1
|
Schuster ALR, Folta A, Bollinger J, Geller G, Mehta SR, Little SJ, Sanchez T, Sugarman J, Bridges JFP. User experience with HIV molecular epidemiology in research, surveillance, and cluster detection and response: a needs assessment. Curr Med Res Opin 2024; 40:1873-1883. [PMID: 39250177 DOI: 10.1080/03007995.2024.2388840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE HIV molecular epidemiology (HIV ME) is a tool that aims to improve HIV research, surveillance, and cluster detection and response. HIV ME is a core pillar of the U.S. initiative to End the HIV Epidemic but faces some challenges and criticisms from stakeholders. We sought to assess user experience to identify the current needs for HIV ME. METHODS Users of HIV ME, including researchers and public health practitioners, were engaged via a structured survey. Needs were assessed via open-ended questions about HIV ME. Data were analyzed using reflexive thematic analysis; the concordance of results was assessed semi-quantitatively. RESULTS Of 90 possible HIV-ME end-users, 57 completed the survey (response rate = 63%), which included users engaged in research (n = 29) and public health (n = 28). Respondents identified current imperatives, challenges, and strategies to improve HIV ME. Imperatives included characterization of the virus, identification of HIV hotspots, and tailoring of HIV interventions. Challenges encompassed technological issues, ethical concerns, and implementation difficulties. Strategies to improve HIV ME involved improving data access and analysis, enhancing implementation guidance and resources, and fostering community engagement and support. Researchers and public health practitioners prioritized different imperatives, but similarly emphasized the ethical concerns with HIV ME. CONCLUSION The imperatives identified by users underscore the necessity of HIV ME, while the challenges highlight the hurdles to be overcome, including ethical concerns which emerged as a shared emphasis across user groups. The strategies outlined offer a roadmap for overcoming these challenges. These insights, drawn from user experience, present a valuable opportunity to inform the development of guidelines for the ethical application of HIV ME in research, surveillance, and cluster detection and response.
Collapse
Affiliation(s)
- Anne L R Schuster
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ashley Folta
- The Ohio State University College of Public Health, Columbus, OH, USA
| | - Juli Bollinger
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
| | - Gail Geller
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sanjay R Mehta
- Division of Infectious Disease, University of California San Diego, San Diego, CA, USA
| | - Susan J Little
- Division of Infectious Disease, University of California San Diego, San Diego, CA, USA
| | - Travis Sanchez
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeremy Sugarman
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - John F P Bridges
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Health Behavior and Society, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Li M, Song C, Hu J, Dong A, Kang R, Feng Y, Xing H, Ruan Y, Shao Y, Hong K, Liao L. Impact of pretreatment low-abundance HIV-1 drug resistance on virological failure after 1 year of antiretroviral therapy in China. J Antimicrob Chemother 2023; 78:2743-2751. [PMID: 37769159 DOI: 10.1093/jac/dkad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVES To assess the impact of pretreatment low-abundance HIV drug-resistant variants (LA-DRVs) on virological outcomes among ART-naive HIV-1-infected Chinese people who initiated ART. METHODS A nested case-control study was conducted among HIV-1-infected individuals who had pretreatment drug resistance (PDR) genotypic results. Cases were defined as individuals with virological failure (HIV-1 RNA viral load ≥1000 copies/mL) after 1 year of ART, and controls were individuals from the same cohort whose viral load was less than 1000 copies/mL. Next-generation sequencing was used to identify low-abundance PDR mutations at detection thresholds of 10%, 2% and 1%. The mutant load was calculated by multiplying the abundance of HIV-1 drug-resistant variants by the pretreatment viral load. The impact of pretreatment low-abundance mutations on virological failure was estimated in logistic regression models. RESULTS Participants (43 cases and 100 controls) were included in this study for the analysis. The proportion of participants with PDR was higher in cases than in controls at different detection thresholds (44.2% versus 22.0%, P = 0.007 at 10% threshold; 58.1% versus 31.0%, P = 0.002 at 2% threshold; 90.7% versus 69.0%, P = 0.006 at 1% threshold). Compared with participants without PDR, participants with ≥10% detectable PDR mutations were associated with an increased risk of virological failure (adjusted OR 8.0, 95% CI 2.4-26.3, P = 0.001). Besides this, individuals with pretreatment LA-DRVs (2%-9% abundance range) had 5-fold higher odds of virological failure (adjusted OR 5.0, 95% CI 1.3-19.6, P = 0.021). Furthermore, LA-DRVs at 2%-9% abundance resistant to NRTIs and mutants with abundance of ≥10% resistant to NNRTIs had a 4-fold and 8-fold risk of experiencing virological failure, respectively. It was also found that a mutant load of more than 1000 copies/mL was predictive of virological failure (adjusted OR 7.2, 95% CI 2.5-21.1, P = 0.0003). CONCLUSIONS Low-abundance PDR mutations ranging from 2% to 9% of abundance can increase the risk of virological failure. Further studies are warranted to define a clinically relevant threshold of LA-DRVs and the role of NRTI LA-DRVs.
Collapse
Affiliation(s)
- Miaomiao Li
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Chang Song
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Jing Hu
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Aobo Dong
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Ruihua Kang
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yi Feng
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Hui Xing
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yuhua Ruan
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yiming Shao
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Kunxue Hong
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Lingjie Liao
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| |
Collapse
|
3
|
Ng TTL, Su J, Lao HY, Lui WW, Chan CTM, Leung AWS, Jim SHC, Lee LK, Shehzad S, Tam KKG, Leung KSS, Tang F, Yam WC, Luo R, Siu GKH. Long-Read Sequencing with Hierarchical Clustering for Antiretroviral Resistance Profiling of Mixed Human Immunodeficiency Virus Quasispecies. Clin Chem 2023; 69:1174-1185. [PMID: 37537871 DOI: 10.1093/clinchem/hvad108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND HIV infections often develop drug resistance mutations (DRMs), which can increase the risk of virological failure. However, it has been difficult to determine if minor mutations occur in the same genome or in different virions using Sanger sequencing and short-read sequencing methods. Oxford Nanopore Technologies (ONT) sequencing may improve antiretroviral resistance profiling by allowing for long-read clustering. METHODS A new ONT sequencing-based method for profiling DRMs in HIV quasispecies was developed and validated. The method used hierarchical clustering of long amplicons that cover regions associated with different types of antiretroviral drugs. A gradient series of an HIV plasmid and 2 plasma samples was prepared to validate the clustering performance. The ONT results were compared to those obtained with Sanger sequencing and Illumina sequencing in 77 HIV-positive plasma samples to evaluate the diagnostic performance. RESULTS In the validation study, the abundance of detected quasispecies was concordant with the predicted result with the R2 of > 0.99. During the diagnostic evaluation, 59/77 samples were successfully sequenced for DRMs. Among 18 failed samples, 17 were below the limit of detection of 303.9 copies/μL. Based on the receiver operating characteristic analysis, the ONT workflow achieved an F1 score of 0.96 with a cutoff of 0.4 variant allele frequency. Four cases were found to have quasispecies with DRMs, in which 2 harbored quasispecies with more than one class of DRMs. Treatment modifications were recommended for these cases. CONCLUSIONS Long-read sequencing coupled with hierarchical clustering could differentiate the quasispecies resistance profiles in HIV-infected samples, providing a clearer picture for medical care.
Collapse
Affiliation(s)
- Timothy Ting-Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Junhao Su
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hiu-Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wui-Wang Lui
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chloe Toi-Mei Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Amy Wing-Sze Leung
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Stephanie Hoi-Ching Jim
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lam-Kwong Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sheeba Shehzad
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kingsley King-Gee Tam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth Siu-Sing Leung
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Forrest Tang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wing-Cheong Yam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Mei H, Kosakovsky Pond S, Nekrutenko A. Stepwise Evolution and Exceptional Conservation of ORF1a/b Overlap in Coronaviruses. Mol Biol Evol 2021; 38:5678-5684. [PMID: 34505896 PMCID: PMC8499926 DOI: 10.1093/molbev/msab265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The programmed frameshift element (PFE) rerouting translation from ORF1a to ORF1b is essential for the propagation of coronaviruses. The combination of genomic features that make up PFE-the overlap between the two reading frames, a slippery sequence, as well as an ensemble of complex secondary structure elements-places severe constraints on this region as most possible nucleotide substitution may disrupt one or more of these elements. The vast amount of SARS-CoV-2 sequencing data generated within the past year provides an opportunity to assess the evolutionary dynamics of PFE in great detail. Here, we performed a comparative analysis of all available coronaviral genomic data available to date. We show that the overlap between ORF1a and ORF1b evolved as a set of discrete 7, 16, 22, 25, and 31 nucleotide stretches with a well-defined phylogenetic specificity. We further examined sequencing data from over 1,500,000 complete genomes and 55,000 raw read data sets to demonstrate exceptional conservation and detect signatures of selection within the PFE region.
Collapse
Affiliation(s)
- Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sergei Kosakovsky Pond
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Kumar S, Tao Q, Weaver S, Sanderford M, Caraballo-Ortiz MA, Sharma S, Pond SLK, Miura S. An Evolutionary Portrait of the Progenitor SARS-CoV-2 and Its Dominant Offshoots in COVID-19 Pandemic. Mol Biol Evol 2021; 38:3046-3059. [PMID: 33942847 PMCID: PMC8135569 DOI: 10.1093/molbev/msab118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Global sequencing of genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to reveal new genetic variants that are the key to unraveling its early evolutionary history and tracking its global spread over time. Here we present the heretofore cryptic mutational history and spatiotemporal dynamics of SARS-CoV-2 from an analysis of thousands of high-quality genomes. We report the likely most recent common ancestor of SARS-CoV-2, reconstructed through a novel application and advancement of computational methods initially developed to infer the mutational history of tumor cells in a patient. This progenitor genome differs from genomes of the first coronaviruses sampled in China by three variants, implying that none of the earliest patients represent the index case or gave rise to all the human infections. However, multiple coronavirus infections in China and the United States harbored the progenitor genetic fingerprint in January 2020 and later, suggesting that the progenitor was spreading worldwide months before and after the first reported cases of COVID-19 in China. Mutations of the progenitor and its offshoots have produced many dominant coronavirus strains that have spread episodically over time. Fingerprinting based on common mutations reveals that the same coronavirus lineage has dominated North America for most of the pandemic in 2020. There have been multiple replacements of predominant coronavirus strains in Europe and Asia as well as continued presence of multiple high-frequency strains in Asia and North America. We have developed a continually updating dashboard of global evolution and spatiotemporal trends of SARS-CoV-2 spread (http://sars2evo.datamonkey.org/).
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Qiqing Tao
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Maxwell Sanderford
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Marcos A Caraballo-Ortiz
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Sudip Sharma
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Sergei L K Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Sayaka Miura
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Mei H, Nekrutenko A. Stepwise evolution and exceptional conservation of ORF1a/b overlap in coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.14.448413. [PMID: 34159333 PMCID: PMC8219097 DOI: 10.1101/2021.06.14.448413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The programmed frameshift element (PFE) rerouting translation from ORF1a to ORF1b is essential for propagation of coronaviruses. A combination of genomic features that make up PFE-the overlap between the two reading frames, a slippery sequence, as well as an ensemble of complex secondary structure elements-puts severe constraints on this region as most possible nucleotide substitution may disrupt one or more of these elements. The vast amount of SARS-CoV-2 sequencing data generated within the past year provides an opportunity to assess evolutionary dynamics of PFE in great detail. Here we performed a comparative analysis of all available coronaviral genomic data available to date. We show that the overlap between ORF1a and b evolved as a set of discrete 7, 16, 22, 25, and 31 nucleotide stretches with a well defined phylogenetic specificity. We further examined sequencing data from over 350,000 complete genomes and 55,000 raw read datasets to demonstrate exceptional conservation of the PFE region.
Collapse
Affiliation(s)
- Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
7
|
Mbunkah HA, Bertagnolio S, Hamers RL, Hunt G, Inzaule S, Rinke De Wit TF, Paredes R, Parkin NT, Jordan MR, Metzner KJ. Low-Abundance Drug-Resistant HIV-1 Variants in Antiretroviral Drug-Naive Individuals: A Systematic Review of Detection Methods, Prevalence, and Clinical Impact. J Infect Dis 2021; 221:1584-1597. [PMID: 31809534 DOI: 10.1093/infdis/jiz650] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The presence of high-abundance drug-resistant HIV-1 jeopardizes success of antiretroviral therapy (ART). Despite numerous investigations, the clinical impact of low-abundance drug-resistant HIV-1 variants (LA-DRVs) at levels <15%-25% of the virus population in antiretroviral (ARV) drug-naive individuals remains controversial. METHODS We systematically reviewed 103 studies assessing prevalence, detection methods, technical and clinical detection cutoffs, and clinical significance of LA-DRVs in antiretroviral drug-naive adults. RESULTS In total, 14 919 ARV drug-naive individuals were included. Prevalence of LA-DRVs (ie, proportion of individuals harboring LA-DRVs) was 0%-100%. Technical detection cutoffs showed a 4 log range (0.001%-10%); 42/103 (40.8%) studies investigating the impact of LA-DRVs on ART; 25 studies included only individuals on first-line nonnucleoside reverse transcriptase inhibitor-based ART regimens. Eleven of those 25 studies (44.0%) reported a significantly association between preexisting LA-DRVs and risk of virological failure whereas 14/25 (56.0%) did not. CONCLUSIONS Comparability of the 103 studies is hampered by high heterogeneity of the studies' designs and use of different methods to detect LA-DRVs. Thus, evaluating clinical impact of LA-DRVs on first-line ART remains challenging. We, the WHO HIVResNet working group, defined central areas of future investigations to guide further efforts to implement ultrasensitive resistance testing in routine settings.
Collapse
Affiliation(s)
- Herbert A Mbunkah
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zürich, Switzerland.,Institute of Medical Virology, University of Zurich, Zürich, Switzerland.,Paul-Ehrlich-Institut, Langen, Germany
| | | | - Raph L Hamers
- Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Eijkman-Oxford Clinical Research Unit, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gillian Hunt
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Seth Inzaule
- Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tobias F Rinke De Wit
- Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Roger Paredes
- Infectious Diseases Service and IrsiCaixa AIDS Research Institute for AIDS Research, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | | | - Michael R Jordan
- Division of Geographic Medicine and Infectious Disease, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zürich, Switzerland.,Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | | |
Collapse
|
8
|
Kumar S, Tao Q, Weaver S, Sanderford M, Caraballo-Ortiz MA, Sharma S, Pond SLK, Miura S. An evolutionary portrait of the progenitor SARS-CoV-2 and its dominant offshoots in COVID-19 pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.09.24.311845. [PMID: 32995781 PMCID: PMC7523107 DOI: 10.1101/2020.09.24.311845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the likely most recent common ancestor of SARS-CoV-2 - the coronavirus that causes COVID-19. This progenitor SARS-CoV-2 genome was recovered through a novel application and advancement of computational methods initially developed to reconstruct the mutational history of tumor cells in a patient. The progenitor differs from the earliest coronaviruses sampled in China by three variants, implying that none of the earliest patients represent the index case or gave rise to all the human infections. However, multiple coronavirus infections in China and the USA harbored the progenitor genetic fingerprint in January 2020 and later, suggesting that the progenitor was spreading worldwide as soon as weeks after the first reported cases of COVID-19. Mutations of the progenitor and its offshoots have produced many dominant coronavirus strains, which have spread episodically over time. Fingerprinting based on common mutations reveals that the same coronavirus lineage has dominated North America for most of the pandemic. There have been multiple replacements of predominant coronavirus strains in Europe and Asia and the continued presence of multiple high-frequency strains in Asia and North America. We provide a continually updating dashboard of global evolution and spatiotemporal trends of SARS-CoV-2 spread (http://sars2evo.datamonkey.org/).
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| | - Qiqing Tao
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| | - Maxwell Sanderford
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| | - Marcos A. Caraballo-Ortiz
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| | - Sudip Sharma
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| | - Sergei L. K. Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| | - Sayaka Miura
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| |
Collapse
|
9
|
Mbisa JL, Kirwan P, Tostevin A, Ledesma J, Bibby DF, Brown A, Myers R, Hassan AS, Murphy G, Asboe D, Pozniak A, Kirk S, Gill ON, Sabin C, Delpech V, Dunn DT. Determining the Origins of Human Immunodeficiency Virus Type 1 Drug-resistant Minority Variants in People Who Are Recently Infected Using Phylogenetic Reconstruction. Clin Infect Dis 2020; 69:1136-1143. [PMID: 30534981 PMCID: PMC6743824 DOI: 10.1093/cid/ciy1048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Drug-resistant minority variants (DRMinVs) detected in patients who recently acquired human immunodeficiency virus type 1 (HIV-1) can be transmitted, generated de novo through virus replication, or technical errors. The first form is likely to persist and result in treatment failure, while the latter two could be stochastic and transient. METHODS Ultradeep sequencing of plasma samples from 835 individuals with recent HIV-1 infection in the United Kingdom was performed to detect DRMinVs at a mutation frequency between 2% and 20%. Sequence alignments including >110 000 HIV-1 partial pol consensus sequences from the UK HIV Drug Resistance Database (UK-HDRD), linked to epidemiological and clinical data from the HIV and AIDS Reporting System, were used for transmission cluster analysis. Transmission clusters were identified using Cluster Picker with a clade support of >90% and maximum genetic distances of 4.5% or 1.5%, the latter to limit detection to likely direct transmission events. RESULTS Drug-resistant majority variants (DRMajVs) were detected in 66 (7.9%) and DRMinVs in 84 (10.1%) of the recently infected individuals. High levels of clustering to sequences in UK-HDRD were observed for both DRMajV (n = 48; 72.7%) and DRMinV (n = 63; 75.0%) sequences. Of these, 43 (65.2%) with DRMajVs were in a transmission cluster with sequences that harbored the same DR mutation compared to only 3 (3.6%) sequences with DRMinVs (P < .00001, Fisher exact test). Evidence of likely direct transmission of DRMajVs was observed for 25/66 (37.9%), whereas none were observed for the DRMinVs (P < .00001). CONCLUSIONS Using a densely sampled HIV-infected population, we show no evidence of DRMinV transmission among recently infected individuals.
Collapse
Affiliation(s)
- Jean L Mbisa
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - Peter Kirwan
- National Infection Service, Public Health England, London, United Kingdom
| | - Anna Tostevin
- Institute for Global Health, University College London, London, United Kingdom
| | - Juan Ledesma
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - David F Bibby
- National Infection Service, Public Health England, London, United Kingdom
| | - Alison Brown
- National Infection Service, Public Health England, London, United Kingdom
| | - Richard Myers
- National Infection Service, Public Health England, London, United Kingdom
| | - Amin S Hassan
- HIV/STI Group, Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gary Murphy
- National Infection Service, Public Health England, London, United Kingdom
| | - David Asboe
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Anton Pozniak
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Stuart Kirk
- University College London Hospital, London, United Kingdom
| | - O Noel Gill
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - Caroline Sabin
- National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom.,Institute for Global Health, University College London, London, United Kingdom
| | - Valerie Delpech
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - David T Dunn
- Institute for Global Health, University College London, London, United Kingdom
| | | |
Collapse
|
10
|
Kouamou V, Manasa J, Katzenstein D, McGregor AM, Ndhlovu CE, Makadzange T. Diagnostic Accuracy of Pan-Degenerate Amplification and Adaptation Assay for HIV-1 Drug Resistance Mutation Analysis in Low- and Middle-Income Countries. J Clin Microbiol 2020; 58:e01045-20. [PMID: 32522826 PMCID: PMC7448631 DOI: 10.1128/jcm.01045-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022] Open
Abstract
HIV drug resistance (HIVDR) is a barrier to sustained virologic suppression in low- and middle-income countries (LMICs). Point mutation assays targeting priority drug resistance mutations (DRMs) are being evaluated to improve access to HIVDR testing. In a cross-sectional study (June 2018 to September 2019), we evaluated the diagnostic accuracy of a simple and rapid HIVDR assay (the pan-degenerate amplification and adaptation [PANDAA] assay targeting the mutations K65R, K103NS, M184VI, Y181C, and G190A) compared to Sanger sequencing and next-generation sequencing (NGS). Plasma samples from adolescents and young adults (aged 10 to 24 years) failing antiretroviral therapy (viral load, >1,000 copies/ml on 2 consecutive occasions 1 month apart) were analyzed. Sensitivity and specificity of the PANDAA assay were determined by a proprietary application designed by Aldatu Biosciences. Agreement between genotyping methods was evaluated using Cohen's kappa coefficient. One hundred fifty samples previously characterized by Sanger sequencing were evaluated using PANDAA. For all DRMs detected, PANDAA showed a sensitivity and specificity of 98% and 94%, respectively. For nucleotide reverse transcriptase inhibitor DRMs, sensitivity and specificity were 98% (95% confidence interval [CI], 92% to 100%) and 100% (94% to 100%), respectively. For non-nucleotide reverse transcriptase inhibitor DRMs, sensitivity and specificity were 100% (97% to 100%) and 76% (61% to 87%), respectively. PANDAA showed strong agreement with Sanger sequencing for K65R, K103NS, M184VI, and G190A (kappa > 0.85) and substantial agreement for Y181C (kappa = 0.720). Of the 21 false-positive samples genotyped by PANDAA, only 6 (29%) were identified as low-abundance variants by NGS. With the high sensitivity and specificity to detect major DRMs, PANDAA could represent a simple and rapid alternative HIVDR assay in LMICs.
Collapse
Affiliation(s)
- Vinie Kouamou
- Department of Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Justen Manasa
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - David Katzenstein
- Department of Molecular Biology, Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Alan M McGregor
- Department of Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Chiratidzo E Ndhlovu
- Department of Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Tariro Makadzange
- Department of Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Gianella S, Chaillon A, Chun TW, Sneller MC, Ignacio C, Vargas-Meneses MV, Caballero G, Ellis RJ, Kovacs C, Benko E, Huibner S, Kaul R. HIV RNA Rebound in Seminal Plasma after Antiretroviral Treatment Interruption. J Virol 2020; 94:e00415-20. [PMID: 32434884 PMCID: PMC7375368 DOI: 10.1128/jvi.00415-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
If strategies currently in development succeed in eradicating HIV reservoirs in peripheral blood and lymphoid tissues, residual sources of virus may remain in anatomic compartments. Paired blood and semen samples were collected from 12 individuals enrolled in a randomized, double-blind, placebo-controlled therapeutic vaccine clinical trial in people with HIV (PWH) who began antiretroviral therapy (ART) during acute or early infection (ClinicalTrials registration no. NCT01859325). After the week 56 visit (postintervention), all participants interrupted ART. At the first available time points after viral rebound, we sequenced HIV-1 env (C2-V3), gag (p24), and pol (reverse transcriptase) regions amplified from cell-free HIV RNA in blood and seminal plasma using the MiSeq Illumina platform. Comprehensive sequence and phylogenetic analyses were performed to evaluate viral population structure, compartmentalization, and viral diversity in blood and seminal plasma. Compared to that in blood, HIV RNA rebound in semen occurred significantly later (median of 66 versus 42 days post-ART interruption, P < 0.01) and reached lower levels (median 164 versus 16,090 copies/ml, P < 0.01). Three of five participants with available sequencing data presented compartmentalized viral rebound between blood and semen in one HIV coding region. Despite early ART initiation, HIV RNA molecular diversity was higher in semen than in blood in all three coding regions for most participants. Higher HIV RNA molecular diversity in the genital tract (compared to that in blood plasma) and evidence of compartmentalization illustrate the distinct evolutionary dynamics between these two compartments after ART interruption. Future research should evaluate whether the genital compartment might contribute to viral rebound in some PWH interrupting ART.IMPORTANCE To cure HIV, we likely need to target the reservoirs in all anatomic compartments. Here, we used sophisticated statistical and phylogenetic methods to analyze blood and semen samples collected from 12 persons with HIV who began antiretroviral therapy (ART) during very early HIV infection and who interrupted their ART as part of a clinical trial. First, we found that HIV RNA rebound in semen occurred significantly later and reached lower levels than in blood. Second, we found that the virus in semen was genetically different in some participants compared to that in blood. Finally, we found increased HIV RNA molecular diversity in semen compared to that in blood in almost all study participants. These data suggest that the HIV RNA populations emerging from the genital compartment after ART interruption might not be the same as those emerging from blood plasma. Future research should evaluate whether the genital compartment might contribute to viral rebound in some people with HIV (PWH) interrupting ART.
Collapse
Affiliation(s)
- Sara Gianella
- University of California, San Diego, La Jolla, California, USA
| | | | - Tae-Wook Chun
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael C Sneller
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | - Gemma Caballero
- University of California, San Diego, La Jolla, California, USA
| | - Ronald J Ellis
- University of California, San Diego, La Jolla, California, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Matías-Florentino M, Chaillon A, Ávila-Ríos S, Mehta SR, Paz-Juárez HE, Becerril-Rodríguez MA, del Arenal-Sánchez SJ, Piñeirúa-Menéndez A, Ruiz V, Iracheta-Hernández P, Macías-González I, Tena-Sánchez J, Badial-Hernández F, González-Rodríguez A, Reyes-Terán G. Pretreatment HIV drug resistance spread within transmission clusters in Mexico City. J Antimicrob Chemother 2020; 75:656-667. [PMID: 31819984 PMCID: PMC7021100 DOI: 10.1093/jac/dkz502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pretreatment HIV drug resistance (HIVDR) to NNRTIs has consistently increased in Mexico City during the last decade. OBJECTIVES To infer the HIV genetic transmission network in Mexico City to describe the dynamics of the local HIV epidemic and spread of HIVDR. PATIENTS AND METHODS HIV pol sequences were obtained by next-generation sequencing from 2447 individuals before initiation of ART at the largest HIV clinic in Mexico City (April 2016 to June 2018). Pretreatment HIVDR was estimated using the Stanford algorithm at a Sanger-like threshold (≥20%). Genetic networks were inferred with HIV-TRACE, establishing putative transmission links with genetic distances <1.5%. We examined demographic associations among linked individuals with shared drug resistance mutations (DRMs) using a ≥ 2% threshold to include low-frequency variants. RESULTS Pretreatment HIVDR reached 14.8% (95% CI 13.4%-16.2%) in the cohort overall and 9.6% (8.5%-10.8%) to NNRTIs. Putative links with at least one other sequence were found for 963/2447 (39%) sequences, forming 326 clusters (2-20 individuals). The inferred network was assortative by age and municipality (P < 0.001). Clustering individuals were younger [adjusted OR (aOR) per year = 0.96, 95% CI 0.95-0.97, P < 0.001] and less likely to include women (aOR = 0.46, 95% CI 0.28-0.75, P = 0.002). Among clustering individuals, 175/963 (18%) shared DRMs (involving 66 clusters), of which 66/175 (38%) shared K103N/S (24 clusters). Eight municipalities (out of 75) harboured 65% of persons sharing DRMs. Among all persons sharing DRMs, those sharing K103N were younger (aOR = 0.93, 95% CI 0.88-0.98, P = 0.003). CONCLUSIONS Our analyses suggest age- and geographically associated transmission of DRMs within the HIV genetic network in Mexico City, warranting continuous monitoring and focused interventions.
Collapse
Affiliation(s)
- Margarita Matías-Florentino
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
| | - Antoine Chaillon
- University of California San Diego, 9500 Gilman Drive 0679, La Jolla, CA 92093, USA
| | - Santiago Ávila-Ríos
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
| | - Sanjay R Mehta
- University of California San Diego, 9500 Gilman Drive 0679, La Jolla, CA 92093, USA
| | - Héctor E Paz-Juárez
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
| | - Manuel A Becerril-Rodríguez
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
- Clínica Especializada Condesa, Gral, Benjamín Hill 24, Hipódromo Condesa, CP 06170 Mexico City, Mexico
| | - Silvia J del Arenal-Sánchez
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
| | - Alicia Piñeirúa-Menéndez
- Clínica Especializada Condesa Iztapalapa, Av. Combate de Celaya S/N, Colonia Unidad Habitacional Vicente Guerrero, CP 09730 Mexico City, Mexico
| | - Verónica Ruiz
- Clínica Especializada Condesa, Gral, Benjamín Hill 24, Hipódromo Condesa, CP 06170 Mexico City, Mexico
| | - Patricia Iracheta-Hernández
- Clínica Especializada Condesa Iztapalapa, Av. Combate de Celaya S/N, Colonia Unidad Habitacional Vicente Guerrero, CP 09730 Mexico City, Mexico
| | - Israel Macías-González
- Clínica Especializada Condesa, Gral, Benjamín Hill 24, Hipódromo Condesa, CP 06170 Mexico City, Mexico
| | - Jehovani Tena-Sánchez
- Clínica Especializada Condesa, Gral, Benjamín Hill 24, Hipódromo Condesa, CP 06170 Mexico City, Mexico
| | - Florentino Badial-Hernández
- Clínica Especializada Condesa Iztapalapa, Av. Combate de Celaya S/N, Colonia Unidad Habitacional Vicente Guerrero, CP 09730 Mexico City, Mexico
| | - Andrea González-Rodríguez
- Clínica Especializada Condesa, Gral, Benjamín Hill 24, Hipódromo Condesa, CP 06170 Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
| |
Collapse
|
13
|
Analysis of unusual and signature APOBEC-mutations in HIV-1 pol next-generation sequences. PLoS One 2020; 15:e0225352. [PMID: 32102090 PMCID: PMC7043932 DOI: 10.1371/journal.pone.0225352] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction At low mutation-detection thresholds, next generation sequencing (NGS) for HIV-1 genotypic resistance testing is susceptible to artifactual detection of mutations arising from PCR error and APOBEC-mediated G-to-A hypermutation. Methods We analyzed published HIV-1 pol Illumina NGS data to characterize the distribution of mutations at eight NGS mutation detection thresholds: 20%, 10%, 5%, 2%, 1%, 0.5%, 0.2%, and 0.1%. At each threshold, we determined proportions of amino acid mutations that were unusual (defined as having a prevalence <0.01% in HIV-1 group M sequences) or signature APOBEC mutations. Results Eight studies, containing 855 samples, in the NCBI Sequence Read Archive were analyzed. As detection thresholds were lowered, there was a progressive increase in the proportion of positions with usual and unusual mutations and in the proportion of all mutations that were unusual. The median proportion of positions with an unusual mutation increased gradually from 0% at the 20% threshold to 0.3% at the 1% threshold and then exponentially to 1.3% (0.5% threshold), 6.9% (0.2% threshold), and 23.2% (0.1% threshold). In two of three studies with available plasma HIV-1 RNA levels, the proportion of positions with unusual mutations was negatively associated with virus levels. Although the complete set of signature APOBEC mutations was much smaller than that of unusual mutations, the former outnumbered the latter in one-sixth of samples at the 0.5%, 1%, and 2% thresholds. Conclusions The marked increase in the proportion of positions with unusual mutations at thresholds below 1% and in samples with lower virus loads suggests that, at low thresholds, many unusual mutations are artifactual, reflecting PCR error or G-to-A hypermutation. Profiling the numbers of unusual and signature APOBEC pol mutations at different NGS mutation detection thresholds may be useful to avoid selecting a threshold that is too low and poses an unacceptable risk of identifying artifactual mutations.
Collapse
|
14
|
Günthard HF, Calvez V, Paredes R, Pillay D, Shafer RW, Wensing AM, Jacobsen DM, Richman DD. Human Immunodeficiency Virus Drug Resistance: 2018 Recommendations of the International Antiviral Society-USA Panel. Clin Infect Dis 2020; 68:177-187. [PMID: 30052811 PMCID: PMC6321850 DOI: 10.1093/cid/ciy463] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background Contemporary antiretroviral therapies (ART) and management strategies have diminished both human immunodeficiency virus (HIV) treatment failure and the acquired resistance to drugs in resource-rich regions, but transmission of drug-resistant viruses has not similarly decreased. In low- and middle-income regions, ART roll-out has improved outcomes, but has resulted in increasing acquired and transmitted resistances. Our objective was to review resistance to ART drugs and methods to detect it, and to provide updated recommendations for testing and monitoring for drug resistance in HIV-infected individuals. Methods A volunteer panel of experts appointed by the International Antiviral (formerly AIDS) Society–USA reviewed relevant peer-reviewed data that were published or presented at scientific conferences. Recommendations were rated according to the strength of the recommendation and quality of the evidence, and reached by full panel consensus. Results Resistance testing remains a cornerstone of ART. It is recommended in newly-diagnosed individuals and in patients in whom ART has failed. Testing for transmitted integrase strand-transfer inhibitor resistance is currently not recommended, but this may change as more resistance emerges with widespread use. Sanger-based and next-generation sequencing approaches are each suited for genotypic testing. Testing for minority variants harboring drug resistance may only be considered if treatments depend on a first-generation nonnucleoside analogue reverse transcriptase inhibitor. Different HIV-1 subtypes do not need special considerations regarding resistance testing. Conclusions Testing for HIV drug resistance in drug-naive individuals and in patients in whom antiretroviral drugs are failing, and the appreciation of the role of testing, are crucial to the prevention and management of failure of ART.
Collapse
Affiliation(s)
- Huldrych F Günthard
- University Hospital Zürich and Institute of Medical Virology, University of Zurich, Switzerland
| | - Vincent Calvez
- Pierre et Marie Curie University and Pitié-Salpêtriere Hospital, Paris, France
| | - Roger Paredes
- Infectious Diseases Service and IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Africa Health Research Institute, KwaZulu Natal, South Africa
| | | | | | | | | | - Douglas D Richman
- Veterans Affairs San Diego Healthcare System and University of California San Diego
| |
Collapse
|
15
|
Tzou PL, Rhee SY, Shafer RW. Amino Acid Prevalence of HIV-1 pol Mutations by Direct Polymerase Chain Reaction and Single Genome Sequencing. AIDS Res Hum Retroviruses 2019; 35:924-929. [PMID: 31317771 DOI: 10.1089/aid.2018.0289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The presence of many highly unusual HIV-1 mutations at a minority variant threshold by next-generation sequence (NGS) may indicate that a high proportion of variants at or just above the threshold represent PCR errors. The validity of this hypothesis depends on the concept that highly unusual mutations detected by population-based sequencing are also highly unusual within a person's virus population. Highly unusual mutations were defined as mutations with a prevalence <0.01% in group M HIV-1 direct PCR population-based Sanger sequences in the Stanford HIV Drug Resistance Database. Single genome Sanger sequences [single genome sequences (SGSs)] were analyzed because they are not subject to PCR error. Permutation analyses compared the proportion of highly unusual mutations in SGSs with the empirical frequencies of these mutations in repeated random selections of population-based sequences. We created a database of 11,258 pol SGSs in 963 plasma samples from 345 persons with active virus replication and analyzed the subset of samples containing 10 or more SGSs. Highly unusual mutations occurred more commonly in samples undergoing SGS compared with population-based sequencing in protease (3.9% vs. 0.8%; p < .001), reverse transcriptase (6.5% vs. 1.5%; p < .001), and integrase (5.0% vs. 1.8%; p < .001). Highly unusual mutations occur more commonly in SGSs than in population-based sequences. However, they comprise a small proportion of all SGS mutations supporting the concept that the presence of many highly unusual mutations just above an NGS threshold suggests that the threshold is too low.
Collapse
Affiliation(s)
- Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| |
Collapse
|
16
|
Kosakovsky Pond SL, Weaver S, Leigh Brown AJ, Wertheim JO. HIV-TRACE (TRAnsmission Cluster Engine): a Tool for Large Scale Molecular Epidemiology of HIV-1 and Other Rapidly Evolving Pathogens. Mol Biol Evol 2019; 35:1812-1819. [PMID: 29401317 DOI: 10.1093/molbev/msy016] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In modern applications of molecular epidemiology, genetic sequence data are routinely used to identify clusters of transmission in rapidly evolving pathogens, most notably HIV-1. Traditional 'shoe-leather' epidemiology infers transmission clusters by tracing chains of partners sharing epidemiological connections (e.g., sexual contact). Here, we present a computational tool for identifying a molecular transmission analog of such clusters: HIV-TRACE (TRAnsmission Cluster Engine). HIV-TRACE implements an approach inspired by traditional epidemiology, by identifying chains of partners whose viral genetic relatedness imply direct or indirect epidemiological connections. Molecular transmission clusters are constructed using codon-aware pairwise alignment to a reference sequence followed by pairwise genetic distance estimation among all sequences. This approach is computationally tractable and is capable of identifying HIV-1 transmission clusters in large surveillance databases comprising tens or hundreds of thousands of sequences in near real time, that is, on the order of minutes to hours. HIV-TRACE is available at www.hivtrace.org and from www.github.com/veg/hivtrace, along with the accompanying result visualization module from www.github.com/veg/hivtrace-viz. Importantly, the approach underlying HIV-TRACE is not limited to the study of HIV-1 and can be applied to study outbreaks and epidemics of other rapidly evolving pathogens.
Collapse
Affiliation(s)
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Andrew J Leigh Brown
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, CA
| |
Collapse
|
17
|
Fedonin GG, Fantin YS, Favorov AV, Shipulin GA, Neverov AD. VirGenA: a reference-based assembler for variable viral genomes. Brief Bioinform 2019; 20:15-25. [PMID: 28968771 PMCID: PMC6488938 DOI: 10.1093/bib/bbx079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Characterization of the within-host genetic diversity of viral pathogens is required for selection of effective treatment of some important viral infections, e.g. HIV, HBV and HCV. Despite the technical ability of detection, there are conflicting data regarding the clinical significance of low-frequency variants, partially because of the difficulty of their distinguishing from experimental artifacts. The issue of cross-contamination is relevant for all highly sensitive techniques, including deep sequencing: even trace contamination leads to a significant increase of false positives in identified SNVs. Determination of infections by multiple genotypes of some viruses, the incidence of which can be considerable, especially in risk groups, is also clinically significant in some cases. We developed a new viral reference-guided assembler, VirGenA, that can separate mixtures of strains of different intraspecies genetic groups (genotypes, subtypes, clades, etc.) and assemble a separate consensus sequence for each group in a mixture. It produced long assemblies for mixture components of extremely low frequencies (<1%) allowing detection of cross-contamination of samples by divergent genotypes. We tested VirGenA on both clinical and simulated data. On both types of data, VirGenA shows better or similar results than the existing de novo assemblers. Cross-platform implementation (including source code) is freely available at https://github.com/gFedonin/VirGenA/releases.
Collapse
Affiliation(s)
- Gennady G Fedonin
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| | - Yury S Fantin
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| | - Alexnader V Favorov
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University
| | - German A Shipulin
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| | - Alexey D Neverov
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| |
Collapse
|
18
|
Full-Length Envelope Analyzer (FLEA): A tool for longitudinal analysis of viral amplicons. PLoS Comput Biol 2018; 14:e1006498. [PMID: 30543621 PMCID: PMC6314628 DOI: 10.1371/journal.pcbi.1006498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/02/2019] [Accepted: 09/10/2018] [Indexed: 01/07/2023] Open
Abstract
Next generation sequencing of viral populations has advanced our understanding of viral population dynamics, the development of drug resistance, and escape from host immune responses. Many applications require complete gene sequences, which can be impossible to reconstruct from short reads. HIV env, the protein of interest for HIV vaccine studies, is exceptionally challenging for long-read sequencing and analysis due to its length, high substitution rate, and extensive indel variation. While long-read sequencing is attractive in this setting, the analysis of such data is not well handled by existing methods. To address this, we introduce FLEA (Full-Length Envelope Analyzer), which performs end-to-end analysis and visualization of long-read sequencing data. FLEA consists of both a pipeline (optionally run on a high-performance cluster), and a client-side web application that provides interactive results. The pipeline transforms FASTQ reads into high-quality consensus sequences (HQCSs) and uses them to build a codon-aware multiple sequence alignment. The resulting alignment is then used to infer phylogenies, selection pressure, and evolutionary dynamics. The web application provides publication-quality plots and interactive visualizations, including an annotated viral alignment browser, time series plots of evolutionary dynamics, visualizations of gene-wide selective pressures (such as dN/dS) across time and across protein structure, and a phylogenetic tree browser. We demonstrate how FLEA may be used to process Pacific Biosciences HIV env data and describe recent examples of its use. Simulations show how FLEA dramatically reduces the error rate of this sequencing platform, providing an accurate portrait of complex and variable HIV env populations. A public instance of FLEA is hosted at http://flea.datamonkey.org. The Python source code for the FLEA pipeline can be found at https://github.com/veg/flea-pipeline. The client-side application is available at https://github.com/veg/flea-web-app. A live demo of the P018 results can be found at http://flea.murrell.group/view/P018. Viral populations constantly evolve and diversify. In this article we introduce a method, FLEA, for reconstructing and visualizing the details of evolutionary changes. FLEA specifically processes data from sequencing platforms that generate reads that are long, but error-prone. To study the evolutionary dynamics of entire genes during viral infection, data is collected via long-read sequencing at discrete time points, allowing us to understand how the virus changes over time. However, the experimental and sequencing process is imperfect, so the resulting data contain not only real evolutionary changes, but also mutations and other genetic artifacts caused by sequencing errors. Our method corrects most of these errors by combining thousands of erroneous sequences into a much smaller number of unique consensus sequences that represent biologically meaningful variation. The resulting high-quality sequences are used for further analysis, such as building an evolutionary tree that tracks and interprets the genetic changes in the viral population over time. FLEA is open source, and is freely available online.
Collapse
|
19
|
Ji H, Enns E, Brumme CJ, Parkin N, Howison M, Lee ER, Capina R, Marinier E, Avila‐Rios S, Sandstrom P, Van Domselaar G, Harrigan R, Paredes R, Kantor R, Noguera‐Julian M. Bioinformatic data processing pipelines in support of next-generation sequencing-based HIV drug resistance testing: the Winnipeg Consensus. J Int AIDS Soc 2018; 21:e25193. [PMID: 30350345 PMCID: PMC6198166 DOI: 10.1002/jia2.25193] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/26/2018] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Next-generation sequencing (NGS) has several advantages over conventional Sanger sequencing for HIV drug resistance (HIVDR) genotyping, including detection and quantitation of low-abundance variants bearing drug resistance mutations (DRMs). However, the high HIV genomic diversity, unprecedented large volume of data, complexity of analysis and potential for error pose significant challenges for data processing. Several NGS analysis pipelines have been developed and used in HIVDR research; however, the absence of uniformity in data processing strategies results in lack of consistency and comparability of outputs from different pipelines. To fill this gap, an international symposium on bioinformatic strategies for NGS-based HIVDR testing was held in February 2018 in Winnipeg, Canada, convening laboratory scientists, bioinformaticians and clinicians involved in four recently developed, publicly available NGS HIVDR pipelines. The goal of this symposium was to establish a consensus on effective bioinformatic strategies for NGS data management and its use for HIVDR reporting. DISCUSSION Essential functionalities of an NGS HIVDR pipeline were divided into five analytic blocks: (1) NGS read quality control (QC)/quality assurance (QA); (2) NGS read alignment and reference mapping; (3) HIV variant calling and variant QC; (4) NGS HIVDR reporting; and (5) extended data applications and additional considerations for data management. The consensuses reached among the participants on all major aspects of these blocks are summarized here. They encompass not only recommended data management and analysis strategies, but also detailed bioinformatic approaches that help ensure accuracy of the derived HIVDR analysis outputs for both research and potential clinical use. CONCLUSIONS While NGS is being adopted more broadly in HIVDR testing laboratories, data processing is often a bottleneck hindering its generalized application. The proposed standardization of NGS read QC/QA, read alignment and reference mapping, variant calling and QC, HIVDR reporting and relevant data management strategies in this "Winnipeg Consensus" may serve as a starting guideline for NGS HIVDR data processing that informs the refinement of existing pipelines and those yet to be developed. Moreover, the bioinformatic strategies presented here may apply more broadly to NGS data analysis of microbes harbouring significant genomic diversity.
Collapse
Affiliation(s)
- Hezhao Ji
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research CentrePublic Health Agency of CanadaWinnipegMBCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegMBCanada
| | - Eric Enns
- Bioinformatics Core at the National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegMBCanada
| | | | | | - Mark Howison
- Watson Institute for International and Public AffairsBrown UniversityProvidenceRIUSA
| | - Emma R. Lee
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research CentrePublic Health Agency of CanadaWinnipegMBCanada
| | - Rupert Capina
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research CentrePublic Health Agency of CanadaWinnipegMBCanada
| | - Eric Marinier
- Bioinformatics Core at the National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegMBCanada
| | - Santiago Avila‐Rios
- Centre for Research in Infectious DiseasesNational Institute of Respiratory DiseasesMexico CityMexico
| | - Paul Sandstrom
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research CentrePublic Health Agency of CanadaWinnipegMBCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegMBCanada
| | - Gary Van Domselaar
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegMBCanada
- Bioinformatics Core at the National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegMBCanada
| | - Richard Harrigan
- Division of AIDSDepartment of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Roger Paredes
- IrsiCaixa AIDS Research InstituteBadalonaCataloniaSpain
| | - Rami Kantor
- Division of Infectious DiseasesBrown University Alpert Medical SchoolProvidenceRIUSA
| | | |
Collapse
|
20
|
Sotillo A, Sierra O, Martínez-Prats L, Gutiérrez F, Zurita S, Pulido F, Rubio R, Delgado R. Analysis of drug resistance mutations in whole blood DNA from HIV-1 infected patients by single genome and ultradeep sequencing analysis. J Virol Methods 2018; 260:1-5. [PMID: 29969601 DOI: 10.1016/j.jviromet.2018.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/21/2018] [Accepted: 06/29/2018] [Indexed: 12/28/2022]
Abstract
In HIV-1 infected patients blood CD4+ T lymphocytes could be a valuable target to analyse drug resistance mutations (DRM) selected over the course of the infection. However, detection of viral resistance mutations in cellular DNA by standard genotype resistance techniques (SGRT) is suboptimal. Whole blood DNA (wbDNA) from 12 HIV-1 infected patients on ART was studied by Single Genome Sequencing (SGS) and 8 of them also by Ultradeep pyrosequencing (UDP). Results were compared with contemporary and historical DRM detected in plasma by SGRT during follow up. All the contemporary DRM detected in plasma from the viremic patients were detected by SGS and UDP (20 from 7 patients and 4 from 5 patients respectively). Out of the 67 historical DRM detected in plasma and no longer present at the time of testing, 38 (57%) were detected by SGS in 12 patients and 27 out of 46 (59%) by UDP in 8 patients. Additional DRM never reported in plasma by SGRT were detected by SGS (12 from 8 patients) and UDP (10 from 8 patients). Analysis of wbDNA from HIV-1 infected patients by SGS and UDP provides proof of concept of the value of blood DNA to investigate current and archived DRM in HIV-1 infected patients on ART.
Collapse
Affiliation(s)
- Alma Sotillo
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Olalla Sierra
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Lorena Martínez-Prats
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Francisca Gutiérrez
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Sagrario Zurita
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Federico Pulido
- HIV Unit, Department of Internal Medicine, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Rafael Rubio
- HIV Unit, Department of Internal Medicine, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Rafael Delgado
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.
| |
Collapse
|
21
|
Abstract
The evolution of viral pathogens is shaped by strong selective forces that are exerted during jumps to new hosts, confrontations with host immune responses and antiviral drugs, and numerous other processes. However, while undeniably strong and frequent, adaptive evolution is largely confined to small parts of information-packed viral genomes, and the majority of observed variation is effectively neutral. The predictions and implications of the neutral theory have proven immensely useful in this context, with applications spanning understanding within-host population structure, tracing the origins and spread of viral pathogens, predicting evolutionary dynamics, and modeling the emergence of drug resistance. We highlight the multiple ways in which the neutral theory has had an impact, which has been accelerated in the age of high-throughput, high-resolution genomics.
Collapse
Affiliation(s)
- Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge,
United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - Brittany Rife Magalis
- Institute for Genomics and Evolutionary Medicine, Temple University,
Philadelphia, PA
| | | |
Collapse
|
22
|
Zhou Z, Tang K, Zhang G, Wadonda-Kabondo N, Moyo K, Rowe LA, DeVos JR, Wagar N, Zheng DP, Guo H, Nkengasong J, Frace M, Sammons S, Yang C. Detection of minority drug resistant mutations in Malawian HIV-1 subtype C-positive patients initiating and on first-line antiretroviral therapy. Afr J Lab Med 2018; 7:708. [PMID: 29977795 PMCID: PMC6018132 DOI: 10.4102/ajlm.v7i1.708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/01/2018] [Indexed: 11/21/2022] Open
Abstract
Background Minority drug resistance mutations (DRMs) that are often missed by Sanger sequencing are clinically significant, as they can cause virologic failure in individuals treated with antiretroviral therapy (ART) drugs. Objective This study aimed to estimate the prevalence of minor DRMs among patients enrolled in a Malawi HIV drug resistance monitoring survey at baseline and at one year after initiation of ART. Methods Forty-one plasma specimens collected from HIV-1 subtype C-positive patients and seven clonal control samples were analysed using ultra-deep sequencing technology. Results Deep sequencing identified all 72 DRMs detected by Sanger sequencing at the level of ≥20% and 79 additional minority DRMs at the level of < 20% from the 41 Malawian clinical specimens. Overall, DRMs were detected in 85% of pre-ART and 90.5% of virologic failure patients by deep sequencing. Among pre-ART patients, deep sequencing identified a statistically significant higher prevalence of DRMs to nucleoside reverse transcriptase inhibitors (NRTIs) compared with Sanger sequencing. The difference was mainly due to the high prevalence of minority K65R and M184I mutations. Most virologic failure patients harboured DRMs against both NRTIs and non-nucleoside reverse transcriptase inhibitors (NNRTIs). These minority DRMs contributed to the increased or enhanced virologic failures in these patients. Conclusion The results revealed the presence of minority DRMs to NRTIs and NNRTIs in specimens collected at baseline and virologic failure time points. These minority DRMs not only increased resistance levels to NRTIs and NNRTIs for the prescribed ART, but also expanded resistance to additional major first-line ART drugs. This study suggested that drug resistance testing that uses more sensitive technologies, is needed in this setting.
Collapse
Affiliation(s)
- Zhiyong Zhou
- International Laboratory Branch, Division of Global HIV & TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Kevin Tang
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Guoqing Zhang
- International Laboratory Branch, Division of Global HIV & TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | | | - Kundai Moyo
- Department of Preventive Health, Ministry of Health, Lilongwe, Malawi
| | - Lori A Rowe
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Joshua R DeVos
- International Laboratory Branch, Division of Global HIV & TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Nick Wagar
- International Laboratory Branch, Division of Global HIV & TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Du-Ping Zheng
- International Laboratory Branch, Division of Global HIV & TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Hongxiong Guo
- International Laboratory Branch, Division of Global HIV & TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - John Nkengasong
- International Laboratory Branch, Division of Global HIV & TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Mike Frace
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Scott Sammons
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Chunfu Yang
- International Laboratory Branch, Division of Global HIV & TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| |
Collapse
|
23
|
Comparison of an In Vitro Diagnostic Next-Generation Sequencing Assay with Sanger Sequencing for HIV-1 Genotypic Resistance Testing. J Clin Microbiol 2018; 56:JCM.00105-18. [PMID: 29618499 DOI: 10.1128/jcm.00105-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 11/20/2022] Open
Abstract
The ability of next-generation sequencing (NGS) technologies to detect low frequency HIV-1 drug resistance mutations (DRMs) not detected by dideoxynucleotide Sanger sequencing has potential advantages for improved patient outcomes. We compared the performance of an in vitro diagnostic (IVD) NGS assay, the Sentosa SQ HIV genotyping assay for HIV-1 genotypic resistance testing, with Sanger sequencing on 138 protease/reverse transcriptase (RT) and 39 integrase sequences. The NGS assay used a 5% threshold for reporting low-frequency variants. The level of complete plus partial nucleotide sequence concordance between Sanger sequencing and NGS was 99.9%. Among the 138 protease/RT sequences, a mean of 6.4 DRMs was identified by both Sanger and NGS, a mean of 0.5 DRM was detected by NGS alone, and a mean of 0.1 DRM was detected by Sanger sequencing alone. Among the 39 integrase sequences, a mean of 1.6 DRMs was detected by both Sanger sequencing and NGS and a mean of 0.15 DRM was detected by NGS alone. Compared with Sanger sequencing, NGS estimated higher levels of resistance to one or more antiretroviral drugs for 18.2% of protease/RT sequences and 5.1% of integrase sequences. There was little evidence for technical artifacts in the NGS sequences, but the G-to-A hypermutation was detected in three samples. In conclusion, the IVD NGS assay evaluated in this study was highly concordant with Sanger sequencing. At the 5% threshold for reporting minority variants, NGS appeared to attain a modestly increased sensitivity for detecting low-frequency DRMs without compromising sequence accuracy.
Collapse
|
24
|
Stekler JD, Milne R, Payant R, Beck I, Herbeck J, Maust B, Deng W, Tapia K, Holte S, Maenza J, Stevens CE, Mullins JI, Collier AC, Frenkel LM. Transmission of HIV-1 drug resistance mutations within partner-pairs: A cross-sectional study of a primary HIV infection cohort. PLoS Med 2018; 15:e1002537. [PMID: 29584723 PMCID: PMC5870941 DOI: 10.1371/journal.pmed.1002537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 02/16/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Transmission of human immunodeficiency virus type 1 (HIV-1) drug resistance mutations, particularly that of minority drug-resistant variants, remains poorly understood. Population-based studies suggest that drug-resistant HIV-1 is less transmissible than drug-susceptible viruses. We compared HIV-1 drug-resistant genotypes among partner-pairs in order to assess the likelihood of transmission of drug resistance mutations and investigate the role of minority variants in HIV transmission. METHODS AND FINDINGS From 1992-2010, 340 persons with primary HIV-1 infection and their partners were enrolled into observational research studies at the University of Washington Primary Infection Clinic (UWPIC). Out of 50 partner-pairs enrolled, 36 (72%) transmission relationships were confirmed by phylogenetic distance analysis of HIV-1 envelope (env) sequences, and 31 partner-pairs enrolled after 1995 met criteria for this study. Drug resistance mutations in the region of the HIV-1 polymerase gene (pol) that encodes protease and reverse transcriptase were assessed by 454-pyrosequencing. In 25 partner-pairs where the transmission direction could be determined, 12 (48%) transmitters had 1-4 drug resistance mutations (23 total) detected in their HIV-1 populations at a median frequency of 6.0% (IQR 1.5%-98.7%, range 1.0%-99.6%). Of 10 major mutations detected in five transmitters at a frequency >95%, 100% (95% CI 69.2%-100%) were detected in recipients. All of these transmitters were antiretroviral (ARV)-naïve at the time of specimen collection. Fourteen mutations (eight major mutations and six accessory mutations) were detected in nine transmitters at low frequencies (1.0%-11.8%); four of these transmitters had previously received ARV therapy. Two (14% [95% CI 1.8%-42.8%]) G73S accessory mutations were detected in both transmitter and recipient. This number is not significantly different from the number expected based on the observed frequencies of drug-resistant viruses in transmitting partners. Limitations of this study include the small sample size and uncertainties in determining the timing of virus transmission and mutation history. CONCLUSIONS Drug-resistant majority variants appeared to be commonly transmitted by ARV-naïve participants in our analysis and may contribute significantly to transmitted drug resistance on a population level. When present at low frequency, no major mutation was observed to be shared between partner-pairs; identification of accessory mutations shared within a pair could be due to transmission, laboratory artifact, or apolipoprotein B mRNA-editing enzyme, catalytic polypeptides (APOBECs), and warrants further study.
Collapse
Affiliation(s)
- Joanne D. Stekler
- University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Ross Milne
- University of Washington, Seattle, Washington, United States of America
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Rachel Payant
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ingrid Beck
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Joshua Herbeck
- University of Washington, Seattle, Washington, United States of America
| | - Brandon Maust
- University of Washington, Seattle, Washington, United States of America
| | - Wenjie Deng
- University of Washington, Seattle, Washington, United States of America
| | - Kenneth Tapia
- University of Washington, Seattle, Washington, United States of America
| | - Sarah Holte
- University of Washington, Seattle, Washington, United States of America
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Janine Maenza
- University of Washington, Seattle, Washington, United States of America
| | - Claire E. Stevens
- University of Washington, Seattle, Washington, United States of America
| | - James I. Mullins
- University of Washington, Seattle, Washington, United States of America
| | - Ann C. Collier
- University of Washington, Seattle, Washington, United States of America
| | - Lisa M. Frenkel
- University of Washington, Seattle, Washington, United States of America
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
25
|
Size, Composition, and Evolution of HIV DNA Populations during Early Antiretroviral Therapy and Intensification with Maraviroc. J Virol 2018; 92:JVI.01589-17. [PMID: 29142136 DOI: 10.1128/jvi.01589-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022] Open
Abstract
Residual viremia is common during antiretroviral therapy (ART) and could be caused by ongoing low-level virus replication or by release of viral particles from infected cells. ART intensification should impact ongoing viral propagation but not virion release. Eighteen acutely infected men were enrolled in a randomized controlled trial and monitored for a median of 107 weeks. Participants started ART with (n = 9) or without (n = 9) intensification with maraviroc (MVC) within 90 days of infection. Levels of HIV DNA and cell-free RNA were quantified by droplet digital PCR. Deep sequencing of C2-V3 env, gag, and pol (454 Roche) was performed on longitudinally collected plasma and peripheral blood mononuclear cell (PBMC) samples while on ART. Sequence data were analyzed for evidence of evolution by (i) molecular diversity analysis, (ii) nonparametric test for panmixia, and (iii) tip date randomization within a Bayesian framework. There was a longitudinal decay of HIV DNA after initiation of ART with no difference between MVC intensification groups (-0.08 ± 0.01 versus -0.09 ± 0.01 log10 copies/week in MVC+ versus MVC- groups; P = 0.62). All participants had low-level residual viremia (median, 2.8 RNA copies/ml). Across participants, medians of 56 (interquartile range [IQR], 36 to 74), 29 (IQR, 25 to 35), and 40 (IQR, 31 to 54) haplotypes were generated for env, gag, and pol regions, respectively. There was no clear evidence of viral evolution during ART and no difference in viral diversity or population structure from individuals with or without MVC intensification. Further efforts focusing on elucidating the mechanism(s) of viral persistence in various compartments using recent sequencing technologies are still needed, and potential low-level viral replication should always be considered in cure strategies.IMPORTANCE Residual viremia is common among HIV-infected people on ART. It remains controversial if this viremia is a consequence of propagating infection. We hypothesized that molecular evolution would be detectable during viral propagation and that therapy intensified with the entry inhibitor maraviroc would demonstrate less evolution. We performed a randomized double-blinded treatment trial with 18 acutely infected men (standard ART versus standard ART plus maraviroc). From longitudinally collected blood plasma and cells, levels of HIV DNA and cell-free HIV RNA were quantified by droplet digital PCR, and HIV DNA (env, gag, and pol coding regions) was deep sequenced (454 Roche). Investigating people who started ART during the earliest stages of their HIV infection, when viral diversity is low, provides an opportunity to detect evidence of viral evolution. Despite using a battery of analytical techniques, no clear and consistent evidence of viral propagation for over 90 weeks of observation could be discerned.
Collapse
|
26
|
Alves BM, Siqueira JD, Garrido MM, Botelho OM, Prellwitz IM, Ribeiro SR, Soares EA, Soares MA. Characterization of HIV-1 Near Full-Length Proviral Genome Quasispecies from Patients with Undetectable Viral Load Undergoing First-Line HAART Therapy. Viruses 2017; 9:v9120392. [PMID: 29257103 PMCID: PMC5744166 DOI: 10.3390/v9120392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Increased access to highly active antiretroviral therapy (HAART) by human immunodeficiency virus postive (HIV+) individuals has become a reality worldwide. In Brazil, HAART currently reaches over half of HIV-infected subjects. In the context of a remarkable HIV-1 genetic variability, highly related variants, called quasispecies, are generated. HIV quasispecies generated during infection can influence virus persistence and pathogenicity, representing a challenge to treatment. However, the clinical relevance of minority quasispecies is still uncertain. In this study, we have determined the archived proviral sequences, viral subtype and drug resistance mutations from a cohort of HIV+ patients with undetectable viral load undergoing HAART as first-line therapy using next-generation sequencing for near full-length virus genome (NFLG) assembly. HIV-1 consensus sequences representing NFLG were obtained for eleven patients, while for another twelve varying genome coverage rates were obtained. Phylogenetic analysis showed the predominance of subtype B (83%; 19/23). Considering the minority variants, 18 patients carried archived virus harboring at least one mutation conferring antiretroviral resistance; for six patients, the mutations correlated with the current ARVs used. These data highlight the importance of monitoring HIV minority drug resistant variants and their clinical impact, to guide future regimen switches and improve HIV treatment success.
Collapse
Affiliation(s)
- Brunna M Alves
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Juliana D Siqueira
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Marianne M Garrido
- Serviço de Doenças Infecciosas, Hospital Federal de Ipanema, Rio de Janeiro 22411-020, Brazil.
| | - Ornella M Botelho
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Isabel M Prellwitz
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Sayonara R Ribeiro
- Serviço de Doenças Infecciosas, Hospital Federal de Ipanema, Rio de Janeiro 22411-020, Brazil.
| | - Esmeralda A Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Marcelo A Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil.
| |
Collapse
|
27
|
No Substantial Evidence for Sexual Transmission of Minority HIV Drug Resistance Mutations in Men Who Have Sex with Men. J Virol 2017; 91:JVI.00769-17. [PMID: 28794047 DOI: 10.1128/jvi.00769-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
Abstract
During primary HIV infection, the presence of minority drug resistance mutations (DRM) may be a consequence of sexual transmission, de novo mutations, or technical errors in identification. Baseline blood samples were collected from 24 HIV-infected antiretroviral-naive, genetically and epidemiologically linked source and recipient partners shortly after the recipient's estimated date of infection. An additional 32 longitudinal samples were available from 11 recipients. Deep sequencing of HIV reverse transcriptase (RT) was performed (Roche/454), and the sequences were screened for nucleoside and nonnucleoside RT inhibitor DRM. The likelihood of sexual transmission and persistence of DRM was assessed using Bayesian-based statistical modeling. While the majority of DRM (>20%) were consistently transmitted from source to recipient, the probability of detecting a minority DRM in the recipient was not increased when the same minority DRM was detected in the source (Bayes factor [BF] = 6.37). Longitudinal analyses revealed an exponential decay of DRM (BF = 0.05) while genetic diversity increased. Our analysis revealed no substantial evidence for sexual transmission of minority DRM (BF = 0.02). The presence of minority DRM during early infection, followed by a rapid decay, is consistent with the "mutation-selection balance" hypothesis, in which deleterious mutations are more efficiently purged later during HIV infection when the larger effective population size allows more efficient selection. Future studies using more recent sequencing technologies that are less prone to single-base errors should confirm these results by applying a similar Bayesian framework in other clinical settings.IMPORTANCE The advent of sensitive sequencing platforms has led to an increased identification of minority drug resistance mutations (DRM), including among antiretroviral therapy-naive HIV-infected individuals. While transmission of DRM may impact future therapy options for newly infected individuals, the clinical significance of the detection of minority DRM remains controversial. In the present study, we applied deep-sequencing techniques within a Bayesian hierarchical framework to a cohort of 24 transmission pairs to investigate whether minority DRM detected shortly after transmission were the consequence of (i) sexual transmission from the source, (ii) de novo emergence shortly after infection followed by viral selection and evolution, or (iii) technical errors/limitations of deep-sequencing methods. We found no clear evidence to support the sexual transmission of minority resistant variants, and our results suggested that minor resistant variants may emerge de novo shortly after transmission, when the small effective population size limits efficient purge by natural selection.
Collapse
|
28
|
Epaulard O, Signori-Schmuck A, Larrat S, Kulkarni O, Blum MG, Fusillier K, Blanc M, Leclercq P, François O, Morand P. Ultradeep sequencing of B and non-B HIV-1 subtypes: Viral diversity and drug resistance mutations before and after one month of antiretroviral therapy in naive patients. J Clin Virol 2017; 95:13-19. [PMID: 28830014 DOI: 10.1016/j.jcv.2017.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 04/06/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ultradeep pyrosequencing technologies permit an assessment of the genetic diversity and the presence and frequency of minority variants in a viral population. The effect of these parameters on the outcome of highly active antiretroviral therapy (HAART) in HIV-infected patients is poorly understood. OBJECTIVES The present study used the pyrosequencing Roche 454 prototype assay to determine whether antiretroviral efficacy is correlated with viral diversity and minority drug resistance mutations in HIV-infected treatment-naive patients and to compare assay performance in B and non-B subtypes. STUDY DESIGN The study included 30 HIV-1 infected naive patients (20 with subtype non-B and 10 with subtype B). Ultradeep pyrosequencing of protease and reverse transcriptase genes was performed at baseline and 1 month after HAART initiation. Plasma HIV VL was measured at 0 and after 1, 3, and 6 months of HAART. RESULTS Pre-HAART minority drug resistance mutations were observed to NRTI in 4 patients, to NNRTI in 6 patients, and to PI in 1 patient; there was no difference in HAART-induced VL decay between patients. Pre-HAART diversity was significantly correlated with the time elapsed since HIV-1 infection diagnosis, but not with the subtype, VL, or CD4 count. Patients with an undetectable VL after 3 months of HAART had a higher pre-HAART diversity. Pre- and post-HAART diversities were not statistically different. There was no difference in assay performance between subtype B and non-B. CONCLUSIONS A high pre-HAART viral diversity might have a positive effect on the outcome of HAART. Pre-therapeutic minority drug resistance mutations are uncommon in naive patients.
Collapse
Affiliation(s)
- Olivier Epaulard
- Infectious Disease Unit, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France; Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France.
| | - Anne Signori-Schmuck
- Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France; Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| | - Sylvie Larrat
- Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France; Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| | - Om Kulkarni
- Computational and Mathematical Biology, TIMC-IMAG UMR 5525 UJF-INPG-CNRS, Domaine de la Merci, 38706 La Tronche Cedex, France
| | - Michael G Blum
- Computational and Mathematical Biology, TIMC-IMAG UMR 5525 UJF-INPG-CNRS, Domaine de la Merci, 38706 La Tronche Cedex, France
| | - Katia Fusillier
- Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| | - Myriam Blanc
- Infectious Disease Unit, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France
| | - Pascale Leclercq
- Infectious Disease Unit, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France
| | - Olivier François
- Computational and Mathematical Biology, TIMC-IMAG UMR 5525 UJF-INPG-CNRS, Domaine de la Merci, 38706 La Tronche Cedex, France
| | - Patrice Morand
- Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France; Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| |
Collapse
|
29
|
HIV-1 Drug Resistance by Ultra-Deep Sequencing Following Short Course Zidovudine, Single-Dose Nevirapine, and Single-Dose Tenofovir with Emtricitabine for Prevention of Mother-to-Child Transmission. J Acquir Immune Defic Syndr 2017; 73:384-389. [PMID: 27327263 PMCID: PMC5172515 DOI: 10.1097/qai.0000000000001116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Supplemental Digital Content is Available in the Text. Antiretroviral drug resistance following pMTCT strategies remains a significant problem. With rapid advancements in next generation sequencing technologies, there is more focus on HIV drug-resistant variants of low frequency, or the so-called minority variants. In South Africa, AZT monotherapy for pMTCT, similar to World Health Organization option A, has been used since 2008. In 2010, a single dose of co-formulated TDF/FTC was included in the strategy for prevention of resistance conferred by single-dose nevirapine (sd NVP). The study was conducted in KwaZulu-Natal, South Africa, among pMTCT participants who received AZT monotherapy from 14 weeks of gestation, intrapartum AZT and sd NVP, and postpartum sd TDF/FTC. Twenty-six specimens collected at 6 weeks post-delivery were successfully sequenced using 454 ultra-deep sequencing. Non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance was detected in 17 of 26 (65%) patients, 2 (7%) had Thymidine analogue mutations, and 3 (11%) had K65R. Of the 17 patients with NNRTI resistance, 11 (65%) had high-level NNRTI resistance, whereas 6 (35%) had intermediate NNRTI resistance. The levels of NNRTI resistance are much higher than would be expected, given the inclusion of antepartum AZT and postpartum TDF/FTC. This high level of NNRTI resistance could impact future NNRTI-containing treatment for a large proportion of pMTCT-exposed women. The detection of Thymidine analogue mutations highlights the need to understand the clinical impact of these on AZT-containing antiretroviral treatment in women exposed to AZT monotherapy.
Collapse
|
30
|
Oliveira MF, Chaillon A, Nakazawa M, Vargas M, Letendre SL, Strain MC, Ellis RJ, Morris S, Little SJ, Smith DM, Gianella S. Early Antiretroviral Therapy Is Associated with Lower HIV DNA Molecular Diversity and Lower Inflammation in Cerebrospinal Fluid but Does Not Prevent the Establishment of Compartmentalized HIV DNA Populations. PLoS Pathog 2017; 13:e1006112. [PMID: 28046096 PMCID: PMC5266327 DOI: 10.1371/journal.ppat.1006112] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 01/25/2017] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
Even when antiretroviral therapy (ART) is started early after infection, HIV DNA might persist in the central nervous system (CNS), possibly contributing to inflammation, brain damage and neurocognitive impairment. Paired blood and cerebrospinal fluid (CSF) were collected from 16 HIV-infected individuals on suppressive ART: 9 participants started ART <4 months of the estimated date of infection (EDI) ("early ART"), and 7 participants started ART >14 months after EDI ("late ART"). For each participant, neurocognitive functioning was measured by Global Deficit Score (GDS). HIV DNA levels were measured in peripheral blood mononuclear cells (PBMCs) and CSF cell pellets by droplet digital (dd)PCR. Soluble markers of inflammation (sCD163, IL-6, MCP-1, TNF-α) and neuronal damage (neurofilament light [NFL]) were measured in blood and CSF supernatant by immunoassays. HIV-1 partial C2V3 env deep sequencing data (Roche 454) were obtained for 8 paired PBMC and CSF specimens and used for phylogenetic and compartmentalization analysis. Median exposure to ART at the time of sampling was 2.6 years (IQR: 2.2-3.7) and did not differ between groups. We observed that early ART was significantly associated with lower molecular diversity of HIV DNA in CSF (p<0.05), and lower IL-6 levels in CSF (p = 0.02), but no difference for GDS, NFL, or HIV DNA detectability compared to late ART. Compartmentalization of HIV DNA populations between CSF and blood was detected in 6 out of 8 participants with available paired HIV DNA sequences (2 from early and 4 from late ART group). Phylogenetic analysis confirmed the presence of monophyletic HIV DNA populations within the CSF in 7 participants, and the same population was repeatedly sampled over a 5 months period in one participant with longitudinal sampling. Such compartmentalized provirus in the CNS needs to be considered for the design of future eradication strategies and might contribute to the neuropathogenesis of HIV.
Collapse
Affiliation(s)
- Michelli F. Oliveira
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Masato Nakazawa
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Milenka Vargas
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Scott L. Letendre
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- HIV Neurobehavioral Research Center, San Diego, California, United States of America
| | - Matthew C. Strain
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ronald J. Ellis
- HIV Neurobehavioral Research Center, San Diego, California, United States of America
- Departments of Neurosciences and Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Sheldon Morris
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Susan J. Little
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Sara Gianella
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
31
|
Zanini F, Puller V, Brodin J, Albert J, Neher RA. In vivo mutation rates and the landscape of fitness costs of HIV-1. Virus Evol 2017; 3:vex003. [PMID: 28458914 PMCID: PMC5399928 DOI: 10.1093/ve/vex003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutation rates and fitness costs of deleterious mutations are difficult to measure in vivo but essential for a quantitative understanding of evolution. Using whole genome deep sequencing data from longitudinal samples during untreated HIV-1 infection, we estimated mutation rates and fitness costs in HIV-1 from the dynamics of genetic variation. At approximately neutral sites, mutations accumulate with a rate of 1.2 × 10-5 per site per day, in agreement with the rate measured in cell cultures. We estimated the rate from G to A to be the largest, followed by the other transitions C to T, T to C, and A to G, while transversions are less frequent. At other sites, mutations tend to reduce virus replication. We estimated the fitness cost of mutations at every site in the HIV-1 genome using a model of mutation selection balance. About half of all non-synonymous mutations have large fitness costs (>10 percent), while most synonymous mutations have costs <1 percent. The cost of synonymous mutations is especially low in most of pol where we could not detect measurable costs for the majority of synonymous mutations. In contrast, we find high costs for synonymous mutations in important RNA structures and regulatory regions. The intra-patient fitness cost estimates are consistent across multiple patients, indicating that the deleterious part of the fitness landscape is universal and explains a large fraction of global HIV-1 group M diversity.
Collapse
Affiliation(s)
- Fabio Zanini
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vadim Puller
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Johanna Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 76 Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - Richard A. Neher
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| |
Collapse
|
32
|
Abstract
OBJECTIVE Compared with HIV monoinfection, HIV dual infection has been associated with decreased CD4 T-cell counts and increased viral loads. The same markers are also associated with the development of HIV-associated neurocognitive disorder (HAND), which continues to be a prevalent problem in the era of combination antiretroviral therapy (ART). We sought to determine the relationship between dual infection and HAND. METHODS Participants on ART (N = 38) underwent deep sequencing of four PCR-amplified HIV coding regions derived from peripheral blood mononuclear cell DNA samples. Phylogenetic analyses were performed to evaluate whether two distinct viral lineages, that is, dual infection, were present in the same individual. All study participants underwent neurocognitive, substance use, and neuromedical assessments at each study visit. RESULTS Of 38 participants, nine (23.7%) had evidence of dual infection. Using clinical ratings, global neurocognitive impairment was identified in 21 (55%) participants, and multivariate analysis demonstrated a significant association between dual infection and impairment; odds ratio (95% confidence interval) = 18.3 (1.9, 414.2), P = 0.028. Neurocognitive impairment was also associated with lower current (P = 0.028) and nadir (P = 0.043) CD4 T-cell counts. CONCLUSIONS Deep sequencing of HIV DNA populations in blood mononuclear cell identified dual infection in nearly a quarter of HIV-infected adults receiving ART, and dual infection was associated with HAND. Dual infection may contribute to the development of HAND, perhaps because of increased viral diversity. Further investigation is needed to determine how dual infection results in worse neurocognitive performance.
Collapse
|
33
|
Cunningham E, Chan YT, Aghaizu A, Bibby DF, Murphy G, Tosswill J, Harris RJ, Myers R, Field N, Delpech V, Cane PA, Gill ON, Mbisa JL. Enhanced surveillance of HIV-1 drug resistance in recently infected MSM in the UK. J Antimicrob Chemother 2016; 72:227-234. [PMID: 27742812 DOI: 10.1093/jac/dkw404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/19/2016] [Accepted: 08/26/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To determine the prevalence of inferred low-frequency HIV-1 transmitted drug resistance (TDR) in MSM in the UK and its predicted effect on first-line therapy. METHODS The HIV-1 pol gene was amplified from 442 newly diagnosed MSM identified as likely recently infected by serological avidity testing in 2011-13. The PCR products were sequenced by next-generation sequencing with a mutation frequency threshold of >2% and TDR mutations defined according to the 2009 WHO surveillance drug resistance mutations list. RESULTS The majority (75.6%) were infected with subtype B and 6.6% with rare complex or unique recombinant forms. At a mutation frequency threshold of >20%, 7.2% (95% CI 5.0%-10.1%) of the sequences had TDR and this doubled to 15.8% (95% CI 12.6%-19.6%) at >2% mutation frequency (P < 0.0001). The majority (26/42, 62%) of low-frequency variants were against PIs. The most common mutations detected at >20% and 2%-20% mutation frequency differed for each drug class, these respectively being: L90M (n = 7) and M46IL (n = 10) for PIs; T215rev (n = 9) and D67GN (n = 4) for NRTIs; and K103N (n = 5) and G190E (n = 2) for NNRTIs. Combined TDR was more frequent in subtype B than non-B (OR = 0.38; 95% CI = 0.17-0.88; P = 0.024) and had minimal predicted effect on recommended first-line therapies. CONCLUSIONS The data suggest differences in the types of low-frequency compared with majority TDR variants that require a better understanding of the origins and clinical significance of low-frequency variants. This will better inform diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Emma Cunningham
- Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Yuen-Ting Chan
- Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Adamma Aghaizu
- HIV and STI Department, National Infection Service, Public Health England, London, UK
| | - David F Bibby
- Virus Reference Department, National Infection Service, Public Health England, London, UK.,National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, University College London, London, UK
| | - Gary Murphy
- Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Jennifer Tosswill
- Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Ross J Harris
- Statistics, Modelling and Economics Department, National Infection Service, Public Health England, London, UK
| | - Richard Myers
- Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Nigel Field
- HIV and STI Department, National Infection Service, Public Health England, London, UK
| | - Valerie Delpech
- HIV and STI Department, National Infection Service, Public Health England, London, UK.,National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, University College London, London, UK
| | - Patricia A Cane
- Virus Reference Department, National Infection Service, Public Health England, London, UK.,National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, University College London, London, UK
| | - O Noel Gill
- HIV and STI Department, National Infection Service, Public Health England, London, UK.,National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, University College London, London, UK
| | - Jean L Mbisa
- Virus Reference Department, National Infection Service, Public Health England, London, UK .,National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, University College London, London, UK
| |
Collapse
|
34
|
Gianella S, Kosakovsky Pond SL, Oliveira MF, Scheffler K, Strain MC, De la Torre A, Letendre S, Smith DM, Ellis RJ. Compartmentalized HIV rebound in the central nervous system after interruption of antiretroviral therapy. Virus Evol 2016; 2:vew020. [PMID: 27774305 PMCID: PMC5072458 DOI: 10.1093/ve/vew020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To design effective eradication strategies, it may be necessary to target HIV reservoirs in anatomic compartments other than blood. This study examined HIV RNA rebound following interruption of antiretroviral therapy (ART) in blood and cerebrospinal fluid (CSF) to determine whether the central nervous system (CNS) might serve as an independent source of resurgent viral replication. Paired blood and CSF samples were collected longitudinally from 14 chronically HIV-infected individuals undergoing ART interruption. HIV env (C2-V3), gag (p24) and pol (reverse transcriptase) were sequenced from cell-free HIV RNA and cell-associated HIV DNA in blood and CSF using the Roche 454 FLX Titanium platform. Comprehensive sequence and phylogenetic analyses were performed to search for evidence of unique or differentially represented viral subpopulations emerging in CSF supernatant as compared with blood plasma. Using a conservative definition of compartmentalization based on four distinct statistical tests, nine participants presented a compartmentalized HIV RNA rebound within the CSF after interruption of ART, even when sampled within 2 weeks from viral rebound. The degree and duration of viral compartmentalization varied considerably between subjects and between time-points within a subject. In 10 cases, we identified viral populations within the CSF supernatant at the first sampled time-point after ART interruption, which were phylogenetically distinct from those present in the paired blood plasma and mostly persisted over time (when longitudinal time-points were available). Our data suggest that an independent source of HIV RNA contributes to viral rebound within the CSF after treatment interruption. The most likely source of compartmentalized HIV RNA is a CNS reservoir that would need to be targeted to achieve complete HIV eradication.
Collapse
Affiliation(s)
- Sara Gianella
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Michelli F Oliveira
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Konrad Scheffler
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Matt C Strain
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Antonio De la Torre
- Departments of Neurosciences and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Ronald J Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
35
|
Soverini S, de Benedittis C, Mancini M, Martinelli G. Mutations in the BCR-ABL1 Kinase Domain and Elsewhere in Chronic Myeloid Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 15 Suppl:S120-8. [PMID: 26297264 DOI: 10.1016/j.clml.2015.02.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/14/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukemia (CML) has been the first human malignancy to be associated, more than 50 years ago, with a consistent chromosomal abnormality--the t(9;22)(q34;q11) chromosomal translocation. The resulting BCR-ABL1 fusion gene, encoding a tyrosine kinase with deregulated activity, has a central role in the pathogenesis of CML. Ancestral or additional genetic events necessary for CML to develop have long been hypothesized but never really demonstrated. CML can successfully be treated with tyrosine kinase inhibitors (TKIs). Mutations in the BCR-ABL1 kinase domain might arise, however, that confer resistance to 1 or more of the currently available TKIs. Hence, the critical role of BCR-ABL1 mutation screening for optimal therapeutic management, with the current gold standard technique, conventional sequencing, likely to be replaced soon by ultra-deep sequencing. Mutations in genes other than BCR-ABL1 include ASXL1, TET2, RUNX1, DNMT3A, EZH2, and TP53 in chronic phase patients and RUNX1, ASXL1, IKZF1, WT1, TET2, NPM1, IDH1, IDH2, NRAS, KRAS, CBL, TP53, CDKN2A, RB1, and GATA-2 mutations in advanced phase patients. The latter also display additional cytogenetic abnormalities, including submicroscopic regions of gain or loss that only single nucleotide polymorphism arrays or array comparative genomic hybridization can detect. Whether whole genome/exome sequencing studies will uncover novel mutations relevant for pathogenesis, progression, and risk-adapted therapy is still unclear.
Collapse
Affiliation(s)
- Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy.
| | - Caterina de Benedittis
- Department of Experimental, Diagnostic and Specialty Medicine, Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| | - Manuela Mancini
- Department of Experimental, Diagnostic and Specialty Medicine, Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Soverini S, De Benedittis C, Mancini M, Martinelli G. Present and future of molecular monitoring in chronic myeloid leukaemia. Br J Haematol 2016; 173:337-49. [PMID: 26947577 DOI: 10.1111/bjh.13966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Currently, physicians treating chronic myeloid leukaemia (CML) patients can rely on a wide spectrum of therapeutic options: the best use of such options is essential to achieve excellent clinical outcomes and, possibly, treatment-free remission (TFR). To accomplish this, proper integration of expert clinical and laboratory monitoring of CML patients is fundamental. Molecular response (MR) monitoring of patients at defined time points has emerged as an important success factor for optimal disease management and BCR-ABL1 kinase domain mutation screening is useful to guide therapeutic reassessment in patients who do not achieve optimal responses to tyrosine kinase inhibitor therapy. Deeper MRs might be associated with improved long-term survival outcomes. More importantly, they are considered a gateway to TFR. In molecular biology, novel procedures and technologies are continually being developed. More sophisticated molecular tools and automated analytical solutions are emerging as CML treatment endpoints and expectations become more and more ambitious. Here we provide a critical overview of current and novel methodologies, present their strengths and pitfalls and discuss what their present and future role might be.
Collapse
Affiliation(s)
- Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, Haematology/Oncology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Caterina De Benedittis
- Department of Experimental, Diagnostic and Specialty Medicine, Haematology/Oncology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Manuela Mancini
- Department of Experimental, Diagnostic and Specialty Medicine, Haematology/Oncology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Haematology/Oncology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
HIV Drug Resistance Mutations (DRMs) Detected by Deep Sequencing in Virologic Failure Subjects on Therapy from Hunan Province, China. PLoS One 2016; 11:e0149215. [PMID: 26895182 PMCID: PMC4760947 DOI: 10.1371/journal.pone.0149215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/28/2016] [Indexed: 11/19/2022] Open
Abstract
Objective Determine HIV drug resistance mutations (DRMs) prevalence at low and high levels in ART-experienced patients experiencing virologic failure (VF). Methods 29 subjects from 18 counties in Hunan Province that experienced VF were evaluated for the prevalence of DRMs (Stanford DRMs with an algorithm value ≥15, include low-, intermediate and high-level resistance) by both Sanger sequencing (SS) and deep sequencing (DS) to 1% frequency levels. Results DS was performed on samples from 29 ART-experienced subjects; the median viral load 4.95×104 c/ml; 82.76% subtype CRF01_AE. 58 DRMs were detected by DS. 18 DRMs were detected by SS. Of the 58 mutations detected by DS, 40 were at levels <20% frequency (26 NNRTI, 12 NRTI and 2 PI) and the majority of these 95.00% (38/40) were not detected by standard genotyping. Of these 40 low-level DRMs, 16 (40%) were detected at frequency levels of 1–4% and 24 (60%) at levels of 5–19%. SS detected 15 of 17 (88.24%) DRMs at levels ≥ 20% that were detected by DS. The only variable associated with the detection of DRMs by DS was ART adherence (missed doses in the prior 7 days); all patients that reported missing a dose in the last 7 days had DRMs detected by DS. Conclusions DS of VF samples from treatment experienced subjects infected with primarily AE subtype frequently identified Stanford HIVdb NRTI and NNRTI resistance mutations with an algorithm value 15. Low frequency level resistant variants detected by DS were frequently missed by standard genotyping in VF specimens from antiretroviral-experienced subjects.
Collapse
|
38
|
Bellecave P, Recordon-Pinson P, Fleury H. Evaluation of Automatic Analysis of Ultradeep Pyrosequencing Raw Data to Determine Percentages of HIV Resistance Mutations in Patients Followed-Up in Hospital. AIDS Res Hum Retroviruses 2016; 32:85-92. [PMID: 26529549 DOI: 10.1089/aid.2015.0201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A major obstacle to using next generation sequencing (NGS) technology in clinical routine practice is reliable data analysis. Thousands of sequences need to be aligned and validated, to exclude sequencing artifacts and generate accurate results. We compared two analysis pipelines for Roche 454 ultradeep pyrosequencing (UDPS) raw data generated from HIV-1 clinical samples: a commercial and fully automated Web-based software NGS HIV-1 Module (SmartGene, Zug, Switzerland) vs. the Amplicon Variant Analyzer software (AVA, 454 Life Sciences; Roche). Results were also compared to those obtained with Sanger sequencing. HIV-1 reverse transcriptase and protease genes from 34 plasma samples were submitted to Sanger sequencing and GS Junior UDPS. Raw UDPS data (sff files) from all samples were analyzed with AVA 2.7 software plus manual review of the alignments and the fully automated SmartGene NGS HIV-1 Module prototype (SMG). Results obtained with both analysis pipelines showed good correlation (85.0%). Divergent results were mainly observed at homopolymer positions, such as K101, where the frame-aware alignment and error corrections of the automated approach were more efficient and more accurate, both in terms of detecting and quantifying drug resistance mutations. Our study shows that NGS data can easily be analyzed via a fully automated analysis pipeline, here the SmartGene NGS HIV-1 Module, thus minimizing the need for manual review of alignments by the user, otherwise essential to ensure accurate results. Such automated analysis pipelines may facilitate the adoption of NGS platforms in the routine clinical laboratory.
Collapse
Affiliation(s)
- Pantxika Bellecave
- CNRS-UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université Bordeaux Segalen, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux (CHU), Laboratoire de Virologie, Bordeaux, France
| | - Patricia Recordon-Pinson
- CNRS-UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université Bordeaux Segalen, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux (CHU), Laboratoire de Virologie, Bordeaux, France
| | - Hervé Fleury
- CNRS-UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université Bordeaux Segalen, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux (CHU), Laboratoire de Virologie, Bordeaux, France
| |
Collapse
|
39
|
Porter DP, Daeumer M, Thielen A, Chang S, Martin R, Cohen C, Miller MD, White KL. Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study. Viruses 2015; 7:6360-70. [PMID: 26690199 PMCID: PMC4690866 DOI: 10.3390/v7122943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 01/02/2023] Open
Abstract
At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study.
Collapse
Affiliation(s)
| | - Martin Daeumer
- Seq-IT GmbH & Co. KG, Pfaffplatz 10, 67655 Kaiserslautern, Germany.
| | | | - Silvia Chang
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Ross Martin
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Cal Cohen
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Michael D Miller
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Kirsten L White
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| |
Collapse
|
40
|
The HIV care cascade in Switzerland: reaching the UNAIDS/WHO targets for patients diagnosed with HIV. AIDS 2015; 29:2509-15. [PMID: 26372488 DOI: 10.1097/qad.0000000000000878] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To describe the HIV care cascade for Switzerland in the year 2012. DESIGN/METHODS Six levels were defined: (i) HIV-infected, (ii) HIV-diagnosed, (iii) linked to care, (iv) retained in care, (v) on antiretroviral treatment (ART), and (vi) with suppressed viral load. We used data from the Swiss HIV Cohort Study (SHCS) complemented by a nationwide survey among SHCS physicians to estimate the number of HIV-patients not registered in the cohort. We also used Swiss ART sales data to estimate the number of patients treated outside the SHCS network. Based on the number of patients retained in care, we inferred the estimates for levels (i) to (iii) from previously published data. RESULTS We estimate that (i) 15 200 HIV-infected individuals lived in Switzerland in 2012 (margins of uncertainty, 13 400-19 300). Of those, (ii) 12 300 (81%) were diagnosed, (iii) 12 200 (80%) linked, and (iv) 11 900 (79%) retained in care. Broadly based on SHCS network data, (v) 10 800 (71%) patients were receiving ART, and (vi) 10 400 (68%) had suppressed (<200 copies/ml) viral loads. The vast majority (95%) of patients retained in care were followed within the SHCS network, with 76% registered in the cohort. CONCLUSION Our estimate for HIV-infected individuals in Switzerland is substantially lower than previously reported, halving previous national HIV prevalence estimates to 0.2%. In Switzerland in 2012, 91% of patients in care were receiving ART, and 96% of patients on ART had suppressed viral load, meeting recent UNAIDS/WHO targets.
Collapse
|
41
|
Tambuyzer L, Thys K, Hoogstoel A, Nijs S, Tomaka F, Opsomer M, De Meyer S, Vingerhoets J. Assessment of etravirine resistance in HIV-1-infected paediatric patients using population and deep sequencing: final results of the PIANO study. Antivir Ther 2015; 21:317-27. [PMID: 26566161 DOI: 10.3851/imp3011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND We assessed etravirine resistance in treatment-experienced, HIV-1-infected children (n=41)/adolescents (n=60) who received twice-daily etravirine 5.2 mg/kg and a background regimen (boosted protease inhibitor plus nucleoside/nucleotide reverse transcriptase inhibitors, optional enfuvirtide/raltegravir) in a Phase II, open-label, multicentre trial (PIANO). METHODS In addition to phenotypes, viral genotypes were assessed by population and deep sequencing (PS and DS) in virological failures (VFs; baseline and end point) and responders (baseline). Minority resistance-associated mutations (RAMs) were defined as those with frequencies above 1% and not detected with PS. RESULTS By week 48, 41/101 (40.6%) patients experienced VF; 17/41 (41.5%) VFs and 22/54 (40.8%) responders had ≥1 baseline etravirine RAM by PS, mainly A98G, K101E, V106I and G190A. Baseline minority etravirine RAMs (n) were detected in 8/40 VFs (V90I [2], A98G [1], L100I [1], V106I [1], E138G [1] and Y181C [2]) and 5/38 responders (V90I [3], A98G [1], V106I [1] and E138G [1]). The most frequent emerging non-nucleoside reverse transcriptase inhibitor RAMs detected by PS (≥3 VFs; n) were the etravirine RAMs Y181C (8), V90I (3), L100I (3) and E138A (3). In 15 of 29 (51.7%) VFs with baseline DS/PS and end point PS data, ≥1 emerging etravirine RAM was detected by PS, which was not detected at baseline by DS in most cases (12/15 [80.0%]). In 10/26 (38.5%) VFs with baseline/end point DS data, ≥1 additional emerging minority etravirine RAM was detected. CONCLUSIONS Patterns of etravirine resistance in adults, adolescents and children experiencing VF are similar. The presence of minority etravirine RAMs at baseline was not consistently associated with treatment failure. ClinicalTrials.gov: NCT00665847.
Collapse
|
42
|
Identification of minority resistance mutations in the HIV-1 integrase coding region using next generation sequencing. J Clin Virol 2015; 73:95-100. [PMID: 26587787 DOI: 10.1016/j.jcv.2015.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND The current widely applied standard method to screen for HIV-1 genotypic resistance is based on Sanger population sequencing (Sseq), which does not allow for the identification of minority variants (MVs) below the limit of detection for the Sseq-method in patients receiving integrase strand-transfer inhibitors (INSTI). Next generation sequencing (NGS) has facilitated the detection of MVs at a much deeper level than Sseq. OBJECTIVES Here, we compared Illumina MiSeq and Sseq approaches to evaluate the detection of MVs involved in resistance to the three commonly used INSTI: raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG). STUDY DESIGN NGS and Sseq were used to analyze RT-PCR products of the HIV-1 integrase coding region from six patients and in serial samples from two patients. NGS sequences were assembled and analyzed using the low frequency variant detection (LFVDT) tool in CLC genomic workbench. RESULTS Sseq detected INSTI resistance and accessory mutations in three of the patients (called INSTI Res+), while no resistance or accessory mutations were detected in the remaining three patients (called INSTI Res-). Additional INSTI resistance and/or accessory mutations were detected by NGS analysis of integrase sequences from all three INSTI Res+ and one INSTI Res- patient. CONCLUSION Our observations suggested that NGS demonstrated a higher sensitivity than sSEQ in the identification of INSTI relevant MVs both in patients at treatment baseline and in patients receiving INSTI therapy. Thus NGS can be a valuable tool in monitoring of antiretroviral minority resistance in patients receiving INSTI therapy.
Collapse
|
43
|
Beloukas A, King S, Childs K, Papadimitropoulos A, Hopkins M, Atkins M, Agarwal K, Nelson M, Geretti A. Detection of the NS3 Q80K polymorphism by Sanger and deep sequencing in hepatitis C virus genotype 1a strains in the UK. Clin Microbiol Infect 2015; 21:1033-9. [DOI: 10.1016/j.cmi.2015.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/14/2015] [Accepted: 07/19/2015] [Indexed: 01/27/2023]
|
44
|
Van Eygen V, Thys K, Van Hove C, Rimsky LT, De Meyer S, Aerssens J, Picchio G, Vingerhoets J. Deep sequencing analysis of HIV-1 reverse transcriptase at baseline and time of failure in patients receiving rilpivirine in the phase III studies ECHO and THRIVE. J Med Virol 2015; 88:798-806. [PMID: 26412111 DOI: 10.1002/jmv.24395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 11/10/2022]
Abstract
Minority variants (1.0-25.0%) were evaluated by deep sequencing (DS) at baseline and virological failure (VF) in a selection of antiretroviral treatment-naïve, HIV-1-infected patients from the rilpivirine ECHO/THRIVE phase III studies. Linkage between frequently emerging resistance-associated mutations (RAMs) was determined. DS (llIumina®) and population sequencing (PS) results were available at baseline for 47 VFs and time of failure for 48 VFs; and at baseline for 49 responders matched for baseline characteristics. Minority mutations were accurately detected at frequencies down to 1.2% of the HIV-1 quasispecies. No baseline minority rilpivirine RAMs were detected in VFs; one responder carried 1.9% F227C. Baseline minority mutations associated with resistance to other non-nucleoside reverse transcriptase inhibitors (NNRTIs) were detected in 8/47 VFs (17.0%) and 7/49 responders (14.3%). Baseline minority nucleoside/nucleotide reverse transcriptase inhibitor (NRTI) RAMs M184V and L210W were each detected in one VF (none in responders). At failure, two patients without NNRTI RAMs by PS carried minority rilpivirine RAMs K101E and/or E138K; and five additional patients carried other minority NNRTI RAMs V90I, V106I, V179I, V189I, and Y188H. Overall at failure, minority NNRTI RAMs and NRTI RAMs were found in 29/48 (60.4%) and 16/48 VFs (33.3%), respectively. Linkage analysis showed that E138K and K101E were usually not observed on the same viral genome. In conclusion, baseline minority rilpivirine RAMs and other NNRTI/NRTI RAMs were uncommon in the rilpivirine arm of the ECHO and THRIVE studies. DS at failure showed emerging NNRTI resistant minority variants in seven rilpivirine VFs who had no detectable NNRTI RAMs by PS.
Collapse
Affiliation(s)
| | - Kim Thys
- Janssen Infectious Diseases BVBA, Beerse, Belgium
| | | | | | | | | | - Gaston Picchio
- Janssen Research and Development, Titusville, New Jersey
| | | |
Collapse
|
45
|
Nishizawa M, Matsuda M, Hattori J, Shiino T, Matano T, Heneine W, Johnson JA, Sugiura W. Longitudinal Detection and Persistence of Minority Drug-Resistant Populations and Their Effect on Salvage Therapy. PLoS One 2015; 10:e0135941. [PMID: 26360259 PMCID: PMC4567277 DOI: 10.1371/journal.pone.0135941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Drug-resistant HIV are more prevalent and persist longer than previously demonstrated by bulk sequencing due to the ability to detect low-frequency variants. To clarify a clinical benefit to monitoring minority-level drug resistance populations as a guide to select active drugs for salvage therapy, we retrospectively analyzed the dynamics of low-frequency drug-resistant population in antiretroviral (ARV)-exposed drug resistant individuals. MATERIALS AND METHODS Six HIV-infected individuals treated with ARV for more than five years were analyzed. These individuals had difficulty in controlling viremia, and treatment regimens were switched multiple times guided by standard drug resistance testing using bulk sequencing. To detect minority variant populations with drug resistance, we used a highly sensitive allele-specific PCR (AS-PCR) with detection thresholds of 0.3-2%. According to ARV used in these individuals, we focused on the following seven reverse transcriptase inhibitor-resistant mutations: M41L, K65R, K70R, K103N, Y181C, M184V, and T215F/Y. Results of AS-PCR were compared with bulk sequencing data for concordance and presence of additional mutations. To clarify the genetic relationship between low-frequency and high-frequency populations, AS-PCR amplicon sequences were compared with bulk sequences in phylogenetic analysis. RESULTS The use of AS-PCR enabled detection of the drug-resistant mutations, M41L, K103N, Y181C, M184V and T215Y, present as low-frequency populations in five of the six individuals. These drug resistant variants persisted for several years without ARV pressure. Phylogenetic analysis indicated that pre-existing K103N and T215I variants had close genetic relationships with high-frequency K103N and T215I observed during treatment. DISCUSSION AND CONCLUSION Our results demonstrate the long-term persistence of drug-resistant viruses in the absence of drug pressure. The rapid virologic failures with pre-existing mutant viruses detectable by AS-PCR highlight the clinical importance of low-frequency drug-resistant viruses. Thus, our results highlight the usefulness of AS-PCR and support its expanded evaluation in ART clinical management.
Collapse
Affiliation(s)
- Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masakazu Matsuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Junko Hattori
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Teiichiro Shiino
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Walid Heneine
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jeffrey A. Johnson
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Wataru Sugiura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of AIDS Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| |
Collapse
|
46
|
Iyer S, Casey E, Bouzek H, Kim M, Deng W, Larsen BB, Zhao H, Bumgarner RE, Rolland M, Mullins JI. Comparison of Major and Minor Viral SNPs Identified through Single Template Sequencing and Pyrosequencing in Acute HIV-1 Infection. PLoS One 2015; 10:e0135903. [PMID: 26317928 PMCID: PMC4552882 DOI: 10.1371/journal.pone.0135903] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 07/27/2015] [Indexed: 01/03/2023] Open
Abstract
Massively parallel sequencing (MPS) technologies, such as 454-pyrosequencing, allow for the identification of variants in sequence populations at lower levels than consensus sequencing and most single-template Sanger sequencing experiments. We sought to determine if the greater depth of population sampling attainable using MPS technology would allow detection of minor variants in HIV founder virus populations very early in infection in instances where Sanger sequencing detects only a single variant. We compared single nucleotide polymorphisms (SNPs) during acute HIV-1 infection from 32 subjects using both single template Sanger and 454-pyrosequencing. Pyrosequences from a median of 2400 viral templates per subject and encompassing 40% of the HIV-1 genome, were compared to a median of five individually amplified near full-length viral genomes sequenced using Sanger technology. There was no difference in the consensus nucleotide sequences over the 3.6kb compared in 84% of the subjects infected with single founders and 33% of subjects infected with multiple founder variants: among the subjects with disagreements, mismatches were found in less than 1% of the sites evaluated (of a total of nearly 117,000 sites across all subjects). The majority of the SNPs observed only in pyrosequences were present at less than 2% of the subject’s viral sequence population. These results demonstrate the utility of the Sanger approach for study of early HIV infection and provide guidance regarding the design, utility and limitations of population sequencing from variable template sources, and emphasize parameters for improving the interpretation of massively parallel sequencing data to address important questions regarding target sequence evolution.
Collapse
Affiliation(s)
- Shyamala Iyer
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Eleanor Casey
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Heather Bouzek
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Moon Kim
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Brendan B. Larsen
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Hong Zhao
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Roger E. Bumgarner
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Morgane Rolland
- US Military HIV Research Program, WRAIR, Silver Spring, MD, 20910, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, 20817, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
- Department of Medicine, University of Washington, Seattle, WA, 98195, United States of America
- Department of Laboratory Medicine, Seattle, WA, 98195, United States of America
- * E-mail:
| |
Collapse
|
47
|
Thys K, Verhasselt P, Reumers J, Verbist BMP, Maes B, Aerssens J. Performance assessment of the Illumina massively parallel sequencing platform for deep sequencing analysis of viral minority variants. J Virol Methods 2015; 221:29-38. [PMID: 25917877 DOI: 10.1016/j.jviromet.2015.04.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 03/21/2015] [Accepted: 04/16/2015] [Indexed: 11/26/2022]
Abstract
Massively parallel sequencing (MPS) technology has opened new avenues to study viral dynamics and treatment-induced resistance mechanisms of infections such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Whereas the Roche/454 platform has been used widely for the detection of low-frequent drug resistant variants, more recently developed short-read MPS technologies have the advantage of delivering a higher sequencing depth at a lower cost per sequenced base. This study assesses the performance characteristics of Illumina MPS technology for the characterization of genetic variability in viral populations by deep sequencing. The reported results from MPS experiments comprising HIV and HCV plasmids demonstrate that a 0.5-1% lower limit of detection can be achieved readily with Illumina MPS while retaining good accuracy also at low frequencies. Deep sequencing of a set of clinical samples (12 HIV and 9 HCV patients), designed at a similar budget for both MPS platforms, reveals a comparable lower limit of detection for Illumina and Roche/454. Finally, this study shows the possibility to apply Illumina's paired-end sequencing as a strategy to assess linkage between different mutations identified in individual viral subspecies. These results support the use of Illumina as another MPS platform of choice for deep sequencing of viral minority species.
Collapse
Affiliation(s)
- Kim Thys
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Peter Verhasselt
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Joke Reumers
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Bie M P Verbist
- Department of Mathematical Modeling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Bart Maes
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Jeroen Aerssens
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
48
|
Flynn WF, Chang MW, Tan Z, Oliveira G, Yuan J, Okulicz JF, Torbett BE, Levy RM. Deep sequencing of protease inhibitor resistant HIV patient isolates reveals patterns of correlated mutations in Gag and protease. PLoS Comput Biol 2015; 11:e1004249. [PMID: 25894830 PMCID: PMC4404092 DOI: 10.1371/journal.pcbi.1004249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/19/2015] [Indexed: 11/18/2022] Open
Abstract
While the role of drug resistance mutations in HIV protease has been studied comprehensively, mutations in its substrate, Gag, have not been extensively cataloged. Using deep sequencing, we analyzed a unique collection of longitudinal viral samples from 93 patients who have been treated with therapies containing protease inhibitors (PIs). Due to the high sequence coverage within each sample, the frequencies of mutations at individual positions were calculated with high precision. We used this information to characterize the variability in the Gag polyprotein and its effects on PI-therapy outcomes. To examine covariation of mutations between two different sites using deep sequencing data, we developed an approach to estimate the tight bounds on the two-site bivariate probabilities in each viral sample, and the mutual information between pairs of positions based on all the bounds. Utilizing the new methodology we found that mutations in the matrix and p6 proteins contribute to continued therapy failure and have a major role in the network of strongly correlated mutations in the Gag polyprotein, as well as between Gag and protease. Although covariation is not direct evidence of structural propensities, we found the strongest correlations between residues on capsid and matrix of the same Gag protein were often due to structural proximity. This suggests that some of the strongest inter-protein Gag correlations are the result of structural proximity. Moreover, the strong covariation between residues in matrix and capsid at the N-terminus with p1 and p6 at the C-terminus is consistent with residue-residue contacts between these proteins at some point in the viral life cycle. Understanding the structure of HIV proteins and the function of drug-resistant mutations of these proteins is critical for the development of effective HIV treatments. Selected gag mutations have been shown to provide compensatory functions for protease resistance mutations and may directly contribute to the development of drug resistance. To determine associations between protease inhibitor mutations and gag, we utilized deep sequencing of HIV gag and protease from a collection of viral isolates from patients treated with highly active retroviral protease inhibitors. Deep sequencing allows for accurate measurement of mutation frequencies at each position, allowing estimation, using a novel method we developed, of the covariation between any two residues on gag. Using this information, we characterize the variation within gag and protease and identify the most strongly correlated pairs of inter- and intra-protein residues. Our results suggest that matrix and p1/p6 mutations form the core of a network of strongly correlated gag mutations and contribute to recurrent treatment failure. Extracting gag residue covariation information from the deep sequencing of patient viral samples may provide insight into structural aspects of the Gag polyprotein as well new areas for small molecule targeting to disrupt Gag function.
Collapse
Affiliation(s)
- William F. Flynn
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Max W. Chang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Zhiqiang Tan
- Department of Statistics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Glenn Oliveira
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jinyun Yuan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jason F. Okulicz
- Infectious Disease Service, San Antonio Military Medical Center, San Antonio, Texas, United States of America
| | - Bruce E. Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (BET); (RML)
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Chemistry, and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (BET); (RML)
| |
Collapse
|
49
|
Minority resistant HIV-1 variants and the response to first-line NNRTI therapy. J Clin Virol 2014; 62:20-4. [PMID: 25542465 DOI: 10.1016/j.jcv.2014.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/07/2014] [Accepted: 10/29/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND The presence of low-frequency HIV-1 variants with mutations making them resistant to non-nucleoside reverse-transcriptase inhibitors (NNRTI) could influence the virological response to first-line NNRTI therapy. OBJECTIVES This study was designed to describe the proportions and quantities of NRTI and NNRTI-resistant variants in patients with successful first-line NNRTI therapy. STUDY DESIGN We evaluated the presence of drug-resistance mutations (DRMs) prior to treatment initiation in 131 naive chronically HIV-1-infected patients initiating NNRTI-based first-line therapy. DRMs were detected by ultradeep pyrosequencing (UDPS) on a GS Junior instrument (Roche). RESULTS The mean HIV RNA concentration was 4.78 ± 0.74 log copies/mL and the mean CD4 cell count was 368 ± 184 CD4 cells/mm(3). Patients were mainly infected with subtype B (68%) and 96% were treated with efavirenz. The sensitivity threshold for each mutation was 0.13-1.05% for 2000 reads. Major NRTI-resistant or NNRTI-resistant mutations were detected in 40 patients (33.6%). The median frequency of major NRTI-resistant mutations was 1.37% [IQR: 0.39-84.1], i.e.: a median of 556 copies/mL [IQR: 123-37,553]. The median frequency of major NNRTI-resistant DRMs was 0.78% [IQR: 0.67-7.06], i.e.: a median of 715 copies/mL [IQR: 391-3452]. The genotypic susceptibility score (GSS) of 9 (7.3%) patients with mutations to given treatment detected by UDPS was 1.5 or 2. CONCLUSIONS First-line NNRTI-based treatment can produce virological success in naïve HIV-1-infected patients harboring low-frequency DRMs representing <1% of the viral quasispecies. Further studies are needed to determine the clinical cut-off of low-frequency resistant variants associated to virological failure.
Collapse
|
50
|
Next generation sequencing improves detection of drug resistance mutations in infants after PMTCT failure. J Clin Virol 2014; 62:48-53. [PMID: 25542470 DOI: 10.1016/j.jcv.2014.11.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/22/2014] [Accepted: 11/08/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Next generation sequencing (NGS) allows the detection of minor variant HIV drug resistance mutations (DRMs). However data from new NGS platforms after Prevention-of-Mother-to-Child-Transmission (PMTCT) regimen failure are limited. OBJECTIVE To compare major and minor variant HIV DRMs with Illumina MiSeq and Life Technologies Ion Personal Genome Machine (PGM) in infants infected despite a PMTCT regimen. STUDY DESIGN We conducted a cross-sectional study of NGS for detecting DRMs in infants infected despite a zidovudine (AZT) and Nevirapine (NVP) regimen, before initiation of combination antiretroviral therapy. Sequencing was performed on PCR products from plasma samples on PGM and MiSeq platforms. Bioinformatic analyses were undertaken using a codon-aware version of the Smith-Waterman mapping algorithm and a mixture multinomial error filtering statistical model. RESULTS Of 15 infants, tested at a median age of 3.4 months after birth, 2 (13%) had non-nucleoside reverse transcriptase inhibitor (NNRTI) DRMs (K103N and Y181C) by bulk sequencing, whereas PGM detected 4 (26%) and MiSeq 5 (30%). NGS enabled the detection of additional minor variant DRMs in the infant with K103N. Coverage and instrument quality scores were higher with MiSeq, increasing the confidence of minor variant calls. CONCLUSIONS NGS followed by bioinformatic analyses detected multiple minor variant DRMs in HIV-1 RT among infants where PMTCT failed. The high coverage of MiSeq and high read quality improved the confidence of identified DRMs and may make this platform ideal for minor variant detection.
Collapse
|