1
|
Li Q, Wang Q, Wang R, Zhang L, Liu Z. The frameshifting element in coronaviruses: structure, function, and potential as a therapeutic target. Trends Pharmacol Sci 2025:S0165-6147(25)00069-0. [PMID: 40382241 DOI: 10.1016/j.tips.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
The frameshifting element (FSE) comprises a slippery heptanucleotide sequence followed by a downstream RNA structure, such as a pseudoknot or stem-loop. Found in various RNA viruses, FSE regulates viral replication via programmed -1 ribosomal frameshifting (-1 PRF), making it a potential broad-spectrum antiviral target. Advances in RNA structural analysis have elucidated the dynamic conformations and cross-viral diversity of FSE, with the SARS-CoV-2 outbreak further highlighting its role in viral replication. Efforts to develop antiviral drugs targeting FSE have progressed through virtual and phenotypic screening. In this review, we explore the evolution, structure, and function of FSE in coronaviruses, evaluate recent advances in FSE-targeted drug development, and discuss their design advantages, efficacy, and challenges, providing insights for future antiviral strategies.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Ningbo Institute of Marine Medicine, Peking University, Zhejiang, 315832, China
| | - Rui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Ningbo Institute of Marine Medicine, Peking University, Zhejiang, 315832, China.
| |
Collapse
|
2
|
Lee S, Yan S, Dey A, Laederach A, Schlick T. A Cascade of Conformational Switches in SARS-CoV-2 Frameshifting: Coregulation by Upstream and Downstream Elements. Biochemistry 2025; 64:953-966. [PMID: 39907285 PMCID: PMC11840926 DOI: 10.1021/acs.biochem.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Targeting ribosomal frameshifting has emerged as a potential therapeutic intervention strategy against COVID-19. In this process, a -1 shift in the ribosomal reading frame encodes alternative viral proteins. Any interference with this process profoundly affects viral replication and propagation. For SARS-CoV-2, two RNA sites associated with ribosomal frameshifting are positioned on the 5' and 3' of the frameshifting residues. Although much attention has been focused on the 3' frameshift element (FSE), the 5' stem-loop (attenuator hairpin, AH) can play a role. Yet the relationship between the two regions is unknown. In addition, multiple folds of the FSE and FSE-containing RNA regions have been discovered. To gain more insight into these RNA folds in the larger sequence context that includes AH, we apply our graph-theory-based modeling tools to represent RNA secondary structures, "RAG" (RNA-As-Graphs), to generate conformational landscapes that suggest length-dependent conformational distributions. We show that the AH region can coexist as a stem-loop with main and alternative 3-stem pseudoknots of the FSE (dual graphs 3_6 and 3_3 in our notation) but that an alternative stem 1 (AS1) can disrupt the FSE pseudoknots and trigger other folds. A critical length for AS1 of 10-bp regulates key folding transitions. Together with designed mutants and available experimental data, we present a sequential view of length-dependent folds during frameshifting and suggest their mechanistic roles. These structural and mutational insights into both ends of the FSE advance our understanding of the SARS-CoV-2 frameshifting mechanism by suggesting how alternative folds play a role in frameshifting and defining potential therapeutic intervention techniques that target specific folds.
Collapse
Affiliation(s)
- Samuel Lee
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Shuting Yan
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Abhishek Dey
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttar Pradesh 226002, India
| | - Alain Laederach
- Department
of Biology, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tamar Schlick
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Courant
Institute of Mathematical Sciences, New
York University, New York, New York 10012, United States
- NYU-ECNU
Center for Computational Chemistry, NYU
Shanghai, Shanghai 200062, PR China
- NYU Simons
Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
3
|
Novotný P, Humpolíčková J, Nováková V, Stanchev S, Stříšovský K, Zgarbová M, Weber J, Kryštůfek R, Starková J, Hradilek M, Moravcová A, Günterová J, Bach K, Majer P, Konvalinka J, Majerová T. The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery. J Biol Chem 2025; 301:108079. [PMID: 39675720 PMCID: PMC11773056 DOI: 10.1016/j.jbc.2024.108079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) autocatalytically releases itself out of the viral polyprotein to form a fully active mature dimer in a manner that is not fully understood. Here, we introduce several tools to help elucidate differences between cis (intramolecular) and trans (intermolecular) proteolytic processing and to evaluate inhibition of precursor Mpro. We found that many mutations at the P1 position of the N-terminal autoprocessing site do not block cis autoprocessing but do inhibit trans processing. Notably, substituting the WT glutamine at the P1 position with isoleucine retains Mpro in an unprocessed precursor form that can be purified and further studied. We also developed a cell-based reporter assay suitable for compound library screening and evaluation in HEK293T cells. This assay can detect both overall Mpro inhibition and the fraction of uncleaved precursor form of Mpro through separable fluorescent signals. We observed that inhibitory compounds preferentially block mature Mpro. Bofutrelvir and a novel compound designed in-house showed the lowest selectivity between precursor and mature Mpro, indicating that inhibition of both forms may be possible. Additionally, we observed positive modulation of precursor activity at low concentrations of inhibitors. Our findings help expand understanding of the SARS-CoV-2 viral life cycle and may facilitate development of strategies to target precursor form of Mpro for inhibition or premature activation of Mpro.
Collapse
Affiliation(s)
- Pavel Novotný
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Nováková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Genetics and Microbiology, Charles University in Prague, Prague, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kvido Stříšovský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michala Zgarbová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Genetics and Microbiology, Charles University in Prague, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robin Kryštůfek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
| | - Jana Starková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hradilek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Adéla Moravcová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jana Günterová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kathrin Bach
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Genetics and Microbiology, Charles University in Prague, Prague, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Biochemistry, Charles University in Prague, Prague, Czech Republic
| | - Taťána Majerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Iannuzzelli JA, Bonn R, Hong AS, Anitha AS, Jenkins JL, Wedekind JE, Fasan R. Cyclic peptides targeting the SARS-CoV-2 programmed ribosomal frameshifting RNA from a multiplexed phage display library. Chem Sci 2024; 15:19520-19533. [PMID: 39568906 PMCID: PMC11575553 DOI: 10.1039/d4sc04026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024] Open
Abstract
RNA provides the genetic blueprint for many pathogenic viruses, including SARS-CoV-2. The propensity of RNA to fold into specific tertiary structures enables the biomolecular recognition of cavities and crevices suited for the binding of drug-like molecules. Despite increasing interest in RNA as a target for chemical biology and therapeutic applications, the development of molecules that recognize RNA with high affinity and specificity represents a significant challenge. Here, we report a strategy for the discovery and selection of RNA-targeted macrocyclic peptides derived from combinatorial libraries of peptide macrocycles displayed by bacteriophages. Specifically, a platform for phage display of macrocyclic organo-peptide hybrids (MOrPH-PhD) was combined with a diverse set of non-canonical amino acid-based cyclization modules to produce large libraries of 107 structurally diverse, genetically encoded peptide macrocycles. These libraries were panned against the -1 programmed ribosomal frameshifting stimulatory sequence (FSS) RNA pseudoknot of SARS-CoV-2, which revealed specific macrocyclic peptide sequences that bind this essential motif with high affinity and selectivity. Peptide binding localizes to the FSS dimerization loop based on chemical modification analysis and binding assays and the cyclic peptides show specificity toward the target RNA over unrelated RNA pseudoknots. This work introduces a novel system for the generation and high-throughput screening of topologically diverse cyclopeptide scaffolds (multiplexed MOrPH-PhD), and it provides a blueprint for the exploration and evolution of genetically encoded macrocyclic peptides that target specific RNAs.
Collapse
Affiliation(s)
| | - Rachel Bonn
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Andrew S Hong
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| | - Abhijith Saseendran Anitha
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
- Department of Chemistry & Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
- Department of Chemistry & Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
5
|
Hernández-Marín M, Cantero-Camacho Á, Mena I, López-Núñez S, García-Sastre A, Gallego J. Sarbecovirus programmed ribosome frameshift RNA element folding studied by NMR spectroscopy and comparative analyses. Nucleic Acids Res 2024; 52:11960-11972. [PMID: 39149904 PMCID: PMC11514460 DOI: 10.1093/nar/gkae704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
The programmed ribosomal frameshift (PRF) region is found in the RNA genome of all coronaviruses and shifts the ribosome reading frame through formation of a three-stem pseudoknot structure, allowing the translation of essential viral proteins. Using NMR spectroscopy, comparative sequence analyses and functional assays we show that, in the absence of the ribosome, a 123-nucleotide sequence encompassing the PRF element of SARS-CoV-2 adopts a well-defined two-stem loop structure that is conserved in all SARS-like coronaviruses. In this conformation, the attenuator hairpin and slippery site nucleotides are exposed in the first stem-loop and two pseudoknot stems are present in the second stem-loop, separated by an 8-nucleotide bulge. Formation of the third pseudoknot stem depends on pairing between bulge nucleotides and base-paired nucleotides of the upstream stem-loop, as shown by a PRF construct where residues of the upstream stem were removed, which formed the pseudoknot structure and had increased frameshifting activity in a dual-luciferase assay. The base-pair switch driving PRF pseudoknot folding was found to be conserved in several human non-SARS coronaviruses. The collective results suggest that the frameshifting pseudoknot structure of these viruses only forms transiently in the presence of the translating ribosome. These findings clarify the frameshifting mechanism in coronaviruses and can have a beneficial impact on antiviral drug discovery.
Collapse
Affiliation(s)
- María Hernández-Marín
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
- Escuela de Doctorado, Universidad Católica de Valencia, 46001 Valencia, Spain
| | - Ángel Cantero-Camacho
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Sergio López-Núñez
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
- Escuela de Doctorado, Universidad Católica de Valencia, 46001 Valencia, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - José Gallego
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
| |
Collapse
|
6
|
Lee S, Yan S, Dey A, Laederach A, Schlick T. An intricate balancing act: Upstream and downstream frameshift co-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.599960. [PMID: 38979256 PMCID: PMC11230384 DOI: 10.1101/2024.06.27.599960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Targeting ribosomal frameshifting has emerged as a potential therapeutic intervention strategy against Covid-19. During ribosomal translation, a fraction of elongating ribosomes slips by one base in the 5' direction and enters a new reading frame for viral protein synthesis. Any interference with this process profoundly affects viral replication and propagation. For Covid-19, two RNA sites associated with ribosomal frameshifting for SARS-CoV-2 are positioned on the 5' and 3' of the frameshifting residues. Although much attention has been on the 3' frameshift element (FSE), the 5' stem-loop (attenuator hairpin, AH) can play a role. The formation of AH has been suggested to occur as refolding of the 3' RNA structure is triggered by ribosomal unwinding. However, the attenuation activity and the relationship between the two regions are unknown. To gain more insight into these two related viral RNAs and to further enrich our understanding of ribosomal frameshifting for SARS-CoV-2, we explore the RNA folding of both 5' and 3' regions associated with frameshifting. Using our graph-theory-based modeling tools to represent RNA secondary structures, "RAG" (RNA- As-Graphs), and conformational landscapes to analyze length-dependent conformational distributions, we show that AH coexists with the 3-stem pseudoknot of the 3' FSE (graph 3_6 in our dual graph notation) and alternative pseudoknot (graph 3_3) but less likely with other 3' FSE alternative folds (such as 3-way junction 3_5). This is because an alternative length-dependent Stem 1 (AS1) can disrupt the FSE pseudoknots and trigger other folds. In addition, we design four mutants for long lengths that stabilize or disrupt AH, AS1 or FSE pseudoknot to illustrate the deduced AH/AS1 roles and favor the 3_5, 3_6 or stem-loop. These mutants further show how a strengthened pseudoknot can result from a weakened AS1, while a dominant stem-loop occurs with a strengthened AS1. These structural and mutational insights into both ends of the FSE in SARS-CoV-2 advance our understanding of the SARS-CoV-2 frameshifting mechanism by suggesting a sequence of length-dependent folds, which in turn define potential therapeutic intervention techniques involving both elements. Our work also highlights the complexity of viral landscapes with length-dependent folds, and challenges in analyzing these multiple conformations.
Collapse
Affiliation(s)
- Samuel Lee
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
| | - Shuting Yan
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
| | - Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, 226002, Uttar Pradesh, India
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, U.S.A
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
- Courant Institute of Mathematical Sciences, New York University, New York, 10012, NY, U.S.A
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, 200062, P.R.China
- NYU Simons Center for Computational Physical Chemistry, New York University, New York, 10003, NY, U.S.A
| |
Collapse
|
7
|
Wang X, Chen Y, Qi C, Li F, Zhang Y, Zhou J, Wu H, Zhang T, Qi A, Ouyang H, Xie Z, Pang D. Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles. Front Immunol 2024; 15:1340332. [PMID: 38919631 PMCID: PMC11196420 DOI: 10.3389/fimmu.2024.1340332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
During infection, positive-stranded RNA causes a rearrangement of the host cell membrane, resulting in specialized membrane structure formation aiding viral genome replication. Double-membrane vesicles (DMVs), typical structures produced by virus-induced membrane rearrangements, are platforms for viral replication. Nidoviruses, one of the most complex positive-strand RNA viruses, have the ability to infect not only mammals and a few birds but also invertebrates. Nidoviruses possess a distinctive replication mechanism, wherein their nonstructural proteins (nsps) play a crucial role in DMV biogenesis. With the participation of host factors related to autophagy and lipid synthesis pathways, several viral nsps hijack the membrane rearrangement process of host endoplasmic reticulum (ER), Golgi apparatus, and other organelles to induce DMV formation. An understanding of the mechanisms of DMV formation and its structure and function in the infectious cycle of nidovirus may be essential for the development of new and effective antiviral strategies in the future.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
8
|
Bose E, Xiong S, Jones AN. Probing RNA structure and dynamics using nanopore and next generation sequencing. J Biol Chem 2024; 300:107317. [PMID: 38677514 PMCID: PMC11145556 DOI: 10.1016/j.jbc.2024.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
It has become increasingly evident that the structures RNAs adopt are conformationally dynamic; the various structured states that RNAs sample govern their interactions with other nucleic acids, proteins, and ligands to regulate a myriad of biological processes. Although several biophysical approaches have been developed and used to study the dynamic landscape of structured RNAs, technical limitations have limited their application to all classes of RNA due to variable size and flexibility. Recent advances combining chemical probing experiments with next-generation- and direct sequencing have emerged as an alternative approach to exploring the conformational dynamics of RNA. In this review, we provide a methodological overview of the sequencing-based techniques used to study RNA conformational dynamics. We discuss how different techniques have enabled us to better understand the propensity of RNAs from a variety of different classes to sample multiple conformational states. Finally, we present examples of the ways these techniques have reshaped how we think about RNA structure.
Collapse
Affiliation(s)
- Emma Bose
- Department of Chemistry, New York University, New York, New York, USA
| | - Shengwei Xiong
- Department of Chemistry, New York University, New York, New York, USA
| | - Alisha N Jones
- Department of Chemistry, New York University, New York, New York, USA.
| |
Collapse
|
9
|
Li H, Li J, Li J, Li H, Wang X, Jiang J, Lei L, Sun H, Tang M, Dong B, He W, Si S, Hong B, Li Y, Song D, Peng Z, Che Y, Jiang JD. Carrimycin inhibits coronavirus replication by decreasing the efficiency of programmed -1 ribosomal frameshifting through directly binding to the RNA pseudoknot of viral frameshift-stimulatory element. Acta Pharm Sin B 2024; 14:2567-2580. [PMID: 38828157 PMCID: PMC11143517 DOI: 10.1016/j.apsb.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 06/05/2024] Open
Abstract
The pandemic of SARS-CoV-2 worldwide with successive emerging variants urgently calls for small-molecule oral drugs with broad-spectrum antiviral activity. Here, we show that carrimycin, a new macrolide antibiotic in the clinic and an antiviral candidate for SARS-CoV-2 in phase III trials, decreases the efficiency of programmed -1 ribosomal frameshifting of coronaviruses and thus impedes viral replication in a broad-spectrum fashion. Carrimycin binds directly to the coronaviral frameshift-stimulatory element (FSE) RNA pseudoknot, interrupting the viral protein translation switch from ORF1a to ORF1b and thereby reducing the level of the core components of the viral replication and transcription complexes. Combined carrimycin with known viral replicase inhibitors yielded a synergistic inhibitory effect on coronaviruses. Because the FSE mechanism is essential in all coronaviruses, carrimycin could be a new broad-spectrum antiviral drug for human coronaviruses by directly targeting the conserved coronaviral FSE RNA. This finding may open a new direction in antiviral drug discovery for coronavirus variants.
Collapse
Affiliation(s)
- Hongying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jianrui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiayu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuekai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Weiqing He
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyi Si
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bin Hong
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yinghong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zonggen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yongsheng Che
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Peterson JM, Becker ST, O'Leary CA, Juneja P, Yang Y, Moss WN. Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop. Biochemistry 2024; 63:1287-1296. [PMID: 38727003 DOI: 10.1021/acs.biochem.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshift stimulatory element (FSE) is necessary for programmed -1 ribosomal frameshifting (-1 PRF) and optimized viral efficacy. The FSE has an abundance of context-dependent alternate conformations, but two of the structures most crucial to -1 PRF are an attenuator hairpin and a three-stem H-type pseudoknot structure. A crystal structure of the pseudoknot alone features three RNA stems in a helically stacked linear structure, whereas a 6.9 Å cryo-EM structure including the upstream heptameric slippery site resulted in a bend between two stems. Our previous research alluded to an extended upstream multibranch loop that includes both the attenuator hairpin and the slippery site-a conformation not previously modeled. We aim to provide further context to the SARS-CoV-2 FSE via computational and medium resolution cryo-EM approaches, by presenting a 6.1 Å cryo-EM structure featuring a linear pseudoknot structure and a dynamic upstream multibranch loop.
Collapse
Affiliation(s)
- Jake M Peterson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Scott T Becker
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Collin A O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Puneet Juneja
- Cryo-EM Facility, Iowa State University, Ames, Iowa 50011, United States
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
11
|
Karousis ED, Schubert K, Ban N. Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective. EMBO J 2024; 43:151-167. [PMID: 38200146 PMCID: PMC10897431 DOI: 10.1038/s44318-023-00019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Huang SH, Chen SC, Wu TY, Chen CY, Yu CH. Programmable modulation of ribosomal frameshifting by mRNA targeting CRISPR-Cas12a system. iScience 2023; 26:108492. [PMID: 38125012 PMCID: PMC10730746 DOI: 10.1016/j.isci.2023.108492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Minus 1 programmed ribosomal frameshifting (-1 PRF) is a conserved translational regulation event essential for critical biological processes, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Efficient trans-modulation of the structured RNA element crucial to -1 PRF will endow the therapeutic application. Here, we demonstrate that CRISPR RNA can stimulate efficient -1 PRF. Assembled CRISPR-Cas12a, but not CRISPR-Cas9, complex further enhances -1 PRF efficiency through its higher capacity to stall translating ribosomes. We additionally perform CRISPR-Cas12a targeting to impair the SARS-CoV-2 frameshifting pseudoknot structure via a focused screening. We demonstrate that targeting CRISPR-Cas12a results in more than 70% suppression of -1 PRF in vitro and about 50% suppression in mammalian cells. Our results show the expanded function of the CRISPR-Cas12 system in modulating -1 PRF efficiency through stalling ribosomes and deforming frameshifting stimulatory signals, which could serve as a new strategy for future coronavirus pandemics.
Collapse
Affiliation(s)
- Shih-Hong Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | | | - Cheng-Yao Chen
- YD BioLabs, Inc., Hsinchu, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
He W, San Emeterio J, Woodside MT, Kirmizialtin S, Pollack L. Atomistic structure of the SARS-CoV-2 pseudoknot in solution from SAXS-driven molecular dynamics. Nucleic Acids Res 2023; 51:11332-11344. [PMID: 37819014 PMCID: PMC10639041 DOI: 10.1093/nar/gkad809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
SARS-CoV-2 depends on -1 programmed ribosomal frameshifting (-1 PRF) to express proteins essential for its replication. The RNA pseudoknot stimulating -1 PRF is thus an attractive drug target. However, the structural models of this pseudoknot obtained from cryo-EM and crystallography differ in some important features, leaving the pseudoknot structure unclear. We measured the solution structure of the pseudoknot using small-angle X-ray scattering (SAXS). The measured profile did not agree with profiles computed from the previously solved structures. Beginning with each of these solved structures, we used the SAXS data to direct all atom molecular dynamics (MD) simulations to improve the agreement in profiles. In all cases, this refinement resulted in a bent conformation that more closely resembled the cryo-EM structures than the crystal structure. Applying the same approach to a point mutant abolishing -1 PRF revealed a notably more bent structure with reoriented helices. This work clarifies the dynamic structures of the SARS-CoV-2 pseudoknot in solution.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry Program, Science Division, New York University, Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, USA
| | | | - Michael T Woodside
- Department of Physics, Li Ka Shing Institute of Virology, and Centre for Prions and Protein Folding Diseases, University of Alberta, Canada
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University, Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, USA
| |
Collapse
|
14
|
Benčić P, Keppler M, Kuge M, Qiu D, Schütte LM, Häner M, Strack K, Jessen HJ, Andexer JN, Loenarz C. Non-canonical nucleosides: Biomimetic triphosphorylation, incorporation into mRNA and effects on translation and structure. FEBS J 2023; 290:4899-4920. [PMID: 37329249 DOI: 10.1111/febs.16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
Recent advances in mRNA therapeutics demand efficient toolkits for the incorporation of nucleoside analogues into mRNA suitable for downstream applications. Herein, we report the application of a versatile enzyme cascade for the triphosphorylation of a broad range of nucleoside analogues, including unprotected nucleobases containing chemically labile moieties. Our biomimetic system was suitable for the preparation of nucleoside triphosphates containing adenosine, cytidine, guanosine, uridine and non-canonical core structures, as determined by capillary electrophoresis coupled to mass spectrometry. This enabled us to establish an efficient workflow for transcribing and purifying functional mRNA containing these nucleoside analogues, combined with mass spectrometric verification of analogue incorporation. Our combined methodology allows for analyses of how incorporation of nucleoside analogues that are commercially unavailable as triphosphates affect mRNA properties: The translational fidelity of the produced mRNA was demonstrated in analyses of how incorporated adenosine analogues impact translational recoding. For the SARS-CoV-2 frameshifting site, analyses of the mRNA pseudoknot structure using circular dichroism spectroscopy allowed insight into how the pharmacologically active 7-deazaadenosine destabilises RNA secondary structure, consistent with observed changes in recoding efficiency.
Collapse
Affiliation(s)
- Patricia Benčić
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Michael Keppler
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Marco Kuge
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Lena M Schütte
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Katharina Strack
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | | | | | - Christoph Loenarz
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| |
Collapse
|
15
|
Abstract
Protein synthesis by the ribosome is the final stage of biological information transfer and represents an irreversible commitment to gene expression. Accurate translation of messenger RNA is therefore essential to all life, and spontaneous errors by the translational machinery are highly infrequent (∼1/100,000 codons). Programmed -1 ribosomal frameshifting (-1PRF) is a mechanism in which the elongating ribosome is induced at high frequency to slip backward by one nucleotide at a defined position and to continue translation in the new reading frame. This is exploited as a translational regulation strategy by hundreds of RNA viruses, which rely on -1PRF during genome translation to control the stoichiometry of viral proteins. While early investigations of -1PRF focused on virological and biochemical aspects, the application of X-ray crystallography and cryo-electron microscopy (cryo-EM), and the advent of deep sequencing and single-molecule approaches have revealed unexpected structural diversity and mechanistic complexity. Molecular players from several model systems have now been characterized in detail, both in isolation and, more recently, in the context of the elongating ribosome. Here we provide a summary of recent advances and discuss to what extent a general model for -1PRF remains a useful way of thinking.
Collapse
Affiliation(s)
- Chris H Hill
- York Structural Biology Laboratory, York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom;
| | - Ian Brierley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
16
|
Wei LH, Sun Y, Guo JU. Genome-wide CRISPR screens identify noncanonical translation factor eIF2A as an enhancer of SARS-CoV-2 programmed -1 ribosomal frameshifting. Cell Rep 2023; 42:112987. [PMID: 37581984 DOI: 10.1016/j.celrep.2023.112987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Many positive-strand RNA viruses, including all known coronaviruses, employ programmed -1 ribosomal frameshifting (-1 PRF) to regulate the translation of polycistronic viral RNAs. However, only a few host factors have been shown to regulate -1 PRF. Through a genome-wide CRISPR-Cas9 knockout screen, we have identified host factors that either suppress or enhance severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) -1 PRF. Among them, eukaryotic translation initiation factor 2A (eIF2A) specifically and directly enhances -1 PRF independent of changes in initiation. Consistent with the crucial role of efficient -1 PRF in transcriptase/replicase expression, loss of eIF2A reduces SARS-CoV-2 replication in cells. Furthermore, transcriptome-wide analysis shows that eIF2A preferentially binds CG-rich RNA motifs, including a region within 18S ribosomal RNA near the contacts between the SARS-CoV-2 frameshift-stimulatory element (FSE) and the ribosome. Thus, our results indicate a role for eIF2A in modulating the translation of specific RNAs independent of its role during initiation.
Collapse
Affiliation(s)
- Lian-Huan Wei
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Sekar RV, Oliva PJ, Woodside MT. Modelling the structures of frameshift-stimulatory pseudoknots from representative bat coronaviruses. PLoS Comput Biol 2023; 19:e1011124. [PMID: 37205708 DOI: 10.1371/journal.pcbi.1011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Coronaviruses (CoVs) use -1 programmed ribosomal frameshifting stimulated by RNA pseudoknots in the viral genome to control expression of enzymes essential for replication, making CoV pseudoknots a promising target for anti-coronaviral drugs. Bats represent one of the largest reservoirs of CoVs and are the ultimate source of most CoVs infecting humans, including those causing SARS, MERS, and COVID-19. However, the structures of bat-CoV frameshift-stimulatory pseudoknots remain largely unexplored. Here we use a combination of blind structure prediction followed by all-atom molecular dynamics simulations to model the structures of eight pseudoknots that, together with the SARS-CoV-2 pseudoknot, are representative of the range of pseudoknot sequences in bat CoVs. We find that they all share some key qualitative features with the pseudoknot from SARS-CoV-2, notably the presence of conformers with two distinct fold topologies differing in whether or not the 5' end of the RNA is threaded through a junction, and similar conformations for stem 1. However, they differed in the number of helices present, with half sharing the 3-helix architecture of the SARS-CoV-2 pseudoknot but two containing 4 helices and two others only 2. These structure models should be helpful for future work studying bat-CoV pseudoknots as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| |
Collapse
|
18
|
Allan MF, Brivanlou A, Rouskin S. RNA levers and switches controlling viral gene expression. Trends Biochem Sci 2023; 48:391-406. [PMID: 36710231 DOI: 10.1016/j.tibs.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/27/2022] [Accepted: 12/15/2022] [Indexed: 01/29/2023]
Abstract
RNA viruses are diverse and abundant pathogens that are responsible for numerous human diseases. RNA viruses possess relatively compact genomes and have therefore evolved multiple mechanisms to maximize their coding capacities, often by encoding overlapping reading frames. These reading frames are then decoded by mechanisms such as alternative splicing and ribosomal frameshifting to produce multiple distinct proteins. These solutions are enabled by the ability of the RNA genome to fold into 3D structures that can mimic cellular RNAs, hijack host proteins, and expose or occlude regulatory protein-binding motifs to ultimately control key process in the viral life cycle. We highlight recent findings focusing on less conventional mechanisms of gene expression and new discoveries on the role of RNA structures.
Collapse
Affiliation(s)
- Matthew F Allan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amir Brivanlou
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Trinity L, Wark I, Lansing L, Jabbari H, Stege U. Shapify: Paths to SARS-CoV-2 frameshifting pseudoknot. PLoS Comput Biol 2023; 19:e1010922. [PMID: 36854032 PMCID: PMC10004594 DOI: 10.1371/journal.pcbi.1010922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/10/2023] [Accepted: 02/05/2023] [Indexed: 03/02/2023] Open
Abstract
Multiple coronaviruses including MERS-CoV causing Middle East Respiratory Syndrome, SARS-CoV causing SARS, and SARS-CoV-2 causing COVID-19, use a mechanism known as -1 programmed ribosomal frameshifting (-1 PRF) to replicate. SARS-CoV-2 possesses a unique RNA pseudoknotted structure that stimulates -1 PRF. Targeting -1 PRF in SARS-CoV-2 to impair viral replication can improve patients' prognoses. Crucial to developing these therapies is understanding the structure of the SARS-CoV-2 -1 PRF pseudoknot. Our goal is to expand knowledge of -1 PRF structural conformations. Following a structural alignment approach, we identify similarities in -1 PRF pseudoknots of SARS-CoV-2, SARS-CoV, and MERS-CoV. We provide in-depth analysis of the SARS-CoV-2 and MERS-CoV -1 PRF pseudoknots, including reference and noteworthy mutated sequences. To better understand the impact of mutations, we provide insight on -1 PRF pseudoknot sequence mutations and their effect on resulting structures. We introduce Shapify, a novel algorithm that given an RNA sequence incorporates structural reactivity (SHAPE) data and partial structure information to output an RNA secondary structure prediction within a biologically sound hierarchical folding approach. Shapify enhances our understanding of SARS-CoV-2 -1 PRF pseudoknot conformations by providing energetically favourable predictions that are relevant to structure-function and may correlate with -1 PRF efficiency. Applied to the SARS-CoV-2 -1 PRF pseudoknot, Shapify unveils previously unknown paths from initial stems to pseudoknotted structures. By contextualizing our work with available experimental data, our structure predictions motivate future RNA structure-function research and can aid 3-D modeling of pseudoknots.
Collapse
Affiliation(s)
- Luke Trinity
- Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
| | - Ian Wark
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Lance Lansing
- Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
| | - Hosna Jabbari
- Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Institute on Aging and Lifelong Health, Victoria, British Columbia, Canada
| | - Ulrike Stege
- Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
20
|
Ning L, Liu M, Gou Y, Yang Y, He B, Huang J. Development and application of ribonucleic acid therapy strategies against COVID-19. Int J Biol Sci 2022; 18:5070-5085. [PMID: 35982905 PMCID: PMC9379410 DOI: 10.7150/ijbs.72706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2), remaining a global health crisis since its outbreak until now. Advanced biotechnology and research findings have revealed many suitable viral and host targets for a wide range of therapeutic strategies. The emerging ribonucleic acid therapy can modulate gene expression by post-transcriptional gene silencing (PTGS) based on Watson-Crick base pairing. RNA therapies, including antisense oligonucleotides (ASO), ribozymes, RNA interference (RNAi), aptamers, etc., were used to treat SARS-CoV whose genome is similar to SARV-CoV-2, and the past experience also applies for the treatment of COVID-19. Several studies against SARS-CoV-2 based on RNA therapeutic strategy have been reported, and a dozen of relevant preclinical or clinical trials are in process globally. RNA therapy has been a very active and important part of COVID-19 treatment. In this review, we focus on the progress of ribonucleic acid therapeutic strategies development and application, discuss corresponding problems and challenges, and suggest new strategies and solutions.
Collapse
Affiliation(s)
- Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Sichuan, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| | - Mujiexin Liu
- Ineye Hospital of Chengdu University of TCM, Sichuan, China
| | - Yushu Gou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| | - Yue Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| | - Bifang He
- Medical College, Guizhou University, Guizhou, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| |
Collapse
|
21
|
Abstract
The constrained nature of viral genomes has allowed a translational sleight of hand known as −1 Programmed Ribosomal Frameshifting (−1 PRF) to flourish. Numerous studies have sought to tease apart the mechanisms and implications of −1PRF utilizing a few techniques. The dual-luciferase assay and ribosomal profiling have driven the PRF field to make great advances; however, the use of these assays means that the full impact of the genomic and cellular context on −1 PRF is often lost. Here, we discuss how the Minimal Frameshifting Element (MFE) and its constraints can hide contextual effects on −1 PRF. We review how sequence elements proximal to the traditionally defined MFE, such as the coronavirus attenuator sequence, can affect the observed rates of −1 PRF. Further, the MFE-based approach fully obscured −1 PRF in Barley yellow dwarf virus and would render the exploration of −1 PRF difficult in Porcine reproductive and respiratory syndrome virus, Encephalomyocarditis virus, Theiler’s murine encephalomyelitis virus, and Sindbis virus. Finally, we examine how the cellular context of tRNA abundance, miRNAs, and immune response elements can affect −1 PRF. The use of MFE was instrumental in establishing the basic foundations of PRF; however, it has become clear that the contextual impact on −1 PRF is no longer the exception so much as it is the rule and argues for new approaches to study −1PRF that embrace context. We therefore urge our field to expand the strategies and methods used to explore −1 PRF.
Collapse
|
22
|
Grellet E, L'Hôte I, Goulet A, Imbert I. Replication of the coronavirus genome: A paradox among positive-strand RNA viruses. J Biol Chem 2022; 298:101923. [PMID: 35413290 PMCID: PMC8994683 DOI: 10.1016/j.jbc.2022.101923] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Coronavirus (CoV) genomes consist of positive-sense single-stranded RNA and are among the largest viral RNAs known to date (∼30 kb). As a result, CoVs deploy sophisticated mechanisms to replicate these extraordinarily large genomes as well as to transcribe subgenomic messenger RNAs. Since 2003, with the emergence of three highly pathogenic CoVs (SARS-CoV, MERS-CoV, and SARS-CoV-2), significant progress has been made in the molecular characterization of the viral proteins and key mechanisms involved in CoV RNA genome replication. For example, to allow for the maintenance and integrity of their large RNA genomes, CoVs have acquired RNA proofreading 3'-5' exoribonuclease activity (in nonstructural protein nsp14). In order to replicate the large genome, the viral-RNA-dependent RNA polymerase (RdRp; in nsp12) is supplemented by a processivity factor (made of the viral complex nsp7/nsp8), making it the fastest known RdRp. Lastly, a viral structural protein, the nucleocapsid (N) protein, which is primarily involved in genome encapsidation, is required for efficient viral replication and transcription. Therefore, CoVs are a paradox among positive-strand RNA viruses in the sense that they use both a processivity factor and have proofreading activity reminiscent of DNA organisms in addition to structural proteins that mediate efficient RNA synthesis, commonly used by negative-strand RNA viruses. In this review, we present a historical perspective of these unsuspected discoveries and detail the current knowledge on the core replicative machinery deployed by CoVs.
Collapse
Affiliation(s)
- Emeline Grellet
- Aix Marseille Université, Centre National de la Recherche Scientifique, AMU CNRS UMR 7255, LISM, Marseille, France
| | - India L'Hôte
- Aix Marseille Université, Centre National de la Recherche Scientifique, AMU CNRS UMR 7255, LISM, Marseille, France
| | - Adeline Goulet
- Aix Marseille Université, Centre National de la Recherche Scientifique, AMU CNRS UMR 7255, LISM, Marseille, France
| | - Isabelle Imbert
- Aix Marseille Université, Centre National de la Recherche Scientifique, AMU CNRS UMR 7255, LISM, Marseille, France.
| |
Collapse
|
23
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Lan TCT, Allan MF, Malsick LE, Woo JZ, Zhu C, Zhang F, Khandwala S, Nyeo SSY, Sun Y, Guo JU, Bathe M, Näär A, Griffiths A, Rouskin S. Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat Commun 2022; 13:1128. [PMID: 35236847 PMCID: PMC8891300 DOI: 10.1038/s41467-022-28603-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 01/20/2022] [Indexed: 12/25/2022] Open
Abstract
SARS-CoV-2 is a betacoronavirus with a single-stranded, positive-sense, 30-kilobase RNA genome responsible for the ongoing COVID-19 pandemic. Although population average structure models of the genome were recently reported, there is little experimental data on native structural ensembles, and most structures lack functional characterization. Here we report secondary structure heterogeneity of the entire SARS-CoV-2 genome in two lines of infected cells at single nucleotide resolution. Our results reveal alternative RNA conformations across the genome and at the critical frameshifting stimulation element (FSE) that are drastically different from prevailing population average models. Importantly, we find that this structural ensemble promotes frameshifting rates much higher than the canonical minimal FSE and similar to ribosome profiling studies. Our results highlight the value of studying RNA in its full length and cellular context. The genomic structures detailed here lay groundwork for coronavirus RNA biology and will guide the design of SARS-CoV-2 RNA-based therapeutics.
Collapse
Affiliation(s)
- Tammy C T Lan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Matty F Allan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lauren E Malsick
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Jia Z Woo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Chi Zhu
- Department of Nutritional Sciences & Toxicology, University of California, Berkley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Fengrui Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Stuti Khandwala
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sherry S Y Nyeo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anders Näär
- Department of Nutritional Sciences & Toxicology, University of California, Berkley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Anthony Griffiths
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Silvi Rouskin
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Prescott L. SARS-CoV-2 3CLpro whole human proteome cleavage prediction and enrichment/depletion analysis. Comput Biol Chem 2022; 98:107671. [PMID: 35429835 PMCID: PMC8958254 DOI: 10.1016/j.compbiolchem.2022.107671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Abstract
A novel coronavirus (SARS-CoV-2) has devastated the globe as a pandemic that has killed millions of people. Widespread vaccination is still uncertain, so many scientific efforts have been directed toward discovering antiviral treatments. Many drugs are being investigated to inhibit the coronavirus main protease, 3CLpro, from cleaving its viral polyprotein, but few publications have addressed this protease’s interactions with the host proteome or their probable contribution to virulence. Too few host protein cleavages have been experimentally verified to fully understand 3CLpro’s global effects on relevant cellular pathways and tissues. Here, I set out to determine this protease’s targets and corresponding potential drug targets. Using a neural network trained on cleavages from 392 coronavirus proteomes with a Matthews correlation coefficient of 0.985, I predict that a large proportion of the human proteome is vulnerable to 3CLpro, with 4898 out of approximately 20,000 human proteins containing at least one putative cleavage site. These cleavages are nonrandomly distributed and are enriched in the epithelium along the respiratory tract, brain, testis, plasma, and immune tissues and depleted in olfactory and gustatory receptors despite the prevalence of anosmia and ageusia in COVID-19 patients. Affected cellular pathways include cytoskeleton/motor/cell adhesion proteins, nuclear condensation and other epigenetics, host transcription and RNAi, ribosomal stoichiometry and nascent-chain detection and degradation, ubiquitination, pattern recognition receptors, coagulation, lipoproteins, redox, and apoptosis. This whole proteome cleavage prediction demonstrates the importance of 3CLpro in expected and nontrivial pathways affecting virulence, lead me to propose more than a dozen potential therapeutic targets against coronaviruses, and should therefore be applied to all viral proteases and subsequently experimentally verified.
Collapse
|
26
|
Jones CP, Ferré-D'Amaré AR. Crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshifting pseudoknot. RNA (NEW YORK, N.Y.) 2022; 28:239-249. [PMID: 34845084 PMCID: PMC8906546 DOI: 10.1261/rna.078825.121] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/04/2021] [Indexed: 05/30/2023]
Abstract
SARS-CoV-2 produces two long viral protein precursors from one open reading frame using a highly conserved RNA pseudoknot that enhances programmed -1 ribosomal frameshifting. The 1.3 Å-resolution X-ray structure of the pseudoknot reveals three coaxially stacked helices buttressed by idiosyncratic base triples from loop residues. This structure represents a frameshift-stimulating state that must be deformed by the ribosome and exhibits base-triple-adjacent pockets that could be targeted by future small-molecule therapeutics.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
27
|
Identifying Inhibitors of −1 Programmed Ribosomal Frameshifting in a Broad Spectrum of Coronaviruses. Viruses 2022; 14:v14020177. [PMID: 35215770 PMCID: PMC8876150 DOI: 10.3390/v14020177] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Recurrent outbreaks of novel zoonotic coronavirus (CoV) diseases in recent years have highlighted the importance of developing therapeutics with broad-spectrum activity against CoVs. Because all CoVs use −1 programmed ribosomal frameshifting (−1 PRF) to control expression of key viral proteins, the frameshift signal in viral mRNA that stimulates −1 PRF provides a promising potential target for such therapeutics. To test the viability of this strategy, we explored whether small-molecule inhibitors of −1 PRF in SARS-CoV-2 also inhibited −1 PRF in a range of bat CoVs—the most likely source of future zoonoses. Six inhibitors identified in new and previous screens against SARS-CoV-2 were evaluated against the frameshift signals from a panel of representative bat CoVs as well as MERS-CoV. Some drugs had strong activity against subsets of these CoV-derived frameshift signals, while having limited to no effect on −1 PRF caused by frameshift signals from other viruses used as negative controls. Notably, the serine protease inhibitor nafamostat suppressed −1 PRF significantly for multiple CoV-derived frameshift signals. These results suggest it is possible to find small-molecule ligands that inhibit −1 PRF specifically in a broad spectrum of CoVs, establishing frameshift signals as a viable target for developing pan-coronaviral therapeutics.
Collapse
|
28
|
Malone B, Urakova N, Snijder EJ, Campbell EA. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol 2022; 23:21-39. [PMID: 34824452 PMCID: PMC8613731 DOI: 10.1038/s41580-021-00432-z] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to cause massive global upheaval. Coronaviruses are positive-strand RNA viruses with an unusually large genome of ~30 kb. They express an RNA-dependent RNA polymerase and a cohort of other replication enzymes and supporting factors to transcribe and replicate their genomes. The proteins performing these essential processes are prime antiviral drug targets, but drug discovery is hindered by our incomplete understanding of coronavirus RNA synthesis and processing. In infected cells, the RNA-dependent RNA polymerase must coordinate with other viral and host factors to produce both viral mRNAs and new genomes. Recent research aiming to decipher and contextualize the structures, functions and interplay of the subunits of the SARS-CoV-2 replication and transcription complex proteins has burgeoned. In this Review, we discuss recent advancements in our understanding of the molecular basis and complexity of the coronavirus RNA-synthesizing machinery. Specifically, we outline the mechanisms and regulation of RNA translation, replication and transcription. We also discuss the composition of the replication and transcription complexes and their suitability as targets for antiviral therapy.
Collapse
Affiliation(s)
- Brandon Malone
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY USA
| | - Nadya Urakova
- grid.10419.3d0000000089452978Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric J. Snijder
- grid.10419.3d0000000089452978Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elizabeth A. Campbell
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY USA
| |
Collapse
|
29
|
Zafferani M, Muralidharan D, Montalvan NI, Hargrove AE. RT-qPCR as a screening platform for mutational and small molecule impacts on structural stability of RNA tertiary structures. RSC Chem Biol 2022; 3:905-915. [PMID: 35866161 PMCID: PMC9257624 DOI: 10.1039/d2cb00015f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
The exponential increase in the discovery and characterization of RNA tertiary structures has highlighted their active role in a variety of human diseases, yet often their interactome and specific function remain unknown. Small molecules offer opportunities to both decode these cellular roles and develop therapeutics, however there are few examples of small molecules that target biologically relevant RNA tertiary structures. While RNA triple helices are a particularly attractive target, discovery of triple helix modulators has been hindered by the lack of correlation between small molecule affinity and effect on structural modulation, thereby limiting the utility of affinity-based screening as a primary filtering method. To address this challenge, we developed a high-throughput RT-qPCR screening platform that reports on the effect of mutations and additives, such as small molecules, on the stability of triple helices. Using the 3′-end of the oncogenic long non-coding RNA MALAT1 as a proof-of-concept, we demonstrated the applicability of both a two-step and a one-pot method to assess the impact of mutations and small molecules on the stability of the triple helix. We demonstrated the adaptability of the assay to diverse RNA tertiary structures by applying it to the SARS-CoV-2 pseudoknot, a key viral RNA structure recently identified as an attractive therapeutic target for the development of antivirals. Employment of a functional high-throughput assay as a primary screen will significantly expedite the discovery of probes that modulate the structural landscape of RNA structures and, consequently, help gain insight into the roles of these pervasive structures. RT-qPCR can be harnessed as a small molecule screening platform to read out the effect of small molecules on the structural stability of a variety of RNA targets.![]()
Collapse
Affiliation(s)
- Martina Zafferani
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | | | - Nadeska I. Montalvan
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | - Amanda E. Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA
| |
Collapse
|
30
|
Mei H, Kosakovsky Pond S, Nekrutenko A. Stepwise Evolution and Exceptional Conservation of ORF1a/b Overlap in Coronaviruses. Mol Biol Evol 2021; 38:5678-5684. [PMID: 34505896 PMCID: PMC8499926 DOI: 10.1093/molbev/msab265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The programmed frameshift element (PFE) rerouting translation from ORF1a to ORF1b is essential for the propagation of coronaviruses. The combination of genomic features that make up PFE-the overlap between the two reading frames, a slippery sequence, as well as an ensemble of complex secondary structure elements-places severe constraints on this region as most possible nucleotide substitution may disrupt one or more of these elements. The vast amount of SARS-CoV-2 sequencing data generated within the past year provides an opportunity to assess the evolutionary dynamics of PFE in great detail. Here, we performed a comparative analysis of all available coronaviral genomic data available to date. We show that the overlap between ORF1a and ORF1b evolved as a set of discrete 7, 16, 22, 25, and 31 nucleotide stretches with a well-defined phylogenetic specificity. We further examined sequencing data from over 1,500,000 complete genomes and 55,000 raw read data sets to demonstrate exceptional conservation and detect signatures of selection within the PFE region.
Collapse
Affiliation(s)
- Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sergei Kosakovsky Pond
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
31
|
Zhang K, Zheludev IN, Hagey RJ, Haslecker R, Hou YJ, Kretsch R, Pintilie GD, Rangan R, Kladwang W, Li S, Wu MTP, Pham EA, Bernardin-Souibgui C, Baric RS, Sheahan TP, D'Souza V, Glenn JS, Chiu W, Das R. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nat Struct Mol Biol 2021; 28:747-754. [PMID: 34426697 PMCID: PMC8848339 DOI: 10.1038/s41594-021-00653-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Drug discovery campaigns against COVID-19 are beginning to target the SARS-CoV-2 RNA genome. The highly conserved frameshift stimulation element (FSE), required for balanced expression of viral proteins, is a particularly attractive SARS-CoV-2 RNA target. Here we present a 6.9 Å resolution cryo-EM structure of the FSE (88 nucleotides, ~28 kDa), validated through an RNA nanostructure tagging method. The tertiary structure presents a topologically complex fold in which the 5' end is threaded through a ring formed inside a three-stem pseudoknot. Guided by this structure, we develop antisense oligonucleotides that impair FSE function in frameshifting assays and knock down SARS-CoV-2 virus replication in A549-ACE2 cells at 100 nM concentration.
Collapse
Affiliation(s)
- Kaiming Zhang
- Departments of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ivan N Zheludev
- Department of Biochemistry Stanford University, Stanford, CA, USA
| | - Rachel J Hagey
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA
| | - Raphael Haslecker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Grigore D Pintilie
- Departments of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Wipapat Kladwang
- Department of Biochemistry Stanford University, Stanford, CA, USA
| | - Shanshan Li
- Departments of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Marie Teng-Pei Wu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Edward A Pham
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA
| | - Claire Bernardin-Souibgui
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jeffrey S Glenn
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA.
- Palo Alto Veterans Administration, Palo Alto, CA, USA.
| | - Wah Chiu
- Departments of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA.
- Biophysics Program, Stanford University, Stanford, CA, USA.
- CryoEM and Bioimaging Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA.
| | - Rhiju Das
- Department of Biochemistry Stanford University, Stanford, CA, USA.
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Physics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Roman C, Lewicka A, Koirala D, Li NS, Piccirilli JA. The SARS-CoV-2 Programmed -1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography. ACS Chem Biol 2021; 16:1469-1481. [PMID: 34328734 PMCID: PMC8353986 DOI: 10.1021/acschembio.1c00324] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
The programmed -1 ribosomal frameshifting element (PFSE) of SARS-CoV-2 is a well conserved structured RNA found in all coronaviruses' genomes. By adopting a pseudoknot structure in the presence of the ribosome, the PFSE promotes a ribosomal frameshifting event near the stop codon of the first open reading frame Orf1a during translation of the polyprotein pp1a. Frameshifting results in continuation of pp1a via a new open reading frame, Orf1b, that produces the longer pp1ab polyprotein. Polyproteins pp1a and pp1ab produce nonstructural proteins NSPs 1-10 and NSPs 1-16, respectively, which contribute vital functions during the viral life cycle and must be present in the proper stoichiometry. Both drugs and sequence alterations that affect the stability of the -1 programmed ribosomal frameshifting element disrupt the stoichiometry of the NSPs produced, which compromise viral replication. For this reason, the -1 programmed frameshifting element is considered a promising drug target. Using chaperone assisted RNA crystallography, we successfully crystallized and solved the three-dimensional structure of the PFSE. We observe a three-stem H-type pseudoknot structure with the three stems stacked in a vertical orientation stabilized by two triple base pairs at the stem 1/stem 2 and stem 1/stem 3 junctions. This structure provides a new conformation of PFSE distinct from the bent conformations inferred from midresolution cryo-EM models and provides a high-resolution framework for mechanistic investigations and structure-based drug design.
Collapse
Affiliation(s)
- Christina Roman
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Anna Lewicka
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Deepak Koirala
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| | - Nan-Sheng Li
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph A. Piccirilli
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
33
|
A Novel Frameshifting Inhibitor Having Antiviral Activity against Zoonotic Coronaviruses. Viruses 2021; 13:v13081639. [PMID: 34452503 PMCID: PMC8402677 DOI: 10.3390/v13081639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent outbreaks of zoonotic coronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have caused tremendous casualties and great economic shock. Although some repurposed drugs have shown potential therapeutic efficacy in clinical trials, specific therapeutic agents targeting coronaviruses have not yet been developed. During coronavirus replication, a replicase gene cluster, including RNA-dependent RNA polymerase (RdRp), is alternatively translated via a process called -1 programmed ribosomal frameshift (−1 PRF) by an RNA pseudoknot structure encoded in viral RNAs. The coronavirus frameshifting has been identified previously as a target for antiviral therapy. In this study, the frameshifting efficiencies of MERS-CoV, SARS-CoV and SARS-CoV-2 were determined using an in vitro −1 PRF assay system. Our group has searched approximately 9689 small molecules to identify potential −1 PRF inhibitors. Herein, we found that a novel compound, 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline (KCB261770), inhibits the frameshifting of MERS-CoV and effectively suppresses viral propagation in MERS-CoV-infected cells. The inhibitory effects of 87 derivatives of furo[2,3-b]quinolines were also examined showing less prominent inhibitory effect when compared to compound KCB261770. We demonstrated that KCB261770 inhibits the frameshifting without suppressing cap-dependent translation. Furthermore, this compound was able to inhibit the frameshifting, to some extent, of SARS-CoV and SARS-CoV-2. Therefore, the novel compound 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline may serve as a promising drug candidate to interfere with pan-coronavirus frameshifting.
Collapse
|
34
|
Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers. Nat Commun 2021; 12:4749. [PMID: 34362921 PMCID: PMC8346527 DOI: 10.1038/s41467-021-25085-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
The RNA pseudoknot that stimulates programmed ribosomal frameshifting in SARS-CoV-2 is a possible drug target. To understand how it responds to mechanical tension applied by ribosomes, thought to play a key role during frameshifting, we probe its structural dynamics using optical tweezers. We find that it forms multiple structures: two pseudoknotted conformers with different stability and barriers, and alternative stem-loop structures. The pseudoknotted conformers have distinct topologies, one threading the 5′ end through a 3-helix junction to create a knot-like fold, the other with unthreaded 5′ end, consistent with structures observed via cryo-EM and simulations. Refolding of the pseudoknotted conformers starts with stem 1, followed by stem 3 and lastly stem 2; Mg2+ ions are not required, but increase pseudoknot mechanical rigidity and favor formation of the knot-like conformer. These results resolve the SARS-CoV-2 frameshift signal folding mechanism and highlight its conformational heterogeneity, with important implications for structure-based drug-discovery efforts. The RNA pseudoknot of SARS-CoV-2 promotes -1 programmed ribosomal frameshifting. Here the authors use single molecule force spectroscopy to study the folding of this pseudoknot, showing that it forms at least two different pseudoknot conformers with distinct fold topologies.
Collapse
|
35
|
Sun Y, Abriola L, Niederer RO, Pedersen SF, Alfajaro MM, Silva Monteiro V, Wilen CB, Ho YC, Gilbert WV, Surovtseva YV, Lindenbach BD, Guo JU. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting. Proc Natl Acad Sci U S A 2021; 118:e2023051118. [PMID: 34185680 PMCID: PMC8256030 DOI: 10.1073/pnas.2023051118] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Translation of open reading frame 1b (ORF1b) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires a programmed -1 ribosomal frameshift (-1 PRF) promoted by an RNA pseudoknot. The extent to which SARS-CoV-2 replication may be sensitive to changes in -1 PRF efficiency is currently unknown. Through an unbiased, reporter-based high-throughput compound screen, we identified merafloxacin, a fluoroquinolone antibacterial, as a -1 PRF inhibitor for SARS-CoV-2. Frameshift inhibition by merafloxacin is robust to mutations within the pseudoknot region and is similarly effective on -1 PRF of other betacoronaviruses. Consistent with the essential role of -1 PRF in viral gene expression, merafloxacin impedes SARS-CoV-2 replication in Vero E6 cells, thereby providing proof-of-principle for targeting -1 PRF as a plausible and effective antiviral strategy for SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
- Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516
| | - Rachel O Niederer
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Savannah F Pedersen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Mia M Alfajaro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Valter Silva Monteiro
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520;
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520;
| |
Collapse
|
36
|
Napthine S, Hill CH, Nugent HCM, Brierley I. Modulation of Viral Programmed Ribosomal Frameshifting and Stop Codon Readthrough by the Host Restriction Factor Shiftless. Viruses 2021; 13:v13071230. [PMID: 34202160 PMCID: PMC8310280 DOI: 10.3390/v13071230] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/18/2022] Open
Abstract
The product of the interferon-stimulated gene C19orf66, Shiftless (SHFL), restricts human immunodeficiency virus replication through downregulation of the efficiency of the viral gag/pol frameshifting signal. In this study, we demonstrate that bacterially expressed, purified SHFL can decrease the efficiency of programmed ribosomal frameshifting in vitro at a variety of sites, including the RNA pseudoknot-dependent signals of the coronaviruses IBV, SARS-CoV and SARS-CoV-2, and the protein-dependent stimulators of the cardioviruses EMCV and TMEV. SHFL also reduced the efficiency of stop-codon readthrough at the murine leukemia virus gag/pol signal. Using size-exclusion chromatography, we confirm the binding of the purified protein to mammalian ribosomes in vitro. Finally, through electrophoretic mobility shift assays and mutational analysis, we show that expressed SHFL has strong RNA binding activity that is necessary for full activity in the inhibition of frameshifting, but shows no clear specificity for stimulatory RNA structures.
Collapse
Affiliation(s)
| | | | | | - Ian Brierley
- Correspondence: ; Tel.: +44-12-2333-6914; Fax: +44-12-2333-6926
| |
Collapse
|
37
|
Mei H, Nekrutenko A. Stepwise evolution and exceptional conservation of ORF1a/b overlap in coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.14.448413. [PMID: 34159333 PMCID: PMC8219097 DOI: 10.1101/2021.06.14.448413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The programmed frameshift element (PFE) rerouting translation from ORF1a to ORF1b is essential for propagation of coronaviruses. A combination of genomic features that make up PFE-the overlap between the two reading frames, a slippery sequence, as well as an ensemble of complex secondary structure elements-puts severe constraints on this region as most possible nucleotide substitution may disrupt one or more of these elements. The vast amount of SARS-CoV-2 sequencing data generated within the past year provides an opportunity to assess evolutionary dynamics of PFE in great detail. Here we performed a comparative analysis of all available coronaviral genomic data available to date. We show that the overlap between ORF1a and b evolved as a set of discrete 7, 16, 22, 25, and 31 nucleotide stretches with a well defined phylogenetic specificity. We further examined sequencing data from over 350,000 complete genomes and 55,000 raw read datasets to demonstrate exceptional conservation of the PFE region.
Collapse
Affiliation(s)
- Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
38
|
De Lise F, Strazzulli A, Iacono R, Curci N, Di Fenza M, Maurelli L, Moracci M, Cobucci-Ponzano B. Programmed Deviations of Ribosomes From Standard Decoding in Archaea. Front Microbiol 2021; 12:688061. [PMID: 34149676 PMCID: PMC8211752 DOI: 10.3389/fmicb.2021.688061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic code decoding, initially considered to be universal and immutable, is now known to be flexible. In fact, in specific genes, ribosomes deviate from the standard translational rules in a programmed way, a phenomenon globally termed recoding. Translational recoding, which has been found in all domains of life, includes a group of events occurring during gene translation, namely stop codon readthrough, programmed ± 1 frameshifting, and ribosome bypassing. These events regulate protein expression at translational level and their mechanisms are well known and characterized in viruses, bacteria and eukaryotes. In this review we summarize the current state-of-the-art of recoding in the third domain of life. In Archaea, it was demonstrated and extensively studied that translational recoding regulates the decoding of the 21st and the 22nd amino acids selenocysteine and pyrrolysine, respectively, and only one case of programmed -1 frameshifting has been reported so far in Saccharolobus solfataricus P2. However, further putative events of translational recoding have been hypothesized in other archaeal species, but not extensively studied and confirmed yet. Although this phenomenon could have some implication for the physiology and adaptation of life in extreme environments, this field is still underexplored and genes whose expression could be regulated by recoding are still poorly characterized. The study of these recoding episodes in Archaea is urgently needed.
Collapse
Affiliation(s)
- Federica De Lise
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Roberta Iacono
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Nicola Curci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Mauro Di Fenza
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Luisa Maurelli
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Marco Moracci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
39
|
Unconventional viral gene expression mechanisms as therapeutic targets. Nature 2021; 593:362-371. [PMID: 34012080 DOI: 10.1038/s41586-021-03511-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Unlike the human genome that comprises mostly noncoding and regulatory sequences, viruses have evolved under the constraints of maintaining a small genome size while expanding the efficiency of their coding and regulatory sequences. As a result, viruses use strategies of transcription and translation in which one or more of the steps in the conventional gene-protein production line are altered. These alternative strategies of viral gene expression (also known as gene recoding) can be uniquely brought about by dedicated viral enzymes or by co-opting host factors (known as host dependencies). Targeting these unique enzymatic activities and host factors exposes vulnerabilities of a virus and provides a paradigm for the design of novel antiviral therapies. In this Review, we describe the types and mechanisms of unconventional gene and protein expression in viruses, and provide a perspective on how future basic mechanistic work could inform translational efforts that are aimed at viral eradication.
Collapse
|
40
|
Bhatt PR, Scaiola A, Loughran G, Leibundgut M, Kratzel A, Meurs R, Dreos R, O'Connor KM, McMillan A, Bode JW, Thiel V, Gatfield D, Atkins JF, Ban N. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 2021; 372:1306-1313. [PMID: 34029205 PMCID: PMC8168617 DOI: 10.1126/science.abf3546] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
Programmed ribosomal frameshifting is a key event during translation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA genome that allows synthesis of the viral RNA-dependent RNA polymerase and downstream proteins. Here, we present the cryo-electron microscopy structure of a translating mammalian ribosome primed for frameshifting on the viral RNA. The viral RNA adopts a pseudoknot structure that lodges at the entry to the ribosomal messenger RNA (mRNA) channel to generate tension in the mRNA and promote frameshifting, whereas the nascent viral polyprotein forms distinct interactions with the ribosomal tunnel. Biochemical experiments validate the structural observations and reveal mechanistic and regulatory features that influence frameshifting efficiency. Finally, we compare compounds previously shown to reduce frameshifting with respect to their ability to inhibit SARS-CoV-2 replication, establishing coronavirus frameshifting as a target for antiviral intervention.
Collapse
Affiliation(s)
- Pramod R Bhatt
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.,School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland.,School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Annika Kratzel
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Romane Meurs
- Center for Integrative Genomics, Génopode, University of Lausanne, 1015 Lausanne, Switzerland
| | - René Dreos
- Center for Integrative Genomics, Génopode, University of Lausanne, 1015 Lausanne, Switzerland
| | - Kate M O'Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Angus McMillan
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, Génopode, University of Lausanne, 1015 Lausanne, Switzerland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland. .,School of Microbiology, University College Cork, Cork T12 K8AF, Ireland.,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Ryder SP, Morgan BR, Coskun P, Antkowiak K, Massi F. Analysis of Emerging Variants in Structured Regions of the SARS-CoV-2 Genome. Evol Bioinform Online 2021; 17:11769343211014167. [PMID: 34017166 PMCID: PMC8114311 DOI: 10.1177/11769343211014167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two sets of SARS-CoV-2 genomic sequences to identify emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, 20 variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5' untranslated region (UTR), including a group of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-ss molecular switch in the 3'UTR. Finally, 5 variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M (stem loop 2 m) selfish genetic element, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. Our analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences.
Collapse
Affiliation(s)
- Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Brittany R Morgan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peren Coskun
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katianna Antkowiak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
42
|
Barik S. Systematizing the genomic order and relatedness in the open reading frames (ORFs) of the coronaviruses. INFECTION GENETICS AND EVOLUTION 2021; 92:104858. [PMID: 33848683 PMCID: PMC8053407 DOI: 10.1016/j.meegid.2021.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022]
Abstract
The coronaviruses (CoVs), including SARS-CoV-2, the agent of the ongoing deadly CoVID-19 pandemic (Coronavirus disease-2019), represent a highly complex and diverse class of RNA viruses with large genomes, complex gene repertoire, and intricate transcriptional and translational mechanisms. The 3′-terminal one-third of the genome encodes four structural proteins, namely spike, envelope, membrane, and nucleocapsid, interspersed with genes for accessory proteins that are largely nonstructural and called ‘open reading frame’ (ORF) proteins with alphanumerical designations, but not in a consistent or sequential order. Here, I report a comparative study of these ORF proteins, mainly encoded in two gene clusters, i.e. between the Spike and the Envelope genes, and between the Membrane and the Nucleocapsid genes. For brevity and focus, a greater emphasis was placed on the first cluster, collectively designated as the ‘orf3 region’ for ease of referral. Overall, an apparently diverse set of ORFs, such as ORF3a, ORF3b, ORF3c, ORF3d, ORF4 and ORF5, but not necessarily numbered in that order on all CoV genomes, were analyzed along with other ORFs. Unexpectedly, the gene order or naming of the ORFs were never fully conserved even within the members of one Genus. These studies also unraveled hitherto unrecognized orf genes in alternative translational frames, encoding potentially novel polypeptides as well as some that are highly similar to known ORFs. Finally, several options of an inclusive and systematic numbering are proposed not only for the orf3 region but also for the other orf genes in the viral genome in an effort to regularize the apparently confusing names and orders. Regardless of the ultimate acceptability of one system over the others, this treatise is hoped to initiate an informed discourse in this area.
Collapse
|
43
|
Zafferani M, Hargrove AE. Small molecule targeting of biologically relevant RNA tertiary and quaternary structures. Cell Chem Biol 2021; 28:594-609. [PMID: 33823146 DOI: 10.1016/j.chembiol.2021.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Initial successes in developing small molecule ligands for non-coding RNAs have underscored their potential as therapeutic targets. More recently, these successes have been aided by advances in biophysical and structural techniques for identification and characterization of more complex RNA structures; these higher-level folds present protein-like binding pockets that offer opportunities to design small molecules that could achieve a degree of selectivity often hard to obtain at the primary and secondary structure level. More specifically, identification and small molecule targeting of RNA tertiary and quaternary structures have allowed researchers to probe several human diseases and have resulted in promising clinical candidates. In this review we highlight a selection of diverse and exciting successes and the experimental approaches that led to their discovery. These studies include examples of recent developments in RNA-centric assays and ligands that provide insight into the features responsible for the affinity and biological outcome of RNA-targeted chemical probes. This report highlights the potential and emerging opportunities to selectively target RNA tertiary and quaternary structures as a route to better understand and, ultimately, treat many diseases.
Collapse
|
44
|
Miao Z, Tidu A, Eriani G, Martin F. Secondary structure of the SARS-CoV-2 5'-UTR. RNA Biol 2021; 18:447-456. [PMID: 32965173 PMCID: PMC7544965 DOI: 10.1080/15476286.2020.1814556] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2, a positive-sense single-stranded RNA Coronavirus, is a global threat to human health. Thus, understanding its life cycle mechanistically would be important to facilitate the design of antiviral drugs. A key aspect of viral progression is the synthesis of viral proteins by the ribosome of the human host. In Coronaviruses, this process is regulated by the viral 5' and 3' untranslated regions (UTRs), but the precise regulatory mechanism has not yet been well understood. In particular, the 5'-UTR of the viral genome is most likely involved in translation initiation of viral proteins. Here, we performed inline probing and RNase V1 probing to establish a model of the secondary structure of SARS-CoV-2 5'-UTR. We found that the 5'-UTR contains stable structures including a very stable four-way junction close to the AUG start codon. Sequence alignment analysis of SARS-CoV-2 variants 5'-UTRs revealed a highly conserved structure with few co-variations that confirmed our secondary structure model based on probing experiments.
Collapse
Affiliation(s)
- Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, UK
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Antonin Tidu
- Architecture Et Réactivité De l’ARN, Université De Strasbourg, Institut De Biologie Moléculaire Et Cellulaire Du CNRS, Strasbourg, France
| | - Gilbert Eriani
- Architecture Et Réactivité De l’ARN, Université De Strasbourg, Institut De Biologie Moléculaire Et Cellulaire Du CNRS, Strasbourg, France
| | - Franck Martin
- Architecture Et Réactivité De l’ARN, Université De Strasbourg, Institut De Biologie Moléculaire Et Cellulaire Du CNRS, Strasbourg, France
| |
Collapse
|
45
|
Transcript Regulation of the Recoded Archaeal α-l-Fucosidase In Vivo. Molecules 2021; 26:molecules26071861. [PMID: 33806142 PMCID: PMC8037382 DOI: 10.3390/molecules26071861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic decoding is flexible, due to programmed deviation of the ribosomes from standard translational rules, globally termed "recoding". In Archaea, recoding has been unequivocally determined only for termination codon readthrough events that regulate the incorporation of the unusual amino acids selenocysteine and pyrrolysine, and for -1 programmed frameshifting that allow the expression of a fully functional α-l-fucosidase in the crenarchaeon Saccharolobus solfataricus, in which several functional interrupted genes have been identified. Increasing evidence suggests that the flexibility of the genetic code decoding could provide an evolutionary advantage in extreme conditions, therefore, the identification and study of interrupted genes in extremophilic Archaea could be important from an astrobiological point of view, providing new information on the origin and evolution of the genetic code and on the limits of life on Earth. In order to shed some light on the mechanism of programmed -1 frameshifting in Archaea, here we report, for the first time, on the analysis of the transcription of this recoded archaeal α-l-fucosidase and of its full-length mutant in different growth conditions in vivo. We found that only the wild type mRNA significantly increased in S. solfataricus after cold shock and in cells grown in minimal medium containing hydrolyzed xyloglucan as carbon source. Our results indicated that the increased level of fucA mRNA cannot be explained by transcript up-regulation alone. A different mechanism related to translation efficiency is discussed.
Collapse
|
46
|
Kelly JA, Woodside MT, Dinman JD. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021; 554:75-82. [PMID: 33387787 PMCID: PMC7833279 DOI: 10.1016/j.virol.2020.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Human population growth, climate change, and globalization are accelerating the emergence of novel pathogenic viruses. In the past two decades alone, three such members of the coronavirus family have posed serious threats, spurring intense efforts to understand their biology as a way to identify targetable vulnerabilities. Coronaviruses use a programmed -1 ribosomal frameshift (-1 PRF) mechanism to direct synthesis of their replicase proteins. This is a critical switch in their replication program that can be therapeutically targeted. Here, we discuss how nearly half a century of research into -1 PRF have provided insight into the virological importance of -1 PRF, the molecular mechanisms that drive it, and approaches that can be used to manipulate it towards therapeutic outcomes with particular emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Jamie A Kelly
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
47
|
Halma MTJ, Ritchie DB, Woodside MT. Conformational Shannon Entropy of mRNA Structures from Force Spectroscopy Measurements Predicts the Efficiency of -1 Programmed Ribosomal Frameshift Stimulation. PHYSICAL REVIEW LETTERS 2021; 126:038102. [PMID: 33543960 DOI: 10.1103/physrevlett.126.038102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
-1 programmed ribosomal frameshifting (-1 PRF) is stimulated by structures in messenger RNA (mRNA), but the factors determining -1 PRF efficiency are unclear. We show that -1 PRF efficiency varies directly with the conformational heterogeneity of the stimulatory structure, quantified as the Shannon entropy of the state occupancy, for a panel of stimulatory structures with efficiencies from 2% to 80%. The correlation is force dependent and vanishes at forces above those applied by the ribosome. These results support the hypothesis that heterogeneous conformational dynamics are a key factor in stimulating -1 PRF.
Collapse
Affiliation(s)
- Matthew T J Halma
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
48
|
Omar SI, Zhao M, Sekar RV, Moghadam SA, Tuszynski JA, Woodside MT. Modeling the structure of the frameshift-stimulatory pseudoknot in SARS-CoV-2 reveals multiple possible conformers. PLoS Comput Biol 2021; 17:e1008603. [PMID: 33465066 PMCID: PMC7845960 DOI: 10.1371/journal.pcbi.1008603] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/29/2021] [Accepted: 12/02/2020] [Indexed: 01/26/2023] Open
Abstract
The coronavirus causing the COVID-19 pandemic, SARS-CoV-2, uses -1 programmed ribosomal frameshifting (-1 PRF) to control the relative expression of viral proteins. As modulating -1 PRF can inhibit viral replication, the RNA pseudoknot stimulating -1 PRF may be a fruitful target for therapeutics treating COVID-19. We modeled the unusual 3-stem structure of the stimulatory pseudoknot of SARS-CoV-2 computationally, using multiple blind structural prediction tools followed by μs-long molecular dynamics simulations. The results were compared for consistency with nuclease-protection assays and single-molecule force spectroscopy measurements of the SARS-CoV-1 pseudoknot, to determine the most likely conformations. We found several possible conformations for the SARS-CoV-2 pseudoknot, all having an extended stem 3 but with different packing of stems 1 and 2. Several conformations featured rarely-seen threading of a single strand through junctions formed between two helices. These structural models may help interpret future experiments and support efforts to discover ligands inhibiting -1 PRF in SARS-CoV-2.
Collapse
Affiliation(s)
- Sara Ibrahim Omar
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Meng Zhao
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
49
|
Ziv O, Price J, Shalamova L, Kamenova T, Goodfellow I, Weber F, Miska EA. The Short- and Long-Range RNA-RNA Interactome of SARS-CoV-2. Mol Cell 2020; 80:1067-1077.e5. [PMID: 33259809 PMCID: PMC7643667 DOI: 10.1016/j.molcel.2020.11.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/05/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
The Coronaviridae is a family of positive-strand RNA viruses that includes SARS-CoV-2, the etiologic agent of the COVID-19 pandemic. Bearing the largest single-stranded RNA genomes in nature, coronaviruses are critically dependent on long-distance RNA-RNA interactions to regulate the viral transcription and replication pathways. Here we experimentally mapped the in vivo RNA-RNA interactome of the full-length SARS-CoV-2 genome and subgenomic mRNAs. We uncovered a network of RNA-RNA interactions spanning tens of thousands of nucleotides. These interactions reveal that the viral genome and subgenomes adopt alternative topologies inside cells and engage in different interactions with host RNAs. Notably, we discovered a long-range RNA-RNA interaction, the FSE-arch, that encircles the programmed ribosomal frameshifting element. The FSE-arch is conserved in the related MERS-CoV and is under purifying selection. Our findings illuminate RNA structure-based mechanisms governing replication, discontinuous transcription, and translation of coronaviruses and will aid future efforts to develop antiviral strategies.
Collapse
Affiliation(s)
- Omer Ziv
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK.
| | - Jonathan Price
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK
| | - Lyudmila Shalamova
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, 35392 Gießen, Germany
| | - Tsveta Kamenova
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, 35392 Gießen, Germany.
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK.
| |
Collapse
|
50
|
Haniff H, Tong Y, Liu X, Chen JL, Suresh BM, Andrews RJ, Peterson JM, O’Leary CA, Benhamou RI, Moss WN, Disney MD. Targeting the SARS-CoV-2 RNA Genome with Small Molecule Binders and Ribonuclease Targeting Chimera (RIBOTAC) Degraders. ACS CENTRAL SCIENCE 2020; 6:1713-1721. [PMID: 33140033 PMCID: PMC7553039 DOI: 10.1021/acscentsci.0c00984] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 05/07/2023]
Abstract
COVID-19 is a global pandemic, thus requiring multiple strategies to develop modalities against it. Herein, we designed multiple bioactive small molecules that target a functional structure within the SARS-CoV-2's RNA genome, the causative agent of COVID-19. An analysis to characterize the structure of the RNA genome provided a revised model of the SARS-CoV-2 frameshifting element, in particular its attenuator hairpin. By studying an RNA-focused small molecule collection, we identified a drug-like small molecule (C5) that avidly binds to the revised attenuator hairpin structure with a K d of 11 nM. The compound stabilizes the hairpin's folded state and impairs frameshifting in cells. The ligand was further elaborated into a ribonuclease targeting chimera (RIBOTAC) to recruit a cellular ribonuclease to destroy the viral genome (C5-RIBOTAC) and into a covalent molecule (C5-Chem-CLIP) that validated direct target engagement and demonstrated its specificity for the viral RNA, as compared to highly expressed host mRNAs. The RIBOTAC lead optimization strategy improved the bioactivity of the compound at least 10-fold. Collectively, these studies demonstrate that the SARS-CoV-2 RNA genome should be considered druggable.
Collapse
Affiliation(s)
- Hafeez
S. Haniff
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Yuquan Tong
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Xiaohui Liu
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Jonathan L. Chen
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Blessy M. Suresh
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Ryan J. Andrews
- Roy
J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jake M. Peterson
- Roy
J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Collin A. O’Leary
- Roy
J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Raphael I. Benhamou
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Walter N. Moss
- Roy
J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Matthew D. Disney
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| |
Collapse
|