1
|
Wang C, Zhang J, Xu Y, Zhao J, Qiu M, Zhao X, Li G, Qiao W, Tan J. SAP30 deacetylates the Tas protein to inhibit PFV replication. Cell Biosci 2025; 15:53. [PMID: 40275313 PMCID: PMC12023400 DOI: 10.1186/s13578-025-01400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Foamy viruses (FVs), a unique class of retroviruses, establish lifelong latent infections in the host without causing symptoms, contributing to the relatively slow progress in FV research. However, key mutations in FVs can result in severe consequences due to their broad cellular tropism, underscoring the importance of studying latent FV infections. RESULTS To identify new host proteins involved in the replication of prototype foamy virus (PFV), we previously infected the human fibrosarcoma cell line HT1080 with PFV and performed transcriptomic sequencing. The analysis revealed a significant upregulation of SAP30 mRNA levels following PFV infection. Further experiments demonstrated that PFV infection enhances SAP30 promoter activity via the Tas protein, leading to increased SAP30 mRNA and protein expression. Overexpression of SAP30 inhibited PFV replication, whereas knockdown of endogenous SAP30 enhanced PFV replication. Furthermore, SAP30 interacted with the Tas protein to induce its deacetylation, thereby suppressing Tas-mediated transactivation of the PFV LTR and IP promoters. The Sin3 interaction domain at the C-terminus of SAP30 was identified as the critical domain for inhibiting PFV transcription. CONCLUSIONS Our findings suggest that SAP30 inhibits PFV replication by deacetylating the Tas protein, thereby disrupting its transcriptional activation function. KEY WORDS prototype foamy virus; SAP30; Tas; transcription; deacetylation.
Collapse
Affiliation(s)
- Chenchen Wang
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Junshi Zhang
- Department of Hematology, Oncology Center, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, 300121, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, 300121, China
| | - Yali Xu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiawei Zhao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Manman Qiu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xingli Zhao
- Department of Hematology, Oncology Center, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, 300121, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, 300121, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Cho SY, Kim KD, Shin CG. Advances in foamy virus vector systems: Development and applications. Virology 2025; 601:110270. [PMID: 39509861 DOI: 10.1016/j.virol.2024.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Foamy virus (FV) is a retrovirus with a safer integration profile than other retroviruses, rendering it appealing for gene therapy. Prototype FV (PFV) vector systems have been devised to yield high-titer vectors carrying large transgenes. Subsequent iterations of PFV vectors have been engineered to be replication-incompetent, enhancing their safety. A third generation PFV vector system, composed of four plasmids, has been adapted to accommodate large transgenes. Additionally, a novel dual-vector system shows promise for convenient and efficient gene delivery, particularly with the forthcoming development of stable producer cell lines expressing PFV Env. FVs exhibit a broad host spectrum due to the ubiquitous presence of the host factor, heparan sulfate (HS), on their surface. The receptor-binding domain (RBD) of FV Env proteins plays a crucial role in binding to the host cell HS. The FV vector system has been employed in hematopoietic stem cell (HSC) gene therapy to address monogenic diseases in dog and mouse models. In addition, FV vectors safely and efficiently deliver anti-HIV transgenes to HSCs, and vectors carrying HIV epitopes successfully induce antibodies against HIV, offering the promise of anti-HIV gene therapy and vaccine development. In this review, we delve into the development and utilization of FV vector systems, emphasizing their unique advantages in gene therapy, including their non-pathogenic nature, broad host tropism, large transgene capacity, and persistence in resting cells. Furthermore, we discuss the potential of FV vectors in tackling current challenges in gene therapy and their viability as valuable tools for treating genetic diseases.
Collapse
Affiliation(s)
- Soo-Yeon Cho
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea.
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea.
| |
Collapse
|
3
|
Calcraft T, Stanke-Scheffler N, Nans A, Lindemann D, Taylor IA, Rosenthal PB. Integrated cryoEM structure of a spumaretrovirus reveals cross-kingdom evolutionary relationships and the molecular basis for assembly and virus entry. Cell 2024; 187:4213-4230.e19. [PMID: 39013471 DOI: 10.1016/j.cell.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/26/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution. Here we combine cryoEM and cryoET to determine high-resolution in situ structures of the PFV icosahedral capsid (CA) and envelope glycoprotein (Env), including its type III transmembrane anchor and membrane-proximal external region (MPER), and show how they are organized in an integrated structure of assembled PFV particles. The atomic models reveal an ancient retroviral capsid architecture and an unexpected relationship between Env and other class 1 fusion proteins of the Mononegavirales. Our results represent the de novo structure determination of an assembled retrovirus particle.
Collapse
Affiliation(s)
- Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicole Stanke-Scheffler
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
4
|
Zhang J, Xu Y, Wang C, Tuo X, Zhao X, Qiao W, Tan J. PREB inhibits the replication of prototype foamy virus by affecting its transcription. Virol J 2023; 20:244. [PMID: 37885034 PMCID: PMC10604407 DOI: 10.1186/s12985-023-02211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Foamy viruses (FVs) are unique nonpathogenic retroviruses, which remain latent in the host for a long time. Therefore, they may be safe, effective gene transfer vectors. In this study, were assessed FV-host cell interactions and the molecular mechanisms underlying FV latent infection. METHODS We used the prototype FV (PFV) to infect HT1080 cells and a PFV indicator cell line (PFVL) to measure virus titers. After 48 h of infection, the culture supernatant (i.e., cell-free PFV particles) and transfected cells (i.e., cell-associated PFV particles) were harvested and incubated with PFVL. After another 48 h, the luciferase activity was used to measure virus titers. RESULTS Through transcriptomics sequencing, we found that PREB mRNA expression was significantly upregulated. Moreover, PREB overexpression reduced PFV replication, whereas endogenous PREB knockdown increased PFV replication. PREB interacted with the Tas DNA-binding and transcriptional activation domains and interfered with its binding to the PFV long terminal repeat and internal promoter, preventing the recruitment of transcription factors and thereby inhibiting the transactivation function of Tas. PREB C-terminal 329-418 aa played a major role in inhibiting PFV replication; PREB also inhibited bovine FV replication. Therefore, PREB has a broad-spectrum inhibitory effect on FV replication. CONCLUSIONS Our results demonstrated that PREB inhibits PFV replication by impeding its transcription.
Collapse
Affiliation(s)
- Junshi Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Hematology, Oncology Centrer, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300121, P. R. China
| | - Yali Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chenchen Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaopeng Tuo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xingli Zhao
- Department of Hematology, Oncology Centrer, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300121, P. R. China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Ran XH, Zhu JW, Ni RZ, Zheng YT, Chen YY, Zheng WH, Mu D. TRIM5α recruits HDAC1 to p50 and Sp1 and promotes H3K9 deacetylation at the HIV-1 LTR. Nat Commun 2023; 14:3343. [PMID: 37291137 PMCID: PMC10250300 DOI: 10.1038/s41467-023-39056-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Tripartite motif-containing protein 5α (TRIM5α) is generally known to block the postentry events of HIV-1. Here, we report an uncharacterized role for TRIM5α in the maintenance of viral latency. Knockdown of TRIM5α potentiates the transcription of HIV-1 in multiple latency models, which is reversed by shRNA-resistant TRIM5α. TRIM5α suppresses TNFα-activated HIV-1 LTR-driven as well as NF-κB- and Sp1-driven gene expression, with the RING and B-box 2 domains being the essential determinants. Mechanistically, TRIM5α binds to and enhances the recruitment of histone deacetylase 1 (HDAC1) to NF-κB p50 and Sp1. ChIP‒qPCR analyses further reveal that the association of TRIM5α with HIV-1 LTR induces HDAC1 recruitment and local H3K9 deacetylation. Conserved suppression effects of TRIM5α orthologs from multiple species on both HIV-1 and endo-retroelement HERV-K LTR activities have also been demonstrated. These findings provide new insights into the molecular mechanisms by which proviral latency is initially established and activatable proviruses are resilenced by histone deacetylase recruitment.
Collapse
Affiliation(s)
- Xiang-Hong Ran
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jia-Wu Zhu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Run-Ze Ni
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ya-Yun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wei-Hua Zheng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Dan Mu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Jaguva Vasudevan AA, Becker D, Luedde T, Gohlke H, Münk C. Foamy Viruses, Bet, and APOBEC3 Restriction. Viruses 2021; 13:504. [PMID: 33803830 PMCID: PMC8003144 DOI: 10.3390/v13030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023] Open
Abstract
Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
7
|
The Unique, the Known, and the Unknown of Spumaretrovirus Assembly. Viruses 2021; 13:v13010105. [PMID: 33451128 PMCID: PMC7828637 DOI: 10.3390/v13010105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022] Open
Abstract
Within the family of Retroviridae, foamy viruses (FVs) are unique and unconventional with respect to many aspects in their molecular biology, including assembly and release of enveloped viral particles. Both components of the minimal assembly and release machinery, Gag and Env, display significant differences in their molecular structures and functions compared to the other retroviruses. This led to the placement of FVs into a separate subfamily, the Spumaretrovirinae. Here, we describe the molecular differences in FV Gag and Env, as well as Pol, which is translated as a separate protein and not in an orthoretroviral manner as a Gag-Pol fusion protein. This feature further complicates FV assembly since a specialized Pol encapsidation strategy via a tripartite Gag-genome–Pol complex is used. We try to relate the different features and specific interaction patterns of the FV Gag, Pol, and Env proteins in order to develop a comprehensive and dynamic picture of particle assembly and release, but also other features that are indirectly affected. Since FVs are at the root of the retrovirus tree, we aim at dissecting the unique/specialized features from those shared among the Spuma- and Orthoretrovirinae. Such analyses may shed light on the evolution and characteristics of virus envelopment since related viruses within the Ortervirales, for instance LTR retrotransposons, are characterized by different levels of envelopment, thus affecting the capacity for intercellular transmission.
Collapse
|
8
|
Yap MW, Young GR, Varnaite R, Morand S, Stoye JP. Duplication and divergence of the retrovirus restriction gene Fv1 in Mus caroli allows protection from multiple retroviruses. PLoS Genet 2020; 16:e1008471. [PMID: 32525879 PMCID: PMC7313476 DOI: 10.1371/journal.pgen.1008471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/23/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
Viruses and their hosts are locked in an evolutionary race where resistance to infection is acquired by the hosts while viruses develop strategies to circumvent these host defenses. Forming one arm of the host defense armory are cell autonomous restriction factors like Fv1. Originally described as protecting laboratory mice from infection by murine leukemia virus (MLV), Fv1s from some wild mice have also been found to restrict non-MLV retroviruses, suggesting an important role in the protection against viruses in nature. We surveyed the Fv1 genes of wild mice trapped in Thailand and characterized their restriction activities against a panel of retroviruses. An extra copy of the Fv1 gene, named Fv7, was found on chromosome 6 of three closely related Asian species of mice: Mus caroli, M. cervicolor, and M. cookii. The presence of flanking repeats suggested it arose by LINE-mediated retroduplication within their most recent common ancestor. A high degree of natural variation was observed in both Fv1 and Fv7 and, on top of positive selection at certain residues, insertions and deletions were present that changed the length of the reading frames. These genes exhibited a range of restriction phenotypes, with activities directed against gamma-, spuma-, and lentiviruses. It seems likely, at least in the case of M. caroli, that the observed gene duplication may expand the breadth of restriction beyond the capacity of Fv1 alone and that one or more such viruses have recently driven or continue to drive the evolution of the Fv1 and Fv7 genes.
Collapse
Affiliation(s)
| | | | | | - Serge Morand
- Centre National de la Recherche Scientifique-Centre de coopération
Internationale en Recherche Agronomique pour le Développement Animal et Gestion
Intégrée des Risques, Faculty of Veterinary Technology, Kasetsart University,
Bangkok, Thailand
| | - Jonathan P. Stoye
- The Francis Crick Institute, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United
Kingdom
| |
Collapse
|
9
|
Bergez M, Weber J, Riess M, Erdbeer A, Seifried J, Stanke N, Munz C, Hornung V, König R, Lindemann D. Insights into Innate Sensing of Prototype Foamy Viruses in Myeloid Cells. Viruses 2019; 11:v11121095. [PMID: 31779173 PMCID: PMC6950106 DOI: 10.3390/v11121095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023] Open
Abstract
Foamy viruses (FVs) belong to the Spumaretrovirinae subfamily of retroviruses and are characterized by unique features in their replication strategy. This includes a reverse transcription (RTr) step of the packaged RNA genome late in replication, resulting in the release of particles with a fraction of them already containing an infectious viral DNA (vDNA) genome. Little is known about the immune responses against FVs in their hosts, which control infection and may be responsible for their apparent apathogenic nature. We studied the interaction of FVs with the innate immune system in myeloid cells, and characterized the viral pathogen-associated molecular patterns (PAMPs) and the cellular pattern recognition receptors and sensing pathways involved. Upon cytoplasmic access, full-length but not minimal vector genome containing FVs with active reverse transcriptase, induced an efficient innate immune response in various myeloid cells. It was dependent on cellular cGAS and STING and largely unaffected by RTr inhibition during viral entry. This suggests that RTr products, which are generated during FV morphogenesis in infected cells, and are therefore already present in FV particles taken up by immune cells, are the main PAMPs of FVs with full-length genomes sensed in a cGAS and STING-dependent manner by the innate immune system in host cells of the myeloid lineage.
Collapse
Affiliation(s)
- Maïwenn Bergez
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany; (M.B.); (M.R.); (J.S.)
| | - Jakob Weber
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany; (J.W.); (A.E.); (N.S.); (C.M.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maximilian Riess
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany; (M.B.); (M.R.); (J.S.)
| | - Alexander Erdbeer
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany; (J.W.); (A.E.); (N.S.); (C.M.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Janna Seifried
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany; (M.B.); (M.R.); (J.S.)
| | - Nicole Stanke
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany; (J.W.); (A.E.); (N.S.); (C.M.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Clara Munz
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany; (J.W.); (A.E.); (N.S.); (C.M.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany;
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany; (M.B.); (M.R.); (J.S.)
- German Center for Infection Research (DZIF), 63225 Langen, Germany
- Immunity and Pathogenesis Program, SBP Medical Discovery Institute, La Jolla, CA 92037, USA
- Correspondence: (R.K.); (D.L.); Tel.: +49-6103-77-4019 (R.K.); +49-351-458-6210 (D.L.)
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany; (J.W.); (A.E.); (N.S.); (C.M.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence: (R.K.); (D.L.); Tel.: +49-6103-77-4019 (R.K.); +49-351-458-6210 (D.L.)
| |
Collapse
|
10
|
Materniak-Kornas M, Tan J, Heit-Mondrzyk A, Hotz-Wagenblatt A, Löchelt M. Bovine Foamy Virus: Shared and Unique Molecular Features In Vitro and In Vivo. Viruses 2019; 11:E1084. [PMID: 31766538 PMCID: PMC6950176 DOI: 10.3390/v11121084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
The retroviral subfamily of Spumaretrovirinae consists of five genera of foamy (spuma) viruses (FVs) that are endemic in some mammalian hosts [1]. Closely related species may be susceptible to the same or highly related FVs. FVs are not known to induce overt disease and thus do not pose medical problems to humans and livestock or companion animals. A robust lab animal model is not available or is a lab animal a natural host of a FV. Due to this, research is limited and often focused on the simian FVs with their well-established zoonotic potential. The authors of this review and their groups have conducted several studies on bovine FV (BFV) in the past with the intention of (i) exploring the risk of zoonotic infection via beef and raw cattle products, (ii) studying a co-factorial role of BFV in different cattle diseases with unclear etiology, (iii) exploring unique features of FV molecular biology and replication strategies in non-simian FVs, and (iv) conducting animal studies and functional virology in BFV-infected calves as a model for corresponding studies in primates or small lab animals. These studies gained new insights into FV-host interactions, mechanisms of gene expression, and transcriptional regulation, including miRNA biology, host-directed restriction of FV replication, spread and distribution in the infected animal, and at the population level. The current review attempts to summarize these findings in BFV and tries to connect them to findings from other FVs.
Collapse
Affiliation(s)
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Anke Heit-Mondrzyk
- German Cancer Research Center DKFZ, Core Facility Omics IT and Data Management, 69120 Heidelberg, Germany; (A.H.-M.); (A.H.-W.)
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center DKFZ, Core Facility Omics IT and Data Management, 69120 Heidelberg, Germany; (A.H.-M.); (A.H.-W.)
| | - Martin Löchelt
- German Cancer Research Center DKFZ, Program Infection, Inflammation and Cancer, Div. Viral Transformation Mechanisms, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Young GR, Yap MW, Michaux JR, Steppan SJ, Stoye JP. Evolutionary journey of the retroviral restriction gene Fv1. Proc Natl Acad Sci U S A 2018; 115:10130-10135. [PMID: 30224488 PMCID: PMC6176592 DOI: 10.1073/pnas.1808516115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Both exogenous and endogenous retroviruses have long been studied in mice, and some of the earliest mouse studies focused on the heritability of genetic factors influencing permissivity and resistance to infection. The prototypic retroviral restriction factor, Fv1, is now understood to exhibit a degree of control across multiple retroviral genera and is highly diverse within Mus To better understand the age and evolutionary history of Fv1, a comprehensive survey of the Muroidea was conducted, allowing the progenitor integration to be dated to ∼45 million years. Intact coding potential is visible beyond Mus, and sequence analysis reveals strong signatures of positive selection also within field mice, ApodemusFv1's survival for such a period implies a recurring and shifting retroviral burden imparting the necessary selective pressures-an influence likely also common to analogous factors. Regions of Fv1 adapt cooperatively, highlighting its preference for repeated structures and suggesting that this functionally constrained aspect of the retroviral capsid lattice presents a common target in the evolution of intrinsic immunity.
Collapse
Affiliation(s)
- George R Young
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Melvyn W Yap
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Johan R Michaux
- Laboratoire de Génétique de la Conservation, Université de Liège, 4000 Liège, Belgium
- UMR Animal, Santé, Territoires, Risques et Ecosystèmes (ASTRE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Campus International de Baillarguet, Université de Montpellier, 34398 Montpellier, France
| | - Scott J Steppan
- Department of Biological Science, Florida State University, Tallahassee, FL 32304
| | - Jonathan P Stoye
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
- Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Abstract
The interactions between a retrovirus and host cell chromatin that underlie integration and provirus expression are poorly understood. The prototype foamy virus (PFV) structural protein GAG associates with chromosomes via a chromatin-binding sequence (CBS) located within its C-terminal region. Here, we show that the PFV CBS is essential and sufficient for a direct interaction with nucleosomes and present a crystal structure of the CBS bound to a mononucleosome. The CBS interacts with the histone octamer, engaging the H2A-H2B acidic patch in a manner similar to other acidic patch-binding proteins such as herpesvirus latency-associated nuclear antigen (LANA). Substitutions of the invariant arginine anchor residue in GAG result in global redistribution of PFV and macaque simian foamy virus (SFVmac) integration sites toward centromeres, dampening the resulting proviral expression without affecting the overall efficiency of integration. Our findings underscore the importance of retroviral structural proteins for integration site selection and the avoidance of genomic junkyards.
Collapse
|
13
|
Yuan P, Dong L, Cheng Q, Wang S, Li Z, Sun Y, Han S, Yin J, Peng B, He X, Liu W. Prototype foamy virus elicits complete autophagy involving the ER stress-related UPR pathway. Retrovirology 2017; 14:16. [PMID: 28270144 PMCID: PMC5341167 DOI: 10.1186/s12977-017-0341-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
Background Prototype foamy virus (PFV) is a member of the Spumaretrovirinae subfamily of retroviruses, which maintains lifelong latent infection while being nonpathogenic to their natural hosts. Autophagy is a cell-programmed mechanism that plays a pivotal role in controlling homeostasis and defense against exotic pathogens. However, whether autophagy is the mechanism for host defense in PFV infection has not been investigated. Findings Our results revealed that PFV infection induced the accumulation of autophagosomes and triggered complete autophagic flux in BHK-21 cells. PFV infection also altered endoplasmic reticulum (ER) homeostasis. The PERK, IRE1 and ATF6 pathways, all of which are components of the ER stress-related unfolded protein response (UPR), were activated in PFV-infected cells. In addition, accelerating autophagy suppressed PFV replication, and inhibition of autophagy promoted viral replication. Conclusions Our data indicate that PFV infection can induce complete autophagy through activating the ER stress-related UPR pathway in BHK-21 cells. In turn, autophagy negatively regulates PFV replication. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0341-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peipei Yuan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lanlan Dong
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.,Wuhan Ammunition Life Technology Co., Ltd, Wuhan, 430206, China
| | - Qingqing Cheng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Shuang Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Zhi Li
- College of Life Sciences, Shanxi Normal University, Xi'an, 710062, China
| | - Yan Sun
- College of Life Sciences, Shanxi Normal University, Xi'an, 710062, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
14
|
Ball NJ, Nicastro G, Dutta M, Pollard DJ, Goldstone DC, Sanz-Ramos M, Ramos A, Müllers E, Stirnnagel K, Stanke N, Lindemann D, Stoye JP, Taylor WR, Rosenthal PB, Taylor IA. Structure of a Spumaretrovirus Gag Central Domain Reveals an Ancient Retroviral Capsid. PLoS Pathog 2016; 12:e1005981. [PMID: 27829070 PMCID: PMC5102385 DOI: 10.1371/journal.ppat.1005981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022] Open
Abstract
The Spumaretrovirinae, or foamy viruses (FVs) are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV). The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA) and C-terminal domains (CtDCA) of archetypal orthoretroviral capsid protein (CA). Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN-CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold.
Collapse
Affiliation(s)
- Neil J. Ball
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Moumita Dutta
- Structural Biology of Cells and Viruses, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Dominic J. Pollard
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - David C. Goldstone
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Marta Sanz-Ramos
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Andres Ramos
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Erik Müllers
- Institute of Virology, Technische Universität Dresden, Dresden, DE
| | | | - Nicole Stanke
- Institute of Virology, Technische Universität Dresden, Dresden, DE
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Dresden, DE
| | - Jonathan P. Stoye
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - William R. Taylor
- Computational Cell and Molecular Biology Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
15
|
Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration. PLoS Pathog 2016; 12:e1005860. [PMID: 27579920 PMCID: PMC5006980 DOI: 10.1371/journal.ppat.1005860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/11/2016] [Indexed: 01/31/2023] Open
Abstract
Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells. Viruses are masters at exploiting host cell machineries for their replication. For human immunodeficiency virus type 1 (HIV-1), the best-studied representative of the Orthoretrovirinae subfamily from the genus lentiviruses, numerous important virus-host interactions have been described. In contrast, only a few cellular proteins are known to influence the replication of foamy viruses (FVs, also known as spumaviruses), an intriguing type of complex retrovirus of the Spumaretrovirinae subfamily that combines features of both retroviruses and hepadnaviruses in its replication strategy. Given the increasing interest in FVs as gene transfer tools and their unique status within the retrovirus family, this discrepancy urged the identification of novel host cell interaction partners of FV structural components. This study focused on prototype FV (PFV), the best-characterized member of FVs, and its capsid protein, Gag, as the central player of viral replication. Members of the mitosis-regulatory, polo-like kinase (PLK) family were identified as novel Gag binding partners. The Gag interaction with PLK1 (and possibly also PLK2) facilitated efficient PFV genome integration into host chromatin, ensuring successful replication and viral spread in infected target cell cultures. Collectively, our results elucidate the first link between cell cycle regulatory networks and the mitosis-dependent PFV integration process.
Collapse
|
16
|
Li W, Yap MW, Voss V, Stoye JP. Expression levels of Fv1: effects on retroviral restriction specificities. Retrovirology 2016; 13:42. [PMID: 27342974 PMCID: PMC4921018 DOI: 10.1186/s12977-016-0276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mouse protein Fv1 is a factor that can confer resistance to retroviral infection. The two major Fv1 alleles from laboratory mice, Fv1 (n) and Fv1 (b) , restrict infection by different murine leukaemia viruses (MLVs). Fv1(n) restricts B-tropic MLV, but not N-tropic MLV or NB-tropic MLV. In cells expressing Fv1(b) at natural levels, only N-MLV is restricted, however restriction of NB-MLV and partial restriction of B-MLV were observed when recombinant Fv1(b) was expressed from an MLV promoter in Fv1 null Mus dunni tail fibroblast cells. To investigate the relationship between expression level and restriction specificity we have developed new retroviral delivery vectors which allow inducible expression of Fv1, and yet allow sufficient production of fluorescent reporter proteins for analysis in our FACS-based restriction assay. RESULTS We demonstrated that at concentrations close to the endogenous expression level, Fv1(b) specifically restricts only N-MLV, but restriction of NB-MLV, and to a lesser extent B-MLV, could be gained by increasing the protein level of Fv1(b). By contrast, we found that even when Fv1(n) is expressed at very high levels, no significant inhibition of N-MLV or NB-MLV could be observed. Study of Fv1 mutants using this assay led to the identification of determinants for N/B tropism at an expression level close to that of endogenous Fv1(n) and Fv1(b). We also compared the recently described restriction activities of wild mice Fv1 proteins directed against non-MLV retroviruses when expressed at different levels. Fv1 from M. spretus restricted N-MLV, B-MLV and equine infectious anaemia virus equally even at low concentrations, while Fv1 from M. macedonicus showed even stronger restriction against equine infectious anaemia virus than to N-MLV. Restriction of feline foamy virus by Fv1 of M. caroli occurred at levels equivalent to MLV restriction. CONCLUSIONS Our data indicate that for some but not all Fv1 proteins, gain of restriction activities could be achieved by increasing the expression level of Fv1. However such a concentration dependent effect is not seen with most Fv1s and cannot explain the recently reported activities against non-MLVs. It will be interesting to examine whether overexpression of other capsid binding restriction factors such as TRIM5α or Mx2 result in novel restriction specificities.
Collapse
Affiliation(s)
- Wilson Li
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Melvyn W Yap
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Vicky Voss
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Jonathan P Stoye
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK. .,Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
17
|
Bähr A, Singer A, Hain A, Vasudevan AAJ, Schilling M, Reh J, Riess M, Panitz S, Serrano V, Schweizer M, König R, Chanda S, Häussinger D, Kochs G, Lindemann D, Münk C. Interferon but not MxB inhibits foamy retroviruses. Virology 2016; 488:51-60. [DOI: 10.1016/j.virol.2015.10.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/11/2015] [Accepted: 10/31/2015] [Indexed: 11/26/2022]
|
18
|
Lentiviral Protein Transfer Vectors Are an Efficient Vaccine Platform and Induce a Strong Antigen-Specific Cytotoxic T Cell Response. J Virol 2015; 89:9044-60. [PMID: 26085166 DOI: 10.1128/jvi.00844-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/14/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED To induce and trigger innate and adaptive immune responses, antigen-presenting cells (APCs) take up and process antigens. Retroviral particles are capable of transferring not only genetic information but also foreign cargo proteins when they are genetically fused to viral structural proteins. Here, we demonstrate the capacity of lentiviral protein transfer vectors (PTVs) for targeted antigen transfer directly into APCs and thereby induction of cytotoxic T cell responses. Targeting of lentiviral PTVs to APCs can be achieved analogously to gene transfer vectors by pseudotyping the particles with truncated wild-type measles virus (MV) glycoproteins (GPs), which use human SLAM (signaling lymphocyte activation molecule) as a main entry receptor. SLAM is expressed on stimulated lymphocytes and APCs, including dendritic cells. SLAM-targeted PTVs transferred the reporter protein green fluorescent protein (GFP) or Cre recombinase with strict receptor specificity into SLAM-expressing CHO and B cell lines, in contrast to broadly transducing vesicular stomatitis virus G protein (VSV-G) pseudotyped PTVs. Primary myeloid dendritic cells (mDCs) incubated with targeted or nontargeted ovalbumin (Ova)-transferring PTVs stimulated Ova-specific T lymphocytes, especially CD8(+) T cells. Administration of Ova-PTVs into SLAM-transgenic and control mice confirmed the observed predominant induction of antigen-specific CD8(+) T cells and demonstrated the capacity of protein transfer vectors as suitable vaccines for the induction of antigen-specific immune responses. IMPORTANCE This study demonstrates the specificity and efficacy of antigen transfer by SLAM-targeted and nontargeted lentiviral protein transfer vectors into antigen-presenting cells to trigger antigen-specific immune responses in vitro and in vivo. The observed predominant activation of antigen-specific CD8(+) T cells indicates the suitability of SLAM-targeted and also nontargeted PTVs as a vaccine for the induction of cytotoxic immune responses. Since cytotoxic CD8(+) T lymphocytes are a mainstay of antitumoral immune responses, PTVs could be engineered for the transfer of specific tumor antigens provoking tailored antitumoral immunity. Therefore, PTVs can be used as safe and efficient alternatives to gene transfer vectors or live attenuated replicating vector platforms, avoiding genotoxicity or general toxicity in highly immunocompromised patients, respectively. Thereby, the potential for easy envelope exchange allows the circumventing of neutralizing antibodies, e.g., during repeated boost immunizations.
Collapse
|
19
|
Human Pirh2 is a novel inhibitor of prototype foamy virus replication. Viruses 2015; 7:1668-84. [PMID: 25848801 PMCID: PMC4411673 DOI: 10.3390/v7041668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/02/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022] Open
Abstract
Prototype foamy virus (PFV) is a member of the unconventional and nonpathogenic retroviruses. PFV causes lifelong chronic infections, which are partially attributable to a number of host cell factors that restrict viral replication. Herein, we identified human p53-induced RING-H2 protein (Pirh2) as a novel inhibitor of prototype foamy virus. Overexpression of Pirh2 decreased the replication of PFV, whereas knockdown of Pirh2 with specific siRNA increased PFV replication. Dual-luciferase assays and coimmunoprecipitation demonstrated that Pirh2 negatively influences the Tas-dependent transcriptional activation of the PFV long terminal repeat (LTR) and internal promoter (IP) by interacting with the transactivator Tas and down-regulating its expression. In addition, the viral inhibitory function of Pirh2 is N-terminal and RING domain dependent. Together, these results indicated that Pirh2 suppresses PFV replication by negatively impacting its transactivator Tas and the transcription of two viral promoters, which may contribute to the latency of PFV infection.
Collapse
|
20
|
Tenth International Foamy Virus Conference 2014--achievements and perspectives. Viruses 2015; 7:1651-66. [PMID: 25835535 PMCID: PMC4411671 DOI: 10.3390/v7041651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 01/10/2023] Open
Abstract
For the past two decades, scientists from around the world, working on different aspects of foamy virus (FV) research, have gathered in different research institutions almost every two years to present their recent results in formal talks, to discuss their ongoing studies informally, and to initiate fruitful collaborations. In this report we review the 2014 anniversary conference to share the meeting summary with the virology community and hope to arouse interest by other researchers to join this exciting field. The topics covered included epidemiology, virus molecular biology, and immunology of FV infection in non-human primates, cattle, and humans with zoonotic FV infections, as well as recent findings on endogenous FVs. Several topics focused on virus replication and interactions between viral and cellular proteins. Use of FV in biomedical research was highlighted with presentations on using FV vectors for gene therapy and FV proteins as scaffold for vaccine antigen presentation. On behalf of the FV community, this report also includes a short tribute to commemorate Prof. Axel Rethwilm, one of the leading experts in the field of retrovirology and foamy viruses, who passed away 29 July 2014.
Collapse
|
21
|
Rua R, Gessain A. Origin, evolution and innate immune control of simian foamy viruses in humans. Curr Opin Virol 2015; 10:47-55. [PMID: 25698621 PMCID: PMC7185842 DOI: 10.1016/j.coviro.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 12/23/2022]
Abstract
Simian foamy viruses (SFV) are transmitted to humans after contact, mainly bites, with infected monkeys and apes. Contexts of transmission include mainly hunting activities and monkeys’ sympatry. In humans, active immune response probably explains SFV latency in blood and saliva. It is a model of restriction of retroviral emergence after cross-species transmission.
Most viral pathogens that have emerged in humans have originated from various animal species. Emergence is a multistep process involving an initial spill-over of the infectious agent into single individuals and its subsequent dissemination into the human population. Similar to simian immunodeficiency viruses and simian T lymphotropic viruses, simian foamy viruses (SFV) are retroviruses that are widespread among non-human primates and can be transmitted to humans, giving rise to a persistent infection, which seems to be controlled in the case of SFV. In this review, we present current data on the discovery, cross-species transmission, and molecular evolution of SFV in human populations initially infected and thus at risk for zoonotic emergence.
Collapse
Affiliation(s)
- Rejane Rua
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, 28 Rue du Dr. Roux, 75015 Paris, France; Département de Virologie, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris, Cedex 15, France; CNRS, UMR369, 28 Rue du Dr. Roux, F-75015 Paris, France; Université Paris Diderot, Cellule Pasteur, Paris, France.
| | - Antoine Gessain
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, 28 Rue du Dr. Roux, 75015 Paris, France; Département de Virologie, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris, Cedex 15, France; CNRS, UMR369, 28 Rue du Dr. Roux, F-75015 Paris, France
| |
Collapse
|
22
|
Malfavon-Borja R, Sawyer SL, Wu LI, Emerman M, Malik HS. An evolutionary screen highlights canonical and noncanonical candidate antiviral genes within the primate TRIM gene family. Genome Biol Evol 2014; 5:2141-54. [PMID: 24158625 PMCID: PMC3845644 DOI: 10.1093/gbe/evt163] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recurrent viral pressure has acted on host-encoded antiviral genes during primate and mammalian evolution. This selective pressure has resulted in dramatic episodes of adaptation in host antiviral genes, often detected via positive selection. These evolutionary signatures of adaptation have the potential to highlight previously unrecognized antiviral genes (also called restriction factors). Although the TRIM multigene family is recognized for encoding several bona fide restriction factors (e.g., TRIM5alpha), most members of this expansive gene family remain uncharacterized. Here, we investigated the TRIM multigene family for signatures of positive selection to identify novel candidate antiviral genes. Our analysis reveals previously undocumented signatures of positive selection in 17 TRIM genes, 10 of which represent novel candidate restriction factors. These include the unusual TRIM52 gene, which has evolved under strong positive selection despite its encoded protein lacking a putative viral recognition (B30.2) domain. We show that TRIM52 arose via gene duplication from the TRIM41 gene. Both TRIM52 and TRIM41 have dramatically expanded RING domains compared with the rest of the TRIM multigene family, yet this domain has evolved under positive selection only in primate TRIM52, suggesting that it represents a novel host–virus interaction interface. Our evolutionary-based screen not only documents positive selection in known TRIM restriction factors but also highlights candidate novel restriction factors, providing insight into the interfaces of host–pathogen interactions mediated by the TRIM multigene family.
Collapse
|
23
|
Katzourakis A, Aiewsakun P, Jia H, Wolfe ND, LeBreton M, Yoder AD, Switzer WM. Discovery of prosimian and afrotherian foamy viruses and potential cross species transmissions amidst stable and ancient mammalian co-evolution. Retrovirology 2014; 11:61. [PMID: 25091111 PMCID: PMC4261875 DOI: 10.1186/1742-4690-11-61] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/02/2014] [Indexed: 02/06/2023] Open
Abstract
Background Foamy viruses (FVs) are a unique subfamily of retroviruses that are widely distributed in mammals. Owing to the availability of sequences from diverse mammals coupled with their pattern of codivergence with their hosts, FVs have one of the best-understood viral evolutionary histories ever documented, estimated to have an ancient origin. Nonetheless, our knowledge of some parts of FV evolution, notably that of prosimian and afrotherian FVs, is far from complete due to the lack of sequence data. Results Here, we report the complete genome of the first extant prosimian FV (PSFV) isolated from a lorisiforme galago (PSFVgal), and a novel partial endogenous viral element with high sequence similarity to FVs, present in the afrotherian Cape golden mole genome (ChrEFV). We also further characterize a previously discovered endogenous PSFV present in the aye-aye genome (PSFVaye). Using phylogenetic methods and available FV sequence data, we show a deep divergence and stable co-evolution of FVs in eutherian mammals over 100 million years. Nonetheless, we found that the evolutionary histories of bat, aye-aye, and New World monkey FVs conflict with the evolutionary histories of their hosts. By combining sequence analysis and biogeographical knowledge, we propose explanations for these mismatches in FV-host evolutionary history. Conclusion Our discovery of ChrEFV has expanded the FV host range to cover the whole eutherian clade, and our evolutionary analyses suggest a stable mammalian FV-host co-speciation pattern which extends as deep as the exafroplacentalian basal diversification. Nonetheless, two possible cases of host switching were observed. One was among New World monkey FVs, and the other involves PSFVaye and a bat FV which may involve cross-species transmission at the level of mammalian orders. Our results highlight the value of integrating multiple sources of information to elucidate the evolutionary history of viruses, including continental and geographical histories, ancestral host locations, in addition to the natural history of host and virus. Electronic supplementary material The online version of this article (doi:10.1186/1742-4690-11-61) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Yap MW, Colbeck E, Ellis SA, Stoye JP. Evolution of the retroviral restriction gene Fv1: inhibition of non-MLV retroviruses. PLoS Pathog 2014; 10:e1003968. [PMID: 24603659 PMCID: PMC3948346 DOI: 10.1371/journal.ppat.1003968] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Fv1 is the prototypic restriction factor that protects against infection by the murine leukemia virus (MLV). It was first identified in cells that were derived from laboratory mice and was found to be homologous to the gag gene of an endogenous retrovirus (ERV). To understand the evolution of the host restriction gene from its retroviral origins, Fv1s from wild mice were isolated and characterized. Most of these possess intact open reading frames but not all restricted N-, B-, NR-or NB-tropic MLVs, suggesting that other viruses could have played a role in the selection of the gene. The Fv1s from Mus spretus and Mus caroli were found to restrict equine infectious anemia virus (EIAV) and feline foamy virus (FFV) respectively, indicating that Fv1 could have a broader target range than previously thought, including activity against lentiviruses and spumaviruses. Analyses of the Fv1 sequences revealed a number of residues in the C-terminal region that had evolved under positive selection. Four of these selected residues were found to be involved in the novel restriction by mapping studies. These results strengthen the similarities between the two capsid binding restriction factors, Fv1 and TRIM5α, which support the hypothesis that Fv1 defended mice against waves of retroviral infection possibly including non-MLVs as well as MLVs. We have followed the evolution of the retroviral restriction gene, Fv1, by functional analysis. We show that Fv1 can recognize and restrict a wider range of retroviruses than previously thought including examples from the gammaretrovirus, lentivirus and foamy virus genera. Nearly every Fv1 tested showed a different pattern of restriction activity. We also identify several hypervariable regions in the coding sequence containing positively selected amino acids that we show to be directly involved in determining restriction specificity. Our results strengthen the analogy between Fv1 and another capsid-binding, retrovirus restriction factor, TRIM5α. Although they share no sequence identity they appear to share a similar design and appear likely to recognise different targets by a mechanism involving multiple weak interactions between a virus-binding domain containing several variable regions and the surface of the viral capsid. We also describe a pattern of constant genetic change, implying that different species of Mus have evolved in the face of ever-changing retroviral threats by viruses of different kinds.
Collapse
Affiliation(s)
- Melvyn W. Yap
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Emily Colbeck
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Scott A. Ellis
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Jonathan P. Stoye
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Kirmaier A, Krupp A, Johnson WE. Understanding restriction factors and intrinsic immunity: insights and lessons from the primate lentiviruses. Future Virol 2014; 9:483-497. [PMID: 26543491 PMCID: PMC4630824 DOI: 10.2217/fvl.14.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Primate lentiviruses include the HIVs, HIV-1 and HIV-2; the SIVs, which are endemic to more than 40 species of nonhuman primates in Africa; and SIVmac, an AIDS-causing pathogen that emerged in US macaque colonies in the 1970s. Because of the worldwide spread of HIV and AIDS, primate lentiviruses have been intensively investigated for more than 30 years. Research on these viruses has played a leading role in the discovery and characterization of intrinsic immunity, and in particular the identification of several antiviral effectors (also known as restriction factors) including APOBEC3G, TRIM5α, BST-2/tetherin and SAMHD1. Comparative studies of the primate lentiviruses and their hosts have proven critical for understanding both the evolutionary significance and biological relevance of intrinsic immunity, and the role intrinsic immunity plays in governing viral host range and interspecies transmission of viruses in nature.
Collapse
Affiliation(s)
- Andrea Kirmaier
- Biology Department, Boston College, 550 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | - Annabel Krupp
- Biology Department, Boston College, 550 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität, Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Welkin E Johnson
- Biology Department, Boston College, 550 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| |
Collapse
|
26
|
Abstract
Foamy viruses (FV) are complex retroviruses that naturally infect all nonhuman primates (NHP) studied to date. Zoonotic transmission of Old World NHP simian foamy viruses (SFV) has been documented, leading to nonpathogenic persistent infections. To date, there have been no reports concerning zoonotic transmission of New World monkey (NWM) SFV to humans and resulting infection. In this study, we developed a Western blot assay to detect antibodies to NWM SFV, a nested PCR assay to detect NWM SFV DNA, and a β-galactosidase-containing indicator cell line to assay replication of NWM SFV. Using these tools, we analyzed the plasma and blood of 116 primatologists, of whom 69 had reported exposures to NWM. While 8 of the primatologists tested were seropositive for SFV from a NWM, the spider monkey, none had detectable levels of viral DNA in their blood. We found that SFV isolated from three different species of NWM replicated in some, but not all, human cell lines. From our data, we conclude that while humans exposed to NWM SFV produce antibodies, there is no evidence for long-term viral persistence.
Collapse
|
27
|
Rethwilm A, Bodem J. Evolution of foamy viruses: the most ancient of all retroviruses. Viruses 2013; 5:2349-74. [PMID: 24072062 PMCID: PMC3814592 DOI: 10.3390/v5102349] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/27/2013] [Accepted: 09/18/2013] [Indexed: 12/24/2022] Open
Abstract
Recent evidence indicates that foamy viruses (FVs) are the oldest retroviruses (RVs) that we know and coevolved with their hosts for several hundred million years. This coevolution may have contributed to the non-pathogenicity of FVs, an important factor in development of foamy viral vectors in gene therapy. However, various questions on the molecular evolution of FVs remain still unanswered. The analysis of the spectrum of animal species infected by exogenous FVs or harboring endogenous FV elements in their genome is pivotal. Furthermore, animal studies might reveal important issues, such as the identification of the FV in vivo target cells, which than require a detailed characterization, to resolve the molecular basis of the accuracy with which FVs copy their genome. The issues of the extent of FV viremia and of the nature of the virion genome (RNA vs. DNA) also need to be experimentally addressed.
Collapse
Affiliation(s)
- Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str.7, Würzburg 97078, Germany.
| | | |
Collapse
|
28
|
Yap MW, Stoye JP. Apparent effect of rabbit endogenous lentivirus type K acquisition on retrovirus restriction by lagomorph Trim5αs. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120498. [PMID: 23938750 PMCID: PMC3758185 DOI: 10.1098/rstb.2012.0498] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To test the hypothesis that rabbit endogenous lentivirus type K (RELIK) could play a role in shaping the evolution of TRIM5α, the susceptibility of viruses containing the RELIK capsid (CA) to TRIM5 restriction was evaluated. RELIK CA-containing viruses were susceptible to the TRIM5αs from Old World monkeys but were unaffected by most ape or New World monkey factors. TRIM5αs from various lagomorph species were also isolated and tested for anti-retroviral activity. The TRIM5αs from both cottontail rabbit and pika restrict a range of retroviruses, including HIV-1, HIV-2, FIV, EIAV and N-MLV. TRIM5αs from the European and cottontail rabbit, which have previously been found to contain RELIK, also restricted RELIK CA-containing viruses, whereas a weaker restriction was observed with chimeric TRIM5α containing the B30.2 domain from the pika, which lacks RELIK. Taken together, these results could suggest that the pika had not been exposed to exogenous RELIK and that endogenized RELIK might exert a selective pressure on lagomorph TRIM5α.
Collapse
Affiliation(s)
| | - Jonathan P. Stoye
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
29
|
Kehl T, Tan J, Materniak M. Non-simian foamy viruses: molecular virology, tropism and prevalence and zoonotic/interspecies transmission. Viruses 2013; 5:2169-209. [PMID: 24064793 PMCID: PMC3798896 DOI: 10.3390/v5092169] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/27/2022] Open
Abstract
Within the field of retrovirus, our knowledge of foamy viruses (FV) is still limited. Their unique replication strategy and mechanism of viral persistency needs further research to gain understanding of the virus-host interactions, especially in the light of the recent findings suggesting their ancient origin and long co-evolution with their nonhuman hosts. Unquestionably, the most studied member is the primate/prototype foamy virus (PFV) which was originally isolated from a human (designated as human foamy virus, HFV), but later identified as chimpanzee origin; phylogenetic analysis clearly places it among other Old World primates. Additionally, the study of non-simian animal FVs can contribute to a deeper understanding of FV-host interactions and development of other animal models. The review aims at highlighting areas of special interest regarding the structure, biology, virus-host interactions and interspecies transmission potential of primate as well as non-primate foamy viruses for gaining new insights into FV biology.
Collapse
Affiliation(s)
- Timo Kehl
- German Cancer Research Center, INF242, Heidelberg 69120, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-6221-42-4935; Fax: +49-6221-42-4932
| | - Juan Tan
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; E-Mail:
| | - Magdalena Materniak
- Department of Biochemistry, National Veterinary Research Institute, Partyzantow Ave. 57, Pulawy 24-100, Poland; E-Mail:
| |
Collapse
|
30
|
Sanz-Ramos M, Stoye JP. Capsid-binding retrovirus restriction factors: discovery, restriction specificity and implications for the development of novel therapeutics. J Gen Virol 2013; 94:2587-2598. [PMID: 24026671 DOI: 10.1099/vir.0.058180-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of drugs against human immunodeficiency virus type 1 infection has been highly successful, and numerous combinational treatments are currently available. However, the risk of the emergence of resistance and the toxic effects associated with prolonged use of antiretroviral therapies have emphasized the need to consider alternative approaches. One possible area of investigation is provided by the properties of restriction factors, cellular proteins that protect organisms against retroviral infection. Many show potent viral inhibition. Here, we describe the discovery, properties and possible therapeutic uses of the group of restriction factors known to interact with the capsid core of incoming retroviruses. This group comprises Fv1, TRIM5α and TRIMCypA: proteins that all act shortly after virus entry into the target cell and block virus replication at different stages prior to integration of viral DNA into the host chromosome. They have different origins and specificities, but share general structural features required for restriction, with an N-terminal multimerization domain and a C-terminal capsid-binding domain. Their overall efficacy makes it reasonable to ask whether they might provide a framework for developing novel antiretroviral strategies.
Collapse
Affiliation(s)
- Marta Sanz-Ramos
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Jonathan P Stoye
- Department of Medicine, Imperial College London, London W2 1PG, UK.,Division of Virology, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| |
Collapse
|
31
|
Goldstone DC, Flower TG, Ball NJ, Sanz-Ramos M, Yap MW, Ogrodowicz RW, Stanke N, Reh J, Lindemann D, Stoye JP. Characterisation of a spumavirus Gag protein. Retrovirology 2013. [PMCID: PMC3847937 DOI: 10.1186/1742-4690-10-s1-p3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Liu W, Lei J, Liu Y, Slavkovic Lukic D, Räthe AM, Bao Q, Kehl T, Bleiholder A, Hechler T, Löchelt M. Feline foamy virus-based vectors: advantages of an authentic animal model. Viruses 2013; 5:1702-18. [PMID: 23857307 PMCID: PMC3738957 DOI: 10.3390/v5071702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/13/2013] [Accepted: 06/25/2013] [Indexed: 02/07/2023] Open
Abstract
New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV). The potential of replication-competent (RC) FFV vectors for vaccination and replication-deficient (RD) FFV-based vectors for gene delivery purposes has been studied over the past years. In this review, the key achievements and functional evaluation of the existing vectors from in vitro cell culture systems to out-bred cats will be described. The data presented here demonstrate the broad application spectrum of FFV-based vectors, especially in pathogen-specific prophylactic and therapeutic vaccination using RD vectors in cats and in classical gene delivery. In the cat-based system, FFV-based vectors provide an advantageous platform to evaluate and optimize the applicability, efficacy and safety of foamy virus (FV) vectors, especially the understudied aspect of FV cell and organ tropism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin Löchelt
- Department of Genome Modifications, Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; E-Mails: (W.L.); (J.L.); (Y.L.); (D.S.L.); (A.-M.R.); (Q.B.); (T.K.); (A.B.); (T.H.)
| |
Collapse
|
33
|
Goldstone DC, Flower TG, Ball NJ, Sanz-Ramos M, Yap MW, Ogrodowicz RW, Stanke N, Reh J, Lindemann D, Stoye JP, Taylor IA. A unique spumavirus Gag N-terminal domain with functional properties of orthoretroviral matrix and capsid. PLoS Pathog 2013; 9:e1003376. [PMID: 23675305 PMCID: PMC3649970 DOI: 10.1371/journal.ppat.1003376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
The Spumaretrovirinae, or foamyviruses (FVs) are complex retroviruses that infect many species of monkey and ape. Although FV infection is apparently benign, trans-species zoonosis is commonplace and has resulted in the isolation of the Prototypic Foamy Virus (PFV) from human sources and the potential for germ-line transmission. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. In addition, PFV Gag interacts with the FV Envelope (Env) protein to facilitate budding of infectious particles. Presently, there is a paucity of structural information with regards FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. Therefore, in order to probe the functional overlap of FV and orthoretroviral Gag and learn more about FV egress and replication we have undertaken a structural, biophysical and virological study of PFV-Gag. We present the crystal structure of a dimeric amino terminal domain from PFV, Gag-NtD, both free and in complex with the leader peptide of PFV Env. The structure comprises a head domain together with a coiled coil that forms the dimer interface and despite the shared function it is entirely unrelated to either the capsid or matrix of Gag from other retroviruses. Furthermore, we present structural, biochemical and virological data that reveal the molecular details of the essential Gag-Env interaction and in addition we also examine the specificity of Trim5α restriction of PFV. These data provide the first information with regards to FV structural proteins and suggest a model for convergent evolution of gag genes where structurally unrelated molecules have become functionally equivalent.
Collapse
Affiliation(s)
- David C. Goldstone
- Division of Molecular Structure, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Thomas G. Flower
- Division of Molecular Structure, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Neil J. Ball
- Division of Molecular Structure, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Marta Sanz-Ramos
- Division of Virology, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Melvyn W. Yap
- Division of Virology, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Roksana W. Ogrodowicz
- Division of Molecular Structure, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Nicole Stanke
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Juliane Reh
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Jonathan P. Stoye
- Division of Virology, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Ian A. Taylor
- Division of Molecular Structure, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Virus-specific effects of TRIM5α(rh) RING domain functions on restriction of retroviruses. J Virol 2013; 87:7234-45. [PMID: 23637418 DOI: 10.1128/jvi.00620-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tripartite motif protein TRIM5α restricts particular retrovirus infections by binding to the incoming capsid and inhibiting the early stage of virus infection. The TRIM5α RING domain exhibits E3 ubiquitin ligase activity and assists the higher-order association of TRIM5α dimers, which promotes capsid binding. We characterized a panel of RING domain mutants of the rhesus monkey TRIM5α (TRIM5α(rh)) protein. The RING domain function that significantly contributed to retroviral restriction depended upon the restricted virus. The E3 ubiquitin ligase activity of the RING domain contributes to the potency of HIV-1 restriction. Nonetheless, TRIM5α(rh) mutants without detectable E3 ubiquitin ligase activity still blocked reverse transcription and inhibited HIV-1 infection at a moderate level. When TRIM5α(rh) capsid binding was weakened by substitution with a less efficient B30.2/SPRY domain, the promotion of higher-order association by the RING domain was more important to HIV-1 restriction than its E3 ubiquitin ligase activity. For the restriction of N-tropic murine leukemia virus (N-MLV) and equine infectious anemia virus (EIAV) infection, promotion of higher-order association represented the major contribution of the RING domain. Thus, both identity of the target virus and the B30.2/SPRY domain-mediated affinity for the viral capsid determine the relative contribution of the two known RING domain functions to TRIM5α restriction of retrovirus infection.
Collapse
|
35
|
Berka U, Hamann MV, Lindemann D. Early events in foamy virus-host interaction and intracellular trafficking. Viruses 2013; 5:1055-74. [PMID: 23567621 PMCID: PMC3705265 DOI: 10.3390/v5041055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 02/08/2023] Open
Abstract
Here we review viral and cellular requirements for entry and intracellular trafficking of foamy viruses (FVs) resulting in integration of viral sequences into the host cell genome. The virus encoded glycoprotein harbors all essential viral determinants, which are involved in absorption to the host membrane and triggering the uptake of virus particles. However, only recently light was shed on some details of FV's interaction with its host cell receptor(s). Latest studies indicate glycosaminoglycans of cellular proteoglycans, particularly heparan sulfate, to be of utmost importance. In a species-specific manner FVs encounter endogenous machineries of the target cell, which are in some cases exploited for fusion and further egress into the cytosol. Mostly triggered by pH-dependent endocytosis, viral and cellular membranes fuse and release naked FV capsids into the cytoplasm. Intact FV capsids are then shuttled along microtubules and are found to accumulate nearby the centrosome where they can remain in a latent state for extended time periods. Depending on the host cell cycle status, FV capsids finally disassemble and, by still poorly characterized mechanisms, the preintegration complex gets access to the host cell chromatin. Host cell mitosis finally allows for viral genome integration, ultimately starting a new round of viral replication.
Collapse
Affiliation(s)
- Ursula Berka
- Institute of Virology, Medical Faculty―Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (U.B.); (M.V.H.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Martin Volker Hamann
- Institute of Virology, Medical Faculty―Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (U.B.); (M.V.H.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty―Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (U.B.); (M.V.H.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| |
Collapse
|
36
|
A comparison of murine leukemia viruses that escape from human and rhesus macaque TRIM5αs. J Virol 2013; 87:6455-68. [PMID: 23536686 DOI: 10.1128/jvi.03425-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand the binding mechanism of TRIM5α to retrovirus capsid, we had previously selected N-tropic murine leukemia virus (N-MLV) mutants escaping from rhesus macaque TRIM5α (rhTRIM5α) by passaging the virus in rhTRIM5α-expressing cells and selecting for nonrestricted variants. To test the commonality of the findings from the rhTRIM5α study, we have now employed a similar genetic approach using human TRIM5α (huTRIM5α). Consistent with the rhTRIM5α study, the mapped huTRIM5α escape mutations were distributed across the capsid exterior, confirming the extended binding surface between virus and restriction factor. Compared to the results of the previous study, fewer escape mutations were identified, with particular mutants being repeatedly selected. Three out four huTRIM5α escape variants showed resistance to all primate TRIM5αs tested, but two of them sacrificed viral fitness, observations that were not made in the rhTRIM5α study. Moreover, differences in amino acid changes associated with escape from hu- and rhTRIM5αs suggested a charge dependence of the restriction by different TRIM5αs. Taken together, these results suggest that the recognition of the entire capsid surface is a general strategy for TRIM5α to restrict MLV but that significantly different specific interactions are involved in the binding of TRIM5α from different species to the MLV capsid core.
Collapse
|
37
|
The foamy virus Gag proteins: what makes them different? Viruses 2013; 5:1023-41. [PMID: 23531622 PMCID: PMC3705263 DOI: 10.3390/v5041023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
Gag proteins play an important role in many stages of the retroviral replication cycle. They orchestrate viral assembly, interact with numerous host cell proteins, engage in regulation of viral gene expression, and provide the main driving force for virus intracellular trafficking and budding. Foamy Viruses (FV), also known as spumaviruses, display a number of unique features among retroviruses. Many of these features can be attributed to their Gag proteins. FV Gag proteins lack characteristic orthoretroviral domains like membrane-binding domains (M domains), the major homology region (MHR), and the hallmark Cys-His motifs. In contrast, they contain several distinct domains such as the essential Gag-Env interaction domain and the glycine and arginine rich boxes (GR boxes). Furthermore, FV Gag only undergoes limited maturation and follows an unusual pathway for nuclear translocation. This review summarizes the known FV Gag domains and motifs and their functions. In particular, it provides an overview of the unique structural and functional properties that distinguish FV Gag proteins from orthoretroviral Gag proteins.
Collapse
|
38
|
Diehl WE, Johnson WE, Hunter E. Elevated rate of fixation of endogenous retroviral elements in Haplorhini TRIM5 and TRIM22 genomic sequences: impact on transcriptional regulation. PLoS One 2013; 8:e58532. [PMID: 23516500 PMCID: PMC3597737 DOI: 10.1371/journal.pone.0058532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
All genes in the TRIM6/TRIM34/TRIM5/TRIM22 locus are type I interferon inducible, with TRIM5 and TRIM22 possessing antiviral properties. Evolutionary studies involving the TRIM6/34/5/22 locus have predominantly focused on the coding sequence of the genes, finding that TRIM5 and TRIM22 have undergone high rates of both non-synonymous nucleotide replacements and in-frame insertions and deletions. We sought to understand if divergent evolutionary pressures on TRIM6/34/5/22 coding regions have selected for modifications in the non-coding regions of these genes and explore whether such non-coding changes may influence the biological function of these genes. The transcribed genomic regions, including the introns, of TRIM6, TRIM34, TRIM5, and TRIM22 from ten Haplorhini primates and one prosimian species were analyzed for transposable element content. In Haplorhini species, TRIM5 displayed an exaggerated interspecies variability, predominantly resulting from changes in the composition of transposable elements in the large first and fourth introns. Multiple lineage-specific endogenous retroviral long terminal repeats (LTRs) were identified in the first intron of TRIM5 and TRIM22. In the prosimian genome, we identified a duplication of TRIM5 with a concomitant loss of TRIM22. The transposable element content of the prosimian TRIM5 genes appears to largely represent the shared Haplorhini/prosimian ancestral state for this gene. Furthermore, we demonstrated that one such differentially fixed LTR provides for species-specific transcriptional regulation of TRIM22 in response to p53 activation. Our results identify a previously unrecognized source of species-specific variation in the antiviral TRIM genes, which can lead to alterations in their transcriptional regulation. These observations suggest that there has existed long-term pressure for exaptation of retroviral LTRs in the non-coding regions of these genes. This likely resulted from serial viral challenges and provided a mechanism for rapid alteration of transcriptional regulation. To our knowledge, this represents the first report of persistent evolutionary pressure for the capture of retroviral LTR insertions.
Collapse
Affiliation(s)
- William E. Diehl
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
| | - Welkin E. Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
39
|
Birth, decay, and reconstruction of an ancient TRIMCyp gene fusion in primate genomes. Proc Natl Acad Sci U S A 2013; 110:E583-92. [PMID: 23319649 DOI: 10.1073/pnas.1216542110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
TRIM5 is a host antiviral gene with an evolutionary history of genetic conflict with retroviruses. The TRIMCyp gene encodes a protein fusion of TRIM5 effector domains with the capsid-binding ability of a retrotransposed CyclophilinA (CypA), resulting in novel antiviral specificity against lentiviruses. Previous studies have identified two independent primate TRIMCyp fusions that evolved within the past 6 My. Here, we describe an ancient primate TRIMCyp gene (that we call TRIMCypA3), which evolved in the common ancestor of simian primates 43 Mya. Gene reconstruction shows that CypA3 encoded an intact, likely active, TRIMCyp antiviral gene, which was subject to selective constraints for at least 10 My, followed by pseudogenization or loss in all extant primates. Despite its decayed status, we found TRIMCypA3 gene fusion transcripts in several primates. We found that the reconstructed "newly born" TrimCypA3 encoded robust and broad retroviral restriction activity but that this broad activity was lost via eight amino acid changes over the course of the next 10 My. We propose that TRIMCypA3 arose in response to a viral pathogen encountered by ancestral primates but was subsequently pseudogenized or lost due to a lack of selective pressure. Much like imprints of ancient viruses, fossils of decayed genes, such as TRIMCypA3, provide unique and specific insight into paleoviral infections that plagued primates deep in their evolutionary history.
Collapse
|
40
|
Fletcher AJ, Towers GJ. Inhibition of retroviral replication by members of the TRIM protein family. Curr Top Microbiol Immunol 2013; 371:29-66. [PMID: 23686231 DOI: 10.1007/978-3-642-37765-5_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The TRIM protein family is emerging as a central component of mammalian antiviral innate immunity. Beginning with the identification of TRIM5α as a mammalian post-entry restriction factor against retroviruses, to the repeated observation that many TRIMs ubiquitinate and regulate signaling pathways, the past decade has witnessed an intense research effort to understand how TRIM proteins influence immunity. The list of viral families targeted directly or indirectly by TRIM proteins has grown to include adenoviruses, hepadnaviruses, picornaviruses, flaviviruses, orthomyxoviruses, paramyxoviruses, herpesviruses, rhabdoviruses and arenaviruses. We have come to appreciate how, through intense bouts of positive selection, some TRIM genes have been honed into species-specific restriction factors. Similarly, in the case of TRIMCyp, we are beginning to understand how viruses too have mutated to evade restriction, suggesting that TRIM and viruses have coevolved for millions of years of primate evolution. Recently, TRIM5α returned to the limelight when it was shown to trigger the expression of antiviral genes upon recognition of an incoming virus, a paradigm shift that demonstrated that restriction factors make excellent pathogen sensors. However, it remains unclear how many of ~100 human TRIM genes are antiviral, despite the expression of many of these genes being upregulated by interferon and upon viral infection. TRIM proteins do not conform to one type of antiviral mechanism, reflecting the diversity of viruses they target. Moreover, the cofactors of restriction remain largely enigmatic. The control of retroviral replication remains an important medical subject and provides a useful backdrop for reviewing how TRIM proteins act to repress viral replication.
Collapse
Affiliation(s)
- Adam J Fletcher
- MRC Centre for Medical Molecular Virology, University College, London, UK.
| | | |
Collapse
|
41
|
Abstract
Most proteins of the TRIM family (also known as RBCC family) are ubiquitin ligases that share a peculiar protein structure, characterized by including an N-terminal RING finger domain closely followed by one or two B-boxes. Additional protein domains found at their C termini have been used to classify TRIM proteins into classes. TRIMs are involved in multiple cellular processes and many of them are essential components of the innate immunity system of animal species. In humans, it has been shown that mutations in several TRIM-encoding genes lead to diverse genetic diseases and contribute to several types of cancer. They had been hitherto detected only in animals. In this work, by comprehensively analyzing the available diversity of TRIM and TRIM-like protein sequences and evaluating their evolutionary patterns, an improved classification of the TRIM family is obtained. Members of one of the TRIM subfamilies defined, called Subfamily A, turn to be present not only in animals, but also in many other eukaryotes, such as fungi, apusozoans, alveolates, excavates and plants. The rest of subfamilies are animal-specific and several of them originated only recently. Subfamily A proteins are characterized by containing a MATH domain, suggesting a potential evolutionary connection between TRIM proteins and a different type of ubiquitin ligases, known as TRAFs, which contain quite similar MATH domains. These results indicate that the TRIM family emerged much earlier than so far thought and contribute to our understanding of its origin and diversification. The structural and evolutionary links with the TRAF family of ubiquitin ligases can be experimentally explored to determine whether functional connections also exist.
Collapse
Affiliation(s)
- Ignacio Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC), Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
42
|
Abstract
"There have been rare cases of zoonotic transmission of foamy virus from monkeys to humans, but despite keeping these cases under close scrutiny for years no pathology has ever been detected...".
Collapse
|
43
|
Caines ME, Bichel K, Price AJ, McEwan WA, Towers GJ, Willett BJ, Freund SM, James LC. Diverse HIV viruses are targeted by a conformationally dynamic antiviral. Nat Struct Mol Biol 2012; 19:411-6. [PMID: 22407016 PMCID: PMC3407371 DOI: 10.1038/nsmb.2253] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/30/2012] [Indexed: 11/09/2022]
Abstract
Rhesus macaque TRIMCyp (RhTC) is a potent primate antiviral host protein that inhibits the replication of diverse HIV viruses. Here we show that it has acquired the ability to target multiple viruses by evolving an active site that interconverts between multiple conformations. Mutations that have relieved active site constraints allow RhTC to dynamically sample conformational space, including radically different conformers that target both HIV-1 and HIV-2 viruses. Introduction of a reversible constraint into RhTC allows specificity to be switched between a single conformation specific for HIV-1 and a dynamic ensemble that targets multiple viruses. These results show that conformational diversity can be used to expand the target diversity of innate immune receptors by supplementing their limited genetic variability with variability in protein structure.
Collapse
Affiliation(s)
- Matthew E.C. Caines
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 0QH, United Kingdom
| | - Katsiaryna Bichel
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 0QH, United Kingdom
| | - Amanda J. Price
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 0QH, United Kingdom
| | - William A. McEwan
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 0QH, United Kingdom
| | - Greg J. Towers
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London, W1T 4JF, United Kingdom
| | - Brian J. Willett
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| | - Stefan M.V. Freund
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 0QH, United Kingdom
| | - Leo C. James
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 0QH, United Kingdom
| |
Collapse
|
44
|
TRIM Proteins and the Innate Immune Response to Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:93-104. [DOI: 10.1007/978-1-4614-5398-7_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Abstract
Background Tetherin (also known as BST-2, CD317, and HM1.24) is an interferon- induced protein that blocks the release of a variety of enveloped viruses, such as retroviruses, filoviruses and herpesviruses. However, the relationship between tetherin and foamy viruses has not been clearly demonstrated. Results In this study, we found that tetherin of human, simian, bovine or canine origin inhibits the production of infectious prototypic foamy virus (PFV). The inhibition of PFV by human tetherin is counteracted by human immunodeficiency virus type 1 (HIV-1) Vpu. Furthermore, we generated human tetherin transmembrane domain deletion mutant (delTM), glycosyl phosphatidylinositol (GPI) anchor deletion mutant (delGPI), and dimerization and glycosylation deficient mutants. Compared with wild type tetherin, the delTM and delGPI mutants only moderately inhibited PFV production. In contrast, the dimerization and glycosylation deficient mutants inhibit PFV production as efficiently as the wild type tetherin. Conclusions These results demonstrate that tetherin inhibits the release and infectivity of PFV, and this inhibition is antagonized by HIV-1 Vpu. Both the transmembrane domain and the GPI anchor of tetherin are important for the inhibition of PFV, whereas the dimerization and the glycosylation of tetherin are dispensable.
Collapse
|
46
|
Rahm N, Yap M, Snoeck J, Zoete V, Muñoz M, Radespiel U, Zimmermann E, Michielin O, Stoye JP, Ciuffi A, Telenti A. Unique spectrum of activity of prosimian TRIM5alpha against exogenous and endogenous retroviruses. J Virol 2011; 85:4173-83. [PMID: 21345948 PMCID: PMC3126249 DOI: 10.1128/jvi.00075-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/17/2011] [Indexed: 11/20/2022] Open
Abstract
Lentiviruses, the genus of retrovirus that includes HIV-1, rarely endogenize. Some lemurs uniquely possess an endogenous lentivirus called PSIV ("prosimian immunodeficiency virus"). Thus, lemurs provide the opportunity to study the activity of host defense factors, such as TRIM5α, in the setting of germ line invasion. We characterized the activities of TRIM5α proteins from two distant lemurs against exogenous retroviruses and a chimeric PSIV. TRIM5α from gray mouse lemur, which carries PSIV in its genome, exhibited the narrowest restriction activity. One allelic variant of gray mouse lemur TRIM5α restricted only N-tropic murine leukemia virus (N-MLV), while a second variant restricted N-MLV and, uniquely, B-tropic MLV (B-MLV); both variants poorly blocked PSIV. In contrast, TRIM5α from ring-tailed lemur, which does not contain PSIV in its genome, revealed one of the broadest antiviral activities reported to date against lentiviruses, including PSIV. Investigation into the antiviral specificity of ring-tailed lemur TRIM5α demonstrated a major contribution of a 32-amino-acid expansion in variable region 2 (v2) of the B30.2/SPRY domain to the breadth of restriction. Data on lemur TRIM5α and the prediction of ancestral simian sequences hint at an evolutionary scenario where antiretroviral specificity is prominently defined by the lineage-specific expansion of the variable loops of B30.2/SPRY.
Collapse
Affiliation(s)
- Nadia Rahm
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Melvyn Yap
- Division of Virology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Joke Snoeck
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Miguel Muñoz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | | | - Jonathan P. Stoye
- Division of Virology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Angela Ciuffi
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Amalio Telenti
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
47
|
Ohkura S, Goldstone DC, Yap MW, Holden-Dye K, Taylor IA, Stoye JP. Novel escape mutants suggest an extensive TRIM5α binding site spanning the entire outer surface of the murine leukemia virus capsid protein. PLoS Pathog 2011; 7:e1002011. [PMID: 21483490 PMCID: PMC3068999 DOI: 10.1371/journal.ppat.1002011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/28/2011] [Indexed: 12/18/2022] Open
Abstract
After entry into target cells, retroviruses encounter the host restriction factors such as Fv1 and TRIM5α. While it is clear that these factors target retrovirus capsid proteins (CA), recognition remains poorly defined in the absence of structural information. To better understand the binding interaction between TRIM5α and CA, we selected a panel of novel N-tropic murine leukaemia virus (N-MLV) escape mutants by a serial passage of replication competent N-MLV in rhesus macaque TRIM5α (rhTRIM5α)-positive cells using a small percentage of unrestricted cells to allow multiple rounds of virus replication. The newly identified mutations, many of which involve changes in charge, are distributed over the outer 'top' surface of N-MLV CA, including the N-terminal β-hairpin, and map up to 29 A(o) apart. Biological characterisation with a number of restriction factors revealed that only one of the new mutations affects restriction by human TRIM5α, indicating significant differences in the binding interaction between N-MLV and the two TRIM5αs, whereas three of the mutations result in dual sensitivity to Fv1(n) and Fv1(b). Structural studies of two mutants show that no major changes in the overall CA conformation are associated with escape from restriction. We conclude that interactions involving much, if not all, of the surface of CA are vital for TRIM5α binding.
Collapse
Affiliation(s)
- Sadayuki Ohkura
- Division of Virology, MRC National Institute for Medical Research,
London, United Kingdom
| | - David C. Goldstone
- Division of Molecular Structure, MRC National Institute for Medical
Research, London, United Kingdom
| | - Melvyn W. Yap
- Division of Virology, MRC National Institute for Medical Research,
London, United Kingdom
| | - Kate Holden-Dye
- Division of Virology, MRC National Institute for Medical Research,
London, United Kingdom
| | - Ian A. Taylor
- Division of Molecular Structure, MRC National Institute for Medical
Research, London, United Kingdom
| | - Jonathan P. Stoye
- Division of Virology, MRC National Institute for Medical Research,
London, United Kingdom
| |
Collapse
|
48
|
Abstract
Foamy virus (FV) capsid proteins have few lysines. Basic residues are almost exclusively represented by arginines indicating positive selective pressure. To analyze the possible functions of this peculiarity, we mutated an infectious molecular clone of the prototypic FV (PFV) to harbor lysines in the Gag protein at arginine-specifying positions and analyzed various aspects of the FV replication cycle. The majority of mutants replicated equally as well in permanent cell cultures as the original wild-type (wt) virus and were genetically stable in gag upon 10 cell-free passages. With respect to the features of late reverse transcription, nucleic acid content, and infectiousness of the virion DNA genome, the majority of mutants behaved like the wt. Several mutants of PFV were ubiquitinated in Gag but unable to generate virus-like particles (VLPs) or to undergo pseudotyping by a heterologous envelope. Using primary cells, however, a replicative disadvantage of the majority of mutants was disclosed. This disadvantage was enhanced upon interferon (IFN) treatment. We found no evidence that the lysine-bearing gag mutants showed more restriction than the wt virus by tetherin (CD317) or Trim5α. A single lysine in PFV Gag was found to be nonessential for transient replication in permanent cell culture if replaced by an arginine residue. Upon replication in primary cells, even without IFN treatment, this mutant was severely impaired, indicating the importance of specifying at least this lysine residue in PFV Gag. The paucity of lysines in FV Gag proteins may be a consequence of preventing proteasomal Gag degradation.
Collapse
|
49
|
Abstract
Foamy viruses, distantly related to the major subfamily of Retroviruses, Orthoretroviruses that include oncoviruses (for example, murine leukemia virus (MLV)) and lentiviruses (human immunodeficiency virus (HIV)), are endemic in mammalian species, but not in human populations. Humans infected by accidental or occupational exposure remain well. The virus is not transmitted to others, nor is it associated with any disease. These features added to its broad host range, efficient transduction of progenitor cells and an integration profile less likely to induce insertional mutagenesis, make these viruses attractive as vectors. Long-term reversal of disease phenotype in dogs with the genetic defect, leukocyte adhesion deficiency, by foamy virus vector therapy strengthens the case for their clinical exploitation.
Collapse
|
50
|
Species-specific inhibition of foamy viruses from South American monkeys by New World Monkey TRIM5{alpha} proteins. J Virol 2010; 84:4095-9. [PMID: 20130055 DOI: 10.1128/jvi.02631-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Foamy virus evolution closely parallels that of the host species, indicating virus-host coadaptation. We studied simian foamy viruses (SFVs) from common marmosets, spider monkeys, and squirrel monkeys, New World monkey (NWM) species that share geographic ranges. The TRIM5alpha protein from each of these NWM species inhibited the replication of at least one of the SFVs associated with the other two species but did not affect the replication of its own SFV. Thus, TRIM5alpha has potentially shaped the evolution of SFVs in NWM hosts. Conversely, SFVs may have influenced the evolution of TRIM5 variants in New World primates.
Collapse
|