1
|
Yamamoto H, Matano T. SIV-specific neutralizing antibody induction following selection of a PI3K drive-attenuated nef variant. eLife 2025; 12:RP88849. [PMID: 40029304 PMCID: PMC11875539 DOI: 10.7554/elife.88849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
HIV and simian immunodeficiency virus (SIV) infections are known for impaired neutralizing antibody (NAb) responses. While sequential virus-host B cell interaction appears to be basally required for NAb induction, driver molecular signatures predisposing to NAb induction still remain largely unknown. Here we describe SIV-specific NAb induction following a virus-host interplay decreasing aberrant viral drive of phosphoinositide 3-kinase (PI3K). Screening of seventy difficult-to-neutralize SIVmac239-infected macaques found nine NAb-inducing animals, with seven selecting for a specific CD8+ T-cell escape mutation in viral nef before NAb induction. This Nef-G63E mutation reduced excess Nef interaction-mediated drive of B-cell maturation-limiting PI3K/mammalian target of rapamycin complex 2 (mTORC2). In vivo imaging cytometry depicted preferential Nef perturbation of cognate Envelope-specific B cells, suggestive of polarized contact-dependent Nef transfer and corroborating cognate B-cell maturation post-mutant selection up to NAb induction. Results collectively exemplify a NAb induction pattern extrinsically reciprocal to human PI3K gain-of-function antibody-dysregulating disease and indicate that harnessing the PI3K/mTORC2 axis may facilitate NAb induction against difficult-to-neutralize viruses including HIV/SIV.
Collapse
Grants
- JP24fk0410066 Japan Agency for Medical Research and Development
- JP21jk0210002 Japan Agency for Medical Research and Development
- 24K21287 Ministry of Education, Culture, Sports, Science and Technology
- 21H02745 Ministry of Education, Culture, Sports, Science and Technology
- JP22wm0325006 Japan Agency for Medical Research and Development
- JP19fm0208017 Japan Agency for Medical Research and Development
- JP20fk0410022 Japan Agency for Medical Research and Development
- JP18fk0410003 Japan Agency for Medical Research and Development
- JP20fk0410011 Japan Agency for Medical Research and Development
- JP20fk0108125 Japan Agency for Medical Research and Development
- JP20jm0110012 Japan Agency for Medical Research and Development
- JP21fk0410035 Japan Agency for Medical Research and Development
- 17H02185 Ministry of Education, Culture, Sports, Science and Technology
- 18K07157 Ministry of Education, Culture, Sports, Science and Technology
- Takeda Science Foundation
- Imai Memorial Trust for AIDS Research
- Mitsui Sumitomo Insurance Welfare Foundation
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious DiseasesTokyoJapan
- Department of Biomedicine, University Hospital BaselBaselSwitzerland
- Joint Research Center for Human Retrovirus Infection, Kumamoto UniversityKumamotoJapan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious DiseasesTokyoJapan
- Joint Research Center for Human Retrovirus Infection, Kumamoto UniversityKumamotoJapan
- The Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
2
|
Hierarchy of multiple viral CD8+ T-cell epitope mutations in sequential selection in simian immunodeficiency infection. Biochem Biophys Res Commun 2022; 607:124-130. [DOI: 10.1016/j.bbrc.2022.03.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
|
3
|
A Novel Immunogen Selectively Eliciting CD8 + T Cells but Not CD4 + T Cells Targeting Immunodeficiency Virus Antigens. J Virol 2020; 94:JVI.01876-19. [PMID: 32024773 DOI: 10.1128/jvi.01876-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 11/20/2022] Open
Abstract
Optimization of immunogen is crucial for induction of effective T-cell responses in the development of a human immunodeficiency virus (HIV) vaccine. Conventional T-cell-based vaccines have been designed to induce virus-specific CD4+ T as well as CD8+ T cells. However, it has been indicated that induction of HIV-specific CD4+ T cells, preferential targets for HIV infection, by vaccination may be detrimental and accelerate viral replication after HIV exposure. In the present study, we present a novel immunogen to selectively induce CD8+ T cells but not CD4+ T cells targeting viral antigens. The immunogen, CaV11, was constructed by tandem connection of overlapping 11-mer peptides spanning simian immunodeficiency virus (SIV) Gag capsid (CA) and Vif. Prime-boost immunization with DNA and Sendai virus (SeV) vectors expressing CaV11 efficiently induced Gag/Vif-specific CD8+ T-cell responses with inefficient Gag/Vif-specific CD4+ T-cell induction in rhesus macaques (n = 6). None of the macaques exhibited the enhancement of acute viral replication after an intravenous high-dose SIV challenge, which was observed in those immunized with DNA and SeV expressing the whole Gag protein in our previous study. Set point viral control postinfection was associated with SeV-specific CD4+ T-cell responses postimmunization, suggesting contribution of SeV-specific helper responses to effective Gag/Vif-specific CD8+ T-cell induction by vaccination. This immunogen design could be a promising method for selective induction of effective anti-HIV CD8+ T-cell responses.IMPORTANCE Induction of effective CD8+ T-cell responses is an important HIV vaccine strategy. Several promising vaccine delivery tools have been developed, and immunogen optimization is now crucial for effective T-cell induction. Conventional immunogens have been designed to induce virus-specific CD4+ T cells as well as CD8+ T cells, but induction of virus-specific CD4+ T cells that are preferential targets for HIV infection could enhance acute HIV proliferation. Here, we designed a novel immunogen to induce HIV-specific CD8+ T cells without HIV-specific CD4+ T-cell induction but with non-HIV antigen-specific CD4+ T-cell help. Our analysis in a macaque AIDS model showed that our immunogen can efficiently elicit effective CD8+ T but not CD4+ T cells targeting viral antigens, resulting in no enhancement of acute viral replication after virus exposure. This immunogen design, also applicable for other currently developed immunogens, could be a promising method for selective induction of effective anti-HIV CD8+ T-cell responses.
Collapse
|
4
|
Yamamoto Y, Morita D, Shima Y, Midorikawa A, Mizutani T, Suzuki J, Mori N, Shiina T, Inoko H, Tanaka Y, Mikami B, Sugita M. Identification and Structure of an MHC Class I-Encoded Protein with the Potential to Present N-Myristoylated 4-mer Peptides to T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3349-3358. [PMID: 31043477 DOI: 10.4049/jimmunol.1900087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022]
Abstract
Similar to host proteins, N-myristoylation occurs for viral proteins to dictate their pathological function. However, this lipid-modifying reaction creates a novel class of "lipopeptide" Ags targeted by host CTLs. The primate MHC class I-encoded protein, Mamu-B*098, was previously shown to bind N-myristoylated 5-mer peptides. Nevertheless, T cells exist that recognize even shorter lipopeptides, and much remains to be elucidated concerning the molecular mechanisms of lipopeptide presentation. We, in this study, demonstrate that the MHC class I allele, Mamu-B*05104, binds the N-myristoylated 4-mer peptide (C14-Gly-Gly-Ala-Ile) derived from the viral Nef protein for its presentation to CTLs. A phylogenetic tree analysis indicates that these classical MHC class I alleles are not closely associated; however, the high-resolution x-ray crystallographic analyses indicate that both molecules share lipid-binding structures defined by the exceptionally large, hydrophobic B pocket to accommodate the acylated glycine (G1) as an anchor. The C-terminal isoleucine (I4) of C14-Gly-Gly-Ala-Ile anchors at the F pocket, which is distinct from that of Mamu-B*098 and is virtually identical to that of the peptide-presenting MHC class I molecule, HLA-B51. The two central amino acid residues (G2 and A3) are only exposed externally for recognition by T cells, and the methyl side chain on A3 constitutes a major T cell epitope, underscoring that the epitopic diversity is highly limited for lipopeptides as compared with that for MHC class I-presented long peptides. These structural features suggest that lipopeptide-presenting MHC class I alleles comprise a distinct MHC class I subset that mediates an alternative pathway for CTL activation.
Collapse
Affiliation(s)
- Yukie Yamamoto
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daisuke Morita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Shima
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akihiro Midorikawa
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuaki Mizutani
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Juri Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Naoki Mori
- Laboratory of Chemical Ecology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; and
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Computational B-cell epitope identification and production of neutralizing murine antibodies against Atroxlysin-I. Sci Rep 2018; 8:14904. [PMID: 30297733 PMCID: PMC6175905 DOI: 10.1038/s41598-018-33298-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/03/2018] [Indexed: 11/08/2022] Open
Abstract
Epitope identification is essential for developing effective antibodies that can detect and neutralize bioactive proteins. Computational prediction is a valuable and time-saving alternative for experimental identification. Current computational methods for epitope prediction are underused and undervalued due to their high false positive rate. In this work, we targeted common properties of linear B-cell epitopes identified in an individual protein class (metalloendopeptidases) and introduced an alternative method to reduce the false positive rate and increase accuracy, proposing to restrict predictive models to a single specific protein class. For this purpose, curated epitope sequences from metalloendopeptidases were transformed into frame-shifted Kmers (3 to 15 amino acid residues long). These Kmers were decomposed into a matrix of biochemical attributes and used to train a decision tree classifier. The resulting prediction model showed a lower false positive rate and greater area under the curve when compared to state-of-the-art methods. Our predictions were used for synthesizing peptides mimicking the predicted epitopes for immunization of mice. A predicted linear epitope that was previously undetected by an experimental immunoassay was able to induce neutralizing-antibody production in mice. Therefore, we present an improved prediction alternative and show that computationally identified epitopes can go undetected during experimental mapping.
Collapse
|
6
|
Andersson AMC, Holst PJ. Increased T cell breadth and antibody response elicited in prime-boost regimen by viral vector encoded homologous SIV Gag/Env in outbred CD1 mice. J Transl Med 2016; 14:343. [PMID: 27998269 PMCID: PMC5175304 DOI: 10.1186/s12967-016-1102-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major obstacle for the development of HIV vaccines is the virus' worldwide sequence diversity. Nevertheless, the presence of T cell epitopes within conserved regions of the virus' structural Gag protein and conserved structures in the envelope (env) sequence raises the possibility that cross-reactive responses may be induced by vaccination. In this study, the aim was to investigate the importance of antigenic match on immunodominance and breadth of obtainable T cell responses. METHODS Outbred CD1 mice were immunized with either heterologous (SIVmac239 and HIV-1 clade B consensus) or homologous (SIVmac239) gag sequences using adenovirus (Ad5) and MVA vectors. Env (SIVmac239) was co-encoded in the vectors to study the induction of antibodies, which is a primary target of current HIV vaccine designs. All three vaccines were designed as virus-encoded virus-like particle vaccines. Antibody responses were analysed by ELISA, avidity ELISA, and neutralization assay. T cell responses were determined by intracellular cytokine staining of splenocytes. RESULTS The homologous Env/Gag prime-boost regimen induced higher Env binding antibodies, and induced stronger and broader Gag specific CD8+ T cell responses than the homologous Env/heterologous Gag prime-boost regimen. Homologous Env/heterologous Gag immunization resulted in selective boosting of Env specific CD8+ T cell responses and consequently a paradoxical decreased recognition of variant sequences including conserved elements of p24 Gag. CONCLUSIONS These results contrast with related studies using Env or Gag as the sole antigen and suggest that prime-boost immunizations based on homologous SIVmac239 Gag inserts is an efficient component of genetic VLP vaccines-both for induction of potent antibody responses and cross-reactive CD8+ T cell responses.
Collapse
Affiliation(s)
- Anne-Marie Carola Andersson
- Department of Immunology and Microbiology, Center for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| | - Peter Johannes Holst
- Department of Immunology and Microbiology, Center for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Ishii H, Matsuoka S, Nomura T, Nakamura M, Shiino T, Sato Y, Iwata-Yoshikawa N, Hasegawa H, Mizuta K, Sakawaki H, Miura T, Koyanagi Y, Naruse TK, Kimura A, Matano T. Association of lymph-node antigens with lower Gag-specific central-memory and higher Env-specific effector-memory CD8(+) T-cell frequencies in a macaque AIDS model. Sci Rep 2016; 6:30153. [PMID: 27452272 PMCID: PMC4958968 DOI: 10.1038/srep30153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/27/2016] [Indexed: 01/17/2023] Open
Abstract
Virus-specific CD8+ T cells exert strong suppressive pressure on human/simian immunodeficiency virus (HIV/SIV) replication. These responses have been intensively examined in peripheral blood mononuclear cells (PBMCs) but not fully analyzed in lymph nodes (LNs), where interaction between CD8+ T cells and HIV/SIV-infected cells occurs. Here, we investigated target antigen specificity of CD8+ T cells in LNs in a macaque AIDS model. Analysis of virus antigen-specific CD8+ T-cell responses in the inguinal LNs obtained from twenty rhesus macaques in the chronic phase of SIV infection showed an inverse correlation between viral loads and frequencies of CD8+ T cells with CD28+ CD95+ central memory phenotype targeting the N-terminal half of SIV core antigen (Gag-N). In contrast, analysis of LNs but not PBMCs revealed a positive correlation between viral loads and frequencies of CD8+ T cells with CD28−CD95+ effector memory phenotype targeting the N-terminal half of SIV envelope (Env-N), soluble antigen. Indeed, LNs with detectable SIV capsid p27 antigen in the germinal center exhibited significantly lower Gag-N-specific CD28+ CD95+ CD8+ T-cell and higher Env-N-specific CD28−CD95+ CD8+ T-cell responses than those without detectable p27. These results imply that core and envelope antigen-specific CD8+ T cells show different patterns of interactions with HIV/SIV-infected cells.
Collapse
Affiliation(s)
- Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Center for AIDS Research, Kumamoto University, Tokyo 162-8640, Japan
| | - Midori Nakamura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kazuta Mizuta
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromi Sakawaki
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Tomoyuki Miura
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshio Koyanagi
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Taeko K Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
8
|
Biphasic CD8+ T-Cell Defense in Simian Immunodeficiency Virus Control by Acute-Phase Passive Neutralizing Antibody Immunization. J Virol 2016; 90:6276-6290. [PMID: 27122584 DOI: 10.1128/jvi.00557-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/22/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Identifying human immunodeficiency virus type 1 (HIV-1) control mechanisms by neutralizing antibodies (NAbs) is critical for anti-HIV-1 strategies. Recent in vivo studies on animals infected with simian immunodeficiency virus (SIV) and related viruses have shown the efficacy of postinfection NAb passive immunization for viremia reduction, and one suggested mechanism is its occurrence through modulation of cellular immune responses. Here, we describe SIV control in macaques showing biphasic CD8(+) cytotoxic T lymphocyte (CTL) responses following acute-phase NAb passive immunization. Analysis of four SIVmac239-infected rhesus macaque pairs matched with major histocompatibility complex class I haplotypes found that counterparts receiving day 7 anti-SIV polyclonal NAb infusion all suppressed viremia for up to 2 years without accumulating viral CTL escape mutations. In the first phase of primary viremia control attainment, CD8(+) cells had high capacities to suppress SIVs carrying CTL escape mutations. Conversely, in the second, sustained phase of SIV control, CTL responses converged on a pattern of immunodominant CTL preservation. During this sustained phase of viral control, SIV epitope-specific CTLs showed retention of phosphorylated extracellular signal-related kinase (ERK)(hi)/phosphorylated AMP-activated protein kinase (AMPK)(lo) subpopulations, implying their correlation with SIV control. The results suggest that virus-specific CTLs functionally boosted by acute-phase NAbs may drive robust AIDS virus control. IMPORTANCE In early HIV infection, NAb responses are lacking and CTL responses are insufficient, which leads to viral persistence. Hence, it is important to identify immune responses that can successfully control such HIV replication. Here, we show that monkeys receiving NAb passive immunization in early SIV infection strictly control viral replication for years. Passive infusion of NAbs with CTL cross-priming capacity resulted in induction of functionally boosted early CTL responses showing enhanced suppression of CTL escape mutant virus replication. Accordingly, the NAb-infused animals did not show accumulation of viral CTL escape mutations during sustained SIV control, and immunodominant CTL responses were preserved. This early functional augmentation of CTLs by NAbs provides key insights into the design of lasting and viral escape mutation-free protective immunity against HIV-1 infection.
Collapse
|
9
|
Nomura T, Yamamoto H, Ishii H, Akari H, Naruse TK, Kimura A, Matano T. Broadening of Virus-Specific CD8+ T-Cell Responses Is Indicative of Residual Viral Replication in Aviremic SIV Controllers. PLoS Pathog 2015; 11:e1005247. [PMID: 26536034 PMCID: PMC4633064 DOI: 10.1371/journal.ppat.1005247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/02/2015] [Indexed: 12/01/2022] Open
Abstract
Control of HIV replication is a rare immunological event, providing clues to understand the viral control mechanism. CD8+ T-cell responses are crucial for virus control, but it is unclear whether lasting HIV containment can be achieved after establishment of infection. Here, we describe lasting SIV containment in a macaque AIDS model. Analysis of ten rhesus macaques that controlled viremia for 2 years post-infection found accumulation of proviral gag and nef CD8+ T-cell escape mutations in four of them. These four controllers mounted CD8+ T cells targeting Gag, Nef, and other viral proteins at 4 months, suggesting that broadening of CD8+ T-cell targets can be an indicator of the beginning of viral control failure. The remaining six aviremic SIV controllers, however, harbored proviruses without mutations and showed no or little broadening of their CD8+ T-cell responses in the chronic phase. Indeed, three of the latter six exhibiting no change in CD8+ T-cell targets showed gradual decreases in SIV-specific CD8+ T-cell frequencies, implying a concomitant reduction in viral replication. Thus, stability of the breadth of virus-specific CD8+ T-cell responses may represent a status of lasting HIV containment by CD8+ T cells. CD8+ T-cell responses are crucial for HIV control, but it is unclear whether lasting HIV containment can be achieved after establishment of infection. Several T cell-based vaccine trials have currently shown primary viremia control in macaque AIDS models of simian immunodeficiency virus (SIV) infection, but residual viral replication may occur, followed by accumulation of viral CD8+ T-cell escape mutations, possibly leading to eventual viremia rebound. In the present study, we analyzed ten rhesus macaques that controlled SIV replication without detectable viremia for more than 2 years. Animals were divided into two groups on the basis of proviral genome sequences at 2 years post-infection. Analysis of the first group exhibiting multiple CD8+ T-cell escape mutations indicated that broadening of CD8+ T-cell responses can be an indicator of the beginning of viral control failure. Conversely, analysis of the second group having no mutation suggested that stability of the breadth of virus-specific CD8+ T-cell responses represents a status of lasting HIV containment by CD8+ T cells. Thus, this study presents a model of stable SIV containment, contributing to elucidation of the requisites for lasting HIV control.
Collapse
Affiliation(s)
- Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Taeko K. Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
10
|
Seki S, Matano T. Development of a Sendai virus vector-based AIDS vaccine inducing T cell responses. Expert Rev Vaccines 2015; 15:119-27. [PMID: 26512881 DOI: 10.1586/14760584.2016.1105747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Virus-specific CD8(+) T-cell responses play a major role in the control of HIV replication, and induction of HIV-specific T-cell responses is an important strategy for AIDS vaccine development. Optimization of the delivery system and immunogen would be the key for the development of an effective T cell-based AIDS vaccine. Heterologous prime-boost vaccine regimens using multiple viral vectors are a promising protocol for efficient induction of HIV-specific T-cell responses, and the development of a variety of potent viral vectors have been attempted. This review describes the current progress of the development of T cell-based AIDS vaccines using viral vectors, focusing on Sendai virus vectors, whose phase I clinical trials have been performed.
Collapse
Affiliation(s)
- Sayuri Seki
- a AIDS Research Center , National Institute of Infectious Diseases , Tokyo , Japan
| | - Tetsuro Matano
- a AIDS Research Center , National Institute of Infectious Diseases , Tokyo , Japan.,b The Institute of Medical Science , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
11
|
Ishii H, Matano T. Development of an AIDS vaccine using Sendai virus vectors. Vaccine 2015; 33:6061-5. [PMID: 26232346 DOI: 10.1016/j.vaccine.2015.06.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Development of an effective AIDS vaccine is crucial for the control of global human immunodeficiency virus type 1 (HIV-1) prevalence. We have developed a novel AIDS vaccine using a Sendai virus (SeV) vector and investigated its efficacy in a macaque AIDS model of simian immunodeficiency virus (SIV) infection. Its immunogenicity and protective efficacy have been shown, indicating that the SeV vector is a promising delivery tool for AIDS vaccines. Here, we describe the potential of SeV vector as a vaccine antigen delivery tool to induce effective immune responses against HIV-1 infection.
Collapse
Affiliation(s)
- Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
12
|
Nomura T, Yamamoto H, Takahashi N, Naruse TK, Kimura A, Matano T. Identification of SIV Nef CD8(+) T cell epitopes restricted by a MHC class I haplotype associated with lower viral loads in a macaque AIDS model. Biochem Biophys Res Commun 2014; 450:942-7. [PMID: 24971540 DOI: 10.1016/j.bbrc.2014.06.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022]
Abstract
Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia.
Collapse
Affiliation(s)
- Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Naofumi Takahashi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Taeko K Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
13
|
Takahashi N, Nomura T, Takahara Y, Yamamoto H, Shiino T, Takeda A, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Sakawaki H, Miura T, Igarashi T, Koyanagi Y, Naruse TK, Kimura A, Matano T. A novel protective MHC-I haplotype not associated with dominant Gag-specific CD8+ T-cell responses in SIVmac239 infection of Burmese rhesus macaques. PLoS One 2013; 8:e54300. [PMID: 23342126 PMCID: PMC3544795 DOI: 10.1371/journal.pone.0054300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022] Open
Abstract
Several major histocompatibility complex class I (MHC-I) alleles are associated with lower viral loads and slower disease progression in human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. Immune-correlates analyses in these MHC-I-related HIV/SIV controllers would lead to elucidation of the mechanism for viral control. Viral control associated with some protective MHC-I alleles is attributed to CD8+ T-cell responses targeting Gag epitopes. We have been trying to know the mechanism of SIV control in multiple groups of Burmese rhesus macaques sharing MHC-I genotypes at the haplotype level. Here, we found a protective MHC-I haplotype, 90-010-Id (D), which is not associated with dominant Gag-specific CD8+ T-cell responses. Viral loads in five D+ animals became significantly lower than those in our previous cohorts after 6 months. Most D+ animals showed predominant Nef-specific but not Gag-specific CD8+ T-cell responses after SIV challenge. Further analyses suggested two Nef-epitope-specific CD8+ T-cell responses exerting strong suppressive pressure on SIV replication. Another set of five D+ animals that received a prophylactic vaccine using a Gag-expressing Sendai virus vector showed significantly reduced viral loads compared to unvaccinated D+ animals at 3 months, suggesting rapid SIV control by Gag-specific CD8+ T-cell responses in addition to Nef-specific ones. These results present a pattern of SIV control with involvement of non-Gag antigen-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
- Naofumi Takahashi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Takahara
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akiko Takeda
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | - Hiromi Sakawaki
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Tomoyuki Miura
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | - Yoshio Koyanagi
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Taeko K. Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
[Analytic and integrative perspectives for HIV vaccine design]. Uirusu 2013; 63:219-32. [PMID: 25366056 DOI: 10.2222/jsv.63.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Prophylactic AIDS vaccines are required to optimally load adaptive immune responses against a virus optimally designed to impair those responses and induce persistent infection. This inevitably may necessitate atypical induction patterns that are distinct from well-balanced responses deriving from the inherent immunological framework. This review discusses how the diverse features of pathologic context-dependent T-cell (CTL/Th) and B-cell (neutralizing antibody) responses may be incorporated into vaccine-induced immunity to achieve HIV control in vivo.
Collapse
|
15
|
Abstract
Successful vaccine development for infectious diseases has largely been achieved in settings where natural immunity to the pathogen results in clearance in at least some individuals. HIV presents an additional challenge in that natural clearance of infection does not occur, and the correlates of immune protection are still uncertain. However, partial control of viremia and markedly different outcomes of disease are observed in HIV-infected persons. Here, we examine the antiviral mechanisms implicated by one variable that has been consistently associated with extremes of outcome, namely HLA class I alleles, and in particular HLA-B, and examine the mechanisms by which this modulation is likely to occur and the impact of these interactions on evolution of the virus and the host. Studies to date provide evidence for both HLA-dependent and epitope-dependent influences on viral control and viral evolution and have important implications for the continued quest for an effective HIV vaccine.
Collapse
|
16
|
Differential clade-specific HLA-B*3501 association with HIV-1 disease outcome is linked to immunogenicity of a single Gag epitope. J Virol 2012; 86:12643-54. [PMID: 22973023 DOI: 10.1128/jvi.01381-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The strongest genetic influence on immune control in HIV-1 infection is the HLA class I genotype. Rapid disease progression in B-clade infection has been linked to HLA-B*35 expression, in particular to the less common HLA-B*3502 and HLA-B*3503 subtypes but also to the most prevalent subtype, HLA-B*3501. In these studies we first demonstrated that whereas HLA-B*3501 is associated with a high viral set point in two further B-clade-infected cohorts, in Japan and Mexico, this association does not hold in two large C-clade-infected African cohorts. We tested the hypothesis that clade-specific differences in HLA associations with disease outcomes may be related to distinct targeting of critical CD8(+) T-cell epitopes. We observed that only one epitope was significantly targeted differentially, namely, the Gag-specific epitope NPPIPVGDIY (NY10, Gag positions 253 to 262) (P = 2 × 10(-5)). In common with two other HLA-B*3501-restricted epitopes, in Gag and Nef, that were not targeted differentially, a response toward NY10 was associated with a significantly lower viral set point. Nonimmunogenicity of NY10 in B-clade-infected subjects derives from the Gag-D260E polymorphism present in ∼90% of B-clade sequences, which critically reduces recognition of the Gag NY10 epitope. These data suggest that in spite of any inherent HLA-linked T-cell receptor repertoire differences that may exist, maximizing the breadth of the Gag-specific CD8(+) T-cell response, by the addition of even a single epitope, may be of overriding importance in achieving immune control of HIV infection. This distinction is of direct relevance to development of vaccines designed to optimize the anti-HIV CD8(+) T-cell response in all individuals, irrespective of HLA type.
Collapse
|
17
|
Ohtani H, Naruse TK, Iwasaki Y, Akari H, Ishida T, Matano T, Kimura A. Lineage-specific evolution of T-cell immunoglobulin and mucin domain 1 gene in the primates. Immunogenetics 2012; 64:669-78. [PMID: 22710823 DOI: 10.1007/s00251-012-0628-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
T-cell immunoglobulin domain and mucin domain containing protein 1 (TIM1), also known as a cellular receptor for hepatitis A virus (HAVCR1) or a molecule induced by ischemic injury in the kidney (KIM1), is involved in the regulation of immune responses. We investigated a natural selection history of TIM1 by comparative sequencing analysis in 24 different primates. It was found that TIM1 had become a pseudogene in multiple lineages of the New World monkey. We also investigated T cell lines originated from four different New World monkey species and confirmed that TIM1 was not expressed at the mRNA level. On the other hand, there were ten amino acid sites in the Ig domain of TIM1 in the other primates, which were suggested to be under positive natural selection. In addition, mucin domain of TIM1 was highly polymorphic in the Old World monkeys, which might be under balanced selection. These data suggested that TIM1 underwent a lineage-specific evolutionary pathway in the primates.
Collapse
Affiliation(s)
- Hitoshi Ohtani
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Association of major histocompatibility complex class I haplotypes with disease progression after simian immunodeficiency virus challenge in burmese rhesus macaques. J Virol 2012; 86:6481-90. [PMID: 22491464 DOI: 10.1128/jvi.07077-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonhuman primate AIDS models are essential for the analysis of AIDS pathogenesis and the evaluation of vaccine efficacy. Multiple studies on human immunodeficiency virus and simian immunodeficiency virus (SIV) infection have indicated the association of major histocompatibility complex class I (MHC-I) genotypes with rapid or slow AIDS progression. The accumulation of macaque groups that share not only a single MHC-I allele but also an MHC-I haplotype consisting of multiple polymorphic MHC-I loci would greatly contribute to the progress of AIDS research. Here, we investigated SIVmac239 infections in four groups of Burmese rhesus macaques sharing individual MHC-I haplotypes, referred to as A, E, B, and J. Out of 20 macaques belonging to A(+) (n = 6), E(+) (n = 6), B(+) (n = 4), and J(+) (n = 4) groups, 18 showed persistent viremia. Fifteen of them developed AIDS in 0.5 to 4 years, with the remaining three at 1 or 2 years under observation. A(+) animals, including two controllers, showed slower disease progression, whereas J(+) animals exhibited rapid progression. E(+) and B(+) animals showed intermediate plasma viral loads and survival periods. Gag-specific CD8(+) T-cell responses were efficiently induced in A(+) animals, while Nef-specific CD8(+) T-cell responses were in A(+), E(+), and B(+) animals. Multiple comparisons among these groups revealed significant differences in survival periods, peripheral CD4(+) T-cell decline, and SIV-specific CD4(+) T-cell polyfunctionality in the chronic phase. This study indicates the association of MHC-I haplotypes with AIDS progression and presents an AIDS model facilitating the analysis of virus-host immune interaction.
Collapse
|
19
|
Immunodominance: a pivotal principle in host response to viral infections. Clin Immunol 2012; 143:99-115. [PMID: 22391152 DOI: 10.1016/j.clim.2012.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/25/2012] [Accepted: 01/28/2012] [Indexed: 11/24/2022]
Abstract
We encounter pathogens on a daily basis and our immune system has evolved to mount an immune response following an infection. An interesting phenomenon that has evolved in response to clearing bacterial and viral infections is called immunodominance. Immunodominance refers to the phenomenon that, despite co-expression of multiple major histocompatibility complex class I alleles by host cells and the potential generation of hundreds of distinct antigenic peptides for recognition following an infection, a large portion of the anti-viral cytotoxic T lymphocyte population targets only some peptide/MHC class I complexes. Here we review the main factors contributing to immunodominance in relation to influenza A and HIV infection. Of special interest are the factors contributing to immunodominance in humans and rodents following influenza A infection. By critically reviewing these findings, we hope to improve understanding of the challenges facing the discovery of new factors enabling better anti-viral vaccine strategies in the future.
Collapse
|