1
|
Chen SC, Xu CT, Chang CF, Yang CS, Lin PH, Liu WM, Chen Y, Yu CH. Characterization of the binding features between SARS-CoV-2 5'-proximal transcripts of genomic RNA and nucleocapsid proteins. RNA Biol 2025; 22:1-16. [PMID: 40077853 PMCID: PMC11913385 DOI: 10.1080/15476286.2025.2471643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Packaging signals (PSs) of coronaviruses (CoVs) are specific RNA elements recognized by nucleocapsid (N) proteins that direct the selective packaging of genomic RNAs (gRNAs). These signals have been identified in the coding regions of the nonstructural protein 15 (Nsp 15) in CoVs classified under Embecovirus, a subgenus of betacoronaviruses (beta-CoVs). The PSs in other alpha- and beta-CoVs have been proposed to reside in the 5'-proximal regions of gRNAs, supported by comprehensive phylogenetic evidence. However, experimental data remain limited. In this study, we investigated the interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 5'-proximal gRNA transcripts and N proteins using electrophoretic mobility shift assays (EMSAs). Our findings revealed that the in vitro synthesized 5'-proximal gRNA transcripts of CoVs can shift from a major conformation to alternative conformations. We also observed that the conformer comprising multiple stem-loops (SLs) is preferentially bound by N proteins. Deletions of the 5'-proximal structural elements of CoV gRNA transcripts, SL1 and SL5a/b/c in particular, were found to promote the formation of alternative conformations. Furthermore, we identified RNA-binding peptides from a pool derived from SARS-CoV N protein. These RNA-interacting peptides were shown to preferentially bind to wild-type SL5a RNA. In addition, our observations of N protein condensate formation in vitro demonstrated that liquid-liquid phase separation (LLPS) of N proteins with CoV-5'-UTR transcripts was influenced by the presence of SL5a/b/c. In conclusion, these results collectively reveal previously uncharacterized binding features between the 5'-proximal transcripts of CoV gRNAs and N proteins.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan City, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Cui-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chuan-Fu Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chia-Shin Yang
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Pin-Han Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yeh Chen
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
2
|
Bai YZ, Wang S, Sun Y, Liu YG, Zhang HL, Wang Q, Huang R, Rao CH, Xu SJ, Tian ZJ, An TQ, Cai XH, Tang YD. The full-length nsp2 replicase contributes to viral assembly in highly pathogenic PRRSV-2. J Virol 2025; 99:e0182124. [PMID: 39601570 PMCID: PMC11784222 DOI: 10.1128/jvi.01821-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSVs) are significant pathogens that affect the global swine industry. Its virions consist of a central core composed of nucleocapsid (N) protein, surrounded by multiple distinct viral envelope proteins. However, the mechanisms underlying the recognition and packaging of N protein by viral envelope proteins remain elusive. In this study, we elucidated the role of nonstructural protein 2 (nsp2) from highly pathogenic PRRSV-2 (HP-PRRSV-2) in viral assembly. Firstly, among all the tested envelope proteins, only glycoprotein 5 (GP5) exhibits limited interaction with N protein. Interestingly, we demonstrated that full-length nsp2 co-immunoprecipitates (Co-IPs) with the N protein and all tested viral envelope proteins. In the presence of full-length nsp2, the N protein interacts with distinct viral envelope proteins. Moreover, upon viral infection, Co-IP experiments using nsp2-specific antibodies or N-specific antibodies revealed the formation of a complex between N and nsp2 with the M protein, GP2a, and GP5. However, neither of the two short forms of nsp2-namely nsp2TF nor nsp2N-participates in this process as they fail to interact with the N protein. Finally, our results demonstrate that this process occurs in the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Overall, our findings unveil a novel functional role for full-length nsp2 of HP-PRRSV-2 in facilitating the assembly of the N protein with viral envelope proteins.IMPORTANCEThe virus assembly process of arteriviruses remains largely elusive, including the direct interaction between N protein and viral envelope proteins or the potential requirement for additional proteins in facilitating assembly. Moreover, where the N protein assembles with viral envelope proteins during the virus lifecycle remains unclear. This study reveals a novel role for nonstructural protein 2 (nsp2) in highly pathogenic porcine reproductive and respiratory syndrome virus type 2 (HP-PRRSV-2), highlighting its involvement in HP-PRRSV-2 assembly. These findings provide crucial insights into HP-PRRSV-2 assembly and enhance our understanding of their lifecycle. Overall, this study offers an alternative approach to developing a new antiviral strategy targeting PRRSV-2 assembly.
Collapse
Affiliation(s)
- Yuan-Zhe Bai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yue Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yong-Gang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hong-Liang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Rui Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Cui-Hong Rao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shi-Jia Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Bezerra PR, Almeida FCL. Structural basis for the participation of the SARS-CoV-2 nucleocapsid protein in the template switch mechanism and genomic RNA reorganization. J Biol Chem 2024; 300:107834. [PMID: 39343000 PMCID: PMC11541846 DOI: 10.1016/j.jbc.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The COVID-19 pandemic has resulted in a significant toll of deaths worldwide, exceeding seven million individuals, prompting intensive research efforts aimed at elucidating the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 infection. Despite the rapid development of effective vaccines and therapeutic interventions, COVID-19 remains a threat to humans due to the emergence of novel variants and largely unknown long-term consequences. Among the viral proteins, the nucleocapsid protein (N) stands out as the most conserved and abundant, playing the primary role in nucleocapsid assembly and genome packaging. The N protein is promiscuous for the recognition of RNA, yet it can perform specific functions. Here, we discuss the structural basis of specificity, which is directly linked to its regulatory role. Notably, the RNA chaperone activity of N is central to its multiple roles throughout the viral life cycle. This activity encompasses double-stranded RNA (dsRNA) annealing and melting and facilitates template switching, enabling discontinuous transcription. N also promotes the formation of membrane-less compartments through liquid-liquid phase separation, thereby facilitating the congregation of the replication and transcription complex. Considering the information available regarding the catalytic activities and binding signatures of the N protein-RNA interaction, this review focuses on the regulatory role of the SARS-CoV-2 N protein. We emphasize the participation of the N protein in discontinuous transcription, template switching, and RNA chaperone activity, including double-stranded RNA melting and annealing activities.
Collapse
Affiliation(s)
- Peter R Bezerra
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Masters PS. Caution urged for work with newly constructed human coronavirus. Proc Natl Acad Sci U S A 2024; 121:e2415892121. [PMID: 39432791 PMCID: PMC11536158 DOI: 10.1073/pnas.2415892121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Affiliation(s)
- Paul S. Masters
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY12259
| |
Collapse
|
5
|
Terada Y, Amarbayasgalan S, Matsuura Y, Kamitani W. Regulation viral RNA transcription and replication by higher-order RNA structures within the nsp1 coding region of MERS coronavirus. Sci Rep 2024; 14:19594. [PMID: 39179600 PMCID: PMC11343750 DOI: 10.1038/s41598-024-70601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Coronavirus (CoV) possesses numerous functional cis-acting elements in its positive-strand genomic RNA. Although most of these RNA structures participate in viral replication, the functions of RNA structures in the genomic RNA of CoV in viral replication remain unclear. In this study, we investigated the functions of the higher-order RNA stem-loop (SL) structures SL5B, SL5C, and SL5D in the ORF1a coding region of Middle East respiratory syndrome coronavirus (MERS-CoV) in viral replication. Our approach, using reverse genetics of a bacterial artificial chromosome system, revealed that SL5B and SL5C play essential roles in the discontinuous transcription of MERS-CoV. In silico analyses predicted that SL5C interacts with a bulged stem-loop (BSL) in the 3' untranslated region, suggesting that the RNA structure of SL5C is important for viral RNA transcription. Conversely, SL5D did not affect transcription, but mediated the synthesis of positive-strand genomic RNA. Additionally, the RNA secondary structure of SL5 in the revertant virus of the SL5D mutant was similar to that of the wild-type, indicating that the RNA structure of SL5D can finely tune RNA replication in MERS-CoV. Our data indicate novel regulatory mechanisms of viral RNA transcription and replication by higher-order RNA structures in the MERS-CoV genomic RNA.
Collapse
Affiliation(s)
- Yutaka Terada
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sodbayasgalan Amarbayasgalan
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research (CiDER), Suita, Japan
- Research Institute for Microbial Diseases (RIMD), Suita, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Japan
| | - Wataru Kamitani
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Japan.
| |
Collapse
|
6
|
Zhang Y, Wu F, Han Y, Wu Y, Huang L, Huang Y, Yan D, Jiang X, Ma J, Xu W. Unraveling the assembly mechanism of SADS-CoV virus nucleocapsid protein: insights from RNA binding, dimerization, and epitope diversity profiling. J Virol 2024; 98:e0092624. [PMID: 39082816 PMCID: PMC11334509 DOI: 10.1128/jvi.00926-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused significant disruptions in porcine breeding and raised concerns about potential human infection. The nucleocapsid (N) protein of SADS-CoV plays a vital role in viral assembly and replication, but its structure and functions remain poorly understood. This study utilized biochemistry, X-ray crystallography, and immunization techniques to investigate the N protein's structure and function in SADS-CoV. Our findings revealed distinct domains within the N protein, including an RNA-binding domain, two disordered domains, and a dimerization domain. Through biochemical assays, we confirmed that the N-terminal domain functions as an RNA-binding domain, and the C-terminal domain is involved in dimerization, with the crystal structure analysis providing visual evidence of dimer formation. Immunization experiments demonstrated that the disordered domain 2 elicited a significant antibody response. These identified domains and their interactions are crucial for viral assembly. This comprehensive understanding of the N protein in SADS-CoV enhances our knowledge of its assembly and replication mechanisms, enabling the development of targeted interventions and therapeutic strategies. IMPORTANCE SADS-CoV is a porcine coronavirus that originated from a bat HKU2-related coronavirus. It causes devastating swine diseases and poses a high risk of spillover to humans. The coronavirus N protein, as the most abundant viral protein in infected cells, likely plays a key role in viral assembly and replication. However, the structure and function of this protein remain unclear. Therefore, this study employed a combination of biochemistry and X-ray crystallography to uncover distinct structural domains in the N protein, including RNA-binding domains, two disordered domains, and dimerization domains. Additionally, we made the novel discovery that the disordered domain elicited a significant antibody response. These findings provide new insights into the structure and functions of the SADS-CoV N protein, which have important implications for future studies on SADS-CoV diagnosis, as well as the development of vaccines and anti-viral drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fang Wu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yongyue Han
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuzhe Wu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liqiu Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuanwei Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Di Yan
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiwen Jiang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Estelle AB, Forsythe HM, Yu Z, Hughes K, Lasher B, Allen P, Reardon PN, Hendrix DA, Barbar EJ. RNA structure and multiple weak interactions balance the interplay between RNA binding and phase separation of SARS-CoV-2 nucleocapsid. PNAS NEXUS 2023; 2:pgad333. [PMID: 37901441 PMCID: PMC10605006 DOI: 10.1093/pnasnexus/pgad333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
The nucleocapsid (N) protein of SARS-CoV-2 binds viral RNA, condensing it inside the virion, and phase separating with RNA to form liquid-liquid condensates. There is little consensus on what differentiates sequence-independent N-RNA interactions in the virion or in liquid droplets from those with specific genomic RNA (gRNA) motifs necessary for viral function inside infected cells. To identify the RNA structures and the N domains responsible for specific interactions and phase separation, we use the first 1,000 nt of viral RNA and short RNA segments designed as models for single-stranded and paired RNA. Binding affinities estimated from fluorescence anisotropy of these RNAs to the two-folded domains of N (the NTD and CTD) and comparison to full-length N demonstrate that the NTD binds preferentially to single-stranded RNA, and while it is the primary RNA-binding site, it is not essential to phase separation. Nuclear magnetic resonance spectroscopy identifies two RNA-binding sites on the NTD: a previously characterized site and an additional although weaker RNA-binding face that becomes prominent when binding to the primary site is weak, such as with dsRNA or a binding-impaired mutant. Phase separation assays of nucleocapsid domains with double-stranded and single-stranded RNA structures support a model where multiple weak interactions, such as with the CTD or the NTD's secondary face promote phase separation, while strong, specific interactions do not. These studies indicate that both strong and multivalent weak N-RNA interactions underlie the multifunctional abilities of N.
Collapse
Affiliation(s)
- Aidan B Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Heather M Forsythe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Kaitlyn Hughes
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Brittany Lasher
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick Allen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, OR 97331, USA
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
8
|
Aloise C, Schipper JG, van Vliet A, Oymans J, Donselaar T, Hurdiss DL, de Groot RJ, van Kuppeveld FJM. SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b. PLoS Pathog 2023; 19:e1011582. [PMID: 37607209 PMCID: PMC10473545 DOI: 10.1371/journal.ppat.1011582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/01/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera.
Collapse
Affiliation(s)
- Chiara Aloise
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jelle G. Schipper
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Arno van Vliet
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Judith Oymans
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tim Donselaar
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Daniel L. Hurdiss
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Raoul J. de Groot
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frank J. M. van Kuppeveld
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
9
|
Wells HL, Bonavita CM, Navarrete-Macias I, Vilchez B, Rasmussen AL, Anthony SJ. The coronavirus recombination pathway. Cell Host Microbe 2023; 31:874-889. [PMID: 37321171 PMCID: PMC10265781 DOI: 10.1016/j.chom.2023.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Recombination is thought to be a mechanism that facilitates cross-species transmission in coronaviruses, thus acting as a driver of coronavirus spillover and emergence. Despite its significance, the mechanism of recombination is poorly understood, limiting our potential to estimate the risk of novel recombinant coronaviruses emerging in the future. As a tool for understanding recombination, here, we outline a framework of the recombination pathway for coronaviruses. We review existing literature on coronavirus recombination, including comparisons of naturally observed recombinant genomes as well as in vitro experiments, and place the findings into the recombination pathway framework. We highlight gaps in our understanding of coronavirus recombination illustrated by the framework and outline how further experimental research is critical for disentangling the molecular mechanism of recombination from external environmental pressures. Finally, we describe how an increased understanding of the mechanism of recombination can inform pandemic predictive intelligence, with a retrospective emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Heather L Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA; Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| | - Cassandra M Bonavita
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Blake Vilchez
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| |
Collapse
|
10
|
Ahmed MR, Du Z. Molecular Interaction of Nonsense-Mediated mRNA Decay with Viruses. Viruses 2023; 15:v15040816. [PMID: 37112798 PMCID: PMC10141005 DOI: 10.3390/v15040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
The virus–host interaction is dynamic and evolutionary. Viruses have to fight with hosts to establish successful infection. Eukaryotic hosts are equipped with multiple defenses against incoming viruses. One of the host antiviral defenses is the nonsense-mediated mRNA decay (NMD), an evolutionarily conserved mechanism for RNA quality control in eukaryotic cells. NMD ensures the accuracy of mRNA translation by removing the abnormal mRNAs harboring pre-matured stop codons. Many RNA viruses have a genome that contains internal stop codon(s) (iTC). Akin to the premature termination codon in aberrant RNA transcripts, the presence of iTC would activate NMD to degrade iTC-containing viral genomes. A couple of viruses have been reported to be sensitive to the NMD-mediated antiviral defense, while some viruses have evolved with specific cis-acting RNA features or trans-acting viral proteins to overcome or escape from NMD. Recently, increasing light has been shed on the NMD–virus interaction. This review summarizes the current scenario of NMD-mediated viral RNA degradation and classifies various molecular means by which viruses compromise the NMD-mediated antiviral defense for better infection in their hosts.
Collapse
Affiliation(s)
| | - Zhiyou Du
- Correspondence: ; Tel.: +86-571-86843195
| |
Collapse
|
11
|
Discovery and structural characterization of chicoric acid as a SARS-CoV-2 nucleocapsid protein ligand and RNA binding disruptor. Sci Rep 2022; 12:18500. [PMID: 36323732 PMCID: PMC9628480 DOI: 10.1038/s41598-022-22576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2023] Open
Abstract
The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.
Collapse
|
12
|
Carlson CR, Adly AN, Bi M, Howard CJ, Frost A, Cheng Y, Morgan DO. Reconstitution of the SARS-CoV-2 ribonucleosome provides insights into genomic RNA packaging and regulation by phosphorylation. J Biol Chem 2022; 298:102560. [PMID: 36202211 PMCID: PMC9529352 DOI: 10.1016/j.jbc.2022.102560] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 is responsible for compaction of the ∼30-kb RNA genome in the ∼90-nm virion. Previous studies suggest that each virion contains 35 to 40 viral ribonucleoprotein (vRNP) complexes, or ribonucleosomes, arrayed along the genome. There is, however, little mechanistic understanding of the vRNP complex. Here, we show that N protein, when combined in vitro with short fragments of the viral genome, forms 15-nm particles similar to the vRNP structures observed within virions. These vRNPs depend on regions of N protein that promote protein-RNA and protein-protein interactions. Phosphorylation of N protein in its disordered serine/arginine region weakens these interactions to generate less compact vRNPs. We propose that unmodified N protein binds structurally diverse regions in genomic RNA to form compact vRNPs within the nucleocapsid, while phosphorylation alters vRNP structure to support other N protein functions in viral transcription.
Collapse
Affiliation(s)
| | - Armin N Adly
- Department of Physiology, University of California, San Francisco, California, USA
| | - Maxine Bi
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Conor J Howard
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Adam Frost
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - David O Morgan
- Department of Physiology, University of California, San Francisco, California, USA.
| |
Collapse
|
13
|
Carlson CR, Adly AN, Bi M, Cheng Y, Morgan DO. Reconstitution of the SARS-CoV-2 ribonucleosome provides insights into genomic RNA packaging and regulation by phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.23.493138. [PMID: 35664996 PMCID: PMC9164447 DOI: 10.1101/2022.05.23.493138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nucleocapsid (N) protein of coronaviruses is responsible for compaction of the ∼30-kb RNA genome in the ∼100-nm virion. Cryo-electron tomography suggests that each virion contains 35-40 viral ribonucleoprotein (vRNP) complexes, or ribonucleosomes, arrayed along the genome. There is, however, little mechanistic understanding of the vRNP complex. Here, we show that N protein, when combined with viral RNA fragments in vitro, forms cylindrical 15-nm particles similar to the vRNP structures observed within coronavirus virions. These vRNPs form in the presence of stem-loop-containing RNA and depend on regions of N protein that promote protein-RNA and protein-protein interactions. Phosphorylation of N protein in its disordered serine/arginine (SR) region weakens these interactions and disrupts vRNP assembly. We propose that unmodified N binds stem-loop-rich regions in genomic RNA to form compact vRNP complexes within the nucleocapsid, while phosphorylated N maintains uncompacted viral RNA to promote the protein's transcriptional function.
Collapse
Affiliation(s)
| | - Armin N. Adly
- Department of Physiology, University of California, San Francisco CA 94143
| | - Maxine Bi
- Department of Biochemistry & Biophysics, University of California, San Francisco CA 94143
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, University of California, San Francisco CA 94143
| | - David O. Morgan
- Department of Physiology, University of California, San Francisco CA 94143
| |
Collapse
|
14
|
Ribeiro-Filho HV, Jara GE, Batista FAH, Schleder GR, Costa Tonoli CC, Soprano AS, Guimarães SL, Borges AC, Cassago A, Bajgelman MC, Marques RE, Trivella DBB, Franchini KG, Figueira ACM, Benedetti CE, Lopes-de-Oliveira PS. Structural dynamics of SARS-CoV-2 nucleocapsid protein induced by RNA binding. PLoS Comput Biol 2022; 18:e1010121. [PMID: 35551296 PMCID: PMC9129039 DOI: 10.1371/journal.pcbi.1010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/24/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
The nucleocapsid (N) protein of the SARS-CoV-2 virus, the causal agent of COVID-19, is a multifunction phosphoprotein that plays critical roles in the virus life cycle, including transcription and packaging of the viral RNA. To play such diverse roles, the N protein has two globular RNA-binding modules, the N- (NTD) and C-terminal (CTD) domains, which are connected by an intrinsically disordered region. Despite the wealth of structural data available for the isolated NTD and CTD, how these domains are arranged in the full-length protein and how the oligomerization of N influences its RNA-binding activity remains largely unclear. Herein, using experimental data from electron microscopy and biochemical/biophysical techniques combined with molecular modeling and molecular dynamics simulations, we show that, in the absence of RNA, the N protein formed structurally dynamic dimers, with the NTD and CTD arranged in extended conformations. However, in the presence of RNA, the N protein assumed a more compact conformation where the NTD and CTD are packed together. We also provided an octameric model for the full-length N bound to RNA that is consistent with electron microscopy images of the N protein in the presence of RNA. Together, our results shed new light on the dynamics and higher-order oligomeric structure of this versatile protein. The nucleocapsid (N) protein of the SARS-CoV-2 virus plays an essential role in virus particle assembly as it specifically binds to and wraps the virus genomic RNA into a well-organized structure known as the ribonucleoprotein. Understanding how the N protein wraps around the virus RNA is critical for the development of strategies to inhibit virus assembly within host cells. One of the limitations regarding the molecular structure of the ribonucleoprotein, however, is that the N protein has several unstructured and mobile regions that preclude the resolution of its full atomic structure. Moreover, the N protein can form higher-order oligomers, both in the presence and absence of RNA. Here we employed computational methods, supported by experimental data, to simulate the N protein structural dynamics in the absence and presence of RNA. Our data suggest that the N protein forms structurally dynamic dimers in the absence of RNA, with its structured N- and C-terminal domains oriented in extended conformations. In the presence of RNA, however, the N protein assumes a more compact conformation. Our model for the oligomeric structure of the N protein bound to RNA helps to understand how N protein dimers interact to each other to form the ribonucleoprotein.
Collapse
Affiliation(s)
- Helder Veras Ribeiro-Filho
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriel Ernesto Jara
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Gabriel Ravanhani Schleder
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Adriana Santos Soprano
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Samuel Leite Guimarães
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antonio Carlos Borges
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Alexandre Cassago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcio Chaim Bajgelman
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Kleber Gomes Franchini
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- * E-mail: (CEB); (PSLO)
| | - Paulo Sergio Lopes-de-Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- * E-mail: (CEB); (PSLO)
| |
Collapse
|
15
|
Koetzner CA, Hurst-Hess KR, Kuo L, Masters PS. Analysis of a crucial interaction between the coronavirus nucleocapsid protein and the major membrane-bound subunit of the viral replicase-transcriptase complex. Virology 2021; 567:1-14. [PMID: 34933176 PMCID: PMC8669624 DOI: 10.1016/j.virol.2021.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/27/2022]
Abstract
The coronavirus nucleocapsid (N) protein comprises two RNA-binding domains connected by a central spacer, which contains a serine- and arginine-rich (SR) region. The SR region engages the largest subunit of the viral replicase-transcriptase, nonstructural protein 3 (nsp3), in an interaction that is essential for efficient initiation of infection by genomic RNA. We carried out an extensive genetic analysis of the SR region of the N protein of mouse hepatitis virus in order to more precisely define its role in RNA synthesis. We further examined the N-nsp3 interaction through construction of nsp3 mutants and by creation of an interspecies N protein chimera. Our results indicate a role for the central spacer as an interaction hub of the N molecule that is partially regulated by phosphorylation. These findings are discussed in relation to the recent discovery that nsp3 forms a molecular pore in the double-membrane vesicles that sequester the coronavirus replicase-transcriptase.
Collapse
Affiliation(s)
- Cheri A Koetzner
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Kelley R Hurst-Hess
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Lili Kuo
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Paul S Masters
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, 12208, USA.
| |
Collapse
|
16
|
Prates-Syed WA, Chaves LCS, Crema KP, Vuitika L, Lira A, Côrtes N, Kersten V, Guimarães FEG, Sadraeian M, Barroso da Silva FL, Cabral-Marques O, Barbuto JAM, Russo M, Câmara NOS, Cabral-Miranda G. VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants. Vaccines (Basel) 2021; 9:1409. [PMID: 34960155 PMCID: PMC8708688 DOI: 10.3390/vaccines9121409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/23/2022] Open
Abstract
Virus-like particles (VLPs) are a versatile, safe, and highly immunogenic vaccine platform. Recently, there are developmental vaccines targeting SARS-CoV-2, the causative agent of COVID-19. The COVID-19 pandemic affected humanity worldwide, bringing out incomputable human and financial losses. The race for better, more efficacious vaccines is happening almost simultaneously as the virus increasingly produces variants of concern (VOCs). The VOCs Alpha, Beta, Gamma, and Delta share common mutations mainly in the spike receptor-binding domain (RBD), demonstrating convergent evolution, associated with increased transmissibility and immune evasion. Thus, the identification and understanding of these mutations is crucial for the production of new, optimized vaccines. The use of a very flexible vaccine platform in COVID-19 vaccine development is an important feature that cannot be ignored. Incorporating the spike protein and its variations into VLP vaccines is a desirable strategy as the morphology and size of VLPs allows for better presentation of several different antigens. Furthermore, VLPs elicit robust humoral and cellular immune responses, which are safe, and have been studied not only against SARS-CoV-2 but against other coronaviruses as well. Here, we describe the recent advances and improvements in vaccine development using VLP technology.
Collapse
Affiliation(s)
- Wasim A. Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Lorena C. S. Chaves
- Department of Microbiology and Immunology, School of Medicine, Emory University, Claudia Nance Rollins Building, Atlanta, GA 30329, USA;
| | - Karin P. Crema
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Victor Kersten
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | | | - Mohammad Sadraeian
- São Carlos Institute of Physics, IFSC-USP, São Carlos 13566590, SP, Brazil; (F.E.G.G.); (M.S.)
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| | - Fernando L. Barroso da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040903, SP, Brazil;
- Department of Chemical and Biomolecular Engeneering, North Carolina State University, Raleigh, NC 27695, USA
| | - Otávio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children’s Medical Center, Tehran 1419733151, Iran
| | - José A. M. Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 0124690, SP, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Niels O. S. Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| |
Collapse
|
17
|
Chen SC, Olsthoorn RCL, Yu CH. Structural phylogenetic analysis reveals lineage-specific RNA repetitive structural motifs in all coronaviruses and associated variations in SARS-CoV-2. Virus Evol 2021; 7:veab021. [PMID: 34141447 PMCID: PMC8206606 DOI: 10.1093/ve/veab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In many single-stranded (ss) RNA viruses, the cis-acting packaging signal that confers selectivity genome packaging usually encompasses short structured RNA repeats. These structural units, termed repetitive structural motifs (RSMs), potentially mediate capsid assembly by specific RNA–protein interactions. However, general knowledge of the conservation and/or the diversity of RSMs in the positive-sense ssRNA coronaviruses (CoVs) is limited. By performing structural phylogenetic analysis, we identified a variety of RSMs in nearly all CoV genomic RNAs, which are exclusively located in the 5′-untranslated regions (UTRs) and/or in the inter-domain regions of poly-protein 1ab coding sequences in a lineage-specific manner. In all alpha- and beta-CoVs, except for Embecovirus spp, two to four copies of 5′-gUUYCGUc-3′ RSMs displaying conserved hexa-loop sequences were generally identified in Stem-loop 5 (SL5) located in the 5′-UTRs of genomic RNAs. In Embecovirus spp., however, two to eight copies of 5′-agc-3′/guAAu RSMs were found in the coding regions of non-structural protein (NSP) 3 and/or NSP15 in open reading frame (ORF) 1ab. In gamma- and delta-CoVs, other types of RSMs were found in several clustered structural elements in 5′-UTRs and/or ORF1ab. The identification of RSM-encompassing structural elements in all CoVs suggests that these RNA elements play fundamental roles in the life cycle of CoVs. In the recently emerged SARS-CoV-2, beta-CoV-specific RSMs are also found in its SL5, displaying two copies of 5′-gUUUCGUc-3′ motifs. However, multiple sequence alignment reveals that the majority of SARS-CoV-2 possesses a variant RSM harboring SL5b C241U, and intriguingly, several variations in the coding sequences of viral proteins, such as Nsp12 P323L, S protein D614G, and N protein R203K-G204R, are concurrently found with such variant RSM. In conclusion, the comprehensive exploration for RSMs reveals phylogenetic insights into the RNA structural elements in CoVs as a whole and provides a new perspective on variations currently found in SARS-CoV-2.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - René C L Olsthoorn
- Department of Supramolecular Biomaterials Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden,The Netherlands
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
18
|
Kumar B, Hawkins GM, Kicmal T, Qing E, Timm E, Gallagher T. Assembly and Entry of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2): Evaluation Using Virus-Like Particles. Cells 2021; 10:853. [PMID: 33918600 PMCID: PMC8068838 DOI: 10.3390/cells10040853] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Research on infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is currently restricted to BSL-3 laboratories. SARS-CoV2 virus-like particles (VLPs) offer a BSL-1, replication-incompetent system that can be used to evaluate virus assembly and virus-cell entry processes in tractable cell culture conditions. Here, we describe a SARS-CoV2 VLP system that utilizes nanoluciferase (Nluc) fragment complementation to track assembly and entry. We utilized the system in two ways. Firstly, we investigated the requirements for VLP assembly. VLPs were produced by concomitant synthesis of three viral membrane proteins, spike (S), envelope (E), and matrix (M), along with the cytoplasmic nucleocapsid (N). We discovered that VLP production and secretion were highly dependent on N proteins. N proteins from related betacoronaviruses variably substituted for the homologous SARS-CoV2 N, and chimeric betacoronavirus N proteins effectively supported VLP production if they contained SARS-CoV2 N carboxy-terminal domains (CTD). This established the CTDs as critical features of virus particle assembly. Secondly, we utilized the system by investigating virus-cell entry. VLPs were produced with Nluc peptide fragments appended to E, M, or N proteins, with each subsequently inoculated into target cells expressing complementary Nluc fragments. Complementation into functional Nluc was used to assess virus-cell entry. We discovered that each of the VLPs were effective at monitoring virus-cell entry, to various extents, in ways that depended on host cell susceptibility factors. Overall, we have developed and utilized a VLP system that has proven useful in identifying SARS-CoV2 assembly and entry features.
Collapse
Affiliation(s)
| | | | | | | | | | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA; (B.K.); (G.M.H.); (T.K.); (E.Q.); (E.T.)
| |
Collapse
|
19
|
Abstract
In less than two decades, three deadly zoonotic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have emerged in humans, causing SARS, MERS, and coronavirus disease 2019 (COVID-19), respectively. The current COVID-19 pandemic poses an unprecedented crisis in health care and social and economic development. It reinforces the cruel fact that CoVs are constantly evolving, possessing the genetic malleability to become highly pathogenic in humans. In this review, we start with an overview of CoV diseases and the molecular virology of CoVs, focusing on similarities and differences between SARS-CoV-2 and its highly pathogenic as well as low-pathogenic counterparts. We then discuss mechanisms underlying pathogenesis and virus-host interactions of SARS-CoV-2 and other CoVs, emphasizing the host immune response. Finally, we summarize strategies adopted for the prevention and treatment of CoV diseases and discuss approaches to develop effective antivirals and vaccines. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China;
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
20
|
Yang M, He S, Chen X, Huang Z, Zhou Z, Zhou Z, Chen Q, Chen S, Kang S. Structural Insight Into the SARS-CoV-2 Nucleocapsid Protein C-Terminal Domain Reveals a Novel Recognition Mechanism for Viral Transcriptional Regulatory Sequences. Front Chem 2021; 8:624765. [PMID: 33511102 PMCID: PMC7835709 DOI: 10.3389/fchem.2020.624765] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused massive disruptions to society and the economy, and the transcriptional regulatory mechanisms behind the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are poorly understood. Herein, we determined the crystal structure of the SARS-CoV-2 nucleocapsid protein C-terminal domain (CTD) at a resolution of 2.0 Å, and demonstrated that the CTD has a comparable distinct electrostatic potential surface to equivalent domains of other reported CoVs, suggesting that the CTD has novel roles in viral RNA binding and transcriptional regulation. Further in vitro biochemical assays demonstrated that the viral genomic intergenic transcriptional regulatory sequences (TRSs) interact with the SARS-CoV-2 nucleocapsid protein CTD with a flanking region. The unpaired adeno dinucleotide in the TRS stem-loop structure is a major determining factor for their interactions. Taken together, these results suggested that the nucleocapsid protein CTD is responsible for the discontinuous viral transcription mechanism by recognizing the different patterns of viral TRS during transcription.
Collapse
Affiliation(s)
- Mei Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Suhua He
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaoxue Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhaoxia Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ziliang Zhou
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhechong Zhou
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Qiuyue Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shoudeng Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Sisi Kang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
21
|
Shaibu JO, Onwuamah CK, James AB, Okwuraiwe AP, Amoo OS, Salu OB, Ige FA, Liboro G, Odewale E, Okoli LC, Ahmed RA, Achanya D, Adesesan A, Amuda OA, Sokei J, Oyefolu BAO, Salako BL, Omilabu SA, Audu RA. Full length genomic sanger sequencing and phylogenetic analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Nigeria. PLoS One 2021; 16:e0243271. [PMID: 33428634 PMCID: PMC7799769 DOI: 10.1371/journal.pone.0243271] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
In an outbreak, effective detection of the aetiological agent(s) involved using molecular techniques is key to efficient diagnosis, early prevention and management of the spread. However, sequencing is necessary for mutation monitoring and tracking of clusters of transmission, development of diagnostics and for vaccines and drug development. Many sequencing methods are fast evolving to reduce test turn-around-time and to increase through-put compared to Sanger sequencing method; however, Sanger sequencing remains the gold standard for clinical research sequencing with its 99.99% accuracy This study sought to generate sequence data of SARS-CoV-2 using Sanger sequencing method and to characterize them for possible site(s) of mutations. About 30 pairs of primers were designed, synthesized, and optimized using endpoint PCR to generate amplicons for the full length of the virus. Cycle sequencing using BigDye Terminator v.3.1 and capillary gel electrophoresis on ABI 3130xl genetic analyser were performed according to the manufacturers’ instructions. The sequence data generated were assembled and analysed for variations using DNASTAR Lasergene 17 SeqMan Ultra. Total length of 29,760bp of SARS-CoV-2 was assembled from the sample analysed and deposited in GenBank with accession number: MT576584. Blast result of the sequence assembly shows a 99.97% identity with the reference sequence. Variations were noticed at positions: nt201, nt2997, nt14368, nt16535, nt20334, and nt28841-28843, which caused amino acid alterations at the S (aa614) and N (aa203-204) regions. The mutations observed at S and N-gene in this study may be indicative of a gradual changes in the genetic coding of the virus hence, the need for active surveillance of the viral genome.
Collapse
Affiliation(s)
- Joseph Ojonugwa Shaibu
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
- * E-mail:
| | - Chika K. Onwuamah
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | | | - Azuka Patrick Okwuraiwe
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Olufemi Samuel Amoo
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Olumuyiwa B. Salu
- Department of Medical Microbiology and Parasitology, Centre for Human and Zoonotic Virology, College of Medicine, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Fehintola A. Ige
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Gideon Liboro
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Ebenezer Odewale
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Leona Chika Okoli
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Rahaman A. Ahmed
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
- Department of Cell Biology and Genetics, University of Lagos, Akoka, Lagos, Nigeria
| | - Dominic Achanya
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Adesegun Adesesan
- Centre for Tuberculosis Research, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Oyewunmi Abosede Amuda
- Centre for Tuberculosis Research, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Judith Sokei
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Bola A. O. Oyefolu
- Department of Microbiology, Virology Research Group, Lagos State University, Ojo, Lagos, Nigeria
| | | | - Sunday Aremu Omilabu
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
- Department of Medical Microbiology and Parasitology, Centre for Human and Zoonotic Virology, College of Medicine, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Rosemary Ajuma Audu
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| |
Collapse
|
22
|
Dinesh DC, Chalupska D, Silhan J, Koutna E, Nencka R, Veverka V, Boura E. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog 2020; 16:e1009100. [PMID: 33264373 PMCID: PMC7735635 DOI: 10.1371/journal.ppat.1009100] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/14/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.
Collapse
Affiliation(s)
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Koutna
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
23
|
Dinesh DC, Chalupska D, Silhan J, Koutna E, Nencka R, Veverka V, Boura E. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog 2020. [PMID: 33264373 DOI: 10.1101/2020.04.02.022194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.
Collapse
Affiliation(s)
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Koutna
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
24
|
Sungsuwan S, Jongkaewwattana A, Jaru-Ampornpan P. Nucleocapsid proteins from other swine enteric coronaviruses differentially modulate PEDV replication. Virology 2019; 540:45-56. [PMID: 31756532 PMCID: PMC7112109 DOI: 10.1016/j.virol.2019.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) share tropism for swine intestinal epithelial cells. Whether mixing of viral components during co-infection alters pathogenic outcomes or viral replication is not known. In this study, we investigated how different coronavirus nucleocapsid (CoV N) proteins interact and affect PEDV replication. We found that PDCoV N and TGEV N can competitively interact with PEDV N. However, the presence of PDCoV or TGEV N led to very different outcomes on PEDV replication. While PDCoV N significantly suppresses PEDV replication, overexpression of TGEV N, like that of PEDV N, increases production of PEDV RNA and virions. Despite partial interchangeability in nucleocapsid oligomerization and viral RNA synthesis, endogenous PEDV N cannot be replaced in the production of infectious PEDV particles. Results from this study give insights into functional compatibilities and evolutionary relationship between CoV viral proteins during viral co-infection and co-evolution. PDCoV N and TGEV N interact with PEDV N in a competitive, RNA-dependent manner. PEDV replication in cell culture is enhanced by overexpression of TGEV or PEDV N but strongly suppressed by that of PDCoV N. Both TGEV and PDCoV N can partially rescue viral RNA and protein synthesis functions of PEDV N, albeit to different degrees. Neither TGEV nor PDCoV N can completely replace PEDV N in the production of PEDV infectious virions.
Collapse
Affiliation(s)
- Suttipun Sungsuwan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Peera Jaru-Ampornpan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
25
|
An in vivo cell-based assay for investigating the specific interaction between the SARS-CoV N-protein and its viral RNA packaging sequence. Biochem Biophys Res Commun 2019; 520:499-506. [PMID: 31594639 PMCID: PMC7092827 DOI: 10.1016/j.bbrc.2019.09.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 01/25/2023]
Abstract
The SARS-CoV nucleocapsid (N) protein serves multiple functions in viral replication, transcription, and assembly of the viral genome complex. Coronaviruses specifically package genomic RNA into assembled virions, and in SARS-CoV, it is reported that this process is driven by an interaction between the N-protein and a packaging signal encoded within the viral RNA. While recent studies have uncovered the sequence of this packaging signal, little is known about the specific interaction between the N-protein and the packaging signal sequence, and the mechanisms by which this interaction drives viral genome packaging. In this study, we developed a novel in vivo cell-based assay for examining this interaction between the N-protein and packaging signal RNA for SARS-CoV, as well as other viruses within the coronaviridae family. Our results demonstrate that the N-protein specifically recognizes the SARS-CoV packaging signal with greater affinity compared to signals from other coronaviruses or non-coronavirus species. We also use deletion mapping to identify a 151-nt region within the packaging signal sequence that is critical for N-protein-RNA binding, and conversely, we show that both the N-terminal and C-terminal domains of the N protein are necessary for recognizing the packaging RNA. These results describe, for the first time, in vivo evidence for an interaction between the SARS-CoV N-protein and its packaging signal RNA, and demonstrate the feasibility of using this cell-based assay to further probe viral RNA-protein interactions in future studies.
Collapse
|
26
|
Abstract
RNA viruses carry out selective packaging of their genomes in a variety of ways, many involving a genomic packaging signal. The first coronavirus packaging signal was discovered nearly thirty years ago, but how it functions remains incompletely understood. This review addresses the current state of knowledge of coronavirus genome packaging, which has mainly been studied in two prototype species, mouse hepatitis virus and transmissible gastroenteritis virus. Despite the progress that has been made in the mapping and characterization of some packaging signals, there is conflicting evidence as to whether the viral nucleocapsid protein or the membrane protein plays the primary role in packaging signal recognition. The different models for the mechanism of genomic RNA packaging that have been prompted by these competing views are described. Also discussed is the recent exciting discovery that selective coronavirus genome packaging is critical for in vivo evasion of the host innate immune response. Selective incorporation of the coronavirus genome into virions is mediated by a cis-acting RNA packaging signal. Packaging signals vary across different coronavirus genera and lineages. Different lines of evidence attribute packaging signal recognition to either the nucleocapsid or the membrane protein. Selective coronavirus genome packaging plays a role in evasion of host innate immunity.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, United States.
| |
Collapse
|
27
|
Nguyen THV, Lichière J, Canard B, Papageorgiou N, Attoumani S, Ferron F, Coutard B. Structure and oligomerization state of the C-terminal region of the Middle East respiratory syndrome coronavirus nucleoprotein. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:8-15. [PMID: 30644840 PMCID: PMC7159728 DOI: 10.1107/s2059798318014948] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a human pathogen responsible for a severe respiratory illness that emerged in 2012. Structural information about the proteins that constitute the viral particle is scarce. In order to contribute to a better understanding of the nucleoprotein (N) in charge of RNA genome encapsidation, the structure of the C-terminal domain of N from MERS-CoV obtained using single-crystal X-ray diffraction is reported here at 1.97 Å resolution. The molecule is present as a dimer in the crystal structure and this oligomerization state is confirmed in solution, as measured by additional methods including small-angle X-ray scattering measurements. Comparisons with the structures of the C-terminal domains of N from other coronaviruses reveals a high degree of structural conservation despite low sequence conservation, and differences in electrostatic potential at the surface of the protein.
Collapse
Affiliation(s)
| | - Julie Lichière
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseilles, France
| | - Bruno Canard
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseilles, France
| | | | - Sarah Attoumani
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseilles, France
| | - François Ferron
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseilles, France
| | - Bruno Coutard
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseilles, France
| |
Collapse
|
28
|
Hsin WC, Chang CH, Chang CY, Peng WH, Chien CL, Chang MF, Chang SC. Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus. J Biomed Sci 2018; 25:47. [PMID: 29793506 PMCID: PMC5966903 DOI: 10.1186/s12929-018-0449-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/15/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Middle East respiratory syndrome coronavirus (MERS-CoV) consists of a positive-sense, single-stranded RNA genome and four structural proteins: the spike, envelope, membrane, and nucleocapsid protein. The assembly of the viral genome into virus particles involves viral structural proteins and is believed to be mediated through recognition of specific sequences and RNA structures of the viral genome. METHODS AND RESULTS A culture system for the production of MERS coronavirus-like particles (MERS VLPs) was determined and established by electron microscopy and the detection of coexpressed viral structural proteins. Using the VLP system, a 258-nucleotide RNA fragment, which spans nucleotides 19,712 to 19,969 of the MERS-CoV genome (designated PS258(19712-19969)ME), was identified to function as a packaging signal. Assembly of the RNA packaging signal into MERS VLPs is dependent on the viral nucleocapsid protein. In addition, a 45-nucleotide stable stem-loop substructure of the PS258(19712-19969)ME interacted with both the N-terminal domain and the C-terminal domain of the viral nucleocapsid protein. Furthermore, a functional SARS-CoV RNA packaging signal failed to assemble into the MERS VLPs, which indicated virus-specific assembly of the RNA genome. CONCLUSIONS A MERS-oV RNA packaging signal was identified by the detection of GFP expression following an incubation of MERS VLPs carrying the heterologous mRNA GFP-PS258(19712-19969)ME with virus permissive Huh7 cells. The MERS VLP system could help us in understanding virus infection and morphogenesis.
Collapse
Affiliation(s)
- Wei-Chen Hsin
- Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan
| | - Chan-Hua Chang
- Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan
| | - Chi-You Chang
- Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan
| | - Wei-Hao Peng
- Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan
| | - Chung-Liang Chien
- Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan
| | - Ming-Fu Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan.
| | - Shin C Chang
- Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan.
| |
Collapse
|
29
|
Abstract
Coronavirus particles serve three fundamentally important functions in infection. The virion provides the means to deliver the viral genome across the plasma membrane of a host cell. The virion is also a means of escape for newly synthesized genomes. Lastly, the virion is a durable vessel that protects the genome on its journey between cells. This review summarizes the available X-ray crystallography, NMR, and cryoelectron microscopy structural data for coronavirus structural proteins, and looks at the role of each of the major structural proteins in virus entry and assembly. The potential wider conservation of the nucleoprotein fold identified in the Arteriviridae and Coronaviridae families and a speculative model for the evolution of corona-like virus architecture are discussed.
Collapse
Affiliation(s)
- B W Neuman
- School of Biological Sciences, University of Reading, Reading, United Kingdom; College of STEM, Texas A&M University, Texarkana, Texarkana, TX, United States.
| | - M J Buchmeier
- University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
30
|
Kuo L, Koetzner CA, Masters PS. A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging. Virology 2016; 494:100-7. [PMID: 27105451 PMCID: PMC4884538 DOI: 10.1016/j.virol.2016.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/31/2022]
Abstract
The prototype coronavirus mouse hepatitis virus (MHV) exhibits highly selective packaging of its genomic positive-stranded RNA into assembled virions, despite the presence in infected cells of a large excess of subgenomic viral mRNAs. One component of this selectivity is the MHV packaging signal (PS), an RNA structure found only in genomic RNA and not in subgenomic RNAs. It was previously shown that a major determinant of PS recognition is the second of the two RNA-binding domains of the viral nucleocapsid (N) protein. We have now found that PS recognition additionally depends upon a segment of the carboxy-terminal tail (domain N3) of the N protein. Since domain N3 is also the region of N protein that interacts with the membrane (M) protein, this finding suggests a mechanism by which selective genome packaging is accomplished, through the coupling of genome encapsidation to virion assembly.
Collapse
Affiliation(s)
- Lili Kuo
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Cheri A Koetzner
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States.
| |
Collapse
|
31
|
Analyses of Coronavirus Assembly Interactions with Interspecies Membrane and Nucleocapsid Protein Chimeras. J Virol 2016; 90:4357-4368. [PMID: 26889024 DOI: 10.1128/jvi.03212-15] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/08/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The coronavirus membrane (M) protein is the central actor in virion morphogenesis. M organizes the components of the viral membrane, and interactions of M with itself and with the nucleocapsid (N) protein drive virus assembly and budding. In order to further define M-M and M-N interactions, we constructed mutants of the model coronavirus mouse hepatitis virus (MHV) in which all or part of the M protein was replaced by its phylogenetically divergent counterpart from severe acute respiratory syndrome coronavirus (SARS-CoV). We were able to obtain viable chimeras containing the entire SARS-CoV M protein as well as mutants with intramolecular substitutions that partitioned M protein at the boundaries between the ectodomain, transmembrane domains, or endodomain. Our results show that the carboxy-terminal domain of N protein, N3, is necessary and sufficient for interaction with M protein. However, despite some previous genetic and biochemical evidence that mapped interactions with N to the carboxy terminus of M, it was not possible to define a short linear region of M protein sufficient for assembly with N. Thus, interactions with N protein likely involve multiple linearly discontiguous regions of the M endodomain. The SARS-CoV M chimera exhibited a conditional growth defect that was partially suppressed by mutations in the envelope (E) protein. Moreover, virions of the M chimera were markedly deficient in spike (S) protein incorporation. These findings suggest that the interactions of M protein with both E and S protein are more complex than previously thought. IMPORTANCE The assembly of coronavirus virions entails concerted interactions among the viral structural proteins and the RNA genome. One strategy to study this process is through construction of interspecies chimeras that preserve or disrupt particular inter- or intramolecular associations. In this work, we replaced the membrane (M) protein of the model coronavirus mouse hepatitis virus with its counterpart from a heterologous coronavirus. The results clarify our understanding of the interaction between the coronavirus M protein and the nucleocapsid protein. At the same time, they reveal unanticipated complexities in the interactions of M with the viral spike and envelope proteins.
Collapse
|
32
|
Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discov Today 2015; 21:562-72. [PMID: 26691874 PMCID: PMC7108309 DOI: 10.1016/j.drudis.2015.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 12/18/2022]
Abstract
Coronavirus nucleocapsid proteins are appealing drug targets against coronavirus-induced diseases. A variety of compounds targeting the coronavirus nucleocapsid protein have been developed. Many of these compounds show potential antiviral activity.
The advent of severe acute respiratory syndrome (SARS) in the 21st century and the recent outbreak of Middle-East respiratory syndrome (MERS) highlight the importance of coronaviruses (CoVs) as human pathogens, emphasizing the need for development of novel antiviral strategies to combat acute respiratory infections caused by CoVs. Recent studies suggest that nucleocapsid (N) proteins from coronaviruses and other viruses can be useful antiviral drug targets against viral infections. This review aims to provide readers with a concise survey of the structural features of coronavirus N proteins and how these features provide insights into structure-based development of therapeutics against coronaviruses. We will also present our latest results on MERS-CoV N protein and its potential as an antiviral drug target.
Collapse
|
33
|
The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells. J Virol 2015; 89:9029-43. [PMID: 26085159 DOI: 10.1128/jvi.01331-15] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic expression of SARS-CoV N protein could promote MHV replication in RNAi-active cells but not in RNAi-depleted cells. These results indicate that coronaviruses encode a VSR that functions in the replication cycle and provide further evidence to support that RNAi-mediated antiviral response exists in mammalian cells.
Collapse
|