1
|
Evidence for a structural relationship between BRCT domains and the helicase domains of the replication initiators encoded by the Polyomaviridae and Papillomaviridae families of DNA tumor viruses. J Virol 2008; 82:8849-62. [PMID: 18579587 DOI: 10.1128/jvi.00553-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of DNA tumor viruses have provided important insights into fundamental cellular processes and oncogenic transformation. They have revealed, for example, that upon expression of virally encoded proteins, cellular pathways involved in DNA repair and cell cycle control are disrupted. Herein, evidence is presented that BRCT-related regions are present in the helicase domains of the viral initiators encoded by the Polyomaviridae and Papillomaviridae viral families. Of interest, BRCT domains in cellular proteins recruit factors involved in diverse pathways, including DNA repair and the regulation of cell cycle progression. Therefore, the viral BRCT-related regions may compete with host BRCT domains for particular cellular ligands, a process that would help to explain the pleiotropic effects associated with infections with many DNA tumor viruses.
Collapse
|
2
|
Abstract
Simian virus 40 small t antigen (st) is required for optimal transformation and replication properties of the virus. We find that in certain cell types, such as the human osteosarcoma cell line U2OS, st is capable of inducing apoptosis, as evidenced by a fragmented nuclear morphology and positive terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining of transfected cells. The cell death can be p53 independent, since it also occurs in p53-deficient H1299 cells. Genetic analysis indicates that two specific mutants affect apoptosis induction. One of these (C103S) has been frequently used as a PP2A binding mutant. The second mutant (TR4) lacks the final four amino acids of st, which have been reported to be unimportant for PP2A binding in vitro. However, TR4 unexpectedly fails to bind PP2A in vivo. Furthermore, a long-term colony assay reveals a potent colony inhibition upon st expression, and the behavior of st mutants in this assay reflects the relative frequency of nuclear fragmentation observed in transfections using the same mutants. Notably, either Bcl-2 coexpression or broad caspase inhibitor treatment could restore normal nuclear morphology. Finally, fluorescence-activated cell sorting analysis suggests a correlation between the ability of st to modulate cell cycle progression and apoptosis. Taken together, these observations underscore that st does not always promote proliferation but may, depending on conditions and cell type, effect a cell death response.
Collapse
Affiliation(s)
- O Gjoerup
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
3
|
Gaillard S, Fahrbach KM, Parkati R, Rundell K. Overexpression of simian virus 40 small-T antigen blocks centrosome function and mitotic progression in human fibroblasts. J Virol 2001; 75:9799-807. [PMID: 11559813 PMCID: PMC114552 DOI: 10.1128/jvi.75.20.9799-9807.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recombinant adenoviruses that express high levels of the simian virus 40 (SV40) small-t (ST) antigen have been used to study the requirement for ST to drive cell cycle proliferation of confluent human diploid fibroblasts. This occurs when either large-T (LT) antigen or serum is added to provide a second signal. While cells readily completed S phase in these experiments, they were found to accumulate with 4N DNA content. Cellular and nuclear morphology, as well as the biochemical status of cyclin B complexes, showed that these cells entered mitosis but were blocked prior to mitotic metaphase. The defect appears to reflect an inability of cells overexpressing ST to form organized centrosomes that duplicate and separate normally during the cell cycle and, therefore, the absence of a mitotic spindle. The ability of ST to bind protein phosphatase 2A was required for this pattern, suggesting that altered phosphorylation of key centrosomal components may occur when ST is overexpressed. Although the possible significance of ST effects on the centrosome cycle is not fully understood, these findings suggest that ST could influence chromosomal instability patterns that are a hallmark of SV40-transformed cells and LT expression.
Collapse
Affiliation(s)
- S Gaillard
- Department of Microbiology-Immunology and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3010, USA
| | | | | | | |
Collapse
|
4
|
Rundell K, Parakati R. The role of the SV40 ST antigen in cell growth promotion and transformation. Semin Cancer Biol 2001; 11:5-13. [PMID: 11243894 DOI: 10.1006/scbi.2000.0341] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The simian virus 40 small-t (ST) antigen plays a key role in permissive and nonpermissive infections, increasing virus yields in lytic cycles of primate cells and enhancing the ability of large-T (LT) to transform rodent or even human cells. In the absence of ST, tumors in rodent model systems appear primarily in lymphoid and other proliferative tissues and transformation is reduced in several in vitro systems. The functions of ST largely reflect its binding and inhibition of protein phosphatase 2A, although a recently described dnaJ domain also contributes to its biology. The dnaJ domain is present in LT and a third early gene product, the 17kT protein, for which a potential role in transformation deserves further evaluation.
Collapse
Affiliation(s)
- K Rundell
- Department of Microbiology-Immunology, Northwestern University, and The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| | | |
Collapse
|
5
|
Howe AK, Gaillard S, Bennett JS, Rundell K. Cell cycle progression in monkey cells expressing simian virus 40 small t antigen from adenovirus vectors. J Virol 1998; 72:9637-44. [PMID: 9811697 PMCID: PMC110473 DOI: 10.1128/jvi.72.12.9637-9644.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1998] [Accepted: 08/27/1998] [Indexed: 11/20/2022] Open
Abstract
The simian virus 40 small t antigen (small-t) is required for optimal viral replication and transformation, especially during the infection of nondividing cells, suggesting that the function of small-t is to promote cell cycle progression. The mechanism through which small-t promotes cell growth reflects, in part, its binding and inhibition of protein phosphatase 2A (PP2A). The use of recombinant adenoviruses allows small-t expression in a majority of cells in a population, thus providing a convenient source of cells for biochemical analyses. In monkey kidney CV1 cells, small-t expressed from these adenovirus vectors activated the mitogen-activated protein kinase (MAPK) pathway, induced JNK activity, and increased AP-1 DNA-binding activity, all in a PP2A-dependent manner. Expression of small-t also caused an increase in the phosphorylation of the Na+/H+ antiporter, a mitogen-activated ion exchanger whose activity correlates with its phosphorylation. At least part of the antiporter phosphorylation induced by small-t reflected activation of the MAPK pathway, as suggested by results of assays using a chemical inhibitor of the MAPK-activating kinase, MEK. Finally, small-t expression from adenovirus vectors promoted efficient cell cycle progression by growth-arrested cells. These vectors should facilitate further analysis of effects of small-t on cell cycle mediators.
Collapse
Affiliation(s)
- A K Howe
- Department of Microbiology-Immunology and The Lurie Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
6
|
Abstract
DNA replication is a complicated process that is largely regulated during stages of initiation. The Siman Virus 40 in vitro replication system has served as an excellent model for studies of the initiation of DNA replication, and its regulation, in eukaryotes. Initiation of SV40 replication requires a single viral protein termed T-antigen, all other proteins are supplied by the host. The recent determination of the solution structure of the T-antigen domain that recognizes the SV40 origin has provided significant insights into the initiation process. For example, it has afforded a clearer understanding of origin recognition, T-antigen oligomerization, and DNA unwinding. Furthermore, the Simian virus 40 in vitro replication system has been used to study nascent DNA formation in the vicinity of the viral origin of replication. Among the conclusions drawn from these experiments is that nascent DNA synthesis does not initiate in the core origin in vitro and that Okazaki fragment formation is complex. These and related studies demonstrate that significant progress has been made in understanding the initiation of DNA synthesis at the molecular level.
Collapse
Affiliation(s)
- P A Bullock
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
7
|
Watanabe G, Howe A, Lee RJ, Albanese C, Shu IW, Karnezis AN, Zon L, Kyriakis J, Rundell K, Pestell RG. Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc Natl Acad Sci U S A 1996; 93:12861-6. [PMID: 8917510 PMCID: PMC24011 DOI: 10.1073/pnas.93.23.12861] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cell-cycle progression is mediated by a co-ordinated interaction between cyclin-dependent kinases and their target proteins including the pRB and E2F/DP-1 complexes. Immunoneutralization and antisense experiments have established that the abundance of cyclin D1, a regulatory subunit of the cyclin-dependent kinases, may be rate-limiting for G1 phase progression of the cell cycle. Simian virus 40 (SV40) small tumor (t) antigen is capable of promoting G1 phase progression and augments substantially the efficiency of SV40 transformation through several distinct domains. In these studies, small t antigen stimulated cyclin D1 promoter activity 7-fold, primarily through an AP-1 binding site at -954 with additional contributions from a CRE site at -57. The cyclin D1 AP-1 and CRE sites were sufficient for activation by small t antigen when linked to an heterologous promoter. Point mutations of small t antigen between residues 97-103 that reduced PP2A binding were partially defective in the induction of the cyclin D1 promoter. These mutations also reduced activation of MEK1 and two distinct members of the mitogen-activated protein kinase family, the ERKs (extracellular signal regulated kinases) and the SAPKs (stress-activated protein kinases), in transfected cells. Dominant negative mutants of either MEK1, ERK or SEK1, reduced small t-dependent induction of the cyclin D1 promoter. SV40 small t induction of the cyclin D1 promoter involves both the ERK and SAPK pathways that together may contribute to the proliferative and transformation enhancing activity of small t antigen.
Collapse
Affiliation(s)
- G Watanabe
- Department of Medicine, Lurie Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Porrás A, Bennett J, Howe A, Tokos K, Bouck N, Henglein B, Sathyamangalam S, Thimmapaya B, Rundell K. A novel simian virus 40 early-region domain mediates transactivation of the cyclin A promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. J Virol 1996; 70:6902-8. [PMID: 8794333 PMCID: PMC190739 DOI: 10.1128/jvi.70.10.6902-6908.1996] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
At least three regions of the simian virus 40 small-t antigen (small-t) contribute to the protein's ability to enhance cellular transformation. As we showed previously for rat F111 cells, one region includes sequences from residues 97 to 103 that are involved in the binding and inhibition of protein phosphatase 2A. In the present study, the role of the protein phosphatase 2A binding region was confirmed in two additional small-t-dependent transformation systems. Second, small-t was found to provide a function previously identified as a large-T transformation domain. Mutations in residues 19 to 28 of large-T affected its transforming ability, but these mutations were complemented by a wild-type small-t. A third region of small-t was also required for efficient transformation. This region, the 42-47 region, is shared by large-T and small-t and contains a conserved HPDKGG hexapeptide. The 42-47 region function could be provided by either small-t or large-T in small-t-dependent systems. Mutations in the 42-47 region reduced the ability of small-t to transactivate the cyclin A promoter, of interest because small-t increased endogenous cyclin A mRNA levels in both human and monkey cells, as well as transactivating the promoter in transient assays.
Collapse
Affiliation(s)
- A Porrás
- Department of Microbiology-Immunology, Northwestern University Medical Center, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Wang WB, Bikel I, Marsilio E, Newsome D, Livingston DM. Transrepression of RNA polymerase II promoters by the simian virus 40 small t antigen. J Virol 1994; 68:6180-7. [PMID: 8083958 PMCID: PMC237037 DOI: 10.1128/jvi.68.10.6180-6187.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Simian virus 40 (SV40) small t antigen (t) can activate transcription from certain RNA polymerase II and III promoters (M. Loeken, I. Bikel, D. M. Livingston, and J. Brady, Cell 55:1171-1177, 1988). Here we report a new function of t, its ability to repress human c-fos promoter and AP-1 transcriptional activity in CV-1P cells. This function is the product of a discrete N-terminal domain of t, because the large T antigen (T)/t-common polypeptide, which contains only the first 82 amino acids common to both T and t of SV40, was, like the intact protein, an active repressor. The data further suggest that the t- and T/t-common-mediated repression of c-fos expression was most likely manifest at the level of transcription. In keeping with the possibility that t affects the expression of the genomic c-fos promoter, it also led to repression of AP-1 formation. Thus, SV40 is both an activator and a repressor of transcription. Its ability to inhibit c-fos expression should be considered in light of the natural history of SV40 in its natural host.
Collapse
Affiliation(s)
- W B Wang
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
11
|
Simian virus 40 small tumor antigen inhibits dephosphorylation of protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol 1994. [PMID: 8065321 DOI: 10.1128/mcb.14.9.5881] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that the small tumor (small-t) antigen of simian virus 40 (SV40) forms complexes with nuclear protein phosphatase 2A (PP2A) and regulates the phosphorylation and transcriptional transactivation function of the cyclic AMP (cAMP)-regulatory element binding protein (CREB). PP2A coimmunoprecipitated with small t from nuclear extracts from HepG2 cells expressing small t or from rat liver nuclear extracts to which recombinant small t was added. Protein phosphatase 1 was not detected in small-t immunoprecipitates. In HepG2 cells expressing small t, dibutyryl-cAMP (Bt2cAMP) stimulated the phosphorylation of CREB 65-fold, whereas CREB phosphorylation was stimulated only 5- to 8-fold by Bt2cAMP in cells not expressing small t. Small t also inhibited the dephosphorylation of cAMP-dependent protein kinase (PKA)-phosphorylated CREB in rat liver nuclear extracts. In cells expressing small t, Bt2cAMP-stimulated transcription from the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter was enhanced over the level of transcription from the PEPCK promoter in cells not expressing small t. Small t also enhanced Bt2cAMP-stimulated transcription from a Gal4-responsive promoter in cells expressing a chimeric protein containing the Gal4 DNA-binding domain linked to the CREB transactivation domain. However, small t did not stimulate transcription either from a 5' deletion mutant of the PEPCK promoter that is not able to bind CREB or from the Gal4-responsive promoter in the absence of the Gal4-CREB protein. These data suggest that small t enhances Bt2cAMP-stimulated gene transcription by inhibiting the dephosphorylation of PKA-phosphorylated CREB by nuclear PP2A. These findings support previous observations that nuclear PP2A is the primary phosphatase that dephosphorylates PKA-phosphorylated CREB.
Collapse
|
12
|
Wheat WH, Roesler WJ, Klemm DJ. Simian virus 40 small tumor antigen inhibits dephosphorylation of protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol 1994; 14:5881-90. [PMID: 8065321 PMCID: PMC359114 DOI: 10.1128/mcb.14.9.5881-5890.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We report that the small tumor (small-t) antigen of simian virus 40 (SV40) forms complexes with nuclear protein phosphatase 2A (PP2A) and regulates the phosphorylation and transcriptional transactivation function of the cyclic AMP (cAMP)-regulatory element binding protein (CREB). PP2A coimmunoprecipitated with small t from nuclear extracts from HepG2 cells expressing small t or from rat liver nuclear extracts to which recombinant small t was added. Protein phosphatase 1 was not detected in small-t immunoprecipitates. In HepG2 cells expressing small t, dibutyryl-cAMP (Bt2cAMP) stimulated the phosphorylation of CREB 65-fold, whereas CREB phosphorylation was stimulated only 5- to 8-fold by Bt2cAMP in cells not expressing small t. Small t also inhibited the dephosphorylation of cAMP-dependent protein kinase (PKA)-phosphorylated CREB in rat liver nuclear extracts. In cells expressing small t, Bt2cAMP-stimulated transcription from the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter was enhanced over the level of transcription from the PEPCK promoter in cells not expressing small t. Small t also enhanced Bt2cAMP-stimulated transcription from a Gal4-responsive promoter in cells expressing a chimeric protein containing the Gal4 DNA-binding domain linked to the CREB transactivation domain. However, small t did not stimulate transcription either from a 5' deletion mutant of the PEPCK promoter that is not able to bind CREB or from the Gal4-responsive promoter in the absence of the Gal4-CREB protein. These data suggest that small t enhances Bt2cAMP-stimulated gene transcription by inhibiting the dephosphorylation of PKA-phosphorylated CREB by nuclear PP2A. These findings support previous observations that nuclear PP2A is the primary phosphatase that dephosphorylates PKA-phosphorylated CREB.
Collapse
Affiliation(s)
- W H Wheat
- Division of Basic Sciences, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206
| | | | | |
Collapse
|
13
|
Cicala C, Avantaggiati ML, Graessmann A, Rundell K, Levine AS, Carbone M. Simian virus 40 small-t antigen stimulates viral DNA replication in permissive monkey cells. J Virol 1994; 68:3138-44. [PMID: 8151779 PMCID: PMC236804 DOI: 10.1128/jvi.68.5.3138-3144.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The simian virus 40 (SV40) large-T antigen is essential for SV40 DNA replication and for late viral gene expression, but the role of the SV40 small-t antigen in these processes is still unclear. We have previously demonstrated that small t inhibits SV40 DNA replication in vitro. In this study, we investigated the effect of small t on SV40 replication in cultured cells. CV1 monkey cell infection experiments indicated that mutant viruses that lack small t replicate less efficiently than the wild-type virus. We next microinjected CV1 cells with SV40 DNA with and without purified small-t protein and analyzed viral DNA replication efficiency by Southern blotting. Replication of either wild-type SV40 or small-t deletion mutant DNA was increased three- to fivefold in cells coinjected with purified small t. Thus, in contrast to our in vitro observation, small t stimulated viral DNA replication in vivo. This result suggests that small t has cellular effects that are not detectable in a reconstituted in vitro replication system. We also found that small t stimulated progression of permissive monkey cells--but not of nonpermissive rodent cells--from G0-G1 to the S phase of the cell cycle, possibly leading to an optimal intracellular environment for viral replication.
Collapse
Affiliation(s)
- C Cicala
- Section on DNA Replication, Repair, and Mutagenesis, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
14
|
Lin HJ, Upson RH, Simmons DT. Nonspecific DNA binding activity of simian virus 40 large T antigen: evidence for the cooperation of two regions for full activity. J Virol 1992; 66:5443-52. [PMID: 1323705 PMCID: PMC289101 DOI: 10.1128/jvi.66.9.5443-5452.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We generated a series of COOH-terminal truncated simian virus 40 large tumor (T) antigens by using oligonucleotide-directed site-specific mutagenesis. The mutant proteins [T(1-650) to T(1-516)] were expressed in insect cells infected with recombinant baculoviruses. T(1-623) and shorter proteins [T(1-621) to T(1-516)] appeared to be structurally changed in a region between residues 269 and 522, as determined by increased sensitivities to trypsin digestion and by altered reactivities to several monoclonal antibodies. These same mutant proteins bound significantly less nonorigin plasmid DNA (15%) and calf thymus DNA (25%) than longer proteins [T(1-625) to T(1-708)]. However, all mutant T antigens exhibited a nearly wild-type level of viral origin-specific DNA binding and binding to a helicase substrate DNA. This indicated that binding to origin and helicase substrate DNAs is separable from about 85% of nonspecific binding to double-stranded DNA. As an independent confirmation that a region distinct from the origin-binding domain (amino acids 147 to 247) is involved in nonspecific DNA binding, we found that up to 96% of this latter activity was specifically inhibited in wild-type T antigen by several monoclonal antibodies which collectively bind to the region between residues 269 and 522. In order to investigate the relationship between the origin-binding domain and the second region, we performed origin-specific DNA binding assays with increasing amounts of calf thymus DNA as competitor. The results suggest that this second region is not an independent nonspecific DNA binding domain. Rather, it most likely cooperates with the origin-binding domain to give rise to wild-type levels of nonspecific DNA binding. Our results further suggest that most of the nonspecific binding to double-stranded DNA is involved in a function other than direct recognition and binding to the pentanucleotides at the replication origin on simian virus 40 DNA.
Collapse
Affiliation(s)
- H J Lin
- School of Life and Health Sciences, University of Delaware, Newark 19716
| | | | | |
Collapse
|
15
|
Jog P, Joshi B, Dhamankar V, Imperiale MJ, Rutila J, Rundell K. Mutational analysis of simian virus 40 small-t antigen. J Virol 1990; 64:2895-900. [PMID: 2159550 PMCID: PMC249472 DOI: 10.1128/jvi.64.6.2895-2900.1990] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several point mutations in the simian virus 40 (SV40) small-t antigen have been analyzed for their effects on protein stability, transformation, transactivation, and binding of two cellular proteins. All mutations which affected cysteine residues in two cysteine clusters produced highly unstable small-t antigens. Four point mutations outside these clusters and one in-frame deletion mutant, dl890, produced stable proteins but reduced transformation efficiency. These were able to transactivate the EII promoter and bind the cellular proteins, suggesting that these activities are not sufficient for small-t-mediated enhancement of transformation.
Collapse
Affiliation(s)
- P Jog
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611-3008
| | | | | | | | | | | |
Collapse
|
16
|
Loeken M, Bikel I, Livingston DM, Brady J. trans-activation of RNA polymerase II and III promoters by SV40 small t antigen. Cell 1988; 55:1171-7. [PMID: 3203384 DOI: 10.1016/0092-8674(88)90261-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A biochemical role for SV40 small t antigen (t) in the viral infectious cycle that would explain the strong conservation of t structure among papovaviruses and its role as a helper of SV40 large T antigen function in the viral transforming process is not understood. Here, we report an intracellular biochemical function of the protein--the capacity to trans-activate selected RNA polymerase II and III-requiring promoters. Since t has failed in the past to bind to DNA and did not stimulate all polymerase II-requiring promoters tested, it likely trans-activates, at least in part, by modifying the activity of selected transcription factors.
Collapse
Affiliation(s)
- M Loeken
- Joslin Diabetes Center, Boston, Massachusetts 02215
| | | | | | | |
Collapse
|
17
|
Purification and functional properties of simian virus 40 large and small T antigens overproduced in insect cells. J Virol 1988; 62:2951-9. [PMID: 2969056 PMCID: PMC253733 DOI: 10.1128/jvi.62.8.2951-2959.1988] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The insect baculovirus Autographa californica nuclear polyhedrosis virus was used as an expression vector for the simian virus 40 (SV40) small t (t) and large T (T) antigens. Spodoptera frugiperda (SF9) cells infected with recombinant viruses encoding these proteins produced approximately 1 to 2 micrograms of t and up to 30 micrograms of T per 3 X 10(6) cells. The former was highly soluble after Nonidet P-40 extraction of the infected cells, unlike its Escherichia coli-produced counterpart. Both SF9-produced proteins were of authentic size and could be readily immunoprecipitated by specific antibodies. Single-step immunoaffinity chromatography was used to purify the two proteins to near homogeneity, with yields averaging 70% in each case. Experiments to test the biological activity of the baculovirus SV40 proteins showed that SF9 t was capable of associating with two of the cellular proteins reported to bind to t in SV40-infected mammalian cells. Moreover, SF9 T had ATPase activity comparable to that of T produced in monkey cells, exhibited helicase activity and SV40 origin-specific DNA binding, and was active in the SV40 DNA replication assay in vitro. Thus, the SV40 T antigens produced in insect cells can be used in future studies of their biochemical roles in vitro and in vivo.
Collapse
|
18
|
Phillips B, Rundell K. Failure of simian virus 40 small t antigen to disorganize actin cables in nonpermissive cell lines. J Virol 1988; 62:768-75. [PMID: 2828672 PMCID: PMC253630 DOI: 10.1128/jvi.62.3.768-775.1988] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mouse C3H 10T1/2 cell lines expressing the simian virus 40 (SV40) small t antigen were obtained by cotransfection of pSV2neo and plasmids which encode small t. Cell lines derived from two plasmids which encode small t in the absence of stable deletion fragments of the large T antigen were morphologically normal and grew to slightly higher saturation densities in low serum than control cell lines. Unexpectedly, the clones had highly organized actin cables, as did parental 10T1/2 cells infected with wild-type SV40. These observations and comparisons of rat F111 cells infected with either polyomavirus or SV40 suggest that the SV40 small t antigen does not directly affect cytoskeletal organization.
Collapse
Affiliation(s)
- B Phillips
- Cancer Center, Medical School, Northwestern University, Chicago, Illinois 60611
| | | |
Collapse
|
19
|
Tevethia MJ, Pipas JM, Kierstead T, Cole C. Requirements for immortalization of primary mouse embryo fibroblasts probed with mutants bearing deletions in the 3' end of SV40 gene A. Virology 1988; 162:76-89. [PMID: 2827389 DOI: 10.1016/0042-6822(88)90396-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The influence of specific contiguous stretches of amino acids predominantly in the carboxy terminal third of the SV40 large T antigen on the immortalization of cells in culture was investigated. Mutants that bear either small in-phase or frameshift deletions in the large T antigen coding sequence were transfected into primary mouse embryo fibroblasts of C57Bl/6 origin (B6/MEF). The frequency of immortalization was determined as the number of colonies that developed from cells escaping senescence. The results indicated that the terminal 81 amino acids of large T antigen are not needed for efficient immortalization or tumorigenicity. In contrast removal of as few as three amino acids encoded in the vicinity of the Dde-1 site at 0.234 map units (m.u.) severely restricted immortalization, suggesting that this region of the coding sequence either structurally or functionally is essential to at least one parameter of the transformed cell phenotype. The T antigen produced by dlA2433 which bears a deletion of nine nucleotides at 0.234 m.u. fails to associate stably with the cellular protein p53. The results showed that the addition of long stretches of amino acids (96 or 97 residues) from the open reading frame at the 3' end of the early region inactivated immortalizing functions, although the addition of as many as 18 amino acids from other reading frames was not detrimental. The evidence presented also confirmed that wild-type levels of ATPase activity are not necessary for immortalization or tumorigenicity of B6/MEF. Finally, we show that one of the mutants that immortalized primary cells did not produce dense foci on a cell monolayer. This last result indicated that independent functions are required for these two parameters of the transformed cell phenotype.
Collapse
Affiliation(s)
- M J Tevethia
- Department of Microbiology, Pennsylvania State University, College of Medicine, Hershey 17033
| | | | | | | |
Collapse
|
20
|
Abstract
We constructed a collection of linker insertion mutants in the simian virus 40 (SV40) genome and studied several of these with changes limited to a part of the large T antigen gene corresponding to an amino acid sequence shared with other ATPases. Two of these mutants were found to have a novel phenotype in that they could not be complemented for plaque formation by a late-region deletion mutant. These two mutants, in contrast to other mutants in this region, were able to transform rat cells in culture at a frequency close to that of the wild-type gene. The noncomplementing mutants were found to be potent inhibitors of SV40 DNA replication despite the presence of wild-type T antigen in the transfected cells. This inhibition was shown to be the result of the introduced mutations in the large T antigen gene. We conclude that the large T antigens of the noncomplementing mutants can act as inhibitors of SV40 DNA replication.
Collapse
|
21
|
Bikel I, Montano X, Agha ME, Brown M, McCormack M, Boltax J, Livingston DM. SV40 small t antigen enhances the transformation activity of limiting concentrations of SV40 large T antigen. Cell 1987; 48:321-30. [PMID: 3026642 DOI: 10.1016/0092-8674(87)90435-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A murine recombinant Neo(r) retrovirus encoding the SV40 small t antigen was used to infect Balb/c 3T3 CIA31 cells. From analyses of G418-resistant clones containing at least as much intact t as Cos-1 cells, we found that t, alone, had no detectable A31 transforming activity. In contrast, we noted that SV40 large T promoted A31 agar colony formation when present over a 5- to 7.5-fold concentration range. However, at the low end of the spectrum, its transforming effect was manifest inefficiently except in the presence of t. Thus a major role for t in the SV40 transforming mechanism is to enhance directly or indirectly the transforming function of T.
Collapse
|
22
|
The t-unique coding domain is important to the transformation maintenance function of the simian virus 40 small t antigen. Mol Cell Biol 1987. [PMID: 3023875 DOI: 10.1128/mcb.6.4.1172] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small t antigen (t) of simian virus 40, a 174-amino-acid-containing protein, when present together with the other early viral protein, large T antigen (T), plays an important role in the maintenance of simian virus 40-induced neoplastic phenotype in certain cells. Indeed, each protein functions in a complementary manner in this process. The t coding unit is composed of two segments, a 5' region of 246 nucleotides which is identical to that of the corresponding 5' region of the T coding unit and a 3' segment of 276 nucleotides which is unique. Two mutant, t-encoding genomes, one bearing a missense and the other a nonsense mutation at the same point in the t-unique coding region were constructed in vitro and found to be defective in their ability to dissolve the actin cytoskeleton of rat fibroblasts and to complement T in the growth of mouse fibroblasts in soft agar. Therefore, the unique segment of the t gene encodes a portion of the t molecule which is essential to its transformation maintenance function.
Collapse
|
23
|
Murphy CI, Bikel I, Livingston DM. Cellular proteins which can specifically associate with simian virus 40 small t antigen. J Virol 1986; 59:692-702. [PMID: 3016331 PMCID: PMC253242 DOI: 10.1128/jvi.59.3.692-702.1986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
When crude, radiolabeled extracts of various cells were applied to homogeneous simian virus 40 small t antigen-Sepharose adsorbents, three cell proteins (57, 32, and 20 kilodaltons [kDa]) bound specifically. Each also bound to an insoluble, truncated t derivative composed of the COOH-terminal 123 residues of the protein. The binding of these proteins was greatly inhibited after reduction and alkylation of the t ligand. Therefore, some element of native conformation, but not all of the primary structure of t, is necessary for this binding property, which may constitute a discrete, in vitro biochemical function of this protein. Results of cell fractionation experiments suggested that the 57- and 32-kDa proteins are nonnuclear cell constituents, whereas the 20-kDa protein was closely associated with a detergent-washed nuclear fraction. Specific immunoblotting and comparative partial proteolytic digestion analyses indicated that the 57-kDa protein is tubulin, a major component of the cytoskeleton. In this regard, t and tubulin were observed to coimmunoprecipitate from crude cell extracts after incubation with monospecific anti-t antibody. Therefore, it is possible that t and tubulin interact in vivo.
Collapse
|
24
|
Bikel I, Mamon H, Brown EL, Boltax J, Agha M, Livingston DM. The t-unique coding domain is important to the transformation maintenance function of the simian virus 40 small t antigen. Mol Cell Biol 1986; 6:1172-8. [PMID: 3023875 PMCID: PMC367629 DOI: 10.1128/mcb.6.4.1172-1178.1986] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The small t antigen (t) of simian virus 40, a 174-amino-acid-containing protein, when present together with the other early viral protein, large T antigen (T), plays an important role in the maintenance of simian virus 40-induced neoplastic phenotype in certain cells. Indeed, each protein functions in a complementary manner in this process. The t coding unit is composed of two segments, a 5' region of 246 nucleotides which is identical to that of the corresponding 5' region of the T coding unit and a 3' segment of 276 nucleotides which is unique. Two mutant, t-encoding genomes, one bearing a missense and the other a nonsense mutation at the same point in the t-unique coding region were constructed in vitro and found to be defective in their ability to dissolve the actin cytoskeleton of rat fibroblasts and to complement T in the growth of mouse fibroblasts in soft agar. Therefore, the unique segment of the t gene encodes a portion of the t molecule which is essential to its transformation maintenance function.
Collapse
|
25
|
Duthu A, Ehrhart JC, Benchimol S, Chandrasekaran K, May P. P53-transformation-related protein: kinetics of synthesis and accumulation in SV40-infected primary mouse kidney cell cultures. Virology 1985; 147:275-86. [PMID: 3000070 DOI: 10.1016/0042-6822(85)90130-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During abortive infection of Go/G1-arrested primary baby mouse kidney (BMK) cell cultures with simian virus 40 (SV40), expression of the viral large T antigen is followed by a mitotic host response including the stimulation of host macromolecular synthesis and induction into the cell cycle of Go/G1-arrested cells. We performed an extensive study of the sequential events taking place after SV40 infection of confluent BMK cell cultures. This study comprised a detailed kinetic analysis of transcription, synthesis, and accumulation of p53, in conjunction with the time course of large T antigen synthesis and SV40-induced cellular DNA replication. The monoclonal antibodies used for specifically recognizing mouse p53 were PAb 421, PAb 122, PAb 246, PAb 248, and RA3-2C2. Our results consistently show that under our experimental conditions, the stimulation of p53 synthesis and the accumulation of p53 occur well after the onset of T antigen-induced cellular DNA replication. This relatively late activation of p53 expression appears to be controlled at a level other than transcription. In conclusion, we suggest that, at least in certain cases, T antigen's mitogenic potential is not dependent on its interaction with p53.
Collapse
|
26
|
Interaction of simian virus 40 small-T antigen produced in bacteria with 56K and 32K proteins of animal cells. J Virol 1985; 56:325-7. [PMID: 2993663 PMCID: PMC252543 DOI: 10.1128/jvi.56.1.325-327.1985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Small-t antigen produced in bacteria interacted with two animal cell proteins with molecular weights of 56,000 and 32,000, as did the viral antigen from infected cells. Demonstration of this specific interaction required the enrichment of native, monomeric small-t antigen from extracts in which much of the small-t antigen was highly aggregated.
Collapse
|
27
|
Site-directed mutagenesis of the simian virus 40 large T-antigen gene: replication-defective amino acid substitution mutants that retain the ability to induce morphological transformation. J Virol 1985; 55:1-9. [PMID: 2989548 PMCID: PMC254890 DOI: 10.1128/jvi.55.1.1-9.1985] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We used a heteroduplex deletion loop mutagenesis procedure for directing sodium bisulfite-induced mutations to specific sites on viral or plasmid DNA to generate a series of SV40 large T-antigen point mutants. The mutations were directed to a region of the T-antigen gene, 0.5 map units, that is thought to be important for interaction of the protein with the viral origin of DNA replication. Of the 16 mutants reported here, 10 had lost the ability to replicate their DNA, and 3 others showed a reduced level of replication compared to wild type. All of the mutants tested were capable of transforming rat cells in culture by the dense focus assay. We conclude that the sequences of the early region around 0.5 map units are critical for the replication of viral DNA but not for the transformation function of T antigen.
Collapse
|
28
|
Simian virus 40 small-t antigen-induced theophylline resistance is not mediated by cyclic AMP. J Virol 1985; 54:876-8. [PMID: 2987540 PMCID: PMC254879 DOI: 10.1128/jvi.54.3.876-878.1985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Small-t antigen of simian virus 40 renders CV-1 cells resistant to growth arrest induced by theophylline and other methylxanthines. Elevated levels of cyclic AMP are not involved in growth arrest of CV-1 cells by methylxanthines, and small-t antigen does not alter cyclic AMP levels dramatically after infection.
Collapse
|
29
|
Mitsudomi T, Kimura G. Abortive transformation of temperature-sensitive mutants of rat 3Y1 cells by simian virus 40: effect of cellular arrest states on entry into S phase and cellular proliferation. J Cell Physiol 1985; 123:353-60. [PMID: 2985630 DOI: 10.1002/jcp.1041230310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Four temperature-sensitive (ts) mutants of rat 3Y1 fibroblasts, representing independent complementation groups, cease to proliferate predominantly with a 2n DNA content, at the restrictive temperature (39.8 degrees C) (temperature arrest) or at the permissive temperature (33.8 degrees C) at a confluent cell density (density arrest) (Ohno et al., 1984). We studied the temperature- or the density-arrested cells of these mutants infected with simian virus 40 (SV40) or its mutants affecting large T or small t antigen with respect to kinetics at 39.8 degrees C of entry into S phase and cellular proliferation. Three mutants, 3Y1tsD123, 3Y1tsF121 and 3Y1tsG125, expressed T antigen and entered S phase at 39.8 degrees C from both the arrested states after infection with either wild-type, tsA mutants, or a .54/.59 deletion mutant of SV40, whereas in the density-arrested 3Y1tsH203, expression of T antigen and entry into S phase were inefficient and ts. Following the WT-SV40 induced entry into S phase, the temperature-arrested 3Y1tsD123 detached from the substratum with no detectable increase in cell number, whereas the density-arrested ones completed a round of the cell cycle and then detached. 3Y1tsF121 and 3Y1tsG125 in the both arrested states proliferated through more than one generation. 3Y1tsF121 and 3Y1tsG125 in the density-arrested state infected with tsA mutants once proliferated and then ceased to increase in number as the percentage of T-antigen positive population decreased. These results suggest that wild-type and tsA-mutated large T antigens are able to overcome the cellular ts blocks of entry into S phase in the 3 ts mutants of 3Y1 cells in both the arrested states, and that small t antigen is not required to overcome the blocks. It is also suggested that cellular behaviors subsequent to S phase (viability, mitosis, and proliferation in the following generations) depend on cellular arrest states, on traits of cellular ts defects, and on the duration of large T antigen expression.
Collapse
|
30
|
Characterization of a new simian virus 40 mutant, tsA3900, isolated from deletion mutant tsA1499. J Virol 1985; 53:814-21. [PMID: 2983092 PMCID: PMC254712 DOI: 10.1128/jvi.53.3.814-821.1985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The simian virus 40 (SV40) mutant tsA1499 contains an 81-base-pair deletion in the region of A gene encoding the C-terminal portion of the large T antigen. This mutant is particularly interesting, since it is a temperature-sensitive mutant that is apparently able to separate the lytic growth and transforming functions of the SV40 large T antigen at 38.5 degrees C. We report the isolation of a tsA1499 revertant (tsA1499-Rev) which is no longer temperature sensitive for lytic growth but still contains the 81-base-pair deletion of tsA1499. Marker rescue experiments with tsA1499-Rev or wild-type strain 830 (wt830) DNAs revealed that the original tsA1499 mutant contained a second mutation within the HindIII-Fnu4HI restriction fragment between 0.425 and 0.484 map units. Sequencing of this DNA fragment from the tsA1499, tsA1499-Rev, and wt830 viruses revealed that tsA1499 contained a single-base transversion (C to G) at 0.455 map units (nucleotide 4261). This transversion resulted in the creation of a new RsaI cleavage site in the tsA1499 DNA and predicts an arginine-to-threonine substitution at amino acid position 186 in the mutant large T antigen. The DNA sequence of the tsA1499-Rev HindIII-Fnu4HI fragment was identical to that of wt830. To determine whether tsA1499 was temperature sensitive for lytic growth solely as a result of the newly discovered point mutation or because of a combination of the point and deletion mutations, a series of viruses were constructed which contained the point mutation, the deletion mutation, both mutations, or neither. This was done by ligating the PstI A and B DNA fragments from either tsA1499 or wt830 and transfecting the ligated DNA into BSC-1H monkey kidney cells. This experiment revealed that all viruses containing the point mutation (the tsA1499 PstI A DNA fragment) were temperature sensitive for lytic growth, regardless of the presence of the 81-base-pair deletion (the tsA1499 PstI B DNA fragment). This newly discovered point mutation, at nucleotide 4261, is therefore unique, since to our knowledge it is the first tsA mutation to be described in the 0.455-map-unit region of the SV40 genome. We then tested the effect of this unique mutation on the ability of the SV40 virus to transform cultured rat cells to anchorage independence.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
31
|
Sugano S, Yamaguchi N. Two classes of transformation-deficient, immortalization-positive simian virus 40 mutants constructed by making three-base insertions in the T antigen gene. J Virol 1984; 52:884-91. [PMID: 6092718 PMCID: PMC254609 DOI: 10.1128/jvi.52.3.884-891.1984] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We constructed two mutants of simian virus 40 (SV40) by introducing a three-base duplication at AvaII cutting sites within the large T antigen coding region, and we examined these mutants for their abilities to replicate in monkey GC7 cells, to transform rat cell line 3Y1 cells, and to transform and immortalize primary cells from newborn rats. Neither of the mutants could replicate in GC7 cells. One mutant with the duplication at 0.335 SV40 map units (m.u.) (inA942) could transform 3Y1 cells, but the other mutant with the duplication at 0.636 m.u. (inA941) could not. The two mutants could not transform primary rat cells but retained immortalization activity. The results suggest that transformation of primary cells by SV40 requires at least two distinct activities of the large T antigen, one of which can be replaced by a cellular function(s) expressed in immortalized 3Y1 cells.
Collapse
|
32
|
Simian virus 40 large T-antigen point mutants that are defective in viral DNA replication but competent in oncogenic transformation. Mol Cell Biol 1984. [PMID: 6330530 DOI: 10.1128/mcb.4.6.1125] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large T antigen of simian virus 40 (SV40) is a multifunctional protein that is essential in both the virus lytic cycle and the oncogenic transformation of cells by SV40. To investigate the role of the numerous biochemical and physiological activities of T antigen in the lytic and transformation processes, we have studied DNA replication-deficient, transformation-competent large T-antigen mutants. Here we describe the genetic and biochemical analyses of two such mutants, C2/SV40 and C11/SV40. The mutants were isolated by rescuing the integrated SV40 DNA from C2 and C11 cells (CV-1 cell lines transformed with UV-irradiated SV40). The mutant viral early regions were cloned into the plasmid vector pK1 to generate pC2 and pC11. The mutations that are responsible for the deficiency in viral DNA replication were localized by marker rescue. Subsequent DNA sequencing revealed point mutations that predict amino acid substitutions in the carboxyl third of the protein in both mutants. The pC2 mutation predicts the change of Lys----Arg at amino acid 516. pC11 has two mutations, one predicting a change of Pro----Ser at residue 522, and another predicting a Pro----Arg change at amino acid 549. The two C11 mutations were separated from each other to form two distinct viral genomes in pC11A and pC11B. pC2, pC11, pC11A, and pC11B are able to transform both primary and established rodent cell cultures. The C11 and C11A T antigens are defective in ATPase activity, suggesting that wild-type levels of ATPase activity are not necessary for the oncogenic transformation of cells by T antigen.
Collapse
|
33
|
Manos MM, Gluzman Y. Simian virus 40 large T-antigen point mutants that are defective in viral DNA replication but competent in oncogenic transformation. Mol Cell Biol 1984; 4:1125-33. [PMID: 6330530 PMCID: PMC368881 DOI: 10.1128/mcb.4.6.1125-1133.1984] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The large T antigen of simian virus 40 (SV40) is a multifunctional protein that is essential in both the virus lytic cycle and the oncogenic transformation of cells by SV40. To investigate the role of the numerous biochemical and physiological activities of T antigen in the lytic and transformation processes, we have studied DNA replication-deficient, transformation-competent large T-antigen mutants. Here we describe the genetic and biochemical analyses of two such mutants, C2/SV40 and C11/SV40. The mutants were isolated by rescuing the integrated SV40 DNA from C2 and C11 cells (CV-1 cell lines transformed with UV-irradiated SV40). The mutant viral early regions were cloned into the plasmid vector pK1 to generate pC2 and pC11. The mutations that are responsible for the deficiency in viral DNA replication were localized by marker rescue. Subsequent DNA sequencing revealed point mutations that predict amino acid substitutions in the carboxyl third of the protein in both mutants. The pC2 mutation predicts the change of Lys----Arg at amino acid 516. pC11 has two mutations, one predicting a change of Pro----Ser at residue 522, and another predicting a Pro----Arg change at amino acid 549. The two C11 mutations were separated from each other to form two distinct viral genomes in pC11A and pC11B. pC2, pC11, pC11A, and pC11B are able to transform both primary and established rodent cell cultures. The C11 and C11A T antigens are defective in ATPase activity, suggesting that wild-type levels of ATPase activity are not necessary for the oncogenic transformation of cells by T antigen.
Collapse
|
34
|
Chang LS, Pater MM, Hutchinson NI, di Mayorca G. Transformation by purified early genes of simian virus 40. Virology 1984; 133:341-53. [PMID: 6324456 DOI: 10.1016/0042-6822(84)90400-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A rapid soft-agar assay using baby hamster kidney (BHK21 cl.13) cells has been developed to establish the functional roles for the large T and small t antigens of SV40 in transformation. Plasmids expressing either large T or small t antigens of SV40 have also been constructed and these plasmids have been used separately or in combination for transformation. A large T clone, pD3-05, containing a deletion in the small t-specific coding region [0.584-0.54 map units (mu)], transformed a low-background subclone of baby hamster kidney (BHK21 cl.13) cell line and F111 rat fibroblasts to anchorage independence at a low level (10-20 and 1%, respectively, of an early region clone from wild type [WT], pW2). A WT-derived small t clone, pW2-t, containing a deletion in the large T-specific coding region (0.373-0.169 mu), did not transform F111 cells, but transformed BHK21 cells at a very low level (about 2% of pW2). Another WT-derived small t clone, pW2-t/B1, containing a larger deletion in the large T-specific coding region (0.512-0.169 mu), did not transform either BHK21 or F111 cells. However, cotransformation with pD3-05 clone and pW2-t or pW2-t/B1 clone increased the frequency of transformation to about the same level as that of pW2. The ability of the small t clones to enhance the transformation efficiency of the large T clone was not due to recombination between the two plasmids, since cotransformation with pD3-05 and a small t clone without the polyadenylation [poly(A)] signal sequence from WT, pW-t8, did not increase the frequency of transformation. When the frequency of transformation was determined by the focus assay using F111 cells, pD3-05 transformed as well as pW2. Also, cotransformation with pD3-05 and pW2-t/B1 did not increase the frequency of focus formation. Therefore, the small t antigen was not required for this morphological transformation.
Collapse
|
35
|
Okuda A, Shimura H, Kimura G. Abortive transformation of rat 3Y1 cells by simian virus 40: viral function overcoming inhibition of cellular proliferation under various conditions of culture. Virology 1984; 133:35-45. [PMID: 6322436 DOI: 10.1016/0042-6822(84)90423-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Resting cultures of nonpermissive rat 3Y1 cells were infected with simian and T antigen expression and entry into S phase were examined under various conditions of culture. In the complete absence of serum from the medium or at an extremely high cell density, the cells delayed T antigen expression and entry into S phase, leaving the interval between the two events constant. Results using the viral mutants deleted in the coding region for the small t antigen ruled out the role of this antigen in induction of S phase. From these and other results presented, we conclude that the large T antigen induces S phase with the same efficiency under different conditions of cultures. We also present the evidence that the large T antigen function is required and is sufficient for entry into S phase in the second as well as in the first generation.
Collapse
|
36
|
Matter JM, Tiercy JM, Weil R. Sequential stimulation of cellular RNA synthesis in polyoma-infected mouse kidney cell cultures. Nucleic Acids Res 1983; 11:6611-29. [PMID: 6314250 PMCID: PMC326403 DOI: 10.1093/nar/11.19.6611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lytic infection with polyoma virus leads in Go-arrested primary mouse kidney cell cultures to a mitotic host response. In the present work we focused our attention on cellular RNA synthesis shortly after onset of polyoma T-antigen synthesis. Onset of polyoma-induced stimulation of 45S pre-rRNA synthesis was determined by hybridization of total cellular RNA with a plasmid (pMrSalB) containing the 5'-end of the mouse ribosomal gene and of the other cellular RNA species by standard biochemical analysis of cellular fractions. The results showed that polyoma-induced stimulation of cellular hnRNA (hnRNP) synthesis, the earliest presently known host cell reaction, preceded onset of stimulated 45S pre-rRNA synthesis and that the latter was paralleled by polyoma-induced stimulation of 5S RNA, tRNA and overall protein synthesis. The polyoma-induced mitotic response is similar to that triggered by simian virus 40 and by certain nonviral mitogens.
Collapse
|
37
|
Rawlins DR, Collis P, Muzyczka N. Characterization of am404, an amber mutation in the simian virus 40 T antigen gene. J Virol 1983; 47:202-16. [PMID: 6191041 PMCID: PMC255229 DOI: 10.1128/jvi.47.1.202-216.1983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We analyzed the biological activity of an amber mutation, am404, at map position 0.27 in the T antigen gene of simian virus 40. Immunoprecipitation of extracts from am404-infected cells demonstrated the presence of an amber protein fragment (am T antigen) of the expected molecular weight (67,000). Differential immunoprecipitation with monoclonal antibody demonstrated that am T antigen was missing the carboxy-terminal antigenic determinants. The amber mutant was shown to be defective for most of the functions associated with wild-type T antigen. The mutant did not replicate autonomously, but this defect could be complemented by a helper virus (D. R. Rawlins and N. Muzyczka, J. Virol. 36:611-616, 1980). The mutant failed to transform nonpermissive rodent cells and did not relieve the host range restriction of adenovirus 2 in monkey cells. However, stimulation of host cell DNA, whose functional region domain has been mapped within that portion of the protein synthesized by the mutant, could be demonstrated in am404-infected cells. A number of unexpected observations were made. First, the am T antigen was produced in unusually large amounts in a simian virus 40-transformed monkey cell line (COS-1), but overproduction was not seen in nontransformed monkey cells regardless of whether or not a helper virus was present. This feature of the mutant was presumably the result of the inability of am T antigen to autoregulate, the level of wild-type T antigen in COS-1 cells, and the unusually short half-life of am T antigen in vivo. Pulse-chase experiments indicated that am T antigen had an intracellular half-life of approximately 10 min. In addition, although the am T antigen retained the major phosphorylation site found in simian virus 40 T antigen, it was not phosphorylated. Thus, phosphorylation of simian virus 40 T antigen is not required for the stimulation of host cell DNA synthesis. Finally, fusion of am404-infected monkey cells with Escherichia coli protoplasts containing appropriate procaryotic suppressor tRNAs showed that am404 is a suppressible nonsense mutation.
Collapse
|
38
|
Mutational analysis of simian virus 40 T antigen: isolation and characterization of mutants with deletions in the T-antigen gene. Mol Cell Biol 1983. [PMID: 6300656 DOI: 10.1128/mcb.3.2.203] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of mutants of simian virus 40 has been constructed with deletions in the coding sequence for large T antigen. Nucleotide sequence analysis indicates that 4 mutants have in-phase and 11 have out-of-phase deletions. Mutant DNAs were assayed for the following activities: the ability to form plaques, the ability to produce T antigen as scored by indirect immunofluorescence, viral DNA replication, and morphological transformation of rat cells. Two viable mutants were found, and these had deletions confined to the carboxyl terminus of T antigen. Only those mutants coding for polypeptides greater than 40% of the length of wildtype T antigen produced detectable nuclear fluorescence. The two viable mutants with deletions in the carboxyl terminus of the protein retained the ability both to replicate their DNA, although at a reduced level, and to transform nonpermissive cells. Mutants with sequence changes that result in the loss of more than 117 amino acids from the carboxyl terminus were not viable and were also defective in the DNA replication and transformation functions of T antigen, although several produced detectable nuclear fluorescence. These functions were also sensitive to the removal of amino acids near the amino terminus and in the middle of the protein.
Collapse
|
39
|
Mutational analysis of simian virus 40 T antigen: stimulation of cellular DNA synthesis and activation of rRNA genes by mutants with deletions in the T-antigen gene. Mol Cell Biol 1983. [PMID: 6300657 DOI: 10.1128/mcb.3.2.214] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biological activity of several deletion mutants of simian virus 40, cloned in pBR322, was determined. Three functions of the simian virus 40 A gene were studied: (i) the ability to express T antigen; (ii) the ability to induce cell DNA replication; and (iii) the ability to reactivate silent rRNA genes in hybrid cells. Recombinant plasmid DNA was introduced into cells by manual microinjection or by transfection. The results (together with previous reports) indicate that the critical sequences for these three functions are located separately on the simian virus 40 A gene, as follows: (i) the sequences necessary for the detection of the common antigenic determinant of T antigen extend from nucleotide 4147 to nucleotide 4001 (map units 0.45 to 0.42); (ii) the sequences critical for the stimulation of cell DNA synthesis extend from nucleotide 4327 to nucleotide 4001 (map units 0.49 to 0.42); and (iii) those critical for the reactivation of rRNA genes extend approximately from nucleotide 3827 to nucleotide 3526 (map units 0.39 to 0.33).
Collapse
|
40
|
Biochemical activities of T-antigen proteins encoded by simian virus 40 A gene deletion mutants. Mol Cell Biol 1983. [PMID: 6300658 DOI: 10.1128/mcb.3.2.220] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed T antigens produced by a set of simian virus 40 (SV40) A gene deletion mutants for ATPase activity and for binding to the SV40 origin of DNA replication. Virus stocks of nonviable SV40 A gene deletion mutants were established in SV40-transformed monkey COS cells. Mutant T antigens were produced in mutant virus-infected CV1 cells. The structures of the mutant T antigens were characterized by immunoprecipitation with monoclonal antibodies directed against distinct regions of the T-antigen molecule. T antigens in crude extracts prepared from cells infected with 10 different mutants were immobilized on polyacrylamide beads with monoclonal antibodies, quantified by Coomassie blue staining, and then assayed directly for T antigen-specific ATPase activity and for binding to the SV40 origin of DNA replication. Our results indicate that the T antigen coding sequences required for origin binding map between 0.54 and 0.35 map units on the SV40 genome. In contrast, sequences closer to the C terminus of T antigen (between 0.24 and 0.20 map units) are required for ATPase activity. The presence of the ATPase activity correlated closely with the ability of the mutant viruses to replicate and to transform nonpermissive cells. The origin binding activity was retained, however, by three mutants that lacked these two functions, indicating that this activity is not sufficient to support either cellular transformation or viral replication. Neither the ATPase activity nor the origin binding activity correlated with the ability of the mutant DNA to activate silent rRNA genes or host cell DNA synthesis.
Collapse
|
41
|
Clark R, Peden K, Pipas JM, Nathans D, Tjian R. Biochemical activities of T-antigen proteins encoded by simian virus 40 A gene deletion mutants. Mol Cell Biol 1983; 3:220-8. [PMID: 6300658 PMCID: PMC368525 DOI: 10.1128/mcb.3.2.220-228.1983] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have analyzed T antigens produced by a set of simian virus 40 (SV40) A gene deletion mutants for ATPase activity and for binding to the SV40 origin of DNA replication. Virus stocks of nonviable SV40 A gene deletion mutants were established in SV40-transformed monkey COS cells. Mutant T antigens were produced in mutant virus-infected CV1 cells. The structures of the mutant T antigens were characterized by immunoprecipitation with monoclonal antibodies directed against distinct regions of the T-antigen molecule. T antigens in crude extracts prepared from cells infected with 10 different mutants were immobilized on polyacrylamide beads with monoclonal antibodies, quantified by Coomassie blue staining, and then assayed directly for T antigen-specific ATPase activity and for binding to the SV40 origin of DNA replication. Our results indicate that the T antigen coding sequences required for origin binding map between 0.54 and 0.35 map units on the SV40 genome. In contrast, sequences closer to the C terminus of T antigen (between 0.24 and 0.20 map units) are required for ATPase activity. The presence of the ATPase activity correlated closely with the ability of the mutant viruses to replicate and to transform nonpermissive cells. The origin binding activity was retained, however, by three mutants that lacked these two functions, indicating that this activity is not sufficient to support either cellular transformation or viral replication. Neither the ATPase activity nor the origin binding activity correlated with the ability of the mutant DNA to activate silent rRNA genes or host cell DNA synthesis.
Collapse
|
42
|
Soprano KJ, Galanti N, Jonak GJ, McKercher S, Pipas JM, Peden KW, Baserga R. Mutational analysis of simian virus 40 T antigen: stimulation of cellular DNA synthesis and activation of rRNA genes by mutants with deletions in the T-antigen gene. Mol Cell Biol 1983; 3:214-9. [PMID: 6300657 PMCID: PMC368524 DOI: 10.1128/mcb.3.2.214-219.1983] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The biological activity of several deletion mutants of simian virus 40, cloned in pBR322, was determined. Three functions of the simian virus 40 A gene were studied: (i) the ability to express T antigen; (ii) the ability to induce cell DNA replication; and (iii) the ability to reactivate silent rRNA genes in hybrid cells. Recombinant plasmid DNA was introduced into cells by manual microinjection or by transfection. The results (together with previous reports) indicate that the critical sequences for these three functions are located separately on the simian virus 40 A gene, as follows: (i) the sequences necessary for the detection of the common antigenic determinant of T antigen extend from nucleotide 4147 to nucleotide 4001 (map units 0.45 to 0.42); (ii) the sequences critical for the stimulation of cell DNA synthesis extend from nucleotide 4327 to nucleotide 4001 (map units 0.49 to 0.42); and (iii) those critical for the reactivation of rRNA genes extend approximately from nucleotide 3827 to nucleotide 3526 (map units 0.39 to 0.33).
Collapse
|
43
|
Pipas JM, Peden KW, Nathans D. Mutational analysis of simian virus 40 T antigen: isolation and characterization of mutants with deletions in the T-antigen gene. Mol Cell Biol 1983; 3:203-13. [PMID: 6300656 PMCID: PMC368523 DOI: 10.1128/mcb.3.2.203-213.1983] [Citation(s) in RCA: 120] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A series of mutants of simian virus 40 has been constructed with deletions in the coding sequence for large T antigen. Nucleotide sequence analysis indicates that 4 mutants have in-phase and 11 have out-of-phase deletions. Mutant DNAs were assayed for the following activities: the ability to form plaques, the ability to produce T antigen as scored by indirect immunofluorescence, viral DNA replication, and morphological transformation of rat cells. Two viable mutants were found, and these had deletions confined to the carboxyl terminus of T antigen. Only those mutants coding for polypeptides greater than 40% of the length of wildtype T antigen produced detectable nuclear fluorescence. The two viable mutants with deletions in the carboxyl terminus of the protein retained the ability both to replicate their DNA, although at a reduced level, and to transform nonpermissive cells. Mutants with sequence changes that result in the loss of more than 117 amino acids from the carboxyl terminus were not viable and were also defective in the DNA replication and transformation functions of T antigen, although several produced detectable nuclear fluorescence. These functions were also sensitive to the removal of amino acids near the amino terminus and in the middle of the protein.
Collapse
|
44
|
Bikel I, Roberts TM, Bladon MT, Green R, Amann E, Livingston DM. Purification of biologically active simian virus 40 small tumor antigen. Proc Natl Acad Sci U S A 1983; 80:906-10. [PMID: 6302673 PMCID: PMC393496 DOI: 10.1073/pnas.80.4.906] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The simian virus 40 small tumor antigen (t antigen) gene has been cloned downstream from a hybrid Escherichia coli trp-lac promoter and a suitable ribosome binding site. A bacterial clone (865i) transformed by such a plasmid (pTR865) expresses this gene and, under optimal conditions, can produce greater than or equal to 5% of its total protein as t antigen. Soluble extracts of such a clone were relatively depleted in t antigen, which was found in the initial pellet fraction. The protein was recovered from this fraction in a significantly purified form by extraction with urea-containing buffer. After gel filtration of such t antigen-enriched solutions, highly purified protein was obtained. When either this fraction (freed of urea) or NaDodSO4 gel-purified 865i t antigen (rendered free of detergent) was injected into untransformed rat cells, dissolution of intracellular actin cable networks was observed.
Collapse
|
45
|
Lehman JM, Estes P. Tumorigenicity of tsA and wild-type simian virus 40 transformed cells inoculated onto the chicken chorioallantoic membrane. Int J Cancer 1982; 30:643-8. [PMID: 6295968 DOI: 10.1002/ijc.2910300515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study compares the tumorigenicity of SV40 primary tumor cell lines, tsA and wild-type SV40-transformed Chinese hamster cells, at two temperatures, 37 degrees C and 40.5 degrees C, inoculated onto the chorioallantoic membrane of the chicken egg. The SV40 primary tumor cell lines varied in their efficiency of takes at 37 degrees C from 78% for the H65-90B tumor line, 73% for the H80-7A and 25% for the H80-4 line. At 40.5 degrees C the H80-4 was unable to form tumors; however, the H80-7A and H80-4 produced 70% and 20% tumors respectively. Histologically, all CAM tumors were fibrosarcomas identical to the transplanted tumors, however, the tumor(s) at 40.5 degrees C were smaller. Chinese hamster wild-type SV40-transformed cells were equally efficient (32%) at tumor production at both temperatures. The tsA-SV40-transformed Chinese hamster cells (A58 and A58-2) induced 34% tumors at 37 degrees C and 9% tumors at 40.5 degrees C. At 37 degrees C these tumors were typical fibrosarcomas; however, the 40.5 degrees C tumors were smaller and less cellular, resembling a more differentiated fibrosarcoma. Therefore, the tsA Chinese hamster transformed cells were less efficient at tumor induction at the non-permissive temperature; however, the primary tumor lines also demonstrated a variability in tumorigenicity (H65-90B and H80-4). Possibly factors other than the temperature-sensitive viral protein (big "T" antigen) may be involved in establishing a tumor on the chicken CAM.
Collapse
|
46
|
Carroll RB, Gurney EG. Time-dependent maturation of the simian virus 40 large T antigen-p53 complex studied by using monoclonal antibodies. J Virol 1982; 44:565-73. [PMID: 6292517 PMCID: PMC256300 DOI: 10.1128/jvi.44.2.565-573.1982] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Newly synthesized simian virus 40 large tumor antigen (T Ag) slowly forms a stable complex with the host tumor antigen, "p53." By the use of immunological and temporal separations and inhibition of aggregation and processing by A locus mutation, we have distinguished specific steps in the reaction sequence leading to formation of the rapidly sedimenting oligomeric complex. The monoclonal antibody PAb101 bound only a fraction of the total soluble pulse-labeled T Ag bound by antitumor serum. After a chase, all T Ag had matured to the form recognized by PAb101. All p53 in the mouse line SVA31E7 was precipitated by the T Ag-specific monoclonal antibody PAb101, even after a short pulse, and is therefore entirely bound to mature T Ag. The p53-specific monoclonal antibody PAb122 precipitates nearly all of the mature T Ag recognized by PAb101, except A locus mutant T Ag, synthesized at the nonpermissive temperature. A locus mutation inhibited entry of newly synthesized T Ag into the oligomeric greater than 28S complex of T Ag and p53.
Collapse
|
47
|
Christensen JB, Brockman WW. Effects of large and small T antigens on DNA synthesis and cell division in simian virus 40-transformed BALB/c 3T3 cells. J Virol 1982; 44:574-85. [PMID: 6292518 PMCID: PMC256301 DOI: 10.1128/jvi.44.2.574-585.1982] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The roles of the large T and small t antigens of simian virus 40 in cellular DNA synthesis and cell division were analyzed in BALB/c 3T3 mouse cells transformed by wild-type, temperature-sensitive A (tsA), or tsA-deletion (tsA/dl) double mutants. Assessment of DNA replication and cell cycle distribution by radioautography of [3H]thymidine-labeled nuclei and by flow microfluorimetry indicate that tsA transformants do not synthesize DNA or divide at the restrictive temperature to the same extent as they do at the permissive temperature or as wild-type transformants do at the restrictive temperature. This confirms earlier studies suggesting that large T induces DNA synthesis and mitosis in transformed cells. Inhibition of replication in tsA transformants at the restrictive temperature, however, is not complete. Some residual cell division does occur but is in large part offset by cell detachment and death. This failure to revert completely to the parental 3T3 phenotype, as indicated by residual cell cycling at the restrictive temperature, was also observed in cells transformed by tsA/dl double mutants which, in addition to producing a ts large T, make no small t protein. Small t, therefore, does not appear to be responsible for the residual cell cycling and plays no demonstrable role in the induction of DNA synthesis or cell division in stably transformed BALB/c 3T3 cells. Comparison of cell cycling in tsA and tsA/dl transformants, normal 3T3 cells, and a transformation revertant suggests that the failure of tsA transformants to revert completely may be due to leakiness of the tsA mutation as well as to a permanent cellular alteration induced during viral transformation. Finally, analysis of cells transformed by tsA/dl double mutants indicates that small t is not required for full expression of growth properties characteristic of transformed cells.
Collapse
|
48
|
Jasny BR, Wright JM, Smith LA, Gershey EL, Tamm I. Effect of simian virus 40 on the temporal and spatial organization of DNA replication in Muntjac cells. J Virol 1982; 44:107-15. [PMID: 6292478 PMCID: PMC256245 DOI: 10.1128/jvi.44.1.107-115.1982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We examined the effects of simian virus 40 infection on the temporal and spatial organization of initiation sites for DNA replication in Muntjac cells by means of light microscopic DNA fiber autoradiography. Initiation at multiple sites along the DNA fiber in virus-infected confluent Muntjac cells was more nearly synchronous than in serum-deprived controls, although temporal control in the infected cells did not reach the level observed in cells incubated in serum-enriched medium. Initiation sites in virus-infected cells appeared to be spatially closer together than in either uninfected serum-deprived or uninfected serum-enriched cells. This change did not appear to be the result of the induction or repression by simian virus 40 of clusters of replication units with new and different organizations.
Collapse
|
49
|
Robinson CC, Lehman JM. Simian virus 40 A gene function: further characterization and growth of tsA transformed chinese hamster cells. J Cell Physiol 1982; 111:225-31. [PMID: 6284768 DOI: 10.1002/jcp.1041110302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chinese hamster embryo cells transformed with the tsA 58 mutant of Simian virus 40 express the transformed phenotype at the permissive temperature (33 degrees C or 37 degrees C) and a "normal" phenotype at the nonpermissive temperature (40.5 degrees C). Immunofluorescence and immunoprecipitation of T antigens demonstrated that the "T" antigen (100 K) has an increase rate of synthesis and degradation at 40.5 degrees C. However, the cells continue to replicate at the nonpermissive temperature when assayed by flow cytometry and autoradiography. This DNA synthesis was cellular, not viral, and not owing to an increase in DNA repair. When the cell cycle distributions of G1, S, and G2 + M were assayed by the fraction labeled mitoses method, no differences were evident at the permissive and nonpermissive temperature; however, the doubling time was lengthened at 40.5 degrees C (13 hours vs. 100 hours). These results suggest that at 40.5 degrees C, the tsA transformed cells are cycling and dying. However, if the transformed cells are seeded onto monolayers of normal Chinese hamster cells at 40.5 degrees C, the cells are growth arrested when measured by growth assays, flow cytometry, autoradiography, and immunofluorescence for T antigen. Therefore, growth arrest can be obtained in tsA 58 transformed Chinese hamster cells when cocultured with normal Chinese hamster cells.
Collapse
|
50
|
Schaffhausen B. Transforming genes and gene products of polyoma and SV40. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1982; 13:215-86. [PMID: 6293767 DOI: 10.3109/10409238209114230] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The small DNA-containing viruses, SV40 and polyoma, transform cells in vitro and induce tumors in vivo. For both viruses two genes required for transformation have been found. The genes required for transformation are also involved in productive infection. Although the two viruses are similar in their effects on cells, the organization of the transforming genes and gene products is different. The purpose of this review is to compare what is known about the biology and the biochemistry of the early regions of the two viruses. The genetic and biochemical studies defining the sequences important for transformation will be reviewed. Then, the products of the transforming genes, called T antigens, will be discussed in detail. There is a substantial body of descriptive information on those products, and studies on the function of the T antigens have also begun.
Collapse
|