of ZnCl(2) and belonged to the tetragonal space group P4(1)2(1)2. The asymmetric unit is composed of four SH3 domains and two NS5A peptide molecules; only three of the domain molecules contain a bound peptide, while the fourth molecule seems to correspond to a free form of the domain. Additionally, two of the SH3 domains are bound to the same peptide chain and form a ternary complex. The proline-rich motif present in the NS5A protein seems to be important for RNA replication and virus assembly, and the promiscuous interaction of the Fyn SH3 domain with the NS5A C-terminal proline-rich peptide found in this crystallographic structure may be important in the virus infection cycle.
Collapse
Affiliation(s)
- Jose Manuel Martin-Garcia
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, University of Almería, Agrifood Campus of International Excellence (ceiA3), Carretera de Sacramento, 04120 Almería, Spain
| | | | | | | |
Collapse
|
25
|
Scheel TKH, Prentoe J, Carlsen THR, Mikkelsen LS, Gottwein JM, Bukh J. Analysis of functional differences between hepatitis C virus NS5A of genotypes 1-7 in infectious cell culture systems. PLoS Pathog 2012; 8:e1002696. [PMID: 22654662 PMCID: PMC3359982 DOI: 10.1371/journal.ppat.1002696] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/27/2012] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) is an important cause of chronic liver disease. Several highly diverse HCV genotypes exist with potential key functional differences. The HCV NS5A protein was associated with response to interferon (IFN)-α based therapy, and is a primary target of currently developed directly-acting antiviral compounds. NS5A is important for replication and virus production, but has not been studied for most HCV genotypes. We studied the function of NS5A using infectious NS5A genotype 1-7 cell culture systems, and through reverse genetics demonstrated a universal importance of the amphipathic alpha-helix, domain I and II and the low-complexity sequence (LCS) I for HCV replication; the replicon-enhancing LCSI mutation S225P attenuated all genotypes. Mutation of conserved prolines in LCSII led to minor reductions in virus production for the JFH1(genotype 2a) NS5A recombinant, but had greater effects on other isolates; replication was highly attenuated for ED43(4a) and QC69(7a) recombinants. Deletion of the conserved residues 414-428 in domain III reduced virus production for most recombinants but not JFH1(2a). Reduced virus production was linked to attenuated replication in all cases, but ED43(4a) and SA13(5a) also displayed impaired particle assembly. Compared to the original H77C(1a) NS5A recombinant, the changes in LCSII and domain III reduced the amounts of NS5A present. For H77C(1a) and TN(1a) NS5A recombinants, we observed a genetic linkage between NS5A and p7, since introduced changes in NS5A led to changes in p7 and vice versa. Finally, NS5A function depended on genotype-specific residues in domain I, as changing genotype 2a-specific residues to genotype 1a sequence and vice versa led to highly attenuated mutants. In conclusion, this study identified NS5A genetic elements essential for all major HCV genotypes in infectious cell culture systems. Genotype- or isolate- specific NS5A functional differences were identified, which will be important for understanding of HCV NS5A function and therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | | | | | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
A conserved tandem cyclophilin-binding site in hepatitis C virus nonstructural protein 5A regulates Alisporivir susceptibility. J Virol 2012; 86:4811-22. [PMID: 22345441 DOI: 10.1128/jvi.06641-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyclophilin A (CyPA) and its peptidyl-prolyl isomerase (PPIase) activity play an essential role in hepatitis C virus (HCV) replication, and mounting evidence indicates that nonstructural protein 5A (NS5A) is the major target of CyPA. However, neither a consensus CyPA-binding motif nor specific proline substrates that regulate CyPA dependence and sensitivity to cyclophilin inhibitors (CPIs) have been defined to date. We systematically characterized all proline residues in NS5A domain II, low-complexity sequence II (LCS-II), and domain III with both biochemical binding and functional replication assays. A tandem cyclophilin-binding site spanning domain II and LCS-II was identified. The first site contains a consensus sequence motif of AØPXW (where Ø is a hydrophobic residue) that is highly conserved in the majority of the genotypes of HCV (six of seven; the remaining genotype has VØPXW). The second tandem site contains a similar motif, and the ØP sequence is again conserved in six of the seven genotypes. Consistent with the similarity of their sequences, peptides representing the two binding motifs competed for CyPA binding in a spot-binding assay and induced similar chemical shifts when bound to the active site of CyPA. The two prolines (P310 and P341 of Japanese fulminant hepatitis 1 [JFH-1]) contained in these motifs, as well as a conserved tryptophan in the spacer region, were required for CyPA binding, HCV replication, and CPI resistance. Together, these data provide a high-resolution mapping of proline residues important for CyPA binding and identify critical amino acids modulating HCV susceptibility to the clinical CPI Alisporivir.
Collapse
|
27
|
El-Shamy A, Shoji I, Kim SR, Ide Y, Imoto S, Deng L, Yoon S, Fujisawa T, Tani S, Yano Y, Seo Y, Azuma T, Hotta H. Sequence heterogeneity in NS5A of hepatitis C virus genotypes 2a and 2b and clinical outcome of pegylated-interferon/ribavirin therapy. PLoS One 2012; 7:e30513. [PMID: 22319571 PMCID: PMC3271109 DOI: 10.1371/journal.pone.0030513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/16/2011] [Indexed: 12/13/2022] Open
Abstract
Pegylated-interferon plus ribavirin (PEG-IFN/RBV) therapy is a current standard treatment for chronic hepatitis C. We previously reported that the viral sequence heterogeneity of part of NS5A, referred to as the IFN/RBV resistance-determining region (IRRDR), and a mutation at position 70 of the core protein of hepatitis C virus genotype 1b (HCV-1b) are significantly correlated with the outcome of PEG-IFN/RBV treatment. Here, we aimed to investigate the impact of viral genetic variations within the NS5A and core regions of other genotypes, HCV-2a and HCV-2b, on PEG-IFN/RBV treatment outcome. Pretreatment sequences of NS5A and core regions were analyzed in 112 patients infected with HCV-2a or HCV-2b, who were treated with PEG-IFN/RBV for 24 weeks and followed up for another 24 weeks. The results demonstrated that HCV-2a isolates with 4 or more mutations in IRRDR (IRRDR[2a]≥4) was significantly associated with rapid virological response at week 4 (RVR) and sustained virological response (SVR). Also, another region of NS5A that corresponds to part of the IFN sensitivity-determining region (ISDR) plus its carboxy-flanking region, which we referred to as ISDR/+C[2a], was significantly associated with SVR in patients infected with HCV-2a. Multivariate analysis revealed that IRRDR[2a]≥4 was the only independent predictive factor for SVR. As for HCV-2b infection, an N-terminal half of IRRDR having two or more mutations (IRRDR[2b]/N≥2) was significantly associated with RVR, but not with SVR. No significant correlation was observed between core protein polymorphism and PEG-IFN/RBV treatment outcome in HCV-2a or HCV-2b infection. Conclusion: The present results suggest that sequence heterogeneity of NS5A of HCV-2a (IRRDR[2a]≥4 and ISDR/+C[2a]), and that of HCV-2b (IRRDR[2b]/N≥2) to a lesser extent, is involved in determining the viral sensitivity to PEG-IFN/RBV therapy.
Collapse
Affiliation(s)
- Ahmed El-Shamy
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Virology, Suez Canal University Faculty of Veterinary Medicine, Ismalia, Egypt
| | - Ikuo Shoji
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Soo-Ryang Kim
- Division of Gastroenterology, Kobe Asahi Hospital, Kobe, Japan
| | - Yoshihiro Ide
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Susumu Imoto
- Division of Gastroenterology, Kobe Asahi Hospital, Kobe, Japan
| | - Lin Deng
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seitetsu Yoon
- Department of Gastroenterology, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Hyogo, Japan
| | - Takashi Fujisawa
- Department of Internal Medicine, Nippon Steel Hirohata Hospital, Himeji, Hyogo, Japan
| | - Satoshi Tani
- Department of Internal Medicine, Konan Hospital, Kobe, Japan
| | - Yoshihiko Yano
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasushi Seo
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Azuma
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hak Hotta
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
28
|
Foster TL, Verow M, Wozniak AL, Bentham MJ, Thompson J, Atkins E, Weinman SA, Fishwick C, Foster R, Harris M, Griffin S. Resistance mutations define specific antiviral effects for inhibitors of the hepatitis C virus p7 ion channel. Hepatology 2011; 54:79-90. [PMID: 21520195 DOI: 10.1002/hep.24371] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED The hepatitis C virus (HCV) p7 ion channel plays a critical role during infectious virus production and represents an important new therapeutic target. Its activity is blocked by structurally distinct classes of small molecules, with sensitivity varying between isolate p7 sequences. Although this is indicative of specific protein-drug interactions, a lack of high-resolution structural information has precluded the identification of inhibitor binding sites, and their modes of action remain undefined. Furthermore, a lack of clinical efficacy for existing p7 inhibitors has cast doubt over their specific antiviral effects. We identified specific resistance mutations that define the mode of action for two classes of p7 inhibitor: adamantanes and alkylated imino sugars (IS). Adamantane resistance was mediated by an L20F mutation, which has been documented in clinical trials. Molecular modeling revealed that L20 resided within a membrane-exposed binding pocket, where drug binding prevented low pH-mediated channel opening. The peripheral binding pocket was further validated by a panel of adamantane derivatives as well as a bespoke molecule designed to bind the region with high affinity. By contrast, an F25A polymorphism found in genotype 3a HCV conferred IS resistance and confirmed that these compounds intercalate between p7 protomers, preventing channel oligomerization. Neither resistance mutation significantly reduced viral fitness in culture, consistent with a low genetic barrier to resistance occurring in vivo. Furthermore, no cross-resistance was observed for the mutant phenotypes, and the two inhibitor classes showed additive effects against wild-type HCV. CONCLUSION These observations support the notion that p7 inhibitor combinations could be a useful addition to future HCV-specific therapies.
Collapse
Affiliation(s)
- Toshana L Foster
- Section of Oncology and Clinical Research, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Charged residues in hepatitis C virus NS4B are critical for multiple NS4B functions in RNA replication. J Virol 2011; 85:8158-71. [PMID: 21680530 DOI: 10.1128/jvi.00858-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nonstructural 4B (NS4B) protein of hepatitis C virus (HCV) plays a central role in the formation of the HCV replication complex. To gain insight into the role of charged residues for NS4B function in HCV RNA replication, alanine substitutions were engineered in place of 28 charged residues residing in the N- and C-terminal cytoplasmic domains of the NS4B protein of the HCV genotype 1b strain Con1. Eleven single charged-to-alanine mutants were not viable, while the remaining mutants were replication competent, albeit to differing degrees. By selecting revertants, second-site mutations were identified for one of the lethal NS4B mutations. Second-site mutations mapped to NS4B and partially suppressed the lethal replication phenotype. Further analyses showed that three NS4B mutations disrupted the formation of putative replication complexes, one mutation altered the stability of the NS4B protein, and cleavage at the NS4B/5A junction was significantly delayed by another mutation. Individual charged-to-alanine mutations did not affect interactions between the NS4B and NS3-4A proteins. A triple charged-to-alanine mutation produced a temperature-sensitive replication phenotype with no detectable RNA replication at 39°C, demonstrating that conditional mutations can be obtained by altering the charge characteristics of NS4B. Finally, NS4B mutations dispensable for efficient Con1 RNA replication were tested in the context of the chimeric genotype 2a virus, but significant defects in infectious-virus production were not detected. Taken together, these findings highlight the importance of charged residues for multiple NS4B functions in HCV RNA replication, including the formation of a functional replication complex.
Collapse
|
30
|
Lim YS, Hwang SB. Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIalpha and regulates viral propagation. J Biol Chem 2011; 286:11290-8. [PMID: 21297162 DOI: 10.1074/jbc.m110.194472] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) nonstructural 5A (NS5A) is a pleiotropic protein involved in viral RNA replication and modulation of the cellular physiology in HCV-infected cells. To elucidate the mechanisms of the HCV life cycle, we identified cellular factors interacting with the NS5A protein in HCV-infected cells. Huh7.5 cells were electroporated with HCV Jc1 RNA. Cellular factors associated with HCV NS5A were identified by immunoprecipitation with Dynabead-conjugated NS5A antibody and LC-MS/MS. Phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) was identified as a binding partner for the NS5A protein. NS5A derived from both genotypes 1b and 2a interacted with PI4KIIIα. NS5A interacted with PI4KIIIα through amino acids 401-600 of PI4KIIIα and domain I of NS5A. Interference of the protein interaction between NS5A and PI4KIIIα decreased HCV propagation. Knockdown of PI4KIIIα significantly reduced HCV replication in Huh7 cells harboring the subgenomic replicon and in Huh7.5 cells infected with cell culture grown virus (HCVcc). Silencing of PI4KIIIα further inhibited HCV release into the tissue culture medium. NS5A may recruit PI4KIIIα to the HCV RNA replication complex. These data suggest that PI4KIIIα is an essential host factor that supports HCV proliferation and therefore PI4KIIIα may be a legitimate target for anti-HCV therapy.
Collapse
Affiliation(s)
- Yun-Sook Lim
- National Research Laboratory of Hepatitis C Virus, Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | | |
Collapse
|
31
|
Nandasoma U, McCormick C, Griffin S, Harris M. Nucleotide requirements at positions +1 to +4 for the initiation of hepatitis C virus positive-strand RNA synthesis. J Gen Virol 2011; 92:1082-1086. [PMID: 21270286 DOI: 10.1099/vir.0.028423-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA virus genome replication requires initiation at the precise terminus of the template RNA. To investigate the nucleotide requirements for initiation of hepatitis C virus (HCV) positive-strand RNA replication, a hammerhead ribozyme was inserted at the 5' end of an HCV subgenomic replicon, allowing the generation of replicons with all four possible nucleotides at position 1. This analysis revealed a preference for a purine nucleotide at this position for initiation of RNA replication. The sequence requirements at positions 2-4 in the context of the J6/JFH-1 virus were also examined by selecting replication-competent virus from a pool containing randomized residues at these positions. There was strong selection for both the wild-type cytosine at position 2, and the wild-type sequence at positions 2-4 (CCU). An adenine residue was well tolerated at positions 3 and 4, which suggests that efficient RNA replication is less dependent on these residues.
Collapse
Affiliation(s)
- Udvitha Nandasoma
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher McCormick
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen Griffin
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
32
|
Tedbury P, Welbourn S, Pause A, King B, Griffin S, Harris M. The subcellular localization of the hepatitis C virus non-structural protein NS2 is regulated by an ion channel-independent function of the p7 protein. J Gen Virol 2010; 92:819-30. [PMID: 21177929 PMCID: PMC3133701 DOI: 10.1099/vir.0.027441-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hepatitis C virus (HCV) p7 ion channel and non-structural protein 2 (NS2) are both required for efficient assembly and release of nascent virions, yet precisely how these proteins are able to influence this process is unclear. Here, we provide both biochemical and cell biological evidence for a functional interaction between p7 and NS2. We demonstrate that in the context of a genotype 1b subgenomic replicon the localization of NS2 is affected by the presence of an upstream p7 with its cognate signal peptide derived from the C terminus of E2 (SPp7). Immunofluorescence analysis revealed that the presence of SPp7 resulted in the targeting of NS2 to sites closely associated with viral replication complexes. In addition, biochemical analysis demonstrated that, in the presence of SPp7, a significant proportion of NS2 was found in a detergent (Triton X-100)-insoluble fraction, which also contained a marker of detergent resistant rafts. In contrast, in replicons lacking p7, NS2 was entirely detergent soluble and the altered localization was lost. Furthermore, we found that serine 168 within NS2 was required for its localization adjacent to replication complexes, but not for its accumulation in the detergent-insoluble fraction. NS2 physically interacted with NS5A and this interaction was dependent on both p7 and serine 168 within NS2. Mutational and pharmacological analyses demonstrated that these effects were not a consequence of p7 ion channel function, suggesting that p7 possesses an alternative function that may influence the coordination of virus genome replication and particle assembly.
Collapse
Affiliation(s)
- Philip Tedbury
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
33
|
A major determinant of cyclophilin dependence and cyclosporine susceptibility of hepatitis C virus identified by a genetic approach. PLoS Pathog 2010; 6:e1001118. [PMID: 20886100 PMCID: PMC2944805 DOI: 10.1371/journal.ppat.1001118] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/23/2010] [Indexed: 01/11/2023] Open
Abstract
Since the advent of genome-wide small interfering RNA screening, large numbers of cellular cofactors important for viral infection have been discovered at a rapid pace, but the viral targets and the mechanism of action for many of these cofactors remain undefined. One such cofactor is cyclophilin A (CyPA), upon which hepatitis C virus (HCV) replication critically depends. Here we report a new genetic selection scheme that identified a major viral determinant of HCV's dependence on CyPA and susceptibility to cyclosporine A. We selected mutant viruses that were able to infect CyPA-knockdown cells which were refractory to infection by wild-type HCV produced in cell culture. Five independent selections revealed related mutations in a single dipeptide motif (D316 and Y317) located in a proline-rich region of NS5A domain II, which has been implicated in CyPA binding. Engineering the mutations into wild-type HCV fully recapitulated the CyPA-independent and CsA-resistant phenotype and four putative proline substrates of CyPA were mapped to the vicinity of the DY motif. Circular dichroism analysis of wild-type and mutant NS5A peptides indicated that the D316E/Y317N mutations (DEYN) induced a conformational change at a major CyPA-binding site. Furthermore, nuclear magnetic resonance experiments suggested that NS5A with DEYN mutations adopts a more extended, functional conformation in the putative CyPA substrate site in domain II. Finally, the importance of this major CsA-sensitivity determinant was confirmed in additional genotypes (GT) other than GT 2a. This study describes a new genetic approach to identifying viral targets of cellular cofactors and identifies a major regulator of HCV's susceptibility to CsA and its derivatives that are currently in clinical trials. Identification of cellular cofactors and their mechanisms of action is a fundamental aspect of virus-host interaction research. Screening of genome-wide small interfering RNA libraries has become an efficient way of systematically discovering cellular cofactors essential for various aspects of viral life cycle. We and others have recently demonstrated that cyclophilin A (CyPA) is an essential cofactor for hepatitis C virus (HCV) infection and serves as the direct target of a new class of clinical anti-HCV compounds, cyclosporine A (CsA) and its derivatives, that are devoid of immunosuppressive function. Here we report the identification of a key regulator of HCV's dependence on CyPA and susceptibility to CsA using a novel genetic screening approach that can potentially be applied to additional cellular cofactors and other viruses. The effectiveness of this approach, termed cofactor-independent mutant (CoFIM) screening, was further supported by results obtained with a parallel CsA-based selection using additional genotypes of HCV. This paper reports a new technology with which we discover and characterize the major determinant of HCV's sensitivity to CyPA inhibitors, which are currently being tested in clinical trials.
Collapse
|
34
|
Kim MJ, Yoo JY. Inhibition of hepatitis C virus replication by IFN-mediated ISGylation of HCV-NS5A. THE JOURNAL OF IMMUNOLOGY 2010; 185:4311-8. [PMID: 20810994 DOI: 10.4049/jimmunol.1000098] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ISG15 is a ubiquitin-like molecule whose expression is induced by type I IFN (IFN-α/β) or in response to virus or bacterial infection. ISG15 or conjugation of ISG15 to target proteins was reported to play critical roles in the regulation of antiviral responses. IFN restricts replication of hepatitis C virus (HCV). However, molecular mechanism of IFN-α/β that inhibits HCV replication is not clear yet. In the current study, we demonstrated that replication of HCV was inhibited by overexpression of ISG15 and ISG15-conjugation enzymes in the HCV subgenomic replicon cells. Among various nonstructural proteins of HCV, NS5A was identified as the substrate for ISGylation. Furthermore, protein stability of NS5A was decreased by overexpression of ISG15 or ISG15-conjugating enzymes. The inhibitory effect of ISG15 or ISGylation on NS5A was efficiently blocked by substitution of lysine at 379 residue to arginine within the C-terminal region, suggesting that ISGylation directly controls protein stability of NS5A. Finally, the inhibitory effect of IFN-α/β on HCV replication was further enhanced by ISGylation, suggesting ISG15 as a therapeutic tool for combined therapy with IFN against HCV.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | |
Collapse
|
35
|
Peng L, Liang D, Tong W, Li J, Yuan Z. Hepatitis C virus NS5A activates the mammalian target of rapamycin (mTOR) pathway, contributing to cell survival by disrupting the interaction between FK506-binding protein 38 (FKBP38) and mTOR. J Biol Chem 2010; 285:20870-81. [PMID: 20439463 PMCID: PMC2898342 DOI: 10.1074/jbc.m110.112045] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/25/2010] [Indexed: 01/16/2023] Open
Abstract
Hepatitis C virus (HCV) often establishes a persistent infection that most likely involves a complex host-virus interplay. We previously reported that the HCV nonstructural protein 5A (NS5A) bound to cellular protein FKBP38 and resulted in apoptosis suppression in human hepatoma cell line Huh7. In the present research we further found that NS5A increased phosphorylation levels of two mTOR-targeted substrates, S6K1 and 4EBP1, in Huh7 in the absence of serum. mTOR inhibitor rapamycin or NS5A knockdown blocked S6K1 and 4EBP1 phosphorylation increase in NS5A-Huh7 and HCV replicon cells, suggesting that NS5A specifically regulated mTOR activation. Overexpression of NS5A and FKBP38 mutants or FKBP38 knockdown revealed this mTOR activation was dependent on NS5A-FKBP38 interaction. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 treatment in NS5A-Huh7 showed that the mTOR activation was independent of PI3K. Moreover, NS5A suppressed caspase 3 and poly(ADP-ribose) polymerase activation, which was abolished by NS5A knockdown or rapamycin, indicating NS5A inhibited apoptosis specifically through the mTOR pathway. Further analyses suggested that apoptotic inhibition exerted by NS5A via mTOR also required NS5A-FKBP38 interaction. Glutathione S-transferase pulldown and co-immunoprecipitation showed that NS5A disrupted the mTOR-FKBP38 association. Additionally, NS5A or FKBP38 mutants recovered the mTOR-FKBP38 interaction; this indicated that the impairment of mTOR-FKBP38 association was dependent on NS5A-FKBP38 binding. Collectively, our data demonstrate that HCV NS5A activates the mTOR pathway to inhibit apoptosis through impairing the interaction between mTOR and FKBP38, which may represent a pivotal mechanism for HCV persistence and pathogenesis.
Collapse
Affiliation(s)
- Lu Peng
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Dongyu Liang
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Wenyan Tong
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Jianhua Li
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Zhenghong Yuan
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
36
|
Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase. Proc Natl Acad Sci U S A 2010; 107:11549-54. [PMID: 20534540 DOI: 10.1073/pnas.0912426107] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is associated with dysregulation of both lipid and glucose metabolism. As well as contributing to viral replication, these perturbations influence the pathogenesis associated with the virus, including steatosis, insulin resistance, and type 2 diabetes. AMP-activated protein kinase (AMPK) plays a key role in regulation of both lipid and glucose metabolism. We show here that, in cells either infected with HCV or harboring an HCV subgenomic replicon, phosphorylation of AMPK at threonine 172 and concomitant AMPK activity are dramatically reduced. We demonstrate that this effect is mediated by activation of the serine/threonine kinase, protein kinase B, which inhibits AMPK by phosphorylating serine 485. The physiological significance of this inhibition is demonstrated by the observation that pharmacological restoration of AMPK activity not only abrogates the lipid accumulation observed in virus-infected and subgenomic replicon-harboring cells but also efficiently inhibits viral replication. These data demonstrate that inhibition of AMPK is required for HCV replication and that the restoration of AMPK activity may present a target for much needed anti-HCV therapies.
Collapse
|
37
|
Gretton S, Hughes M, Harris M. Hepatitis C virus RNA replication is regulated by Ras-Erk signalling. J Gen Virol 2009; 91:671-80. [PMID: 19889932 DOI: 10.1099/vir.0.016899-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The hepatitis C virus NS5A protein has been previously demonstrated to partially attenuate activation of the Ras-Erk signalling pathway, via a conserved class II polyproline motif located towards the C terminus of the protein. However, the role of Ras-Erk signalling in the virus life cycle remains undetermined. To investigate this, levels of RNA replication were measured in genotypes 1 and 2 transient luciferase subgenomic replicon systems in the context of either pharmacological or genetic (dominant-negative) inhibition of MEK1, a kinase in the Ras-Erk signalling cascade. Incubation in the presence of two inhibitors (U0126 and PD184352) resulted in a decrease in the levels of RNA replication, conversely incubation with inhibitor PD98059 resulted in a modest increase in replication. The results obtained with PD98059 could not be explained by an off-target effect on Cox-2, stability of replicon RNA or stimulation of global translation levels, suggesting stimulation by a yet uncharacterized mechanism. To verify data obtained using pharmacological inhibitors the transient replicon RNA was co-electroporated with a dominant-negative mutant of MEK1. This resulted in a reduction in replication, confirming data seen with U0126 and PD184352. Our data are consistent with the hypothesis that a low level Ras-Erk signalling activity is required for RNA replication. However, complete inhibition of Ras-Erk signalling is inhibitory. These results suggest that perturbation of this signalling pathway by NS5A may be a mechanism to regulate levels of genomic RNA replication.
Collapse
Affiliation(s)
- Sarah Gretton
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|