1
|
Endogenous Peptide Inhibitors of HIV Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:65-85. [DOI: 10.1007/978-981-16-8702-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Abstract
PURPOSE OF REVIEW The persistence of HIV-1-infected cells, despite the introduction of the combinatorial antiretroviral therapy, is a major obstacle to HIV-1 eradication. Understanding the nature of HIV reservoir will lead to novel therapeutic approaches for the functional cure or eradication of the virus. In this review, we will update the recent development in imaging applications toward HIV-1/simian immunodeficiency virus (SIV) viral reservoirs research and highlight some of their limitations. RECENT FINDINGS CD4 T cells are the primary target of HIV-1/SIV and the predominant site for productive and latent reservoirs. This viral reservoir preferentially resides in lymphoid compartments that are difficult to access, which renders sampling and measurements problematical and a hurdle for understanding HIV-1 pathogenicity. Novel noninvasive technologies are needed to circumvent this and urgently help to find a cure for HIV-1. Recent technological advancements have had a significant impact on the development of imaging methodologies allowing the visualization of relevant biomarkers with high resolution and analytical capacity. Such methodologies have provided insights into our understanding of cellular and molecular interactions in health and disease. SUMMARY Imaging of the HIV-1 reservoir can provide significant insights for the nature (cell types), spatial distribution, and the role of the tissue microenvironment for its in vivo dynamics and potentially lead to novel targets for the virus elimination.
Collapse
|
3
|
Armani-Tourret M, Zhou Z, Gasser R, Staropoli I, Cantaloube-Ferrieu V, Benureau Y, Garcia-Perez J, Pérez-Olmeda M, Lorin V, Puissant-Lubrano B, Assoumou L, Delaugerre C, Lelièvre JD, Lévy Y, Mouquet H, Martin-Blondel G, Alcami J, Arenzana-Seisdedos F, Izopet J, Colin P, Lagane B. Mechanisms of HIV-1 evasion to the antiviral activity of chemokine CXCL12 indicate potential links with pathogenesis. PLoS Pathog 2021; 17:e1009526. [PMID: 33872329 PMCID: PMC8084328 DOI: 10.1371/journal.ppat.1009526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/29/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-1 infects CD4 T lymphocytes (CD4TL) through binding the chemokine receptors CCR5 or CXCR4. CXCR4-using viruses are considered more pathogenic, linked to accelerated depletion of CD4TL and progression to AIDS. However, counterexamples to this paradigm are common, suggesting heterogeneity in the virulence of CXCR4-using viruses. Here, we investigated the role of the CXCR4 chemokine CXCL12 as a driving force behind virus virulence. In vitro, CXCL12 prevents HIV-1 from binding CXCR4 and entering CD4TL, but its role in HIV-1 transmission and propagation remains speculative. Through analysis of thirty envelope glycoproteins (Envs) from patients at different stages of infection, mostly treatment-naïve, we first interrogated whether sensitivity of viruses to inhibition by CXCL12 varies over time in infection. Results show that Envs resistant (RES) to CXCL12 are frequent in patients experiencing low CD4TL levels, most often late in infection, only rarely at the time of primary infection. Sensitivity assays to soluble CD4 or broadly neutralizing antibodies further showed that RES Envs adopt a more closed conformation with distinct antigenicity, compared to CXCL12-sensitive (SENS) Envs. At the level of the host cell, our results suggest that resistance is not due to improved fusion or binding to CD4, but owes to viruses using particular CXCR4 molecules weakly accessible to CXCL12. We finally asked whether the low CD4TL levels in patients are related to increased pathogenicity of RES viruses. Resistance actually provides viruses with an enhanced capacity to enter naive CD4TL when surrounded by CXCL12, which mirrors their situation in lymphoid organs, and to deplete bystander activated effector memory cells. Therefore, RES viruses seem more likely to deregulate CD4TL homeostasis. This work improves our understanding of the pathophysiology and the transmission of HIV-1 and suggests that RES viruses' receptors could represent new therapeutic targets to help prevent CD4TL depletion in HIV+ patients on cART.
Collapse
Affiliation(s)
| | - Zhicheng Zhou
- Viral Pathogenesis Unit, Department of Virology, INSERM U1108, Institut Pasteur, Paris, France
| | - Romain Gasser
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Isabelle Staropoli
- Viral Pathogenesis Unit, Department of Virology, INSERM U1108, Institut Pasteur, Paris, France
| | | | - Yann Benureau
- Viral Pathogenesis Unit, Department of Virology, INSERM U1108, Institut Pasteur, Paris, France
| | | | - Mayte Pérez-Olmeda
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Valérie Lorin
- Laboratory of Humoral Immunology, Department of Immunology, INSERM U1222, Institut Pasteur, Paris, France
| | | | - Lambert Assoumou
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Paris, France
| | | | | | - Yves Lévy
- Vaccine Research Institute, INSERM and APHP, Hôpital H. Mondor, Créteil, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, INSERM U1222, Institut Pasteur, Paris, France
| | - Guillaume Martin-Blondel
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
- CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jacques Izopet
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de virologie, Toulouse, France
| | - Philippe Colin
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Bernard Lagane
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
4
|
Connell BJ, Hermans LE, Wensing AMJ, Schellens I, Schipper PJ, van Ham PM, de Jong DTCM, Otto S, Mathe T, Moraba R, Borghans JAM, Papathanasopoulos MA, Kruize Z, Venter FWD, Kootstra NA, Tempelman H, Tesselaar K, Nijhuis M. Immune activation correlates with and predicts CXCR4 co-receptor tropism switch in HIV-1 infection. Sci Rep 2020; 10:15866. [PMID: 32985522 PMCID: PMC7522993 DOI: 10.1038/s41598-020-71699-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
HIV-1 cell entry is mediated by binding to the CD4-receptor and chemokine co-receptors CCR5 (R5) or CXCR4 (X4). R5-tropic viruses are predominantly detected during early infection. A switch to X4-tropism often occurs during the course of infection. X4-tropism switching is strongly associated with accelerated disease progression and jeopardizes CCR5-based HIV-1 cure strategies. It is unclear whether host immunological factors play a causative role in tropism switching. We investigated the relationship between immunological factors and X4-tropism in a cross-sectional study in HIV-1 subtype C (HIV-1C)-infected patients and in a longitudinal HIV-1 subtype B (HIV-1B) seroconverter cohort. Principal component analysis identified a cluster of immunological markers (%HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD8+ T-cells, %CD70+ CD4+ T-cells, %CD169+ monocytes, and absolute CD4+ T-cell count) in HIV-1C patients that was independently associated with X4-tropism (aOR 1.044, 95% CI 1.003–1.087, p = 0.0392). Analysis of individual cluster contributors revealed strong correlations of two markers of T-cell activation (%HLA-DR+ CD4+ T-cells, %HLA-DR+CD38+ CD4+ T-cells) with X4-tropism, both in HIV-1C patients (p = 0.01;p = 0.03) and HIV-1B patients (p = 0.0003;p = 0.0001). Follow-up data from HIV-1B patients subsequently revealed that T-cell activation precedes and independently predicts X4-tropism switching (aHR 1.186, 95% CI 1.065–1.321, p = 0.002), providing novel insights into HIV-1 pathogenesis and CCR5-based curative strategies.
Collapse
Affiliation(s)
- Bridgette J Connell
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Lucas E Hermans
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.,Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Annemarie M J Wensing
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.,Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Ingrid Schellens
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Pauline J Schipper
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Petra M van Ham
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Dorien T C M de Jong
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Sigrid Otto
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Tholakele Mathe
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Robert Moraba
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | | | - Maria A Papathanasopoulos
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zita Kruize
- Amsterdam University Medical Center, Amsterdam Infection and Immunity Institute, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Francois W D Venter
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neeltje A Kootstra
- Amsterdam University Medical Center, Amsterdam Infection and Immunity Institute, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Hugo Tempelman
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Kiki Tesselaar
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands. .,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa. .,HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
5
|
Rajendiran S, Smith-Berdan S, Kunz L, Risolino M, Selleri L, Schroeder T, Forsberg EC. Ubiquitous overexpression of CXCL12 confers radiation protection and enhances mobilization of hematopoietic stem and progenitor cells. Stem Cells 2020; 38:1159-1174. [PMID: 32442338 DOI: 10.1002/stem.3205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
C-X-C motif chemokine ligand 12 (CXCL12; aka SDF1α) is a major regulator of a number of cellular systems, including hematopoiesis, where it influences hematopoietic cell trafficking, proliferation, and survival during homeostasis and upon stress and disease. A variety of constitutive, temporal, ubiquitous, and cell-specific loss-of-function models have documented the functional consequences on hematopoiesis upon deletion of Cxcl12. Here, in contrast to loss-of-function experiments, we implemented a gain-of-function approach by generating a doxycycline-inducible transgenic mouse model that enables spatial and temporal overexpression of Cxcl12. We demonstrated that ubiquitous CXCL12 overexpression led to an increase in multipotent progenitors in the bone marrow and spleen. The CXCL12+ mice displayed reduced reconstitution potential as either donors or recipients in transplantation experiments. Additionally, we discovered that Cxcl12 overexpression improved hematopoietic stem and progenitor cell mobilization into the blood, and conferred radioprotection by promoting quiescence. Thus, this new CXCL12+ mouse model provided new insights into major facets of hematopoiesis and serves as a versatile resource for studying CXCL12 function in a variety of contexts.
Collapse
Affiliation(s)
- Smrithi Rajendiran
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Stephanie Smith-Berdan
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Maurizio Risolino
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine and Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, California, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine and Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, California, USA
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
6
|
Sukhanov S, Higashi Y, Shai SY, Snarski P, Danchuk S, D'Ambra V, Tabony M, Woods TC, Hou X, Li Z, Ozoe A, Chandrasekar B, Takahashi SI, Delafontaine P. SM22α (Smooth Muscle Protein 22-α) Promoter-Driven IGF1R (Insulin-Like Growth Factor 1 Receptor) Deficiency Promotes Atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38:2306-2317. [PMID: 30354209 PMCID: PMC6287936 DOI: 10.1161/atvbaha.118.311134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective- IGF-1 (insulin-like growth factor 1) is a major autocrine/paracrine growth factor, which promotes cell proliferation, migration, and survival. We have shown previously that IGF-1 reduced atherosclerosis and promoted features of stable atherosclerotic plaque in Apoe-/- mice-an animal model of atherosclerosis. The aim of this study was to assess effects of smooth muscle cell (SMC) IGF-1 signaling on the atherosclerotic plaque. Approach and Results- We generated Apoe-/- mice with IGF1R (IGF-1 receptor) deficiency in SMC and fibroblasts (SM22α [smooth muscle protein 22 α]-CreKI/IGF1R-flox mice). IGF1R was decreased in the aorta and adventitia of SM22α-CreKI/IGF1R-flox mice and also in aortic SMC, embryonic, skin, and lung fibroblasts isolated from SM22α-CreKI/IGF1R-flox mice. IGF1R deficiency downregulated collagen mRNA-binding protein LARP6 (La ribonucleoprotein domain family, member 6) and vascular collagen, and mice exhibited growth retardation. The high-fat diet-fed SM22α-CreKI/IGF1R-flox mice had increased atherosclerotic burden and inflammatory responses. α-SMA (α-smooth muscle actin)-positive plaque cells had reduced proliferation and elevated apoptosis. SMC/fibroblast-targeted decline in IGF-1 signaling decreased atherosclerotic plaque SMC, markedly depleted collagen, reduced plaque fibrous cap, and increased plaque necrotic cores. Aortic SMC isolated from SM22α-CreKI/IGF1R-flox mice had decreased cell proliferation, migration, increased sensitivity to apoptosis, and these effects were associated with disruption of IGF-1-induced Akt signaling. Conclusions- IGF-1 signaling in SMC and in fibroblast is a critical determinant of normal vascular wall development and atheroprotection.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Apoptosis
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Autoantigens/metabolism
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Collagen/metabolism
- Disease Models, Animal
- Female
- Fibroblasts/metabolism
- Fibrosis
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Microfilament Proteins/genetics
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, IGF Type 1/deficiency
- Receptor, IGF Type 1/genetics
- Ribonucleoproteins/metabolism
- Signal Transduction
- SS-B Antigen
Collapse
Affiliation(s)
- Sergiy Sukhanov
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Yusuke Higashi
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Shaw-Yung Shai
- Heart and Vascular Institute (S.-Y.S., V.D., M.T.), Tulane University School of Medicine, New Orleans, LA
| | - Patricia Snarski
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Svitlana Danchuk
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Veronica D'Ambra
- Heart and Vascular Institute (S.-Y.S., V.D., M.T.), Tulane University School of Medicine, New Orleans, LA
| | - Michael Tabony
- Heart and Vascular Institute (S.-Y.S., V.D., M.T.), Tulane University School of Medicine, New Orleans, LA
| | - T Cooper Woods
- Department of Physiology (T.C.W.), Tulane University School of Medicine, New Orleans, LA
| | - Xuwei Hou
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Zhaohui Li
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Atsufumi Ozoe
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Japan (A.O., S.-I.T.)
| | - Bysani Chandrasekar
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
- Harry Truman Memorial Veterans Hospital, Columbia, MO (B.C.)
| | - Shin-Ichiro Takahashi
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Japan (A.O., S.-I.T.)
| | - Patrice Delafontaine
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| |
Collapse
|
7
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
8
|
Haque N, Kasim NHA, Kassim NLA, Rahman MT. Autologous serum supplement favours in vitro regenerative paracrine factors synthesis. Cell Prolif 2017; 50. [PMID: 28682474 DOI: 10.1111/cpr.12354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/28/2017] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Foetal bovine serum (FBS) is often the serum supplement of choice for in vitro human cell culture. This study compares the effect of FBS and autologous human serum (AuHS) supplement in human peripheral blood mononuclear cell (PBMC) culture to prepare secretome. MATERIALS AND METHODS The PBMC (n = 7) were cultured either in RPMI-1640 containing L-glutamine and 50 units/ml Penicillin-Streptomycin (BM) or in BM with either AuHS or FBS. Viability, proliferation and differentiation of PBMC were evaluated. Paracrine factors present in the secretomes (n = 6) were analysed using ProcartaPlex Human Cytokine panel (17 plex). Ingenuity Pathway Analysis (IPA) was performed to predict activation or inhibition of biological functions related to tissue regeneration. RESULTS The viability of PBMC that were cultured with FBS supplement was significantly reduced at 96 h compared to those at 0 and 24 h (P < .05). While the reduction of the viability of PBMC that were cultured with AuHS supplement was not significantly different compared to those at 0 and 24 h. The FBS secretomes prepared at 24 h was found to contain significantly higher amount of EGF (P < .05) compared to that in AuHS or BM secretome. The AuHS secretomes contained significantly higher amount of HGF at 24 (P < .05) and 96 h (P < .01), and VEGF-A at 24 h (P < .05) compared to those in the FBS secretomes. SDF-1 was not detected in the FBS secretomes prepared at either 24 or 96 hours. Double immunocytochemical staining revealed a marked increase in co-localization of SDF-1 and its receptor in PBMC that were cultured with AuHS supplement compared to that cultured with FBS supplement. CONCLUSION In secretome preparation, AuHS supplement favours synthesis of paracrine factors that are needed for regenerative therapy.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Lide Abu Kassim
- Faculty of Education, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | | |
Collapse
|
9
|
Different Expression of Interferon-Stimulated Genes in Response to HIV-1 Infection in Dendritic Cells Based on Their Maturation State. J Virol 2017; 91:JVI.01379-16. [PMID: 28148784 DOI: 10.1128/jvi.01379-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/20/2017] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells whose functions are dependent on their degree of differentiation. In their immature state, DCs capture pathogens and migrate to the lymph nodes. During this process, DCs become resident mature cells specialized in antigen presentation. DCs are characterized by a highly limiting environment for human immunodeficiency virus type 1 (HIV-1) replication due to the expression of restriction factors such as SAMHD1 and APOBEC3G. However, uninfected DCs capture and transfer viral particles to CD4 lymphocytes through a trans-enhancement mechanism in which chemokines are involved. We analyzed changes in gene expression with whole-genome microarrays when immature DCs (IDCs) or mature DCs (MDCs) were productively infected using Vpx-loaded HIV-1 particles. Whereas productive HIV infection of IDCs induced expression of interferon-stimulated genes (ISGs), such induction was not produced in MDCs, in which a sharp decrease in ISG- and CXCR3-binding chemokines was observed, lessening trans-infection of CD4 lymphocytes. Similar patterns of gene expression were found when DCs were infected with HIV-2 that naturally expresses Vpx. Differences were also observed under conditions of restrictive HIV-1 infection, in the absence of Vpx. ISG expression was not modified in IDCs, whereas an increase of ISG- and CXCR3-binding chemokines was observed in MDCs. Overall these results suggest that sensing and restriction of HIV-1 infection are different in IDCs and MDCs. We propose that restrictive infection results in increased virulence through different mechanisms. In IDCs avoidance of sensing and induction of ISGs, whereas in MDCs increased production of CXCR3-binding chemokines, would result in lymphocyte attraction and enhanced infection at the immune synapse.IMPORTANCE In this work we describe for the first time the activation of a different genetic program during HIV-1 infection depending on the state of maturation of DCs. This represents a breakthrough in the understanding of the restriction to HIV-1 infection of DCs. The results show that infection of DCs by HIV-1 reprograms their gene expression pattern. In immature cells, productive HIV-1 infection activates interferon-related genes involved in the control of viral replication, thus inducing an antiviral state in surrounding cells. Paradoxically, restriction of HIV-1 by SAMHD1 would result in lack of sensing and IFN activation, thus favoring initial HIV-1 escape from the innate immune response. In mature DCs, restrictive infection results in HIV-1 sensing and induction of ISGs, in particular CXCR3-binding chemokines, which could favor the transmission of HIV to lymphocytes. Our data support the hypothesis that genetic DC reprograming by HIV-1 infection favors viral escape and dissemination, thus increasing HIV-1 virulence.
Collapse
|
10
|
Cerkovnik P, Novaković BJ, Stegel V, Novaković S. Changes in expression of genes involved in antitumor immunity in mice vaccinated with tumor vaccine composed of irradiated syngeneic tumor cells and CpG oligodeoxynucleotides. Mol Immunol 2016; 79:1-13. [PMID: 27677155 DOI: 10.1016/j.molimm.2016.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 01/17/2023]
Abstract
In our previous studies, it has been demonstrated that in more than 80% of mice long-lasting antitumor immunity has been established following intraperitoneal (i.p.) vaccination with tumor vaccine composed of irradiated syngeneic tumor cells and CpG ODNs class C. The aim of this study was, therefore, to investigate molecular mechanisms through which this vaccine triggers the immunity and to define genes particularly involved in this process. Changes in gene expression were followed in mononuclear cells isolated from peritoneal lavages, spleens and bone marrow samples. The expression of 84 genes significant for T-cell and B-cell activation as well as genes engaged in activation of macrophages, NK cells and DCs was determined using the RT2- Profiler PCR array. It has been observed that this tumor vaccine induces the up-regulation of genes involved in activation, proliferation and survival of memory T-cells (Cd8a, Cd8b1, Prlr, Was, Cxcl12, Il12, Sftpd, Tnfrsf13c, Il15, Il18), and prevents the activation of genes involved in generation of Treg and induction of immune tolerance (Sit1, Sla2, Cd1d1, Pdcd1lg2, Pawr, Socs5, Il27, Il4). We may conclude based on results of gene expression analysis, that tumor vaccine fine-tunes the proportion of cytotoxic to regulatory lymphocytes having an important impact on the induction and maintenance of memory cells in bone marrow.
Collapse
Affiliation(s)
- Petra Cerkovnik
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | | | - Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Nakamura T, Maeda S, Horiguchi K, Maehara T, Aritake K, Choi BI, Iwakura Y, Urade Y, Murata T. PGD2 deficiency exacerbates food antigen-induced mast cell hyperplasia. Nat Commun 2015; 6:7514. [DOI: 10.1038/ncomms8514] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/15/2015] [Indexed: 01/11/2023] Open
|
12
|
Sarrami-Forooshani R, Mesman AW, van Teijlingen NH, Sprokholt JK, van der Vlist M, Ribeiro CMS, Geijtenbeek TBH. Human immature Langerhans cells restrict CXCR4-using HIV-1 transmission. Retrovirology 2014; 11:52. [PMID: 24990163 PMCID: PMC4227116 DOI: 10.1186/1742-4690-11-52] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/12/2014] [Indexed: 01/29/2023] Open
Abstract
Background Sexual transmission is the main route of HIV-1 infection and the CCR5-using (R5) HIV-1 is predominantly transmitted, even though CXCR4-using (X4) HIV-1 is often abundant in chronic HIV-1 patients. The mechanisms underlying this tropism selection are unclear. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 and here we investigated the role of LCs in selection of R5 HIV-1 using an ex vivo epidermal and vaginal transmission models. Results Immature LCs were productively infected by X4 as well as R5 HIV-1. However, only R5 but not X4 viruses were selectively transmitted by immature LCs to T cells. Transmission of HIV-1 was depended on de novo production of HIV-1 in LCs, since it could be inhibited by CCR5 fusion inhibitors as well as reverse transcription inhibitors. Notably, the activation state of LCs affected the restriction in X4 HIV-1 transmission; immune activation by TNF facilitated transmission of X4 as well as R5 HIV-1. Conclusions These data suggest that LCs play a crucial role in R5 selection and that immature LCs effectively restrict X4 at the level of transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
14
|
|
15
|
Abstract
PURPOSE OF REVIEW Acute HIV-1 infection (AHI) is composed of the eclipse phase, during which the transmitted virus struggles to avoid eradication and achieve amplification/spread; the expansion phase when virus disseminates and undergoes exponential replication associated with extensive CD4⁺ T-cell destruction; and the containment phase when set-point levels of viremia and immune activation are established. The importance of interactions between HIV-1 and innate responses in determining events throughout AHI is increasingly recognized, and is reviewed here. RECENT FINDINGS During the eclipse phase, HIV-1 subverts dendritic cell functions to promote its replication at mucosal sites and employs multiple strategies to minimize control by type 1 interferons. Systemic virus dissemination is associated with widespread activation of innate responses which fuels HIV-1 replication. To minimize the protective effects of innate responses, HIV-1 resists control by natural killer cells and may impair innate regulation of adaptive responses. Innate responses remain chronically activated after HIV-1 containment which is thought to drive HIV-1 pathogenesis. SUMMARY Innate responses are pivotal determinants of events at all stages of AHI. Increased understanding of mechanisms involved in innate control of HIV-1 and pathways regulating innate activation during HIV-1 infection could facilitate development of novel approaches to combating this infection.
Collapse
|
16
|
|
17
|
Delgado-Martín C, Escribano C, Pablos JL, Riol-Blanco L, Rodríguez-Fernández JL. Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells. J Biol Chem 2011; 286:37222-36. [PMID: 21878648 DOI: 10.1074/jbc.m111.294116] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chemokines control several cell functions in addition to chemotaxis. Although much information is available on the involvement of specific signaling molecules in the control of single functions controlled by chemokines, especially chemotaxis, the mechanisms used by these ligands to regulate several cell functions simultaneously are completely unknown. Mature dendritic cells (maDCs) migrate through the afferent lymphatic vessels to the lymph nodes, where they regulate the initiation of the immune response. As maDCs are exposed to chemokine CXCL12 (receptors CXCR4 and CXCR7) during their migration, its functions are amenable to be regulated by this ligand. We have used maDCs as a model system to analyze the mechanisms whereby CXCL12 simultaneously controls chemotaxis and survival in maDCs. We show that CXCL12 uses CXCR4, but not CXCR7, and the components of a signaling core that includes G(i)/Gβγ, PI3K-α/-δ/-γ, Akt, ERK1/2 and mammalian target of rapamycin complex 1 (mTORC1), which organize hierarchically to control both functions. Downstream of Akt, Forkhead box class O (FOXO) regulates CXCL12-dependent survival, but not chemotaxis, suggesting that downstream of the aforementioned signaling core, additional signaling molecules may control more selectively CXCL12-dependent chemotaxis or survival. Finally, the data obtained also show that CXCR4 uses a signaling signature that is different from that used by CCR7 to control similar functions.
Collapse
Affiliation(s)
- Cristina Delgado-Martín
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Alcamí J, Coiras M. [Immunopathogenesis of HIV infection]. Enferm Infecc Microbiol Clin 2011; 29:216-26. [PMID: 21388715 DOI: 10.1016/j.eimc.2011.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 11/15/2022]
Abstract
Killing of CD4 lymphocytes and systemic immune suppression are the hallmarks of HIV infection. These milestones are produced by different mechanisms that draw a complex picture of AIDS immunopathogenesis. The role of the GALT system as a preferential target for HIV, chronic activation of the immune system and viral escape mechanisms are recent challenges that have changed our current view on the mechanisms leading to immune destruction and development of AIDS. In this article, the mechanisms of immune suppression, the evolution of immune response throughout the infection and the mechanisms of viral escape are analysed.
Collapse
Affiliation(s)
- José Alcamí
- Unidad de Inmunopatología del Sida, Instituto de Salud Carlos III, Majadahonda, Madrid, España
| | | |
Collapse
|
19
|
Sánchez-Palomino S, Massanella M, Carrillo J, García A, García F, González N, Merino A, Alcamí J, Bofill M, Yuste E, Gatell JM, Clotet B, Blanco J. A cell-to-cell HIV transfer assay identifies humoral responses with broad neutralization activity. Vaccine 2011; 29:5250-9. [PMID: 21609746 DOI: 10.1016/j.vaccine.2011.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/22/2011] [Accepted: 05/09/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cell-to-cell HIV spread through virological synapses proceeds in two steps, first HIV particles are rapidly transferred to target cells in a CD4-dependent manner and then coreceptor-dependent events allow for infection or death of single target cells and cell-to-cell fusion. METHODS 293T or MOLT cells producing HIV particles were cocultured with primary CD4 T-cells or reporter cell lines. The extent of HIV transfer, cell fusion and target cell death was assessed. Inhibition by sera from 19 HIV-infected patients was evaluated and compared with cell-free HIV neutralization using different envelopes from clades A, B, C and E. RESULTS Sera showed different abilities to protect CD4 T-cells from cell-to-cell transfer, fusion or death when cocultured with HIV producing 293T cells. Some sera were able to block all parameters (a property of IgGb12), while other showed lower activity against HIV transfer despite being able to block fusion and death (a property of antibodies blocking post-CD4 binding steps). Neutralization of cell-to-cell HIV transfer strongly correlated with IgG binding to native Env. Interestingly, sera that efficiently blocked HIV transfer showed broader neutralizing response, as they neutralized a higher percentage of the viruses tested compared with sera showing low CD4 binding site responses (P=0.01). Similar results were observed in a model of T cell-T cell HIV transmission, although this experimental model showed lower capacity to discriminate broadly neutralizing responses. CONCLUSION Cell-to-cell HIV transfer assays identify sera with broadly neutralizing capacity and may help to characterize anti-HIV humoral responses.
Collapse
|
20
|
Garcia-Perez J, Rueda P, Staropoli I, Kellenberger E, Alcami J, Arenzana-Seisdedos F, Lagane B. New insights into the mechanisms whereby low molecular weight CCR5 ligands inhibit HIV-1 infection. J Biol Chem 2010; 286:4978-90. [PMID: 21118814 DOI: 10.1074/jbc.m110.168955] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CC chemokine receptor 5 (CCR5) is a G-protein-coupled receptor for the chemokines CCL3, -4, and -5 and a coreceptor for entry of R5-tropic strains of human immunodeficiency virus type 1 (HIV-1) into CD4(+) T-cells. We investigated the mechanisms whereby nonpeptidic, low molecular weight CCR5 ligands block HIV-1 entry and infection. Displacement binding assays and dissociation kinetics demonstrated that two of these molecules, i.e. TAK779 and maraviroc (MVC), inhibit CCL3 and the HIV-1 envelope glycoprotein gp120 binding to CCR5 by a noncompetitive and allosteric mechanism, supporting the view that they bind to regions of CCR5 distinct from the gp120- and CCL3-binding sites. We observed that TAK779 and MVC are full and weak inverse agonists for CCR5, respectively, indicating that they stabilize distinct CCR5 conformations with impaired abilities to activate G-proteins. Dissociation of [(125)I]CCL3 from CCR5 was accelerated by TAK779, to a lesser extent by MVC, and by GTP analogs, suggesting that inverse agonism contributes to allosteric inhibition of the chemokine binding to CCR5. TAK779 and MVC also promote dissociation of [(35)S]gp120 from CCR5 with an efficiency that correlates with their ability to act as inverse agonists. Displacement experiments revealed that affinities of MVC and TAK779 for the [(35)S]gp120-binding receptors are in the same range (IC(50) ∼6.4 versus 22 nm), although we found that MVC is 100-fold more potent than TAK779 for inhibiting HIV infection. This suggests that allosteric CCR5 inhibitors not only act by blocking gp120 binding but also alter distinct steps of CCR5 usage in the course of HIV infection.
Collapse
Affiliation(s)
- Javier Garcia-Perez
- INSERM U819/Unité de Pathogénie Virale, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|