1
|
Differential Activity of APOBEC3F, APOBEC3G, and APOBEC3H in the Restriction of HIV-2. J Mol Biol 2022; 434:167355. [PMID: 34774569 PMCID: PMC8752514 DOI: 10.1016/j.jmb.2021.167355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 02/01/2023]
Abstract
Human immunodeficiency virus (HIV) mutagenesis is driven by a variety of internal and external sources, including the host APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypetide-like 3; A3) family of mutagenesis factors, which catalyze G-to-A transition mutations during virus replication. HIV-2 replication is characterized by a relative lack of G-to-A mutations, suggesting infrequent mutagenesis by A3 proteins. To date, the activity of the A3 repertoire against HIV-2 has remained largely uncharacterized, and the mutagenic activity of these proteins against HIV-2 remains to be elucidated. In this study, we provide the first comprehensive characterization of the restrictive capacity of A3 proteins against HIV-2 in cell culture using a dual fluorescent reporter HIV-2 vector virus. We found that A3F, A3G, and A3H restricted HIV-2 infectivity in the absence of Vif and were associated with significant increases in the frequency of viral mutants. These proteins increased the frequency of G-to-A mutations within the proviruses of infected cells as well. A3G and A3H also reduced HIV-2 infectivity via inhibition of reverse transcription and the accumulation of DNA products during replication. In contrast, A3D did not exhibit any restrictive activity against HIV-2, even at higher expression levels. Taken together, these results provide evidence that A3F, A3G, and A3H, but not A3D, are capable of HIV-2 restriction. Differences in A3-mediated restriction of HIV-1 and HIV-2 may serve to provide new insights in the observed mutation profiles of these viruses.
Collapse
|
2
|
Meissner ME, Julik EJ, Badalamenti JP, Arndt WG, Mills LJ, Mansky LM. Development of a User-Friendly Pipeline for Mutational Analyses of HIV Using Ultra-Accurate Maximum-Depth Sequencing. Viruses 2021; 13:v13071338. [PMID: 34372543 PMCID: PMC8310143 DOI: 10.3390/v13071338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/23/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) accumulates fewer mutations during replication than HIV type 1 (HIV-1). Advanced studies of HIV-2 mutagenesis, however, have historically been confounded by high background error rates in traditional next-generation sequencing techniques. In this study, we describe the adaptation of the previously described maximum-depth sequencing (MDS) technique to studies of both HIV-1 and HIV-2 for the ultra-accurate characterization of viral mutagenesis. We also present the development of a user-friendly Galaxy workflow for the bioinformatic analyses of sequencing data generated using the MDS technique, designed to improve replicability and accessibility to molecular virologists. This adapted MDS technique and analysis pipeline were validated by comparisons with previously published analyses of the frequency and spectra of mutations in HIV-1 and HIV-2 and is readily expandable to studies of viral mutation across the genomes of both viruses. Using this novel sequencing pipeline, we observed that the background error rate was reduced 100-fold over standard Illumina error rates, and 10-fold over traditional unique molecular identifier (UMI)-based sequencing. This technical advancement will allow for the exploration of novel and previously unrecognized sources of viral mutagenesis in both HIV-1 and HIV-2, which will expand our understanding of retroviral diversity and evolution.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
| | - Emily J. Julik
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan P. Badalamenti
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - William G. Arndt
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lauren J. Mills
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (L.J.M.); (L.M.M.)
| | - Louis M. Mansky
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (L.J.M.); (L.M.M.)
| |
Collapse
|
3
|
McDaniel YZ, Wang D, Love RP, Adolph MB, Mohammadzadeh N, Chelico L, Mansky LM. Deamination hotspots among APOBEC3 family members are defined by both target site sequence context and ssDNA secondary structure. Nucleic Acids Res 2020; 48:1353-1371. [PMID: 31943071 PMCID: PMC7026630 DOI: 10.1093/nar/gkz1164] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
The human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3, A3) family member proteins can deaminate cytosines in single-strand (ss) DNA, which restricts human immunodeficiency virus type 1 (HIV-1), retrotransposons, and other viruses such as hepatitis B virus, but can cause a mutator phenotype in many cancers. While structural information exists for several A3 proteins, the precise details regarding deamination target selection are not fully understood. Here, we report the first parallel, comparative analysis of site selection of A3 deamination using six of the seven purified A3 member enzymes, oligonucleotides having 5'TC3' or 5'CT3' dinucleotide target sites, and different flanking bases within diverse DNA secondary structures. A3A, A3F and A3H were observed to have strong preferences toward the TC target flanked by A or T, while all examined A3 proteins did not show a preference for a TC target flanked by a G. We observed that the TC target was strongly preferred in ssDNA regions rather than dsDNA, loop or bulge regions, with flanking bases influencing the degree of preference. CT was also shown to be a potential deamination target. Taken together, our observations provide new insights into A3 enzyme target site selection and how A3 mutagenesis impacts mutation rates.
Collapse
Affiliation(s)
- Yumeng Z McDaniel
- Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Dake Wang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
- Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Madison B Adolph
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Nazanin Mohammadzadeh
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Louis M Mansky
- Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
- Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
4
|
Riemersma KK, Steiner C, Singapuri A, Coffey LL. Chikungunya Virus Fidelity Variants Exhibit Differential Attenuation and Population Diversity in Cell Culture and Adult Mice. J Virol 2019; 93:e01606-18. [PMID: 30429348 PMCID: PMC6340026 DOI: 10.1128/jvi.01606-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging global health threat that produces debilitating arthritis in people. Like other RNA viruses with high mutation rates, CHIKV produces populations of genetically diverse genomes within a host. While several known CHIKV mutations influence disease severity in vertebrates and transmission by mosquitoes, the role of intrahost diversity in chikungunya arthritic disease has not been studied. In this study, high- and low-fidelity CHIKV variants, previously characterized by altered in vitro population mutation frequencies, were used to evaluate how intrahost diversity influences clinical disease, CHIKV replication, and antibody neutralization in immunocompetent adult mice inoculated in the rear footpads. Both high- and low-fidelity mutations were hypothesized to attenuate CHIKV arthritic disease, replication, and neutralizing antibody levels compared to wild-type (WT) CHIKV. Unexpectedly, high-fidelity mutants elicited more severe arthritic disease than the WT despite comparable CHIKV replication, whereas a low-fidelity mutant produced attenuated disease and replication. Serum antibody developed against both high- and low-fidelity CHIKV exhibited reduced neutralization of WT CHIKV. Using next-generation sequencing (NGS), the high-fidelity mutations were demonstrated to be genetically stable but produced more genetically diverse populations than WT CHIKV in mice. This enhanced diversification was subsequently reproduced after serial in vitro passage. The NGS results contrast with previously reported population diversities for fidelity variants, which focused mainly on part of the E1 gene, and highlight the need for direct measurements of mutation rates to clarify CHIKV fidelity phenotypes.IMPORTANCE CHIKV is a reemerging global health threat that elicits debilitating arthritis in humans. There are currently no commercially available CHIKV vaccines. Like other RNA viruses, CHIKV has a high mutation rate and is capable of rapid intrahost diversification during an infection. In other RNA viruses, virus population diversity associates with disease progression; however, potential impacts of intrahost viral diversity on CHIKV arthritic disease have not been studied. Using previously characterized CHIKV fidelity variants, we addressed whether CHIKV population diversity influences the severity of arthritis and host antibody response in an arthritic mouse model. Our findings show that CHIKV populations with greater genetic diversity can cause more severe disease and stimulate antibody responses with reduced neutralization of low-diversity virus populations in vitro The discordant high-fidelity phenotypes in this study highlight the complexity of inferring replication fidelity indirectly from population diversity.
Collapse
Affiliation(s)
- Kasen K Riemersma
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Cody Steiner
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
5
|
Pauly MD, Procario MC, Lauring AS. A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses. eLife 2017; 6. [PMID: 28598328 PMCID: PMC5511008 DOI: 10.7554/elife.26437] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Influenza virus’ low replicative fidelity contributes to its capacity for rapid evolution. Clonal sequencing and fluctuation tests have suggested that the influenza virus mutation rate is 2.7 × 10–6 - 3.0 × 10–5 substitutions per nucleotide per strand copied (s/n/r). However, sequencing assays are biased toward mutations with minimal fitness impacts and fluctuation tests typically investigate only a subset of all possible single nucleotide mutations. We developed a fluctuation test based on reversion to fluorescence in a set of virally encoded mutant green fluorescent proteins, which allowed us to measure the rates of selectively neutral mutations representative of the twelve different mutation types. We measured an overall mutation rate of 1.8 × 10–4 s/n/r for PR8 (H1N1) and 2.5 × 10–4 s/n/r for Hong Kong 2014 (H3N2) and a transitional bias of 2.7–3.6. Our data suggest that each replicated genome will have an average of 2–3 mutations and highlight the importance of mutational load in influenza virus evolution. DOI:http://dx.doi.org/10.7554/eLife.26437.001
Collapse
Affiliation(s)
- Matthew D Pauly
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Megan C Procario
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Adam S Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States.,Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
6
|
Rawson JMO, Gohl DM, Landman SR, Roth ME, Meissner ME, Peterson TS, Hodges JS, Beckman KB, Mansky LM. Single-Strand Consensus Sequencing Reveals that HIV Type but not Subtype Significantly Impacts Viral Mutation Frequencies and Spectra. J Mol Biol 2017; 429:2290-2307. [PMID: 28502791 DOI: 10.1016/j.jmb.2017.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
A long-standing question of human immunodeficiency virus (HIV) genetic variation and evolution has been whether differences exist in mutation rate and/or mutation spectra among HIV types (i.e., HIV-1 versus HIV-2) and among HIV groups (i.e., HIV-1 groups M-P and HIV-2 groups A-H) and HIV-1 Group M subtypes (i.e., subtypes A-D, F-H, and J-K). To address this, we developed a new single-strand consensus sequencing assay for the determination of HIV mutation frequencies and spectra using the Illumina sequencing platform. This assay enables parallel and standardized comparison of HIV mutagenesis among various viral vectors with lower background error than traditional methods of Illumina library preparation. We found significant differences in viral mutagenesis between HIV types but intriguingly no significant differences among HIV-1 Group M subtypes. More specifically, HIV-1 exhibited higher transition frequencies than HIV-2, due mostly to single G-to-A mutations and (to a lesser extent) G-to-A hypermutation. These data suggest that HIV-2 RT exhibits higher fidelity during viral replication, and taken together, these findings demonstrate that HIV type but not subtype significantly affects viral mutation frequencies and spectra. These differences may inform antiviral and vaccine strategies.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Megan E Roth
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Morgan E Meissner
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Tara S Peterson
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - James S Hodges
- Division of Biostatistics, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Department of Microbiology & Immunology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Zanini F, Puller V, Brodin J, Albert J, Neher RA. In vivo mutation rates and the landscape of fitness costs of HIV-1. Virus Evol 2017; 3:vex003. [PMID: 28458914 PMCID: PMC5399928 DOI: 10.1093/ve/vex003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutation rates and fitness costs of deleterious mutations are difficult to measure in vivo but essential for a quantitative understanding of evolution. Using whole genome deep sequencing data from longitudinal samples during untreated HIV-1 infection, we estimated mutation rates and fitness costs in HIV-1 from the dynamics of genetic variation. At approximately neutral sites, mutations accumulate with a rate of 1.2 × 10-5 per site per day, in agreement with the rate measured in cell cultures. We estimated the rate from G to A to be the largest, followed by the other transitions C to T, T to C, and A to G, while transversions are less frequent. At other sites, mutations tend to reduce virus replication. We estimated the fitness cost of mutations at every site in the HIV-1 genome using a model of mutation selection balance. About half of all non-synonymous mutations have large fitness costs (>10 percent), while most synonymous mutations have costs <1 percent. The cost of synonymous mutations is especially low in most of pol where we could not detect measurable costs for the majority of synonymous mutations. In contrast, we find high costs for synonymous mutations in important RNA structures and regulatory regions. The intra-patient fitness cost estimates are consistent across multiple patients, indicating that the deleterious part of the fitness landscape is universal and explains a large fraction of global HIV-1 group M diversity.
Collapse
Affiliation(s)
- Fabio Zanini
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vadim Puller
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Johanna Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 76 Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - Richard A. Neher
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| |
Collapse
|
8
|
Sanjuán R, Domingo-Calap P. Mechanisms of viral mutation. Cell Mol Life Sci 2016; 73:4433-4448. [PMID: 27392606 PMCID: PMC5075021 DOI: 10.1007/s00018-016-2299-6] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 02/08/2023]
Abstract
The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Department of Genetics and Institute for Integrative Systems Biology (I2SysBio), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - Pilar Domingo-Calap
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| |
Collapse
|
9
|
Saxena D, Spino M, Tricta F, Connelly J, Cracchiolo BM, Hanauske AR, D’Alliessi Gandolfi D, Mathews MB, Karn J, Holland B, Park MH, Pe’ery T, Palumbo PE, Hanauske-Abel HM. Drug-Based Lead Discovery: The Novel Ablative Antiretroviral Profile of Deferiprone in HIV-1-Infected Cells and in HIV-Infected Treatment-Naive Subjects of a Double-Blind, Placebo-Controlled, Randomized Exploratory Trial. PLoS One 2016; 11:e0154842. [PMID: 27191165 PMCID: PMC4871512 DOI: 10.1371/journal.pone.0154842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/18/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Antiretrovirals suppress HIV-1 production yet spare the sites of HIV-1 production, the HIV-1 DNA-harboring cells that evade immune detection and enable viral resistance on-drug and viral rebound off-drug. Therapeutic ablation of pathogenic cells markedly improves the outcome of many diseases. We extend this strategy to HIV-1 infection. Using drug-based lead discovery, we report the concentration threshold-dependent antiretroviral action of the medicinal chelator deferiprone and validate preclinical findings by a proof-of-concept double-blind trial. In isolate-infected primary cultures, supra-threshold concentrations during deferiprone monotherapy caused decline of HIV-1 RNA and HIV-1 DNA; did not allow viral breakthrough for up to 35 days on-drug, indicating resiliency against viral resistance; and prevented, for at least 87 days off-drug, viral rebound. Displaying a steep dose-effect curve, deferiprone produced infection-independent deficiency of hydroxylated hypusyl-eIF5A. However, unhydroxylated deoxyhypusyl-eIF5A accumulated particularly in HIV-infected cells; they preferentially underwent apoptotic DNA fragmentation. Since the threshold, ascertained at about 150 μM, is achievable in deferiprone-treated patients, we proceeded from cell culture directly to an exploratory trial. HIV-1 RNA was measured after 7 days on-drug and after 28 and 56 days off-drug. Subjects who attained supra-threshold concentrations in serum and completed the protocol of 17 oral doses, experienced a zidovudine-like decline of HIV-1 RNA on-drug that was maintained off-drug without statistically significant rebound for 8 weeks, over 670 times the drug's half-life and thus clearance from circulation. The uniform deferiprone threshold is in agreement with mapping of, and crystallographic 3D-data on, the active site of deoxyhypusyl hydroxylase (DOHH), the eIF5A-hydroxylating enzyme. We propose that deficiency of hypusine-containing eIF5A impedes the translation of mRNAs encoding proline cluster ('polyproline')-containing proteins, exemplified by Gag/p24, and facilitated by the excess of deoxyhypusine-containing eIF5A, releases the innate apoptotic defense of HIV-infected cells from viral blockade, thus depleting the cellular reservoir of HIV-1 DNA that drives breakthrough and rebound. TRIAL REGISTRATION ClinicalTrial.gov NCT02191657.
Collapse
Affiliation(s)
- Deepti Saxena
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael Spino
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ApoPharma Inc., Toronto, Ontario, Canada
| | | | | | - Bernadette M. Cracchiolo
- Department of Obstetrics, Gynecology and Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Axel-Rainer Hanauske
- Oncology Center and Medical Clinic III, Asklepios Klinik St. Georg, Hamburg, Germany
| | | | - Michael B. Mathews
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bart Holland
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland, United States of America
| | - Tsafi Pe’ery
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Paul E. Palumbo
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- * E-mail: (PEP); (HMHA)
| | - Hartmut M. Hanauske-Abel
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Obstetrics, Gynecology and Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- * E-mail: (PEP); (HMHA)
| |
Collapse
|
10
|
Cromer D, Schlub TE, Smyth RP, Grimm AJ, Chopra A, Mallal S, Davenport MP, Mak J. HIV-1 Mutation and Recombination Rates Are Different in Macrophages and T-cells. Viruses 2016; 8:118. [PMID: 27110814 PMCID: PMC4848610 DOI: 10.3390/v8040118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/05/2016] [Accepted: 04/19/2016] [Indexed: 11/16/2022] Open
Abstract
High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics.
Collapse
Affiliation(s)
- Deborah Cromer
- Infection Analytics Program, Kirby Institute, UNSW Australia, Sydney NSW 2052, Australia.
- Centre for Vascular Research, UNSW Australia, Sydney NSW 2052, Australia.
| | - Timothy E Schlub
- Sydney School of Public Health, Sydney Medical School, University of Sydney, Sydney NSW 2006, Australia.
| | - Redmond P Smyth
- Centre for Virology, Burnet Institute, Melbourne VIC 3004, Australia.
- Architecture et Réactivité de l'ARN, IBMC, CNRS, Université de Strasbourg, 67084 Strasbourg, France.
| | - Andrew J Grimm
- Infection Analytics Program, Kirby Institute, UNSW Australia, Sydney NSW 2052, Australia.
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Perth WA 6150, Australia.
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Perth WA 6150, Australia.
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute, UNSW Australia, Sydney NSW 2052, Australia.
- Centre for Vascular Research, UNSW Australia, Sydney NSW 2052, Australia.
| | - Johnson Mak
- Biosecurity Flagship, CSIRO (AAHL), Geelong VIC 3220, Australia.
- School of Medicine, Deakin University and CSIRO (AAHL), Geelong VIC 3216, Australia.
| |
Collapse
|
11
|
Rawson JMO, Clouser CL, Mansky LM. Rapid Determination of HIV-1 Mutant Frequencies and Mutation Spectra Using an mCherry/EGFP Dual-Reporter Viral Vector. Methods Mol Biol 2016; 1354:71-88. [PMID: 26714706 DOI: 10.1007/978-1-4939-3046-3_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The high mutation rate of human immunodeficiency virus type-1 (HIV-1) has been a pivotal factor in its evolutionary success as a human pathogen, driving the emergence of drug resistance, immune system escape, and invasion of distinct anatomical compartments. Extensive research has focused on understanding how various cellular and viral factors alter the rates and types of mutations produced during viral replication. Here, we describe a single-cycle dual-reporter vector assay that relies upon the detection of mutations that eliminate either expression of mCherry or enhanced green fluorescent protein (EGFP). The reporter-based method can be used to efficiently quantify changes in mutant frequencies and mutation spectra that arise due to a variety of factors, including viral mutagens, drug resistance mutations, cellular physiology, and APOBEC3 proteins.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Microbiology, University of Minnesota, Graduate Program, Mayo Mail Code 196, 1460 Mayo Building, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
The external domains of the HIV-1 envelope are a mutational cold spot. Nat Commun 2015; 6:8571. [PMID: 26450412 PMCID: PMC4687473 DOI: 10.1038/ncomms9571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/07/2015] [Indexed: 01/27/2023] Open
Abstract
In RNA viruses, mutations occur fast and have large fitness effects. While this affords remarkable adaptability, it can also endanger viral survival due to the accumulation of deleterious mutations. How RNA viruses reconcile these two opposed facets of mutation is still unknown. Here we show that, in human immunodeficiency virus (HIV-1), spontaneous mutations are not randomly located along the viral genome. We find that the viral mutation rate experiences a threefold reduction in the region encoding the most external domains of the viral envelope, which are strongly targeted by neutralizing antibodies. This contrasts with the hypermutation mechanisms deployed by other, more slowly mutating pathogens such as DNA viruses and bacteria, in response to immune pressure. We show that downregulation of the mutation rate in HIV-1 is exerted by the template RNA through changes in sequence context and secondary structure, which control the activity of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (A3)-mediated cytidine deamination and the fidelity of the viral reverse transcriptase. Mutations allow RNA virus to adapt fast but also entail fitness costs. Geller et al. show that, in HIV-1, mutations occur three times less often in the most external domains of the envelope, and that this is due to changes in RNA sequence context and structure, which control viral and host-encoded mutational mechanisms.
Collapse
|
13
|
Nascimento-Brito S, Paulo Zukurov J, Maricato JT, Volpini AC, Salim ACM, Araújo FMG, Coimbra RS, Oliveira GC, Antoneli F, Janini LMR. HIV-1 Tropism Determines Different Mutation Profiles in Proviral DNA. PLoS One 2015; 10:e0139037. [PMID: 26413773 PMCID: PMC4587555 DOI: 10.1371/journal.pone.0139037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/07/2015] [Indexed: 01/19/2023] Open
Abstract
In order to establish new infections HIV-1 particles need to attach to receptors expressed on the cellular surface. HIV-1 particles interact with a cell membrane receptor known as CD4 and subsequently with another cell membrane molecule known as a co-receptor. Two major different co-receptors have been identified: C-C chemokine Receptor type 5 (CCR5) and C-X-C chemokine Receptor type 4 (CXCR4) Previous reports have demonstrated cellular modifications upon HIV-1 binding to its co-receptors including gene expression modulations. Here we investigated the effect of viral binding to either CCR5 or CXCR4 co-receptors on viral diversity after a single round of reverse transcription. CCR5 and CXCR4 pseudotyped viruses were used to infect non-stimulated and stimulated PBMCs and purified CD4 positive cells. We adopted the SOLiD methodology to sequence virtually the entire proviral DNA from all experimental infections. Infections with CCR5 and CXCR4 pseudotyped virus resulted in different patterns of genetic diversification. CCR5 virus infections produced extensive proviral diversity while in CXCR4 infections a more localized substitution process was observed. In addition, we present pioneering results of a recently developed method for the analysis of SOLiD generated sequencing data applicable to the study of viral quasi-species. Our findings demonstrate the feasibility of viral quasi-species evaluation by NGS methodologies. We presented for the first time strong evidence for a host cell driving mechanism acting on the HIV-1 genetic variability under the control of co-receptor stimulation. Additional investigations are needed to further clarify this question, which is relevant to viral diversification process and consequent disease progression.
Collapse
Affiliation(s)
- Sieberth Nascimento-Brito
- Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rio de Janeiro, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Juliana T. Maricato
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Angela C. Volpini
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Anna Christina M. Salim
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Flávio M. G. Araújo
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Roney S. Coimbra
- Biosystems Informatics Group, CPqRR, FIOCRUZ, Belo Horizonte, Brazil
| | - Guilherme C. Oliveira
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Fernando Antoneli
- Departamento de Informática em Saúde, EPM, UNIFESP, São Paulo, Brazil
- Laboratório de Biocomplexidade e Genômica Evolutiva, EPM, UNIFESP, São Paulo, Brazil
| | - Luiz Mário R. Janini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Medicina, EPM, UNIFESP, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
14
|
Cuevas JM, Geller R, Garijo R, López-Aldeguer J, Sanjuán R. Extremely High Mutation Rate of HIV-1 In Vivo. PLoS Biol 2015; 13:e1002251. [PMID: 26375597 PMCID: PMC4574155 DOI: 10.1371/journal.pbio.1002251] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
Rates of spontaneous mutation critically determine the genetic diversity and evolution of RNA viruses. Although these rates have been characterized in vitro and in cell culture models, they have seldom been determined in vivo for human viruses. Here, we use the intrapatient frequency of premature stop codons to quantify the HIV-1 genome-wide rate of spontaneous mutation in DNA sequences from peripheral blood mononuclear cells. This reveals an extremely high mutation rate of (4.1 ± 1.7) × 10−3 per base per cell, the highest reported for any biological entity. Sequencing of plasma-derived sequences yielded a mutation frequency 44 times lower, indicating that a large fraction of viral genomes are lethally mutated and fail to reach plasma. We show that the HIV-1 reverse transcriptase contributes only 2% of mutations, whereas 98% result from editing by host cytidine deaminases of the A3 family. Hypermutated viral sequences are less abundant in patients showing rapid disease progression compared to normal progressors, highlighting the antiviral role of A3 proteins. However, the amount of A3-mediated editing varies broadly, and we find that low-edited sequences are more abundant among rapid progressors, suggesting that suboptimal A3 activity might enhance HIV-1 genetic diversity and pathogenesis. The rate of spontaneous mutation of the HIV-1 genome within its human host is exceptionally high, is mostly driven by host cytidine deaminases, and probably plays a role in disease progression. The high levels of genetic diversity of the HIV-1 virus grant it the ability to escape the immune system, to rapidly evolve drug resistance, and to circumvent vaccination strategies. However, our knowledge of HIV-1 mutation rates has been largely restricted to in vitro and cell culture studies because of the inherent complexity of measuring these rates in vivo. Here, by analyzing the frequency of premature stop codons, we show that the HIV-1 mutation rate in vivo is two orders of magnitude higher than that predicted by in vitro studies, making it the highest reported mutation rate for any biological system. A large component of this rate is from host cellular cytidine deaminases, which induce mutations in the viral DNA as a defense mechanism. While the HIV-1 genome is hypermutated in blood cells, only a very small fraction of these mutations reach the plasma, indicating that many viruses are defective as a result of the extremely high mutation load. In addition, we find that the HIV-1 mutation rate tends to be higher in patients showing normal disease progression than in those undergoing rapid progression, emphasizing the negative impact on viral fitness of hypermutation by host cytidine deaminases. However, we also observe subpopulations of weakly-mutated viral genomes whose sequence diversity may influence viral pathogenesis. Our work highlights the fine balance for HIV-1 between enough mutation to evade host responses and too much mutation that can inactivate the virus.
Collapse
Affiliation(s)
- José M. Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - Ron Geller
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - José López-Aldeguer
- Hospital Universitario La Fe, Valencia, Spain
- CoRIS and HIV Biobank, Spanish AIDS Research Network, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
15
|
Rawson JMO, Landman SR, Reilly CS, Mansky LM. HIV-1 and HIV-2 exhibit similar mutation frequencies and spectra in the absence of G-to-A hypermutation. Retrovirology 2015; 12:60. [PMID: 26160407 PMCID: PMC4496919 DOI: 10.1186/s12977-015-0180-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/08/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 2 (HIV-2) is often distinguished clinically by lower viral loads, reduced transmissibility, and longer asymptomatic periods than for human immunodeficiency virus type 1 (HIV-1). Differences in the mutation frequencies of HIV-1 and HIV-2 have been hypothesized to contribute to the attenuated progression of HIV-2 observed clinically. RESULTS To address this hypothesis, we performed Illumina sequencing of multiple amplicons prepared from cells infected with HIV-1 or HIV-2, resulting in ~4.7 million read pairs and the identification of ~200,000 mutations after data processing. We observed that: (1) HIV-2 displayed significantly lower total mutation, substitution, and transition mutation frequencies than that of HIV-1, along with a mutation spectrum markedly less biased toward G-to-A transitions, (2) G-to-A hypermutation consistent with the activity of APOBEC3 proteins was observed for both HIV-1 and HIV-2 despite the presence of Vif, (3) G-to-A hypermutation was significantly higher for HIV-1 than for HIV-2, and (4) HIV-1 and HIV-2 total mutation frequencies were not significantly different in the absence of G-to-A hypermutants. CONCLUSIONS Taken together, these data demonstrate that HIV-2 exhibits a distinct mutational spectrum and a lower mutation frequency relative to HIV-1. However, the observed differences were primarily due to reduced levels of G-to-A hypermutation for HIV-2. These findings suggest that HIV-2 may be less susceptible than HIV-1 to APOBEC3-mediated hypermutation, but that the fidelities of other mutational sources (such as reverse transcriptase) are relatively similar for HIV-1 and HIV-2. Overall, these data imply that differences in replication fidelity are likely not a major contributing factor to the unique clinical features of HIV-2 infection.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Cavan S Reilly
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
- Department of Microbiology, University of Minnesota, Minneapolis, MN, USA.
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Getting to Know Viral Evolutionary Strategies: Towards the Next Generation of Quasispecies Models. Curr Top Microbiol Immunol 2015; 392:201-17. [PMID: 26271604 DOI: 10.1007/82_2015_457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral populations are formed by complex ensembles of genomes with broad phenotypic diversity. The adaptive strategies deployed by these ensembles are multiple and often cannot be predicted a priori. Our understanding of viral dynamics is mostly based on two kinds of empirical approaches: one directed towards characterizing molecular changes underlying fitness changes and another focused on population-level responses. Simultaneously, theoretical efforts are directed towards developing a formal picture of viral evolution by means of more realistic fitness landscapes and reliable population dynamics models. New technologies, chiefly the use of next-generation sequencing and related tools, are opening avenues connecting the molecular and the population levels. In the near future, we hope to be witnesses of an integration of these still decoupled approaches, leading into more accurate and realistic quasispecies models able to capture robust generalities and endowed with a satisfactory predictive power.
Collapse
|
17
|
Rawson JMO, Mansky LM. Retroviral vectors for analysis of viral mutagenesis and recombination. Viruses 2014; 6:3612-42. [PMID: 25254386 PMCID: PMC4189041 DOI: 10.3390/v6093612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022] Open
Abstract
Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Achuthan V, Keith BJ, Connolly BA, DeStefano JJ. Human immunodeficiency virus reverse transcriptase displays dramatically higher fidelity under physiological magnesium conditions in vitro. J Virol 2014; 88:8514-27. [PMID: 24850729 PMCID: PMC4135932 DOI: 10.1128/jvi.00752-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The fidelity of human immunodeficiency virus (HIV) reverse transcriptase (RT) has been a subject of intensive investigation. The mutation frequencies for the purified enzyme in vitro vary widely but are typically in the 10(-4) range (per nucleotide addition), making the enzyme severalfold less accurate than most polymerases, including other RTs. This has often been cited as a factor in HIV's accelerated generation of genetic diversity. However, cellular experiments suggest that HIV does not have significantly lower fidelity than other retroviruses and shows a mutation frequency in the 10(-5) range. In this report, we reconcile, at least in part, these discrepancies by showing that HIV RT fidelity in vitro is in the same range as cellular results from experiments conducted with physiological (for lymphocytes) concentrations of free Mg(2+) (~0.25 mM) and is comparable to Moloney murine leukemia virus (MuLV) RT fidelity. The physiological conditions produced mutation rates that were 5 to 10 times lower than those obtained under typically employed in vitro conditions optimized for RT activity (5 to 10 mM Mg(2+)). These results were consistent in both commonly used lacZα complementation and steady-state fidelity assays. Interestingly, although HIV RT showed severalfold-lower fidelity under high-Mg(2+) (6 mM) conditions, MuLV RT fidelity was insensitive to Mg(2+). Overall, the results indicate that the fidelity of HIV replication in cells is compatible with findings of experiments carried out in vitro with purified HIV RT, providing more physiological conditions are used. IMPORTANCE Human immunodeficiency virus rapidly evolves through the generation and subsequent selection of mutants that can circumvent the immune response and escape drug therapy. This process is fueled, in part, by the presumably highly error-prone HIV polymerase reverse transcriptase (RT). Paradoxically, results of studies examining HIV replication in cells indicate an error frequency that is ~10 times lower than the rate for RT in the test tube, which invokes the possibility of factors that make RT more accurate in cells. This study brings the cellular and test tube results in closer agreement by showing that HIV RT is not more error prone than other RTs and, when assayed under physiological magnesium conditions, has a much lower error rate than in typical assays conducted using conditions optimized for enzyme activity.
Collapse
Affiliation(s)
- Vasudevan Achuthan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Brian J Keith
- Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernard A Connolly
- Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
19
|
Abstract
ABSTRACT: RNA viruses replicate their genomes with very high error rates, which leads to the generation of a large genetic diversity that makes them highly adaptable to most environmental pressures, including antiviral drugs and immune responses. However, since most mutations are deleterious, an excess of errors can be very negative for RNA viruses, entailing that error rates must be finely regulated. Currently, the manipulation of the error rate is emerging as a promising antiviral therapy that could minimize the problem of virus adaptation to classical treatments. This review provides a detailed analysis of the different outcomes that can result from the variation of the error rate in RNA viruses, on the basis of the more relevant findings obtained in experimental studies.
Collapse
|
20
|
Abstract
ABSTRACT: It is well established that RNA viruses show extremely high mutation rates, but less attention has been paid to the fact that their mutation rates also vary strongly, from 10-6 to 10-4 substitutions per nucleotide per cell infection. The causes explaining this variability are still poorly understood, but candidate factors are the viral genome size and polarity, host-specific gene expression patterns, or the intracellular environment. Differences between animal and plant viruses, or between arthropod-borne and directly transmitted viruses have also been postulated. Finally, RNA viruses may be able to regulate the rate at which new mutations spread in the population by modifying features of the viral infection cycle, such as lysis time.
Collapse
Affiliation(s)
- Marine Combe
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Valencia, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Valencia, Spain
- Departament de Genetica, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
21
|
Almodovar S. The complexity of HIV persistence and pathogenesis in the lung under antiretroviral therapy: challenges beyond AIDS. Viral Immunol 2014; 27:186-99. [PMID: 24797368 DOI: 10.1089/vim.2013.0130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antiretroviral therapy (ART) represents a significant milestone in the battle against AIDS. However, we continue learning about HIV and confronting challenges 30 years after its discovery. HIV has cleverly tricked both the host immune system and ART. First, the many HIV subtypes and recombinant forms have different susceptibilities to antiretroviral drugs, which may represent an issue in countries where ART is just being introduced. Second, even under the suppressive pressures of ART, HIV still increases inflammatory mediators, deregulates apoptosis and proliferation, and induces oxidative stress in the host. Third, the preference of HIV for CXCR4 as a co-receptor may also have noxious outcomes, including potential malignancies. Furthermore, HIV still replicates cryptically in anatomical reservoirs, including the lung. HIV impairs bronchoalveolar T-lymphocyte and macrophage immune responses, rendering the lung susceptible to comorbidities. In addition, HIV-infected individuals are significantly more susceptible to long-term HIV-associated complications. This review focuses on chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension, and lung cancer. Almost two decades after the advent of highly active ART, we now know that HIV-infected individuals on ART live as long as the uninfected population. Fortunately, its availability is rapidly increasing in low- and middle-income countries. Nevertheless, ART is not risk-free: the developed world is facing issues with antiretroviral drug toxicity, resistance, and drug-drug interactions, while developing countries are confronting issues with immune reconstitution inflammatory syndrome. Several aspects of the complexity of HIV persistence and challenges with ART are discussed, as well as suggestions for new avenues of research.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
22
|
Zhao N, Pei SN, Parekh P, Salazar E, Zu Y. Blocking interaction of viral gp120 and CD4-expressing T cells by single-stranded DNA aptamers. Int J Biochem Cell Biol 2014; 51:10-8. [PMID: 24661998 DOI: 10.1016/j.biocel.2014.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/26/2014] [Accepted: 03/13/2014] [Indexed: 01/29/2023]
Abstract
To investigate the potential clinical application of aptamers to prevention of HIV infection, single-stranded DNA (ssDNA) aptamers specific for CD4 were developed using the systematic evolution of ligands by exponential enrichment approach and next generation sequencing. In contrast to RNA-based aptamers, the developed ssDNA aptamers were stable in human serum up to 12h. Cell binding assays revealed that the aptamers specifically targeted CD4-expressing cells with high binding affinity (Kd=1.59nM), a concentration within the range required for therapeutic application. Importantly, the aptamers selectively bound CD4 on human cells and disrupted the interaction of viral gp120 to CD4 receptors, which is a prerequisite step of HIV-1 infection. Functional studies showed that the aptamer polymers significantly blocked binding of viral gp120 to CD4-expressing cells by up to 70% inhibition. These findings provide a new approach to prevent HIV-1 transmission using oligonucleotide aptamers.
Collapse
Affiliation(s)
- Nianxi Zhao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Sung-nan Pei
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Parag Parekh
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Eric Salazar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Combe M, Sanjuán R. Variation in RNA virus mutation rates across host cells. PLoS Pathog 2014; 10:e1003855. [PMID: 24465205 PMCID: PMC3900646 DOI: 10.1371/journal.ppat.1003855] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/12/2013] [Indexed: 01/21/2023] Open
Abstract
It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10−6 to 10−4 substitutions per nucleotide per round of copying (s/n/r) and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV), which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10−5 s/n/r). Cell immortalization through p53 inactivation and oxygen levels (1–21%) did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature. RNA viruses show high rates of spontaneous mutation, a feature that profoundly influences viral evolution, disease emergence, the appearance of drug resistances, and vaccine efficacy. However, RNA virus mutation rates vary substantially and the factors determining this variability remain poorly understood. Here, we investigated the effects of host factors on viral replication fidelity by measuring the viral mutation rate in different cell types and under various culturing conditions. To carry out these experiments we chose the vesicular stomatitis virus (VSV), an insect-transmitted mammalian RNA virus with an extremely wide cellular and host tropism. We found that the VSV replication machinery was robust to changes in cellular physiology driven by cell immortalization or shifts in temperature and oxygen levels. In contrast, VSV mutated significantly more slowly in insect cells than in mammalian cells, a finding may help us to understand why arthropod-borne viruses tend to evolve more slowly than directly transmitted viruses in nature.
Collapse
Affiliation(s)
- Marine Combe
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
24
|
Ammaranond P, Sanguansittianant S, Raju PA, Cunningham P, Horthongkham N. Development of a cost-effective assay for genotyping of HIV-1 non-B subtype for drug resistance. J Virol Methods 2014; 199:102-7. [PMID: 24462843 DOI: 10.1016/j.jviromet.2014.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/04/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
Highly Active Antiretroviral Therapy (HAART) is the most effective way to control HIV-1 replication in infected patients. Prior to the start of therapy, genotyping of HIV-1 for mutations that confer resistance to potential drug candidates is crucial for it allows formulating an effective regimen. Ineffective drugs are excluded and potentially effective ones are included. A number of diagnostic kits are commercially available for this purpose but are tailored for HIV-1 subtype-B, a strain chiefly found in AIDS patients of Europe and America. However, AIDS patients of South-East Asia including Thailand are predominant infected with HIV-1 subtype non-B. In this study, an inexpensive assay was developed that genotypes HIV-1 non-B for drug resistance and tested it on 99 Thai AIDS patients. Results showed that 98 were infected with HIV-1 subtype non-B (or CRF01_AE) and one with subtype-B. Within the HIV-1 polymerase (pol), reverse transcriptase (RT) gene, the assay identified 18 codon mutations associated with resistance to Nucleoside/Nucleotide Reverse Transcriptase Inhibitors (NRTIs) and 17 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs). Employing a commercially available kit, parallel genotyping of patient samples confirmed results providing validation of the assay. This method approximately costs 100 US dollars compared to $300 for a commercially available test. In Thailand, the burden of cost for treating HIV-infections is high not only for the average citizen but the country's health care systems. Therefore the low cost and yet effective genotyping test for HIV-1 subtype non-B is a practical and viable solution to expensive genotyping platforms.
Collapse
Affiliation(s)
- Palanee Ammaranond
- Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand; Innovation Center for Research and Development of Medical Diagnostic Technology Project, Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Sayompoo Sanguansittianant
- Innovation Center for Research and Development of Medical Diagnostic Technology Project, Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Paul A Raju
- National Engineering Research Center for Miniaturized Detection System, Northwest University, Xi'an, China
| | | | - Navin Horthongkham
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Cell tropism predicts long-term nucleotide substitution rates of mammalian RNA viruses. PLoS Pathog 2014; 10:e1003838. [PMID: 24415935 PMCID: PMC3887100 DOI: 10.1371/journal.ppat.1003838] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/04/2013] [Indexed: 02/05/2023] Open
Abstract
The high rates of RNA virus evolution are generally attributed to replication with error-prone RNA-dependent RNA polymerases. However, these long-term nucleotide substitution rates span three orders of magnitude and do not correlate well with mutation rates or selection pressures. This substitution rate variation may be explained by differences in virus ecology or intrinsic genomic properties. We generated nucleotide substitution rate estimates for mammalian RNA viruses and compiled comparable published rates, yielding a dataset of 118 substitution rates of structural genes from 51 different species, as well as 40 rates of non-structural genes from 28 species. Through ANCOVA analyses, we evaluated the relationships between these rates and four ecological factors: target cell, transmission route, host range, infection duration; and three genomic properties: genome length, genome sense, genome segmentation. Of these seven factors, we found target cells to be the only significant predictors of viral substitution rates, with tropisms for epithelial cells or neurons (P<0.0001) as the most significant predictors. Further, one-tailed t-tests showed that viruses primarily infecting epithelial cells evolve significantly faster than neurotropic viruses (P<0.0001 and P<0.001 for the structural genes and non-structural genes, respectively). These results provide strong evidence that the fastest evolving mammalian RNA viruses infect cells with the highest turnover rates: the highly proliferative epithelial cells. Estimated viral generation times suggest that epithelial-infecting viruses replicate more quickly than viruses with different cell tropisms. Our results indicate that cell tropism is a key factor in viral evolvability. RNA viruses are the fastest evolving human pathogens, making their treatment and control difficult. Compared to DNA viruses, RNA viruses replicate with much lower fidelity, which can explain why RNA viruses evolve significantly faster than most DNA viruses. However, there is tremendous variation among the evolutionary rates of different RNA viruses, which is not explained by variation in mutation rates. Here we present a survey of mammalian RNA virus rates of evolution, and a comprehensive comparison of these rates to different properties of virus genomic architecture and ecology. We found that cell tropism is the most significant predictor of long-term rates of mammalian RNA virus evolution. For instance, viruses targeting epithelial cells evolve significantly faster than viruses that target neurons. Our results provide mechanistic insight into why viruses that infect respiratory and gastrointestinal epithelia have been difficult to control.
Collapse
|