1
|
Strauch CJ, Sprotte N, Peña Lozano E, Boutant E, Amari K, Ostendorp S, Ostendorp A, Kehr J, Niehl A. Studies on the Japanese soil-borne wheat mosaic virus movement protein highlight its ability to bind plant RNA. Virol J 2025; 22:134. [PMID: 40336096 PMCID: PMC12060307 DOI: 10.1186/s12985-025-02757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Plant viral movement protein (MP) function is decisive for virus cell-to-cell movement. Often, MPs also induce membrane alterations, which are believed to play a role for the establishment of viral replication compartments. Despite these central roles in virus infection, knowledge of the underlying molecular mechanisms by which MPs cause changes in plasmodesmata (PD) size exclusion limit and contribute to the formation of viral replication compartments remain far from being complete. METHODS To further identify host processes subverted by viral MPs, we here characterized the MP of Japanese soil-borne wheat mosaic virus (JSBWMV). We used confocal fluorescence microscopy to study the subcellular localization of MPJSBWMV and to address its functionality in promoting virus cell-to-cell movement. Using the biochemical and biophysical methods co-immunoprecipitation, fluorescence lifetime imaging, microscale thermophoresis and RNA immunoprecipitation we investigate the capacity of MPJSBWMV to multimerize and to bind viral and cellular RNAs. RESULTS MPJSBWMV localized to PD, promoted cell-to-cell movement by complementing a movement-deficient unrelated virus, formed multimers in-vivo and bound to viral RNA with high affinity. Using RNA immunoprecipitation, we identified host RNAs associated with the viral MP. Within the MP-RNA complexes we found RNAs encoding proteins with key functions in membrane modification, signaling, protein folding, and degradation. We propose that binding of MP to these RNAs during infection and regulation of their spatio-temporal translation may represent a mechanism for MPs to achieve PD and host control during replication and movement. CONCLUSION This study provides new insight into the complex interactions between viral MPs and host cellular processes.
Collapse
Affiliation(s)
- Claudia Janina Strauch
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany
| | - Nico Sprotte
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany
| | - Estefania Peña Lozano
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Emmanuel Boutant
- Laboratory of Bioimaging and Pathologies, CNRS UMR 7021, Faculty of Pharmacy, University of Strasbourg, 74 Route du Rhin - CS 60024, F-67400, Illkirch, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, F-67412, Illkirch, Strasbourg, France
| | - Khalid Amari
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Steffen Ostendorp
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Anna Ostendorp
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Julia Kehr
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Annette Niehl
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany.
| |
Collapse
|
2
|
Shahriari AG, Tahmasebi A, Ghodoum Parizipour MH, Soltani Z, Tahmasebi A, Shahid MS. The crucial role of mitochondrial/chloroplast-related genes in viral genome replication and host defense: integrative systems biology analysis in plant-virus interaction. Front Microbiol 2025; 16:1551123. [PMID: 40336839 PMCID: PMC12055828 DOI: 10.3389/fmicb.2025.1551123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Plant viruses participate as biotrophic parasites in complex interactions with their hosts, resulting in the regulation of a diverse range of chloroplast/mitochondria-related genes that are essential for mediating immune responses. In this study, integrative systems biology approaches were applied to identify chloroplast/mitochondrial genes during viral infections caused by a wide number of viruses in Arabidopsis thaliana, tobacco (Nicotiana tabacum L.), and rice (Oryza sativa L.). These findings indicated that 1.5% of the DEGs were common between Arabidopsis/tobacco and Arabidopsis/rice, whereas 0.1% of the DEGs were shared among all species. Approximately 90% of common DEGs are uniquely associated with chloroplasts and mitochondria in the host defense against viral infection and replication. The functions of WRKY, NAC, and MYB transcription factors in imparting resistance to viral infections can be established. Promoter analysis revealed that AP2/EREBP, DOF, and C2H2 zinc finger factors included the most frequent binding sites and played a more important role in plant-viral interactions. Comparative analysis revealed several miRNAs with defensive functions including miRNA156, miRNA160, and miRNA169. The PPI network revealed several key hub genes mostly related to chloroplasts/mitochondria, including ZAT6, CML37, CHLI, DREB, F27B13.20, and ASP2 with upregulation, also PLGG1, PSBY, APO2, POR, ERF, and CSP with downregulation. Moreover, novel hub genes with unknown functions, such as AT2G41640 and AT3G57380 have been identified. This study represents the first preliminary systems biology approach to elucidate the roles of chloroplast/mitochondria-related genes in Arabidopsis, tobacco, and rice against viral challenges by introducing valuable candidate genes for enhanced genetic engineering programs to develop virus-resistant crop varieties.
Collapse
Affiliation(s)
- Amir Ghaffar Shahriari
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, Iran
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Mohamad Hamed Ghodoum Parizipour
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Zahra Soltani
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ahmad Tahmasebi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
3
|
Sečnik A, Volk H, Kunej U, Radišek S, Štajner N, Jakše J. Genome-wide DNA methylation analysis of CBCVd-infected hop plants ( Humulus lupulus var. "Celeia") provides novel insights into viroid pathogenesis. Microbiol Spectr 2025:e0039424. [PMID: 40237512 DOI: 10.1128/spectrum.00394-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Viroids are small, naked, infectious single-stranded RNA molecules that exploit host factors to replicate. Some viroids have been linked to severe diseases in agricultural crops, including the recent outbreak of Cocadviroid rimocitri, previously known as Citrus bark cracking viroid (CBCVd), in hop plants (Humulus lupulus). Numerous studies have demonstrated the involvement of viroid-derived RNA in viroid pathogenesis through interactions with RNAi host factors, leading to alterations in gene expression, metabolism, and phenotype. Recent research efforts have also focused on elucidating viroid-induced changes in DNA methylation patterns via the RNA-directed DNA methylation pathway. In this study, we conducted an epigenome analysis of CBCVd-infected hop plants to provide novel evidence supporting the putative role of DNA methylation in CBCVd viroid pathogenesis. Our findings revealed that several genes involved in pathogen interaction pathways, such as MAPK signaling and LRR, exhibit hypomethylation, suggesting that their increased transcription enhances the host's ability to counteract the pathogen. Intriguingly, genes associated with RNA transcription and encoding key proteins, such as POL II, POL IV, and POL V, display hypermethylation, highlighting the significance of DNA methylation as a defense mechanism.IMPORTANCEViroids are emerging as a substantial threat to various crops; however, our understanding of the molecular mechanisms governing their pathogenesis and the host's defense remains incomplete. This knowledge gap leaves crop disease management reliant on unsustainable strategies. Our research seeks to address this issue by examining the complex world of infected hop plants. Specifically, we are investigating the DNA methylation processes, providing insights into the less-explored aspects of the host's response to viroid interaction. Our aim was to unravel the complexities of how viroids influence the molecular landscape within plants and the corresponding host defenses. By understanding these interactions, we hope to provide insights that lead to more sustainable ways to protect crops and keep agriculture resilient against viroid-related threats.
Collapse
Affiliation(s)
- Andrej Sečnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Helena Volk
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, Žalec, Slovenia
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Real N, Garcia-Molina A, Stolze SC, Harzen A, Nakagami H, Martín-Hernández AM. Comprehensive proteomic profiling of Cucumber mosaic virus infection: identifying key proteins and pathways involved in resistance and susceptibility in melon. BMC PLANT BIOLOGY 2025; 25:434. [PMID: 40186108 PMCID: PMC11971850 DOI: 10.1186/s12870-025-06464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Melon (Cucumis melo L.) is the model species of the Cucurbitaceae family and an important crop. However, its yield is primarily affected by viruses. Cucumber mosaic virus (CMV) is particularly significant due to its broad host range, capable of infecting over 100 plant families. Resistance to CMV in the melon accession Songwhan Charmi (SC) is controlled by the recessive gene cmv1, which encodes the Vacuolar Protein Sorting 41, involved in vesicle transport to the vacuole. cmv1 restricts the virus to the bundle sheath cells and impedes viral access to the phloem, preventing a systemic infection. This phenotype depends on the viral movement protein (MP). However, little is known about the broader cellular changes that CMV triggers in melon or the specific biological responses that facilitate or restrict the virus entry into the phloem in susceptible and resistant varieties. RESULT We profiled the proteomes of CMV-resistant or susceptible melon genotypes inoculated with CMV-LS or FNY strains. Analysis of co-abundance networks revealed the rewiring of central biological pathways during different stages of CMV infection. Upon inoculation, resistant varieties do not trigger any signalling event to the new leaves. Local infection triggers a general depletion in proteins related to translation, photosynthesis and intracellular transport, whereas only in resistant varieties CMV triggers an increase in lipid modification and phloem proteins. During the systemic infection of susceptible melon plants, there is a strong increase in proteins associated with stress responses, such as those involved in the ER-associated degradation (ERAD) and phenylpropanoid pathways, along with a decrease in translation and photosynthesis. Key hub proteins have been identified in these processes. CONCLUSIONS This study is the first comprehensive high-throughput proteomic analysis of CMV-infected melon plants, providing a novel and detailed understanding of the proteomic changes associated with CMV infection, highlighting the differential responses between resistant and susceptible genotypes and identifying key proteins that could be potential targets for future research and CMV management strategies.
Collapse
Affiliation(s)
- Núria Real
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Antoni Garcia-Molina
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Sara Christina Stolze
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, Cologne, 50829, Germany
| | - Anne Harzen
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, Cologne, 50829, Germany
| | - Hirofumi Nakagami
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, Cologne, 50829, Germany
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain.
- Institut de Recerca I Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Shukla K, Nikita, Ahmad A, Noorani MS, Gupta R. Phytohormones and emerging plant growth regulators in tailoring plant immunity against viral infections. PHYSIOLOGIA PLANTARUM 2025; 177:e70171. [PMID: 40128467 PMCID: PMC11932968 DOI: 10.1111/ppl.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
Viral infections are major contributors to crop yield loss and represent a significant threat to sustainable agriculture. Plants respond to virus attacks by activating sophisticated signalling cascades that initiate multiple defence mechanisms. Notably, several phytohormones, including salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET), are known to shape these defence responses. In recent years, various plant growth regulators (PGRs) such as melatonin, carrageenans, sulfated fucan oligosaccharides, nitric oxide (NO), brassinosteroids (BRs), and hydrogen sulfide (H2S) have also emerged as crucial regulators of plant defence responses against virus infections. Emerging evidence indicates that these PGRs coordinate with phytohormones to activate various defence strategies, including (1) stomatal closure to limit pathogen entry, (2) callose deposition to block plasmodesmata and restrict viral spread within host tissues, (3) attenuation of viral replication, and (4) activation of RNA interference (RNAi), a crucial antiviral defence response. However, the interactions and crosstalk between PGRs and phytohormones remain largely underexplored, thereby limiting our ability to develop innovative strategies for managing viral diseases. This review discusses the diverse functions and crosstalk among various phytohormones and PGRs in orchestrating the plant defence mechanisms, highlighting their impact on viral replication, movement, and intercellular transport.
Collapse
Affiliation(s)
- Kritika Shukla
- Plant Molecular Virology Lab, Department of Botany, School of Chemical and Life SciencesJamia HamdardNew DelhiIndia
| | - Nikita
- Plant Molecular Virology Lab, Department of Botany, School of Chemical and Life SciencesJamia HamdardNew DelhiIndia
| | - Altaf Ahmad
- Department of Botany, Faculty of Life SciencesAligarh Muslim UniversityAligarhUttar PradeshIndia
| | - Md Salik Noorani
- Plant Molecular Virology Lab, Department of Botany, School of Chemical and Life SciencesJamia HamdardNew DelhiIndia
| | - Ravi Gupta
- Plant Stress Physiology and Proteomics Laboratory, College of General EducationKookmin UniversitySeoulSouth Korea
| |
Collapse
|
6
|
McGarry RC, Lin YT, Kaur H, Higgs H, Arias-Gaguancela O, Ayre BG. Disrupted oxylipin biosynthesis mitigates pathogen infections and pest infestations in cotton (Gossypium hirsutum). JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7365-7380. [PMID: 39271144 DOI: 10.1093/jxb/erae394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Cotton (Gossypium hirsutum) is the world's most important fiber crop, critical to global textile industries and agricultural economies. However, cotton yield and harvest quality are undermined by the challenges introduced from invading pathogens and pests. Plant-synthesized oxylipins, specifically 9-hydroxy fatty acids resulting from 9-lipoxygenase activity (9-LOX), enhance the growth and development of many microbes and pests. We hypothesized that targeted disruption of 9-LOX-encoding genes in cotton could bolster crop resilience against prominent agronomic threats. Fusarium oxysporum f. sp. vasinfectum (FOV), Aphis gossypii (cotton aphid), and tobacco rattle virus induced the expression of 9-oxylipin biosynthesis genes, suggesting that the 9-LOX gene products were susceptibility factors to these stressors. Transiently disrupting the expression of the 9-LOX-encoding genes by virus-induced gene silencing significantly reduced target transcript accumulation, and this correlated with impaired progression of FOV infections and a significant decrease in the fecundity of cotton aphids. These findings emphasize that the cotton 9-LOX-derived oxylipins are leveraged by multiple pathogens and pests to enhance their virulence in cotton, and reducing the expression of 9-LOX-encoding genes can benefit cotton crop vitality.
Collapse
Affiliation(s)
- Róisín C McGarry
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Yen-Tung Lin
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Harmanpreet Kaur
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Harrison Higgs
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Omar Arias-Gaguancela
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Brian G Ayre
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| |
Collapse
|
7
|
Atabekova AK, Lazareva EA, Lezzhov AA, Golyshev SA, Skulachev BI, Morozov SY, Solovyev AG. Defense Responses Induced by Viral Movement Protein and Its Nuclear Localization Modulate Virus Cell-to-Cell Transport. PLANTS (BASEL, SWITZERLAND) 2024; 13:2550. [PMID: 39339524 PMCID: PMC11435296 DOI: 10.3390/plants13182550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Movement proteins (MPs) encoded by plant viruses are essential for cell-to-cell transport of viral genomes through plasmodesmata. The genome of hibiscus green spot virus contains a module of two MP genes termed 'binary movement block' (BMB), encoding the proteins BMB1 and BMB2. Here, BMB1 is shown to induce a defense response in Nicotiana benthamiana plants that inhibits BMB-dependent virus transport. This response is characterized by the accumulation of reactive oxygen species, callose deposition in the cell wall, and upregulation of 9-LOX expression. However, the BMB1-induced response is inhibited by coexpression with BMB2. Furthermore, BMB1 is found to localize to subnuclear structures, in particular to Cajal bodies, in addition to the cytoplasm. As shown in experiments with a BMB1 mutant, the localization of BMB1 to nuclear substructures enhances BMB-dependent virus transport. Thus, the virus transport mediated by BMB proteins is modulated by (i) a BMB1-induced defense response that inhibits transport, (ii) suppression of the BMB1-induced response by BMB2, and (iii) the nuclear localization of BMB1 that promotes virus transport. Collectively, the data presented demonstrate multiple levels of interactions between viral pathogens and their plant hosts during virus cell-to-cell transport.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (E.A.L.); (A.A.L.); (S.A.G.); (B.I.S.); (S.Y.M.)
| |
Collapse
|
8
|
Kopertekh L. Improving transient expression in N. benthamiana by suppression of the Nb-SABP2 and Nb-COI1 plant defence response related genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1453930. [PMID: 39315373 PMCID: PMC11416979 DOI: 10.3389/fpls.2024.1453930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
Currently transient expression is one of the preferred plant-based technologies for recombinant protein manufacturing, particularly in respect to pharmaceutically relevant products. Modern hybrid transient expression systems combine the features of Agrobacterium tumefaciens and viral vectors. However, host plant reaction to Agrobacterium-mediated delivery of gene of interest can negatively affect foreign protein accumulation. In this study, we investigated whether the modulation of plant immune response through knockdown of the Nb-SABP2 and Nb-COI1 N. benthamiana genes could improve recombinant protein yield. In plants, the SABP2 and COI1 proteins are involved in the salicylic acid and jasmonic acid metabolism, respectively. We exemplified the utility of this approach with the green fluorescence (GFP) and β nerve growth factor (βNGF) proteins: compared to the tobacco mosaic virus (TMV)-based vector the Nb-SABP2 and Nb-COI1-suppressed plants provided an increased recombinant protein accumulation. We also show that this strategy is extendable to the expression systems utilizing potato virus X (PVX) as the vector backbone: the enhanced amounts of βNGF were detected in the Nb-SABP2 and Nb-COI1-depleted leaves co-infiltrated with the PVX-βNGF. These findings suggest that modulating host plant reaction to agrodelivery of expression vectors could be useful for improving transient foreign protein production in N. benthamiana.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
9
|
Necira K, Contreras L, Kamargiakis E, Kamoun MS, Canto T, Tenllado F. Comparative analysis of RNA interference and pattern-triggered immunity induced by dsRNA reveals different efficiencies in the antiviral response to potato virus X. MOLECULAR PLANT PATHOLOGY 2024; 25:e70008. [PMID: 39290152 PMCID: PMC11408873 DOI: 10.1111/mpp.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Antiviral responses induced by double-stranded RNA (dsRNA) include RNA interference (RNAi) and pattern-triggered immunity (PTI), but their relative contributions to antiviral defence are not well understood. We aimed at testing the impact of exogenous applied dsRNA on both layers of defence against potato virus X expressing GFP (PVX-GFP) in Nicotiana benthamiana. Co-inoculation of PVX-GFP with either sequence-specific (RNAi) or nonspecific dsRNA (PTI) showed that nonspecific dsRNA reduced virus accumulation in both inoculated and systemic leaves. However, nonspecific dsRNA was a poor inducer of antiviral immunity compared to a sequence-specific dsRNA capable of triggering the RNAi response, and plants became susceptible to systemic infection. Studies with a PVX mutant unable to move from cell to cell indicated that the interference with PVX-GFP triggered by nonspecific dsRNA operated at the single-cell level. Next, we performed RNA-seq analysis to examine similarities and differences in the transcriptome triggered by dsRNA alone or in combination with viruses harbouring sequences targeted or not by dsRNA. Enrichment analysis showed an over-representation of plant-pathogen signalling pathways, such as calcium, ethylene and MAPK signalling, which are typical of antimicrobial PTI. Moreover, the transcriptomic response to the virus targeted by dsRNA had a greater impact on defence than the non-targeted virus, highlighting qualitative differences between sequence-specific RNAi and nonspecific PTI responses. Together, these results further our understanding of plant antiviral defence, particularly the contribution of nonspecific dsRNA-mediated PTI. We envisage that both sequence-specific RNAi and nonspecific PTI pathways may be triggered via topical application of dsRNA, contributing cumulatively to plant protection against viruses.
Collapse
Affiliation(s)
- Khouloud Necira
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of SciencesUniversity of Tunis El ManarTunisTunisia
| | - Lorenzo Contreras
- Department of Biotechnology, Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - Efstratios Kamargiakis
- Department of Biotechnology, Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - Mohamed Selim Kamoun
- Laboratory of Bioinformatics, Biomathematics and BiostatisticsInstitut Pasteur de TunisTunisTunisia
| | - Tomás Canto
- Department of Biotechnology, Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - Francisco Tenllado
- Department of Biotechnology, Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| |
Collapse
|
10
|
Marchetti F, Distéfano AM, Cainzos M, Setzes N, Cascallares M, López GA, Zabaleta E, Carolina Pagnussat G. Cell death in bryophytes: emerging models to study core regulatory modules and conserved pathways. ANNALS OF BOTANY 2024; 134:367-384. [PMID: 38953500 PMCID: PMC11341678 DOI: 10.1093/aob/mcae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
This review summarizes recent progress in our current understanding of the mechanisms underlying the cell death pathways in bryophytes, focusing on conserved pathways and particularities in comparison to angiosperms. Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It is part of specific developmental programmes and maintains homeostasis of the organism in response to unfavourable environments. Bryophytes could provide valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to those present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programmes, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
11
|
Xu XJ, Sun XJ, Liu CJ, Chen XZ, Zhu Q, Tian YP, Li XD. Development of an attenuated potato virus Y mutant carrying multiple mutations in helper-component protease for cross-protection. Virus Res 2024; 344:199369. [PMID: 38608732 PMCID: PMC11035042 DOI: 10.1016/j.virusres.2024.199369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/14/2024]
Abstract
Tobacco (Nicotiana tabacum) is one of the major cash crops in China. Potato virus Y (PVY), a representative member of the genus Potyvirus, greatly reduces the quality and yield of tobacco leaves by inducing veinal necrosis. Mild strain-mediated cross-protection is an attractive method of controlling diseases caused by PVY. Currently, there is a lack of effective and stable attenuated PVY mutants. Potyviral helper component-protease (HC-Pro) is a likely target for the development of mild strains. Our previous studies showed that the residues lysine at positions 124 and 182 (K124 and K182) in HC-Pro were involved in PVY virulence, and the conserved KITC motif in HC-Pro was involved in aphid transmission. In this study, to improve the stability of PVY mild strains, K at position 50 (K50) in KITC motif, K124, and K182 were separately substituted with glutamic acid (E), leucine (L), and arginine (R), resulting in a triple-mutant PVY-HCELR. The mutant PVY-HCELR had attenuated virulence and did not induce leaf veinal necrosis symptoms in tobacco plants and could not be transmitted by Myzus persicae. Furthermore, PVY-HCELR mutant was genetically stable after six serial passages, and only caused mild mosaic symptoms in tobacco plants even at 90 days post inoculation. The tobacco plants cross-protected by PVY-HCELR mutant showed high resistance to the wild-type PVY. This study showed that PVY-HCELR mutant was a promising mild mutant for cross-protection to control PVY.
Collapse
Affiliation(s)
- Xiao-Jie Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong 264025, China; Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xu-Jie Sun
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chun-Ju Liu
- Weifang Tobacco Corporation, Weifang, Shandong 261031, China
| | - Xiu-Zhai Chen
- Linyi Tobacco Corporation, Linyi, Shandong 276000, China
| | - Qing Zhu
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yan-Ping Tian
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Xiang-Dong Li
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
12
|
Edwards BR, Thamatrakoln K, Fredricks HF, Bidle KD, Van Mooy BAS. Viral Infection Leads to a Unique Suite of Allelopathic Chemical Signals in Three Diatom Host-Virus Pairs. Mar Drugs 2024; 22:228. [PMID: 38786618 PMCID: PMC11123003 DOI: 10.3390/md22050228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.
Collapse
Affiliation(s)
- Bethanie R. Edwards
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA; (H.F.F.); (B.A.S.V.M.)
- Department of Earth and Planetary Science, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Kimberlee Thamatrakoln
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (K.T.); (K.D.B.)
| | - Helen F. Fredricks
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA; (H.F.F.); (B.A.S.V.M.)
| | - Kay D. Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (K.T.); (K.D.B.)
| | - Benjamin A. S. Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA; (H.F.F.); (B.A.S.V.M.)
| |
Collapse
|
13
|
Du X, Zhan X, Gu X, Liu X, Mao B. Evaluation of Virus-Free Chrysanthemum 'Hangju' Productivity and Response to Virus Reinfection in the Field: Molecular Insights into Virus-Host Interactions. PLANTS (BASEL, SWITZERLAND) 2024; 13:732. [PMID: 38475578 DOI: 10.3390/plants13050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
The shoot apical meristem culture has been used widely to produce virus-free plantlets which have the advantages of strong disease resistance, high yield, and prosperous growth potential. However, this virus-free plant will be naturally reinfected in the field. The physiological and metabolic responses in the reinfected plant are still unknown. The flower of chrysanthemum 'Hangju' is a traditional medicine which is unique to China. In this study, we found that the virus-free 'Hangju' (VFH) was reinfected with chrysanthemum virus B/R in the field. However, the reinfected VFH (RVFH) exhibited an increased yield and medicinal components compared with virus-infected 'Hangju' (VIH). Comparative analysis of transcriptomes was performed to explore the molecular response mechanisms of the RVFH to CVB infection. A total of 6223 differentially expressed genes (DEGs) were identified in the RVFH vs. the VIH. KEGG enrichment and physiological analyses indicated that treatment with the virus-free technology significantly mitigated the plants' lipid and galactose metabolic stress responses in the RVFH. Furthermore, GO enrichment showed that plant viral diseases affected salicylic acid (SA)-related processes in the RVFH. Specifically, we found that phenylalanine ammonia-lyase (PAL) genes played a major role in defense-related SA biosynthesis in 'Hangju'. These findings provided new insights into the molecular mechanisms underlying plant virus-host interactions and have implications for developing strategies to improve plant resistance against viruses.
Collapse
Affiliation(s)
- Xuejie Du
- Institute of Biotechnology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xinqiao Zhan
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
| | - Xueting Gu
- Institute of Biotechnology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Xinyi Liu
- Institute of Biotechnology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Bizeng Mao
- Institute of Biotechnology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| |
Collapse
|
14
|
Barneto JA, Sardoy PM, Pagano EA, Zavala JA. Lipoxygenases regulate digestive enzyme inhibitor activities in developing seeds of field-grown soybean against the southern green stink bug ( Nezara viridula). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP22192. [PMID: 38220246 DOI: 10.1071/fp22192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Soybean (Glycine max ) is the world's most widely grown seed legume. One of the most important pests that decrease seed quality and reduce yield of soybean crops is the southern green stink bug (Nezara viridula ). Insect damage triggers accumulation of defensive compounds such as protease inhibitors (PIs), isoflavonoids and reactive oxygen species, which are regulated by the lipoxygenase (LOX)-regulated jasmonic acid (JA) to stop insect feeding. This study identified and characterised the role of LOX isoforms in the modulation of chemical defences in seeds of field-grown soybean that decreased digestive enzyme activities of N. viridula after insect attack. Stink bugs attack increased LOX 1 and LOX 2 expression, and activities of LOX 1 and LOX 3 isoenzymes in developing soybean seeds. In addition, stink bug damage and methyl jasmonate application induced expression and activity of both cysteine PIs and trypsin PIs in developing soybean seeds, suggesting that herbivory induced JA in soybean seeds. High PI activity levels in attacked seeds decreased cysteine proteases and α-amylases activities in the gut of stink bugs that fed on field-grown soybean. We demonstrated that LOX isoforms of seeds are concomitantly induced with JA-regulated PIs by stink bugs attack, and these PIs inhibit the activity of insect digestive enzymes. To our knowledge, this is the first study to investigate the participation of LOX in modulating JA-regulated defences against stink bugs in seeds of field-grown soybean, and our results suggest that soybean PIs may inhibit α-amylase activity in the gut of N. viridula .
Collapse
Affiliation(s)
- Jésica A Barneto
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; and Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina
| | - Pedro M Sardoy
- Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina; and Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Zoología Agrícola, Buenos Aires, Argentina
| | - Eduardo A Pagano
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; and Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina
| | - Jorge A Zavala
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; and Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina; and Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Zoología Agrícola, Buenos Aires, Argentina
| |
Collapse
|
15
|
Gupta P, Parupudi PLC, Supriya L, Srivastava H, Padmaja G, Gopinath K. Complete genome sequencing and construction of full-length infectious cDNA clone of papaya ringspot virus-HYD isolate and its efficient in planta expression. Front Microbiol 2023; 14:1310236. [PMID: 38107852 PMCID: PMC10721977 DOI: 10.3389/fmicb.2023.1310236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Papaya ringspot virus (PRSV) is a devastating Potyvirus that causes papaya ringspot disease in Carica papaya plantations globally. In this study, the complete genome sequence of a PRSV isolate from Shankarpalli, Telangana, India, was reported and designated as PRSV-HYD (KP743981.1). The genome is a single-stranded positive-sense RNA comprising 10,341 nucleotides. Phylogenetic analysis revealed that PRSV-HYD is closely related to PRSV Pune (Aundh) isolate with 92 and 95% nucleotide and amino acid sequence identity, respectively. To develop infectious cDNA (icDNA), the complete nucleotide sequence of PRSV-HYD was cloned between the right and left borders in the binary vector pCB301 using BglII and XmaI restriction sites. Cauliflower mosaic virus (CaMV) double promoter (35S) was fused at the 5'-end and Avocado sunblotch viroid (ASBVd) ribozyme (RZ) sequence was fused to the 3' end to generate an authentic 3' viral end in the transcribed mRNAs. The icDNA generated was mobilized into the Agrobacterium tumefaciens EHA 105, and the agrobacterial cultures were infiltrated into the natural host C. papaya and a non-host Nicotiana benthamiana plants; both did not show any symptoms. In RT-PCR analysis of RNAs isolated from N. benthamiana, we could detect viral genes as early as 3 days and continued up to 28 days post infiltration. Alternatively, virion particles were purified from agroinfiltrated N. benthamiana plants and introduced into C. papaya by mechanical inoculation as well as by pinprick method. In both cases, we could see visible systemic symptoms similar to that of wild type by 40 days. Additionally, we studied the expression patterns of the genes related to plant defense, transcription factors (TFs), and developmental aspects from both C. papaya and N. benthamiana.
Collapse
Affiliation(s)
| | | | | | | | | | - Kodetham Gopinath
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
16
|
Xu S, Tian P, Jiang Z, Chen X, Li B, Sun J, Zhang Z. Transcriptome analysis of two tobacco varieties with contrast resistance to Meloidogyne incognita in response to PVY M SN R infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1213494. [PMID: 37701805 PMCID: PMC10493397 DOI: 10.3389/fpls.2023.1213494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023]
Abstract
Root-knot nematode (RKN) disease is a major disease of tobacco worldwide, which seriously hinders the improvement of tobacco yield and quality. Obvious veinal necrosis-hypersensitive responses are observed only in RKN-resistant lines infected by Potyvirus Y (PVY) MSNR, making this an effective approach to screen for RKN-resistant tobacco. RNA-seq analysis, real-time quantitative PCR (qRT-PCR) and functional enrichment analysis were conducted to gain insight into the transcription dynamics difference between G28 (RKN-resistant) and CBH (RKN-susceptible) varieties infected with PVY MSNR. Results showed that a total of 7900, 10576, 9921, 11530 and 12531 differentially expressed genes (DEGs) were identified between the two varieties at 0, 1, 3, 5, and 7 d after infection, respectively. DEGs were associated with plant hormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, and photosynthesis-related metabolic pathways. Additional DEGs related to starch and sucrose metabolism, energy production, and the indole-3-acetic acid signaling pathway were induced in CBH plants after infection. DEGs related to phenylpropanoid biosynthesis, abscisic acid, salicylic acid, brassinosteroids, and jasmonic acid signaling pathway were induced in G28 after infection. Our findings reveal DEGs that may contribute to differences in PVY MSNR resistance among tobacco varieties. These results help us to understand the differences in transcriptional dynamics and metabolic processes between RKN-resistant and RKN-susceptible varieties involved in tobacco-PVY MSNR interaction.
Collapse
Affiliation(s)
- Shixiao Xu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China
| | - Pei Tian
- China Tobacco Jiangsu Industry Co, Ltd. Xuzhou Cigarette Factory, Xuzhou, China
| | - Zhimin Jiang
- China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China
| | - Xiaoxiang Chen
- China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China
| | - Bo Li
- China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China
| | - Jutao Sun
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China
| | - Zhiqiang Zhang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China
| |
Collapse
|
17
|
Yuan P, Borrego E, Park YS, Gorman Z, Huang PC, Tolley J, Christensen SA, Blanford J, Kilaru A, Meeley R, Koiwa H, Vidal S, Huffaker A, Schmelz E, Kolomiets MV. 9,10-KODA, an α-ketol produced by the tonoplast-localized 9-lipoxygenase ZmLOX5, plays a signaling role in maize defense against insect herbivory. MOLECULAR PLANT 2023; 16:1283-1303. [PMID: 37434355 DOI: 10.1016/j.molp.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/10/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
13-Lipoxygenases (LOXs) initiate the synthesis of jasmonic acid (JA), the best-understood oxylipin hormone in herbivory defense. However, the roles of 9-LOX-derived oxylipins in insect resistance remain unclear. Here, we report a novel anti-herbivory mechanism mediated by a tonoplast-localized 9-LOX, ZmLOX5, and its linolenic acid-derived product, 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (9,10-KODA). Transposon-insertional disruption of ZmLOX5 resulted in the loss of resistance to insect herbivory. lox5 knockout mutants displayed greatly reduced wound-induced accumulation of multiple oxylipins and defense metabolites, including benzoxazinoids, abscisic acid (ABA), and JA-isoleucine (JA-Ile). However, exogenous JA-Ile failed to rescue insect defense in lox5 mutants, while applications of 1 μM 9,10-KODA or the JA precursor, 12-oxo-phytodienoic acid (12-OPDA), restored wild-type resistance levels. Metabolite profiling revealed that exogenous 9,10-KODA primed the plants for increased production of ABA and 12-OPDA, but not JA-Ile. While none of the 9-oxylipins were able to rescue JA-Ile induction, the lox5 mutant accumulated lower wound-induced levels of Ca2+, suggesting this as a potential explanation for lower wound-induced JA. Seedlings pretreated with 9,10-KODA exhibited rapid or more robust wound-induced defense gene expression. In addition, an artificial diet supplemented with 9,10-KODA arrested fall armyworm larvae growth. Finally, analysis of single and double lox5 and lox10 mutants showed that ZmLOX5 also contributed to insect defense by modulating ZmLOX10-mediated green leaf volatile signaling. Collectively, our study uncovered a previously unknown anti-herbivore defense and hormone-like signaling activity for a major 9-oxylipin α-ketol.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Eli Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; Currently at Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Yong-Soon Park
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; Department of Plant Resources, Agriculture and Fisheries Life Science Research Institute, Kongju National University, Yesan, Chungnam 32439, South Korea
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Jordan Tolley
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shawn A Christensen
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37659, USA
| | - Robert Meeley
- Formerly at Corteva Agriscience, Johnston, IA 50131, USA
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Stefan Vidal
- Department of Crop Sciences, Agricultural Entomology, Georg-August-Universität, 37077 Göttingen, Germany
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Eric Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA.
| |
Collapse
|
18
|
Adigun OA, Pham TH, Grapov D, Nadeem M, Jewell LE, Cheema M, Galagedara L, Thomas R. Phyto-oxylipin mediated plant immune response to colonization and infection in the soybean- Phytophthora sojae pathosystem. FRONTIERS IN PLANT SCIENCE 2023; 14:1141823. [PMID: 37251755 PMCID: PMC10219219 DOI: 10.3389/fpls.2023.1141823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Introduction Food security is a major challenge to sustainably supply food to meet the demands of the ever-growing global population. Crop loss due to pathogens is a major concern to overcoming this global food security challenge. Soybean root and stem rot caused by Phytophthora sojae results in approximately 20B $US crop loss annually. Phyto-oxylipins are metabolites biosynthesized in the plants by oxidative transformation of polyunsaturated fatty acids through an array of diverging metabolic pathways and play an important role in plant development and defense against pathogen colonization and infection. Lipid mediated plant immunity is a very attractive target for developing long term resistance in many plants' disease pathosystem. However, little is known about the phyto-oxylipin's role in the successful strategies used by tolerant soybean cultivar to mitigate Phytophthora sojae infection. Methods We used scanning electron microscopy to observe the alterations in root morphology and a targeted lipidomics approach using high resolution accurate mass tandem mass spectrometry to assess phyto-oxylipin anabolism at 48 h, 72 h and 96 h post infection. Results and discussion We observed the presence of biogenic crystals and reinforced epidermal walls in the tolerant cultivar suggesting a mechanism for disease tolerance when compared with susceptible cultivar. Similarly, the unequivocally unique biomarkers implicated in oxylipin mediated plant immunity [10(E),12(Z)-13S-hydroxy-9(Z),11(E),15(Z)-octadecatrienoic acid, (Z)-12,13-dihydroxyoctadec-9-enoic acid, (9Z,11E)-13-Oxo-9,11-octadecadienoic acid, 15(Z)-9-oxo-octadecatrienoic acid, 10(E),12(E)-9-hydroperoxyoctadeca-10,12-dienoic acid, 12-oxophytodienoic acid and (12Z,15Z)-9, 10-dihydroxyoctadeca-12,15-dienoic acid] generated from intact oxidized lipid precursors were upregulated in tolerant soybean cultivar while downregulated in infected susceptible cultivar relative to non-inoculated controls at 48 h, 72 h and 96 h post infection by Phytophthora sojae, suggesting that these molecules may be a critical component of the defense strategies used in tolerant cultivar against Phytophthora sojae infection. Interestingly, microbial originated oxylipins, 12S-hydroperoxy-5(Z),8(Z),10(E),14(Z)-eicosatetraenoic acid and (4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoic acid were upregulated only in infected susceptible cultivar but downregulated in infected tolerant cultivar. These microbial originated oxylipins are capable of modulating plant immune response to enhance virulence. This study demonstrated novel evidence for phyto-oxylipin metabolism in soybean cultivars during pathogen colonization and infection using the Phytophthora sojae-soybean pathosystem. This evidence may have potential applications in further elucidation and resolution of the role of phyto-oxylipin anabolism in soybean tolerance to Phytophthora sojae colonization and infection.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Thu Huong Pham
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Dmitry Grapov
- Creative Data Solution (CDS), Colfax, CA, United States
| | - Muhammad Nadeem
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Linda Elizabeth Jewell
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, St. John’s, NL, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Raymond Thomas
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Department of Biology/Biotron Climate Change Experimental Research Centre, Western University, London, ON, Canada
| |
Collapse
|
19
|
Bin Y, Zhang Q, Su Y, Wang C, Jiang Q, Song Z, Zhou C. Transcriptome analysis of Citrus limon infected with Citrus yellow vein clearing virus. BMC Genomics 2023; 24:65. [PMID: 36750773 PMCID: PMC9903606 DOI: 10.1186/s12864-023-09151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Citrus yellow vein clearing virus (CYVCV) is the causative agent of citrus yellow vein clearing disease, and poses a serious threat to the lemon industry in Asia. The common symptoms of CYVCV-infected lemon plants are leaf crinkling, leaf chlorotic mottling, and yellow vein clearing. However, the molecular mechanisms underlying CYVCV-citrus interaction that responsible for symptom occurrence is still unclarified. In this study, RNA-seq was performed to analyze the gene expression patterns of 'Eureka' lemon (Citrus limon Burm. f.) plants in response to CYVCV infection. RESULTS There were 3691 differentially expressed genes (DEGs) identified by comparison between mock and CYVCV-infected lemon plants through RNA-seq. Bioinformatics analyses revealed that these DEGs were components of different pathways involved in phenylpropanoid biosynthesis, brassinosteroid biosynthesis, flavonoid biosynthesis and photosynthesis. Among these, the DEGs related to phytohormone metabolism and photosynthesis pathways were further enriched and analyzed. This study showed that different phytohormone-related genes had different responses toward CYVCV infection, however almost all of the photosynthesis-related DEGs were down-regulated in the CYVCV-infected lemon plants. The obtained RNA-seq data were validated by RT-qPCR using 12 randomly chosen genes, and the results of mRNA expression analysis were consistent with those of RNA-seq. CONCLUSIONS The phytohormone biosynthesis, signaling and photosynthesis-related genes of lemon plants were probably involved in systemic infection and symptom occurrence of CYVCV. Notably, CYVCV infection had regulatory effects on the biosynthesis and signaling of phytohormone, which likely improve systemic infection of CYVCV. Additionally, CYVCV infection could cause structural changes in chloroplast and inhibition of photosynthesis pathway, which probably contribute to the appearance of leaf chlorotic mottling and yellow vein clearing in CYVCV-infected lemon plants. This study illustrates the dynamic nature of the citrus-CYVCV interaction at the transcriptome level and provides new insights into the molecular mechanism underlying the pathogenesis of CYVCV in lemon plants.
Collapse
Affiliation(s)
- Yu Bin
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Qi Zhang
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Yue Su
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Chunqing Wang
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Qiqi Jiang
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Zhen Song
- Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712, China.
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712, China.
| |
Collapse
|
20
|
Kumar R, Dasgupta I. Geminiviral C4/AC4 proteins: An emerging component of the viral arsenal against plant defence. Virology 2023; 579:156-168. [PMID: 36693289 DOI: 10.1016/j.virol.2023.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Virus infection triggers a plethora of defence reactions in plants to incapacitate the intruder. Viruses, in turn, have added additional functions to their genes so that they acquire capabilities to neutralize the above defence reactions. In plant-infecting viruses, the family Geminiviridae comprises members, majority of whom encode 6-8 genes in their small single-stranded DNA genomes. Of the above genes, one which shows the most variability in its amino acid sequence is the C4/AC4. Recent studies have uncovered evidence, which point towards a wide repertoire of functions performed by C4/AC4 revealing its role as a major player in suppressing plant defence. This review summarizes the various plant defence mechanisms against viruses and highlights how C4/AC4 has evolved to counter most of them.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
21
|
Bwalya J, Kim KH. The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses. THE PLANT PATHOLOGY JOURNAL 2023; 39:28-38. [PMID: 36760047 PMCID: PMC9929168 DOI: 10.5423/ppj.rw.10.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Kook-Hyung Kim
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826,
Korea
- Research of Institute Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
22
|
Transgenerational Tolerance to Salt and Osmotic Stresses Induced by Plant Virus Infection. Int J Mol Sci 2022; 23:ijms232012497. [PMID: 36293354 PMCID: PMC9604408 DOI: 10.3390/ijms232012497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Following pathogen infection, plants have developed diverse mechanisms that direct their immune systems towards more robust induction of defense responses against recurrent environmental stresses. The induced resistances could be inherited by the progenies, rendering them more tolerant to stressful events. Although within-generational induction of tolerance to abiotic stress is a well-documented phenomenon in virus-infected plants, the transgenerational inheritance of tolerance to abiotic stresses in their progenies has not been explored. Here, we show that infection of Nicotiana benthamiana plants by Potato virus X (PVX) and by a chimeric Plum pox virus (PPV) expressing the P25 pathogenicity protein of PVX (PPV-P25), but not by PPV, conferred tolerance to both salt and osmotic stresses to the progeny, which correlated with the level of virulence of the pathogen. This transgenerational tolerance to abiotic stresses in the progeny was partially sustained even if the plants experience a virus-free generation. Moreover, progenies from a Dicer-like3 mutant mimicked the enhanced tolerance to abiotic stress observed in progenies of PVX-infected wild-type plants. This phenotype was shown irrespective of whether Dicer-like3 parents were infected, suggesting the involvement of 24-nt small interfering RNAs in the transgenerational tolerance to abiotic stress induced by virus infection. RNAseq analysis supported the upregulation of genes related to protein folding and response to stress in the progeny of PVX-infected plants. From an environmental point of view, the significance of virus-induced transgenerational tolerance to abiotic stress could be questionable, as its induction was offset by major reproductive costs arising from a detrimental effect on seed production.
Collapse
|
23
|
Groux R, Fouillen L, Mongrand S, Reymond P. Sphingolipids are involved in insect egg-induced cell death in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:2535-2553. [PMID: 35608326 PMCID: PMC9342989 DOI: 10.1093/plphys/kiac242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
In Brassicaceae, hypersensitive-like programmed cell death (HR-like) is a central component of direct defenses triggered against eggs of the large white butterfly (Pieris brassicae). The signaling pathway leading to HR-like in Arabidopsis (Arabidopsis thaliana) is mainly dependent on salicylic acid (SA) accumulation, but downstream components are unclear. Here, we found that treatment with P. brassicae egg extract (EE) triggered changes in expression of sphingolipid metabolism genes in Arabidopsis and black mustard (Brassica nigra). Disruption of ceramide (Cer) synthase activity led to a significant decrease of EE-induced HR-like whereas SA signaling and reactive oxygen species levels were unchanged, suggesting that Cer are downstream activators of HR-like. Sphingolipid quantifications showed that Cer with C16:0 side chains accumulated in both plant species and this response was largely unchanged in the SA-induction deficient2 (sid2-1) mutant. Finally, we provide genetic evidence that the modification of fatty acyl chains of sphingolipids modulates HR-like. Altogether, these results show that sphingolipids play a key and specific role during insect egg-triggered HR-like.
Collapse
Affiliation(s)
- Raphaël Groux
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laetitia Fouillen
- Laboratoire de Biogénèse Membranaire, CNRS, UMR 5200, University of Bordeaux, F-33140 Villenave d’Ornon, France
| | - Sébastien Mongrand
- Laboratoire de Biogénèse Membranaire, CNRS, UMR 5200, University of Bordeaux, F-33140 Villenave d’Ornon, France
| | | |
Collapse
|
24
|
Moreno M, Ojeda B, Hernández-Walias FJ, Sanz-García E, Canto T, Tenllado F. Water Deficit Improves Reproductive Fitness in Nicotiana benthamiana Plants Infected by Cucumber mosaic virus. PLANTS (BASEL, SWITZERLAND) 2022; 11:1240. [PMID: 35567241 PMCID: PMC9105947 DOI: 10.3390/plants11091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Plants are concurrently exposed to biotic and abiotic stresses, including infection by viruses and drought. Combined stresses result in plant responses that are different from those observed for each individual stress. We investigated compensatory effects induced by virus infection on the fitness of hosts grown under water deficit, and the hypothesis that water deficit improves tolerance, estimated as reproductive fitness, to virus infection. Our results show that infection by Turnip mosaic virus (TuMV) or Cucumber mosaic virus (CMV) promotes drought tolerance in Arabidopsis thaliana and Nicotiana benthamiana. However, neither CMV nor TuMV had a positive impact on host reproductive fitness following withdrawal of water, as determined by measuring the number of individuals producing seeds, seed grains, and seed germination rates. Importantly, infection by CMV but not by TuMV improved the reproductive fitness of N. benthamiana plants when exposed to drought compared to watered, virus-infected plants. However, no such conditional phenotype was found in Arabidopsis plants infected with CMV. Water deficit did not affect the capacity of infected plants to transmit CMV through seeds. These findings highlight a conditional improvement in biological efficacy of N. benthamiana plants infected with CMV under water deficit, and lead to the prediction that plants can exhibit increased tolerance to specific viruses under some of the projected climate change scenarios.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.M.); (B.O.); (F.J.H.-W.); (E.S.-G.); (T.C.)
| |
Collapse
|
25
|
Ferroptosis in plants: regulation of lipid peroxidation and redox status. Biochem J 2022; 479:857-866. [PMID: 35438135 DOI: 10.1042/bcj20210682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Regulated cell death (RCD) is an essential process that plays key roles along the plant life cycle. Unlike accidental cell death, which is an uncontrolled biological process, RCD involves integrated signaling cascades and precise molecular-mediated mechanisms that are triggered in response to specific exogenous or endogenous stimuli. Ferroptosis is a cell death pathway characterized by the iron-dependent accumulation of lipid reactive oxygen species. Although first described in animals, ferroptosis in plants shares all the main core mechanisms observed for ferroptosis in other systems. In plants as in animals, oxidant and antioxidant systems outline the process of lipid peroxidation during ferroptosis. In plants, cellular compartments such as mitochondria, chloroplasts and cytosol act cooperatively and coordinately to respond to changing redox environments. This particular context makes plants a unique model to study redox status regulation and cell death. In this review, we focus on our most recent understanding of the regulation of redox state and lipid peroxidation in plants and their role during ferroptosis.
Collapse
|
26
|
Xu Y, Ji X, Xu Z, Yuan Y, Chen X, Kong D, Zhang Y, Sun D. Transcriptome Profiling Reveals a Petunia Transcription Factor, PhCOL4, Contributing to Antiviral RNA Silencing. FRONTIERS IN PLANT SCIENCE 2022; 13:876428. [PMID: 35498675 PMCID: PMC9047179 DOI: 10.3389/fpls.2022.876428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 06/12/2023]
Abstract
RNA silencing is a common antiviral mechanism in eukaryotic organisms. However, the transcriptional regulatory mechanism that controls the RNA silencing process remains elusive. Here, we performed high-depth transcriptome analysis on petunia (Petunia hybrida) leaves infected with tobacco rattle virus (TRV) strain PPK20. A total of 7,402 differentially expressed genes (DEGs) were identified. Of them, some RNA silencing-related transcripts, such as RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonautes (AGOs), were induced by viral attack. Furthermore, we performed TRV-based virus-induced gene silencing (VIGS) assay on 39 DEGs encoding putative transcription factors (TFs), using green fluorescent protein (GFP) and phytoene desaturase (PhPDS) as reporters. Results showed that the down-regulation of PhbHLH41, PhbHLH93, PhZPT4-3, PhCOL4, PhHSF-B3A, PhNAC90, and PhWRKY75 led to enhanced TRV accumulation and inhibited PhPDS-silenced photobleaching phenotype. In contrast, silencing of PhERF22 repressed virus accumulation and promoted photobleaching development. Thus, these TFs were identified as potential positive and negative regulators of antiviral RNA silencing, respectively. One positive regulator PhCOL4, belonging to the B-box zinc finger family, was selected for further functional characterization. Silencing and transient overexpression of PhCOL4 resulted in decreased and increased expression of several RNA silencing-related genes. DNA affinity purification sequencing analysis revealed that PhCOL4 targeted PhRDR6 and PhAGO4. Dual luciferase and yeast one-hybrid assays determined the binding of PhCOL4 to the PhRDR6 and PhAGO4 promoters. Our findings suggest that TRV-GFP-PhPDS-based VIGS could be helpful to identify transcriptional regulators of antiviral RNA silencing.
Collapse
Affiliation(s)
- Yingru Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Xiaotong Ji
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Zhuangzhuang Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Xiling Chen
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Derong Kong
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- National Engineering Technology Research Center for Oil Peony, Northwest A&F University, Yangling, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- National Engineering Technology Research Center for Oil Peony, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Vanthana M, Nakkeeran S, V G M, Renukadevi P, Vinodkumar S, Sivakumar U, Suganthi A. Flagellin and elongation factor of Bacillus velezensis (VB7) reprogramme the immune response in tomato towards the management of GBNV infection. J Virol Methods 2022; 301:114438. [DOI: 10.1016/j.jviromet.2021.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
|
28
|
Veselova SV, Sorokan AV, Burkhanova GF, Rumyantsev SD, Cherepanova EA, Alekseev VY, Sarvarova ER, Kasimova AR, Maksimov IV. By Modulating the Hormonal Balance and Ribonuclease Activity of Tomato Plants Bacillus subtilis Induces Defense Response against Potato Virus X and Potato Virus Y. Biomolecules 2022; 12:biom12020288. [PMID: 35204789 PMCID: PMC8961569 DOI: 10.3390/biom12020288] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Endophytic plant-growth-promoting microorganisms can protect plants against pathogens, but they have rarely been investigated as potential biocontrol agents and triggers of induced systemic resistance (ISR), regulated by phytohormones, against viruses. We studied the role of endophytic strains Bacillus subtilis 26D and B. subtilis Ttl2, which secrete ribonucleases and phytohormones, in the induction of tomato plant resistance against potato virus X and potato virus Y in a greenhouse condition. The endophytes reduced the accumulation of viruses in plants, increased the activity of plant ribonucleases and recovered the fruit yield of infected tomato plants. Both the 26D and Ttl2 strains induced ISR by activating the transcription of genes related to salicylate- and jasmonate-dependent responses. The 26D and Ttl2 strains increased the content of cytokinins and decreased the level of indolacetic acid in plants infected with PVX or PVY. PVY led to an increase of the abscisic acid (ABA) content in tomato plants, and PVX had the opposite effect. Both strains reduced the ABA content in plants infected with PVY and induced ABA accumulation in plants infected with PVX, which led to an increase in the resistance of plants. This is the first report of the protection of tomato plants against viral diseases by foliar application of endophytes.
Collapse
|
29
|
Ji M, Zhao J, Han K, Cui W, Wu X, Chen B, Lu Y, Peng J, Zheng H, Rao S, Wu G, Chen J, Yan F. Turnip mosaic virus P1 suppresses JA biosynthesis by degrading cpSRP54 that delivers AOCs onto the thylakoid membrane to facilitate viral infection. PLoS Pathog 2021; 17:e1010108. [PMID: 34852025 PMCID: PMC8668097 DOI: 10.1371/journal.ppat.1010108] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/13/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Jasmonic acid (JA) is a crucial hormone in plant antiviral immunity. Increasing evidence shows that viruses counter this host immune response by interfering with JA biosynthesis and signaling. However, the mechanism by which viruses affect JA biosynthesis is still largely unexplored. Here, we show that a highly conserved chloroplast protein cpSRP54 was downregulated in Nicotiana benthamiana infected by turnip mosaic virus (TuMV). Its silencing facilitated TuMV infection. Furthermore, cpSRP54 interacted with allene oxide cyclases (AOCs), key JA biosynthesis enzymes, and was responsible for delivering AOCs onto the thylakoid membrane (TM). Interestingly, TuMV P1 protein interacted with cpSRP54 and mediated its degradation via the 26S proteosome and autophagy pathways. The results suggest that TuMV has evolved a strategy, through the inhibition of cpSRP54 and its delivery of AOCs to the TM, to suppress JA biosynthesis and enhance viral infection. Interaction between cpSRP54 and AOCs was shown to be conserved in Arabidopsis and rice, while cpSRP54 also interacted with, and was degraded by, pepper mild mottle virus (PMMoV) 126 kDa protein and potato virus X (PVX) p25 protein, indicating that suppression of cpSRP54 may be a common mechanism used by viruses to counter the antiviral JA pathway. Jasmonic acid pathway has emerged as one of the predominant battlefields between plants and viruses. Several studies have indicated that, in addition to interfering with JA signaling, plant viruses can also affect JA biosynthesis, but the direct molecular links between them remain elusive. Here, we identify a highly conserved chloroplast protein cpSRP54 as a key positive regulator in JA biosynthesis and a common target for viruses belong to different genera. Through associating with cpSRP54 and inducing its degradation using the protein they encoded, the viruses can inhibit the cpSRP54-facilitated delivery of AOCs to the thylakoid membrane and manipulation of JA-mediated defense. This capability of viruses might define a novel and effective strategy against the antiviral JA pathway.
Collapse
Affiliation(s)
- Mengfei Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinping Zhao
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Weijun Cui
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinyang Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Binghua Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (JC); (FY)
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (JC); (FY)
| |
Collapse
|
30
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 PMCID: PMC8593000 DOI: 10.3389/fpls.2021.749630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/24/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 DOI: 10.21203/rs.3.rs-388437/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/25/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Helderman TA, Deurhof L, Bertran A, Boeren S, Fokkens L, Kormelink R, Joosten MHAJ, Prins M, van den Burg HA. An Isoform of the Eukaryotic Translation Elongation Factor 1A (eEF1a) Acts as a Pro-Viral Factor Required for Tomato Spotted Wilt Virus Disease in Nicotiana benthamiana. Viruses 2021; 13:2190. [PMID: 34834996 PMCID: PMC8619209 DOI: 10.3390/v13112190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
The tripartite genome of the negative-stranded RNA virus Tomato spotted wilt orthotospovirus (TSWV) is assembled, together with two viral proteins, the nucleocapsid protein and the RNA-dependent RNA polymerase, into infectious ribonucleoprotein complexes (RNPs). These two viral proteins are, together, essential for viral replication and transcription, yet our knowledge on the host factors supporting these two processes remains limited. To fill this knowledge gap, the protein composition of viral RNPs collected from TSWV-infected Nicotiana benthamiana plants, and of those collected from a reconstituted TSWV replicon system in the yeast Saccharomyces cerevisiae, was analysed. RNPs obtained from infected plant material were enriched for plant proteins implicated in (i) sugar and phosphate transport and (ii) responses to cellular stress. In contrast, the yeast-derived viral RNPs primarily contained proteins implicated in RNA processing and ribosome biogenesis. The latter suggests that, in yeast, the translational machinery is recruited to these viral RNPs. To examine whether one of these cellular proteins is important for a TSWV infection, the corresponding N. benthamiana genes were targeted for virus-induced gene silencing, and these plants were subsequently challenged with TSWV. This approach revealed four host factors that are important for systemic spread of TSWV and disease symptom development.
Collapse
Affiliation(s)
- Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (T.A.H.); (L.F.); (M.P.)
| | - Laurens Deurhof
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (L.D.); (M.H.A.J.J.)
| | - André Bertran
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.B.); (R.K.)
| | - Sjef Boeren
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
| | - Like Fokkens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (T.A.H.); (L.F.); (M.P.)
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.B.); (R.K.)
| | - Matthieu H. A. J. Joosten
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (L.D.); (M.H.A.J.J.)
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (T.A.H.); (L.F.); (M.P.)
- KeyGene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (T.A.H.); (L.F.); (M.P.)
| |
Collapse
|
33
|
Distéfano AM, López GA, Setzes N, Marchetti F, Cainzos M, Cascallares M, Zabaleta E, Pagnussat GC. Ferroptosis in plants: triggers, proposed mechanisms, and the role of iron in modulating cell death. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2125-2135. [PMID: 32918080 DOI: 10.1093/jxb/eraa425] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/09/2020] [Indexed: 05/20/2023]
Abstract
Regulated cell death plays key roles during essential processes throughout the plant life cycle. It takes part in specific developmental programs and maintains homeostasis of the organism in response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent cell death pathway characterized by the accumulation of lipid reactive oxygen species. In plants, ferroptosis shares all the main hallmarks described in other systems. Those specific features include biochemical and morphological signatures that seem to be conserved among species. However, plant cells have specific metabolic pathways and a high degree of metabolic compartmentalization. Together with their particular morphology, these features add more complexity to the plant ferroptosis pathway. In this review, we summarize the most recent advances in elucidating the roles of ferroptosis in plants, focusing on specific triggers, the main players, and underlying pathways.
Collapse
Affiliation(s)
- Ayelén Mariana Distéfano
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Fernanda Marchetti
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
34
|
Abstract
Phytohormones mediate plant development and responses to stresses caused by biotic agents or abiotic factors. The functions of phytohormones in responses to viral infection have been intensively studied, and the emerging picture of complex mechanisms provides insights into the roles that phytohormones play in defense regulation as a whole. These hormone signaling pathways are not simple linear or isolated cascades, but exhibit crosstalk with each other. Here, we summarized the current understanding of recent advances for the classical defense hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) and also the roles of abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinins (CKs), and brassinosteroids (BRs) in modulating plant–virus interactions.
Collapse
|
35
|
Fitoussi N, Borrego E, Kolomiets MV, Qing X, Bucki P, Sela N, Belausov E, Braun Miyara S. Oxylipins are implicated as communication signals in tomato-root-knot nematode (Meloidogyne javanica) interaction. Sci Rep 2021; 11:326. [PMID: 33431951 PMCID: PMC7801703 DOI: 10.1038/s41598-020-79432-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Throughout infection, plant-parasitic nematodes activate a complex host defense response that will regulate their development and aggressiveness. Oxylipins-lipophilic signaling molecules-are part of this complex, performing a fundamental role in regulating plant development and immunity. At the same time, the sedentary root-knot nematode Meloidogyne spp. secretes numerous effectors that play key roles during invasion and migration, supporting construction and maintenance of nematodes' feeding sites. Herein, comprehensive oxylipin profiling of tomato roots, performed using LC-MS/MS, indicated strong and early responses of many oxylipins following root-knot nematode infection. To identify genes that might respond to the lipidomic defense pathway mediated through oxylipins, RNA-Seq was performed by exposing Meloidogyne javanica second-stage juveniles to tomato protoplasts and the oxylipin 9-HOT, one of the early-induced oxylipins in tomato roots upon nematode infection. A total of 7512 differentially expressed genes were identified. To target putative effectors, we sought differentially expressed genes carrying a predicted secretion signal peptide. Among these, several were homologous with known effectors in other nematode species; other unknown, potentially secreted proteins may have a role as root-knot nematode effectors that are induced by plant lipid signals. These include effectors associated with distortion of the plant immune response or manipulating signal transduction mediated by lipid signals. Other effectors are implicated in cell wall degradation or ROS detoxification at the plant-nematode interface. Being an integral part of the plant's defense response, oxylipins might be placed as important signaling molecules underlying nematode parasitism.
Collapse
Affiliation(s)
- Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel
- Department of Plant Pathology and Microbiology, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Eli Borrego
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, TAMU 2132, College Station, 77843-2132, USA
| | - Xue Qing
- Department of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, 50250, Bet Dagan, Israel
| | - Eduard Belausov
- Department of Plant Sciences, Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, 50250, Bet Dagan, Israel
| | - Sigal Braun Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel.
| |
Collapse
|
36
|
Han K, Huang H, Zheng H, Ji M, Yuan Q, Cui W, Zhang H, Peng J, Lu Y, Rao S, Wu G, Lin L, Song X, Sun Z, Li J, Zhang C, Lou Y, Chen J, Yan F. Rice stripe virus coat protein induces the accumulation of jasmonic acid, activating plant defence against the virus while also attracting its vector to feed. MOLECULAR PLANT PATHOLOGY 2020; 21:1647-1653. [PMID: 32969146 PMCID: PMC7694675 DOI: 10.1111/mpp.12995] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 05/05/2023]
Abstract
The jasmonic acid (JA) pathway plays crucial roles in plant defence against pathogens and herbivores. Rice stripe virus (RSV) is the type member of the genus Tenuivirus. It is transmitted by the small brown planthopper (SBPH) and causes damaging epidemics in East Asia. The role(s) that JA may play in the tripartite interaction against RSV, its host, and vector are poorly understood. Here, we found that the JA pathway was induced by RSV infection and played a defence role against RSV. The coat protein (CP) was the major viral component responsible for inducing the JA pathway. Methyl jasmonate treatment attracted SBPHs to feed on rice plants while a JA-deficient mutant was less attractive than wild-type rice. SBPHs showed an obvious preference for feeding on transgenic rice lines expressing RSV CP. Our results demonstrate that CP is an inducer of the JA pathway that activates plant defence against RSV while also attracting SBPHs to feed and benefitting viral transmission. This is the first report of the function of JA in the tripartite interaction between RSV, its host, and its vector.
Collapse
Affiliation(s)
- Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Haijian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Mengfei Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Quan Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xuemei Song
- School of MedicineNingbo UniversityNingboChina
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Chuanxi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yonggen Lou
- State Key Laboratory of Rice BiologyInstitute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
37
|
Carpino C, Ferriol Safont I, Elvira‐González L, Medina V, Rubio L, Peri E, Davino S, Galipienso Torregrosa L. RNA2-encoded VP37 protein of Broad bean wilt virus 1 is a determinant of pathogenicity, host susceptibility, and a suppressor of post-transcriptional gene silencing. MOLECULAR PLANT PATHOLOGY 2020; 21:1421-1435. [PMID: 32936537 PMCID: PMC7549002 DOI: 10.1111/mpp.12979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 06/01/2023]
Abstract
Broad bean wilt virus 1 (BBWV-1, genus Fabavirus, family Secoviridae) is a bipartite, single-stranded positive-sense RNA virus infecting many horticultural and ornamental crops worldwide. RNA1 encodes proteins involved in viral replication whereas RNA2 encodes two coat proteins (the large and small coat proteins) and two putative movement proteins (MPs) of different sizes with overlapping C-terminal regions. In this work, we determined the role played by the small putative BBWV-1 MP (VP37) on virus pathogenicity, host specificity, and suppression of post-transcriptional gene silencing (PTGS). We engineered a BBWV-1 35S-driven full-length cDNA infectious clone corresponding to BBWV-1 RNA1 and RNA2 (pBBWV1-Wt) and generated a mutant knocking out VP37 (pBBWV1-G492C). Agroinfiltration assays showed that pBBWV1-Wt, as the original BBWV-1 isolate, infected broad bean, tomato, pepper, and Nicotiana benthamiana, whereas pBBWV1-G492C did not infect pepper and tomato systemically. Also, pBBWV1-G492C induced milder symptoms in broad bean and N. benthamiana than pBBWV1-Wt. Differential retrotranscription and amplification of the (+) and (-) strands showed that pBBWV1-G492C replicated in the agroinfiltrated leaves of pepper but not in tomato. All this suggests that VP37 is a determinant of pathogenicity and host specificity. Transient expression of VP37 through a potato virus X (PVX) vector enhanced PVX symptoms and induced systemic necrosis associated with programmed cell death in N. benthamiana plants. Finally, VP37 was identified as a viral suppressor of RNA silencing by transient expression in N. benthamiana 16c plants and movement complementation of a viral construct based on turnip crinkle virus (pTCV-GFP).
Collapse
Affiliation(s)
- Caterina Carpino
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | | | - Laura Elvira‐González
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
- Departamento de BiotecnologíaEscuela Técnica Superior de Ingeniería NaturalUniversitat Politècnica de ValènciaValenciaSpain
| | - Vicente Medina
- Departamento de Producción Vegetal y Ciencia ForestalUniversitat de LleidaLleidaSpain
| | - Luis Rubio
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
| | - Ezio Peri
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | - Salvatore Davino
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | | |
Collapse
|
38
|
Kwon J, Kasai A, Maoka T, Masuta C, Sano T, Nakahara KS. RNA silencing-related genes contribute to tolerance of infection with potato virus X and Y in a susceptible tomato plant. Virol J 2020; 17:149. [PMID: 33032637 PMCID: PMC7542965 DOI: 10.1186/s12985-020-01414-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plants, the RNA silencing system functions as an antiviral defense mechanism following its induction with virus-derived double-stranded RNAs. This occurs through the action of RNA silencing components, including Dicer-like (DCL) nucleases, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDR). Plants encode multiple AGOs, DCLs, and RDRs. The functions of these components have been mainly examined in Arabidopsis thaliana and Nicotiana benthamiana. In this study, we investigated the roles of DCL2, DCL4, AGO2, AGO3 and RDR6 in tomato responses to viral infection. For this purpose, we used transgenic tomato plants (Solanum lycopersicum cv. Moneymaker), in which the expression of these genes were suppressed by double-stranded RNA-mediated RNA silencing. METHODS We previously created multiple DCL (i.e., DCL2 and DCL4) (hpDCL2.4) and RDR6 (hpRDR6) knockdown transgenic tomato plants and here additionally did multiple AGO (i.e., AGO2 and AGO3) knockdown plants (hpAGO2.3), in which double-stranded RNAs cognate to these genes were expressed to induce RNA silencing to them. Potato virus X (PVX) and Y (PVY) were inoculated onto these transgenic tomato plants, and the reactions of these plants to the viruses were investigated. In addition to observation of symptoms, viral coat protein and genomic RNA were detected by western and northern blotting and reverse transcription-polymerase chain reaction (RT-PCR). Host mRNA levels were investigated by quantitative RT-PCR. RESULTS Following inoculation with PVX, hpDCL2.4 plants developed a more severe systemic mosaic with leaf curling compared with the other inoculated plants. Systemic necrosis was also observed in hpAGO2.3 plants. Despite the difference in the severity of symptoms, the accumulation of PVX coat protein (CP) and genomic RNA in the uninoculated upper leaves was not obviously different among hpDCL2.4, hpRDR6, and hpAGO2.3 plants and the empty vector-transformed plants. Moneymaker tomato plants were asymptomatic after infection with PVY. However, hpDCL2.4 plants inoculated with PVY developed symptoms, including leaf curling. Consistently, PVY CP was detected in the uninoculated symptomatic upper leaves of hpDCL2.4 plants through western blotting. Of note, PVY CP was rarely detected in other asymptomatic transgenic or wild-type plants. However, PVY was detected in the uninoculated upper leaves of all the inoculated plants using reverse transcription-polymerase chain reactions. These findings indicated that PVY systemically infected asymptomatic Moneymaker tomato plants at a low level (i.e., no detection of CP via western blotting). CONCLUSION Our results indicate that the tomato cultivar Moneymaker is susceptible to PVX and shows mild mosaic symptoms, whereas it is tolerant and asymptomatic to systemic PVY infection with a low virus titer. In contrast, in hpDCL2.4 plants, PVX-induced symptoms became more severe and PVY infection caused symptoms. These results indicate that DCL2, DCL4, or both contribute to tolerance to infection with PVX and PVY. PVY CP and genomic RNA accumulated to a greater extent in DCL2.4-knockdown plants. Hence, the contribution of these DCLs to tolerance to infection with PVY is at least partly attributed to their roles in anti-viral RNA silencing, which controls the multiplication of PVY in tomato plants. The necrotic symptoms observed in the PVX-infected hpAGO2.3 plants suggest that AGO2, AGO3 or both are also distinctly involved in tolerance to infection with PVX.
Collapse
Affiliation(s)
- Joon Kwon
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Tetsuo Maoka
- Division of Agro-Environmental Research, Hokkaido Agricultural Research Center, NARO, Sapporo, Hokkaido, 062-8555, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.,Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Kenji S Nakahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan. .,Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
39
|
Cai J, Chen T, Wang Y, Qin G, Tian S. SlREM1 Triggers Cell Death by Activating an Oxidative Burst and Other Regulators. PLANT PHYSIOLOGY 2020; 183:717-732. [PMID: 32317359 PMCID: PMC7271787 DOI: 10.1104/pp.20.00120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD), a highly regulated feature of the plant immune response, involves multiple molecular players. Remorins (REMs) are plant-specific proteins with varied biological functions, but their function in PCD and plant defense remains largely unknown. Here, we report a role for remorin in disease resistance, immune response, and PCD regulation. Overexpression of tomato (Solanum lycopersicum) REMORIN1 (SlREM1) increased susceptibility of tomato to the necrotrophic fungus Botrytis cinerea and heterologous expression of this gene triggered cell death in Nicotiana benthamiana leaves. Further investigation indicated that amino acids 173 to 187 and phosphorylation of SlREM1 played key roles in SlREM1-triggered cell death. Intriguingly, multiple tomato REMs induced cell death in N benthamiana leaves. Yeast two-hybrid, split luciferase complementation, and coimmunoprecipitation assays all demonstrated that remorin proteins could form homo- and heterocomplexes. Using isobaric tags for relative and absolute quantitative proteomics, we identified that some proteins related to cell death regulation, as well as N benthamiana RESPIRATORY BURST OXIDASE HOMOLOG B (which is essential for reactive oxygen species production), were notably upregulated in SlREM1-expressing leaves. Heterologous expression of SlREM1 increased reactive oxygen species accumulation and triggered other cell death regulators. Our findings indicate that SlREM1 is a positive regulator of plant cell death and provide clues for understanding the PCD molecular regulatory network in plants.
Collapse
Affiliation(s)
- Jianghua Cai
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| |
Collapse
|
40
|
Wu X, Ye J. Manipulation of Jasmonate Signaling by Plant Viruses and Their Insect Vectors. Viruses 2020; 12:v12020148. [PMID: 32012772 PMCID: PMC7077190 DOI: 10.3390/v12020148] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/12/2022] Open
Abstract
Plant viruses pose serious threats to stable crop yield. The majority of them are transmitted by insects, which cause secondary damage to the plant host from the herbivore-vector's infestation. What is worse, a successful plant virus evolves multiple strategies to manipulate host defenses to promote the population of the insect vector and thereby furthers the disease pandemic. Jasmonate (JA) and its derivatives (JAs) are lipid-based phytohormones with similar structures to animal prostaglandins, conferring plant defenses against various biotic and abiotic challenges, especially pathogens and herbivores. For survival, plant viruses and herbivores have evolved strategies to convergently target JA signaling. Here, we review the roles of JA signaling in the tripartite interactions among plant, virus, and insect vectors, with a focus on the molecular and biochemical mechanisms that drive vector-borne plant viral diseases. This knowledge is essential for the further design and development of effective strategies to protect viral damages, thereby increasing crop yield and food security.
Collapse
Affiliation(s)
- Xiujuan Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
41
|
Aguilar E, del Toro FJ, Figueira-Galán D, Hou W, Canto T, Tenllado F. Virus infection induces resistance to Pseudomonas syringae and to drought in both compatible and incompatible bacteria–host interactions, which are compromised under conditions of elevated temperature and CO2 levels. J Gen Virol 2020; 101:122-135. [DOI: 10.1099/jgv.0.001353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Francisco J. del Toro
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - David Figueira-Galán
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Weina Hou
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| |
Collapse
|
42
|
Knip M, Richard MM, Oskam L, van Engelen HT, Aalders T, Takken FL. Activation of immune receptor Rx1 triggers distinct immune responses culminating in cell death after 4 hours. MOLECULAR PLANT PATHOLOGY 2019; 20:575-588. [PMID: 30537296 PMCID: PMC6637897 DOI: 10.1111/mpp.12776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Intracellular nucleotide-binding leucine-rich repeat (NLR)-type immune receptors are a fundamental part of plant immune systems. As infection occurs at foci, activation of immune responses is typically non-uniform and non-synchronized, hampering the systematic dissection of their cellular effects and determining their phasing. We investigated the potato NLR Rx1 using the CESSNA (Controlled Expression of effectors for Synchronized and Systemic NLR Activation) platform. CESSNA-mediated Potato virus X coat protein (CP) expression allowed the monitoring of Rx1-mediated immune responses in a quantitative and reproducible manner. Rx1 was found to trigger a reactive oxygen species (ROS) burst and ion leakage within 1 h and a change in autofluorescence within 2 h after the induction of CP production. After 2 h, HIN1 expression was increased and single-stranded DNA (ssDNA) damage and loss of cellular integrity became apparent, followed by double-stranded DNA (dsDNA) damage after 3 h and increased PR-1a, LOX, ERF1 and AOX1B expression and cell death at 4 h. Nuclear exclusion of Rx1 resulted in increased basal levels of ROS and permitted Rx1 activation by an Rx1-breaking CP variant. In contrast, nuclear-targeted Rx1 showed diminished basal ROS levels, and only avirulent CP could trigger a compromised ROS production. Both nuclear-excluded and nuclear-targeted Rx1 triggered a delayed ion leakage compared with non-modified Rx1, suggesting that ion leakage and ROS production originate from distinct signalling pathways. This work offers novel insights into the influence of Rx1 localization on its activity, and the interplay between Rx1-triggered processes.
Collapse
Affiliation(s)
- Marijn Knip
- Molecular Plant PathologyUniversity of Amsterdam, SILSSciencepark 904Amsterdam1098SMthe Netherlands
| | - Manon M.S. Richard
- Molecular Plant PathologyUniversity of Amsterdam, SILSSciencepark 904Amsterdam1098SMthe Netherlands
| | - Lisa Oskam
- Molecular Plant PathologyUniversity of Amsterdam, SILSSciencepark 904Amsterdam1098SMthe Netherlands
| | - Hylco T.D. van Engelen
- Molecular Plant PathologyUniversity of Amsterdam, SILSSciencepark 904Amsterdam1098SMthe Netherlands
| | - Thomas Aalders
- Molecular Plant PathologyUniversity of Amsterdam, SILSSciencepark 904Amsterdam1098SMthe Netherlands
| | - Frank L.W. Takken
- Molecular Plant PathologyUniversity of Amsterdam, SILSSciencepark 904Amsterdam1098SMthe Netherlands
| |
Collapse
|
43
|
Aguilar E, del Toro FJ, Brosseau C, Moffett P, Canto T, Tenllado F. Cell death triggered by the P25 protein in Potato virus X-associated synergisms results from endoplasmic reticulum stress in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2019; 20:194-210. [PMID: 30192053 PMCID: PMC6637867 DOI: 10.1111/mpp.12748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The synergistic interaction of Potato virus X (PVX) with a number of potyviruses results in systemic necrosis in Nicotiana spp. Previous investigations have indicated that the viral suppressor of RNA silencing (VSR) protein P25 of PVX triggers systemic necrosis in PVX-associated synergisms in a threshold-dependent manner. However, little is still known about the cellular processes that lead to this necrosis, and whether the VSR activity of P25 is involved in its elicitation. Here, we show that transient expression of P25 in the presence of VSRs from different viruses, including the helper component-proteinase (HC-Pro) of potyviruses, induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), which ultimately lead to ER collapse. However, the host RNA silencing pathway was dispensable for the elicitation of cell death by P25. Confocal microscopy studies in leaf patches co-expressing P25 and HC-Pro showed dramatic alterations in ER membrane structures, which correlated with the up-regulation of bZIP60 and several ER-resident chaperones, including the ER luminal binding protein (BiP). Overexpression of BiP alleviated the cell death induced by the potexviral P25 protein when expressed together with VSRs derived from different viruses. Conversely, silencing of the UPR master regulator, bZIP60, led to an increase in cell death elicited by the P25/HC-Pro combination as well as by PVX-associated synergism. In addition to its role as a negative regulator of P25-induced cell death, UPR partially restricted PVX infection. Thus, systemic necrosis caused by PVX-associated synergistic infections is probably the effect of an unmitigated ER stress following the overaccumulation of a viral protein, P25, with ER remodelling activity.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Francisco J. del Toro
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Chantal Brosseau
- Centre SÈVE, Département de BiologieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Peter Moffett
- Centre SÈVE, Département de BiologieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| |
Collapse
|
44
|
Jain M, Munoz-Bodnar A, Zhang S, Gabriel DW. A Secreted 'Candidatus Liberibacter asiaticus' Peroxiredoxin Simultaneously Suppresses Both Localized and Systemic Innate Immune Responses In Planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1312-1322. [PMID: 29953333 DOI: 10.1094/mpmi-03-18-0068-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The oxidative (H2O2) burst is a seminal feature of the basal plant defense response to attempted pathogen invasions. In 'Candidatus Liberibacter asiaticus' UF506, expression of the SC2 prophage-encoded secreted peroxidase (F489_gp15) increases bacterial fitness and delays symptom progression in citrus. Two chromosomal 1-Cys peroxiredoxin genes, CLIBASIA_RS00940 (Lasprx5) and CLIBASIA_RS00445 (Lasbcp), are conserved among all sequenced 'Ca. L. asiaticus' strains, including those lacking prophages. Both LasBCP and LasdPrx5 have only a single conserved peroxidatic Cys (CP/SH) and lack the resolving Cys (CR/SH). Lasprx5 appeared to be a housekeeping gene with similar moderate transcript abundance in both 'Ca. L. asiaticus'-infected psyllids and citrus. By contrast, Lasbcp was expressed only in planta, similar to the expression of the SC2 peroxidase. Since 'Ca. L. asiaticus' is uncultured, Lasbcp and Lasprx5 were functionally validated in a cultured surrogate species, Liberibacter crescens, and both genes significantly increased oxidative stress tolerance and cell viability in culture. LasBCP was nonclassically secreted and, in L. crescens, conferred 214-fold more resistance to tert-butyl hydroperoxide (tBOOH) than wild type. Transient overexpression of Lasbcp in tobacco suppressed H2O2-mediated transcriptional activation of RbohB, the key gatekeeper of the systemic plant defense signaling cascade. Lasbcp expression did not interfere with the perception of 'Ca. L. asiaticus' flagellin (flg22Las) but interrupted the downstream activation of RbohB and stereotypical deposition of callose in tobacco. Critically, LasBCP also protected against tBOOH-induced peroxidative degradation of lipid membranes in planta, preventing subsequent accumulation of antimicrobial oxylipins that can also trigger the localized hypersensitive cell death response.
Collapse
Affiliation(s)
- Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | | | - Shujian Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
45
|
Kumari A, Pandey-Rai S. Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:590-602. [PMID: 30326438 DOI: 10.1016/j.plaphy.2018.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 05/19/2023]
Abstract
This study was designed to investigate the effect of exogenous application of salicylic acid (SA) on proteins pattern and secondary metabolites in arsenic (As) stressed Artemisia annua. A. annua was treated by As 100 μM, SA 100 μM and combined treatment of SA 100 μM + As 100 μM upto 3 days. Significant accumulation of As was observed in roots than shoots at As 100 μM treatment. Under As treatment, oxidative stress was induced as indicated by increased TBARS content. Biomass, carotenoid, flavonoids were enhanced whereas total chlorophyll pigment was reduced under As treatment. Combined treatment of SA 100 μM + As 100 μM was more effective for increment of biomass, total chlorophyll content, and flavonoids as compared to As 100 μM treatment. Protein profiling revealed 20 differentially abundant proteins by 2-DE PAGE and MALDI-TOF-MS analysis. Identified proteins were related to photosynthesis, energy metabolism, transcriptional regulators, secondary metabolism, lipid metabolism, transport proteins and unknown/hypothetical proteins. All identified proteins were significantly increased in abundance under combined treatments of SA 100 μM + As 100 μM. The expression analysis of key genes involved in biosynthesis of lipid metabolism, signal molecule, transcriptional regulators, artemisinin biosynthetic genes, isoprenoids pathway, terpenes and flavonoids pathway were significantly upregulated under combined treatments of SA 100 μM + As 100 μM, suggesting a fine linkage in regulation of primary and secondary metabolism to modulate tolerance capacity and to improve phytoremediation property of A. annua against arsenic toxicity.
Collapse
Affiliation(s)
- Anjana Kumari
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Pandey-Rai
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
46
|
Alazem M, Tseng KC, Chang WC, Seo JK, Kim KH. Elements Involved in the Rsv3-Mediated Extreme Resistance against an Avirulent Strain of Soybean Mosaic Virus. Viruses 2018; 10:E581. [PMID: 30355968 PMCID: PMC6267276 DOI: 10.3390/v10110581] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023] Open
Abstract
Extreme resistance (ER) is a type of R-gene-mediated resistance that rapidly induces a symptomless resistance phenotype, which is different from the phenotypical R-resistance manifested by the programmed cell death, accumulation of reactive oxygen species, and hypersensitive response. The Rsv3 gene in soybean cultivar L29 is responsible for ER against the avirulent strain G5H of soybean mosaic virus (SMV), but is ineffective against the virulent strain G7H. Rsv3-mediated ER is achieved through the rapid accumulation of callose, which arrests SMV-G5H at the point of infection. Callose accumulation, however, may not be the lone mechanism of this ER. Analyses of RNA-seq data obtained from infected soybean plants revealed a rapid induction of the abscisic acid pathway at 8 h post infection (hpi) in response to G5H but not to G7H, which resulted in the down-regulation of transcripts encoding β-1,3 glucanases that degrade callose in G5H-infected but not G7H-infected plants. In addition, parts of the autophagy and the small interfering (si) RNA pathways were temporally up-regulated at 24 hpi in response to G5H but not in response to G7H. The jasmonic acid (JA) pathway and many WRKY factors were clearly up-regulated only in G7H-infected plants. These results suggest that ER against SMV-G5H is achieved through the quick and temporary induction of ABA, autophagy, and the siRNA pathways, which rapidly eliminate G5H. The results also suggest that suppression of the JA pathway in the case of G5H is important for the Rsv3-mediated ER.
Collapse
Affiliation(s)
- Mazen Alazem
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Kuan-Chieh Tseng
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Wen-Chi Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Jang-Kyun Seo
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea.
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
47
|
Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, Stockwell BR. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 2018; 32:602-619. [PMID: 29802123 PMCID: PMC6004068 DOI: 10.1101/gad.314674.118] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review by Conrad et al. reviews the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea, and discusses the potential evolutionary roles of lipid peroxidation and ferroptosis. Lipid peroxidation is the process by which oxygen combines with lipids to generate lipid hydroperoxides via intermediate formation of peroxyl radicals. Vitamin E and coenzyme Q10 react with peroxyl radicals to yield peroxides, and then these oxidized lipid species can be detoxified by glutathione and glutathione peroxidase 4 (GPX4) and other components of the cellular antioxidant defense network. Ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Here, we review the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea. We also discuss the potential evolutionary roles of lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Environmental Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Laboratory of Navigational Lipidomics of Cell Death and Regeneration, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,Molecular and Cell Biology Graduate Program, Oregon State University, Corvallis, Oregon 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97330, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
48
|
Dehkordi AN, Rubio M, Babaeian N, Albacete A, Martínez-Gómez P. Phytohormone Signaling of the Resistance to Plum pox virus (PPV, Sharka Disease) Induced by Almond (Prunus dulcis (Miller) Webb) Grafting to Peach (P. persica L. Batsch). Viruses 2018; 10:v10050238. [PMID: 29751564 PMCID: PMC5977231 DOI: 10.3390/v10050238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 11/16/2022] Open
Abstract
Plum pox virus (PPV, sharka) is a limiting factor for peach production, and no natural sources of resistance have been described. Recent studies, however, have demonstrated that grafting the almond cultivar "Garrigues" onto the "GF305" peach infected with Dideron-type (PPV-D) isolates progressively reduces disease symptoms and virus accumulation. Furthermore, grafting "Garrigues" onto "GF305" prior to PPV-D inoculation has been found to completely prevent virus infection, showing that resistance is constitutive and not induced by the virus. To unravel the phytohormone signaling of this mechanism, we analyzed the following phytohormones belonging to the principal hormone classes: the growth-related phytohormones cytokinin trans-zeatin (tZ) and the gibberellins GA₃ and GA₄; and the stress-related phytohormones ethylene acid precursor 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA). PPV inoculation produced a significant increase in GA₃ and ABA in peach, and these imbalances were related to the presence of chlorosis symptoms. However, grafting "Garrigues" almond onto the PPV-inoculated "GF305" peach produced the opposite effect, reducing GA₃ and ABA contents in parallel to the elimination of symptoms. Our results showed the significant implication of SA in this induced resistance in peach with an additional effect on tZ and JA concentrations. This SA-induced resistance based in the decrease in symptoms seems to be different from Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), which are based in other reactions producing necrosis. Further studies are necessary, however, to validate these results against PPV-D isolates in the more aggressive Marcus-type (PPV-M) isolates.
Collapse
Affiliation(s)
- Azam Nikbakht Dehkordi
- Faculty of Crop Science, Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University (SARNU), Km 9, Darya Road P.O. Box 578 Sari, Iran.
| | - Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| | - Nadali Babaeian
- Faculty of Crop Science, Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University (SARNU), Km 9, Darya Road P.O. Box 578 Sari, Iran.
| | - Alfonso Albacete
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| |
Collapse
|
49
|
Ling J, Li R, Nwafor CC, Cheng J, Li M, Xu Q, Wu J, Gan L, Yang Q, Liu C, Chen M, Zhou Y, Cahoon EB, Zhang C. Development of iFOX-hunting as a functional genomic tool and demonstration of its use to identify early senescence-related genes in the polyploid Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:591-602. [PMID: 28718508 PMCID: PMC5787830 DOI: 10.1111/pbi.12799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
Functional genomic studies of many polyploid crops, including rapeseed (Brassica napus), are constrained by limited tool sets. Here we report development of a gain-of-function platform, termed 'iFOX (inducible Full-length cDNA OvereXpressor gene)-Hunting', for inducible expression of B. napus seed cDNAs in Arabidopsis. A Gateway-compatible plant gene expression vector containing a methoxyfenozide-inducible constitutive promoter for transgene expression was developed. This vector was used for cloning of random cDNAs from developing B. napus seeds and subsequent Agrobacterium-mediated transformation of Arabidopsis. The inducible promoter of this vector enabled identification of genes upon induction that are otherwise lethal when constitutively overexpressed and to control developmental timing of transgene expression. Evaluation of a subset of the resulting ~6000 Arabidopsis transformants revealed a high percentage of lines with full-length B. napus transgene insertions. Upon induction, numerous iFOX lines with visible phenotypes were identified, including one that displayed early leaf senescence. Phenotypic analysis of this line (rsl-1327) after methoxyfenozide induction indicated high degree of leaf chlorosis. The integrated B. napuscDNA was identified as a homolog of an Arabidopsis acyl-CoA binding protein (ACBP) gene designated BnACBP1-like. The early senescence phenotype conferred by BnACBP1-like was confirmed by constitutive expression of this gene in Arabidopsis and B. napus. Use of the inducible promoter in the iFOX line coupled with RNA-Seq analyses allowed mechanistic clues and a working model for the phenotype associated with BnACBP1-like expression. Our results demonstrate the utility of iFOX-Hunting as a tool for gene discovery and functional characterization of Brassica napus genome.
Collapse
Affiliation(s)
- Juan Ling
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Renjie Li
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chinedu Charles Nwafor
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Department of Crop ScienceBenson Idahosa UniversityBenin CityNigeria
| | - Junluo Cheng
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Qing Xu
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Lu Gan
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Qingyong Yang
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao Liu
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ming Chen
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Yongming Zhou
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Edgar B. Cahoon
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Chunyu Zhang
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
50
|
Aguilar E, Cutrona C, Del Toro FJ, Vallarino JG, Osorio S, Pérez-Bueno ML, Barón M, Chung BN, Canto T, Tenllado F. Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. PLANT, CELL & ENVIRONMENT 2017; 40:2909-2930. [PMID: 28718885 DOI: 10.1111/pce.13028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 05/21/2023]
Abstract
It has been hypothesized that plants can get beneficial trade-offs from viral infections when grown under drought conditions. However, experimental support for a positive correlation between virus-induced drought tolerance and increased host fitness is scarce. We investigated whether increased virulence exhibited by the synergistic interaction involving Potato virus X (PVX) and Plum pox virus (PPV) improves tolerance to drought and host fitness in Nicotiana benthamiana and Arabidopsis thaliana. Infection by the pair PPV/PVX and by PPV expressing the virulence protein P25 of PVX conferred an enhanced drought-tolerant phenotype compared with single infections with either PPV or PVX. Decreased transpiration rates in virus-infected plants were correlated with drought tolerance in N. benthamiana but not in Arabidopsis. Metabolite and hormonal profiles of Arabidopsis plants infected with the different viruses showed a range of changes that positively correlated with a greater impact on drought tolerance. Virus infection enhanced drought tolerance in both species by increasing salicylic acid accumulation in an abscisic acid-independent manner. Viable offspring derived from Arabidopsis plants infected with PPV increased relative to non-infected plants, when exposed to drought. By contrast, the detrimental effect caused by the more virulent viruses overcame potential benefits associated with increased drought tolerance on host fitness.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Carmen Cutrona
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Francisco J Del Toro
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - José G Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-CSIC, Málaga, 2907, Spain
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-CSIC, Málaga, 2907, Spain
| | - María Luisa Pérez-Bueno
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Matilde Barón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Bong-Nam Chung
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Tomás Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Francisco Tenllado
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| |
Collapse
|