1
|
Kelly T. Historical Perspective of Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:1-41. [PMID: 29357051 DOI: 10.1007/978-981-10-6955-0_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The replication of the genome of a eukaryotic cell is a complex process requiring the ordered assembly of multiprotein replisomes at many chromosomal sites. The process is strictly controlled during the cell cycle to ensure the complete and faithful transmission of genetic information to progeny cells. Our current understanding of the mechanisms of eukaryotic DNA replication has evolved over a period of more than 30 years through the efforts of many investigators. The aim of this perspective is to provide a brief history of the major advances during this period.
Collapse
Affiliation(s)
- Thomas Kelly
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Tammaro M, Liao S, Beeharry N, Yan H. DNA double-strand breaks with 5' adducts are efficiently channeled to the DNA2-mediated resection pathway. Nucleic Acids Res 2015; 44:221-31. [PMID: 26420828 PMCID: PMC4705695 DOI: 10.1093/nar/gkv969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/15/2015] [Indexed: 11/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) with 5′ adducts are frequently formed from many nucleic acid processing enzymes, in particular DNA topoisomerase 2 (TOP2). The key intermediate of TOP2 catalysis is the covalent complex (TOP2cc), consisting of two TOP2 subunits covalently linked to the 5′ ends of the nicked DNA. In cells, TOP2ccs can be trapped by cancer drugs such as etoposide and then converted into DNA double-strand breaks (DSBs) that carry adducts at the 5′ end. The repair of such DSBs is critical to the survival of cells, but the underlying mechanism is still not well understood. We found that etoposide-induced DSBs are efficiently resected into 3′ single-stranded DNA in cells and the major nuclease for resection is the DNA2 protein. DNA substrates carrying model 5′ adducts were efficiently resected in Xenopus egg extracts and immunodepletion of Xenopus DNA2 also strongly inhibited resection. These results suggest that DNA2-mediated resection is a major mechanism for the repair of DSBs with 5′ adducts.
Collapse
Affiliation(s)
- Margaret Tammaro
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Shuren Liao
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Neil Beeharry
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Hong Yan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
3
|
Abstract
Australian antigen, the envelope protein of hepatitis B virus (HBV), was discovered in 1967 as a prevalent serum antigen in hepatitis B patients. Early electron microscopy (EM) studies showed that this antigen was present in 22-nm particles in patient sera, which were believed to be incomplete virus. Complete virus, much less abundant than the 22-nm particles, was finally visualized in 1970. HBV was soon found to infect chimpanzees, gorillas, orangutans, gibbon apes, and, more recently, tree shrews (Tupaia belangeri) and cynomolgus macaques (Macaca fascicularis). This restricted host range placed limits on the kinds of studies that might be performed to better understand the biology and molecular biology of HBV and to develop antiviral therapies to treat chronic infections. About 10 years after the discovery of HBV, this problem was bypassed with the discovery of viruses related to HBV in woodchucks, ground squirrels, and ducks. Although unlikely animal models, their use revealed the key steps in hepadnavirus replication and in the host response to infection, including the fact that the viral nuclear episome is the ultimate target for immune clearance of transient infections and antiviral therapy of chronic infections. Studies with these and other animal models have also suggested interesting clues into the link between chronic HBV infection and hepatocellular carcinoma.
Collapse
|
4
|
Inhibition of adenovirus DNA synthesis in vitro by sera from patients with systemic lupus erythematosus. Mol Cell Biol 2003. [PMID: 14582191 DOI: 10.1128/mcb.2.12.1492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sera containing antinuclear antibodies from patients with systemic lupus erythematosus (SLE) and related disorders were tested for their effect on the synthesis of adenovirus (Ad) DNA in an in vitro replication system. After being heated at 60 degrees C for 1 h, some sera from patients with SLE inhibited Ad DNA synthesis by 60 to 100%. Antibodies to double-stranded DNA were present in 15 of the 16 inhibitory sera, and inhibitory activity copurified with anti-double-stranded DNA in the immunoglobulin G fraction. These SLE sera did not inhibit the DNA polymerases alpha, beta, gamma and had no antibody to the 72,000-dalton DNA-binding protein necessary for Ad DNA synthesis. The presence of antibodies to single-stranded DNA and a variety of saline-extractable antigens (Sm, Ha, nRNP, and rRNP) did not correlate with SLE serum inhibitory activity. Methods previously developed for studying the individual steps in Ad DNA replication were used to determine the site of inhibition by the SLE sera that contained antibody to double-stranded DNA. Concentrations of the SLE inhibitor that decreased the elongation of Ad DNA by greater than 85% had no effect on either the initiation of Ad DNA synthesis or the polymerization of the first 26 deoxyribonucleotides.
Collapse
|
5
|
Affiliation(s)
- E Sadowy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
6
|
Abstract
Nucleotide sequence of the genomic region between map units 25 and 31 of the fowl adenovirus serotype 10 (FAV 10) was determined and analyzed. An open reading frame (ORF) running from right to left (that is on /-strand) of 1806 nucleotides in length was found. This ORF encoded a polypeptide of 602 amino acids with a molecular weight (M[r]) of approximately 70.4 kilo-Daltons. The genomic location of the ORF was determined to be between map units 25.5 and 29.5, similar to the genomic position of the human adenovirus (HAV) terminal protein precursor (pTP). From its size, approximate genomic location and direction of transcription, this ORF was suspected to be the FAV10 homologue of the pTP. Amino acid sequence comparison with the HAV2 pTP revealed an amino acid sequence similarity of 32.4% but was 51 amino acids shorter in length. A potential proteolytic cleavage site was identified which would create a post-cleavage terminal protein of 316 amino acids, again comparable to the 322 amino acids of the post-cleavage TP of HAV.
Collapse
Affiliation(s)
- R J McCoy
- Commonwealth Scientific and Industrial Research Organization, Division of Animal Health, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | |
Collapse
|
7
|
Abstract
The delineation of the genetic etiology of cancer makes gene therapy a rational approach for the molecular treatment of cancer. Many gene delivery systems have been developed, with viral vectors being the most effective. Underlying cancer gene therapy protocols is the recognition that quantitative tumor transduction cannot be achieved with the vector systems available at the present time. One way to overcome this problem could be to amplify the transduction efficiency through the use of vectors capable of replicating specifically in tumor cells. We are currently developing an adenoviral vector in which viral replication will be restricted to the target tumor cells by limiting the expression of viral genes essential for the virus replication only to the tumor cells of interest.
Collapse
Affiliation(s)
- DT Curiel
- Gene Therapy Program, University of Alabama at Birmingham, 1824 6th Avenue, South, Room 620 Wallace Tumor Institute, Birmingham, AL 35294-3300, USA
| | | |
Collapse
|
8
|
Abstract
Adenovirus DNA initiates strand-displacement replication from origins located in identical inverted terminal repetitions (ITRs). Panhandle structures, formed by base pairing between ITRs on the displaced strands, have been proposed as replication intermediates for complementary strand synthesis. We have used a model system, which separates adenovirus replication origin sequences from those involved in panhandle formation, to study the length and sequence integrity of panhandles. By making a series of unidirectional deletion in the panhandle sequence, we show that 31 bp are necessary for panhandle formation. Removal of long stretches of 3'-unpaired nucleotides distal to the panhandle is extremely efficient. Our results argue for the formation of panhandles during adenovirus DNA replication and provide a mechanism for maintaining sequence identity between distantly located inverted repetitions. The size constraint may explain why the adenovirus ITRs are larger than the viral DNA replication origins.
Collapse
Affiliation(s)
- K Wang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331
| | | | | | | |
Collapse
|
9
|
Chen M, Horwitz MS. Replication of an adenovirus type 34 mutant DNA containing tandem reiterations of the inverted terminal repeat. Virology 1990; 179:567-75. [PMID: 2238462 DOI: 10.1016/0042-6822(90)90123-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A mutant of human adenovirus type 34 (Ad34) has been isolated which contains DNA molecules with tandem reiterations of from two to eight copies of a 131-bp sequence within the right-sided inverted terminal repetition. Terminal heterogeneity was not eliminated by repeated plaque purifications indicating that the population of DNA molecules with various numbers of reiterations could rapidly evolve from the DNA of a single virus particle. These enlarged DNA molecules were capable of replication both in vivo and in vitro. The nucleotide sequence of the mutant Ad34 inverted terminal repetitions contained most of the essential features of the Ad origin of DNA replication. These features include the ATAATATACC sequence which is present between the highly conserved bases 9-18 in all human adenoviruses, as well as the consensus sequences for the binding of nuclear factor I and nuclear factor III. However, the reiterated sequences lacked a dG appropriately placed on the template strand to serve as a potential site for internal initiation. It appears that the rapid amplification of two to eight copies of the reiterated terminal sequences does not arise from internal initiation during replication but probably from homologous recombination.
Collapse
Affiliation(s)
- M Chen
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
10
|
Protein-protein interactions between adenovirus DNA polymerase and nuclear factor I mediate formation of the DNA replication preinitiation complex. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44799-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Abstract
Adenovirus genomes consist of linear DNA molecules containing inverted terminal repeat sequences (ITRs) of 100 to 200 base pairs. The importance of identical termini for viability of adenoviruses was investigated. The viral strains used in this study were wild-type adenovirus type 5 (Ad5) and a variant Ad2 strain with termini which were distinct from those of all other human adenoviruses sequenced to date. A hybrid virus (sub54), obtained by recombination between Ad2 and Ad5, derived the left 42 to 52% of its genome from Ad2 and the right 58 to 48% from Ad5. Southern blotting analysis with labeled oligodeoxynucleotides indicated that both Ad2 and Ad5 ITRs were present in sub54 viral DNA preparations, and successive plaque purifications of sub54 demonstrated that viruses with nonidentical terminal sequences were viable but were rapidly converted to viruses with identical ends. Cloning of the sub54 genome as a bacterial plasmid supported the observations made by analysis of sub54 virion DNA. A plasmid, pFG154, was isolated which contained the entire adenovirus genome with an Ad2 ITR at the left terminus covalently linked to an Ad5 ITR at the right terminus. Upon transfection of mammalian cells with pFG154, viral progeny were obtained which had all possible combinations of termini, thus confirming that molecules with nonidentical termini are viable. Pure populations of viruses with nonidentical termini could not be isolated, suggesting efficient repair of one end with the opposite terminus used as a template. A model for this process is proposed involving strand displacement replication and emphasizing the importance of panhandle formation (annealing of terminal sequences) as a replicative intermediate.
Collapse
Affiliation(s)
- R Lippé
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
12
|
Chen M, Horwitz MS. Dissection of functional domains of adenovirus DNA polymerase by linker-insertion mutagenesis. Proc Natl Acad Sci U S A 1989; 86:6116-20. [PMID: 2548198 PMCID: PMC297786 DOI: 10.1073/pnas.86.16.6116] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Linker-insertion mutations were introduced into the cloned adenovirus DNA polymerase gene and the functional effects on the initiation and elongation of DNA in vitro were measured. Essential regions of the polymerase appear to be scattered in patches across the entire molecule and are not limited to the five regions of homology shared with a variety of other replicating polymerases. Thus, the adenovirus DNA polymerase presumably contains active sites that must be formed by distant interactions across the polymerase molecule.
Collapse
Affiliation(s)
- M Chen
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
13
|
Janik JE, Huston MM, Cho K, Rose JA. Efficient synthesis of adeno-associated virus structural proteins requires both adenovirus DNA binding protein and VA I RNA. Virology 1989; 168:320-9. [PMID: 2536986 DOI: 10.1016/0042-6822(89)90272-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have shown previously that replication of defective parvoviruses [adeno-associated viruses (AAV)] requires several early adenovirus (Ad) gene products [J. E. Janik, M. M. Huston, and J. A. Rose (1981) Proc. Natl. Acad. Sci. USA 78, 1925-1929]. To examine their possible roles in the transcription and translation of AAV mRNA, 293-31 cells, a human embryonic kidney cell line that constitutively expresses the Ad early region IA and IB gene products, were transfected with a pBR325 plasmid (pLH1) that contains a duplex AAV2 DNA segment (0.03-0.97 map units) which encompasses the promoters and coding sequences necessary for expression of all AAV polypeptides. When cells were transfected with pLH1 alone, both spliced and unspliced AAV-specific cytoplasmic RNAs accumulated. These transcripts were capable of directing synthesis of the three AAV capsid polypeptides in vitro, whereas in vivo synthesis of AAV protein was not detected by immunofluorescence or immunoprecipitation. When cells were cotransfected with pLH1 and intact Ad DNA, the level of cytoplasmic AAV RNA was enhanced and AAV protein was synthesized in vivo. Additional experiments demonstrated that in vivo AAV protein synthesis also could be induced when pLH1 was cotransfected with plasmids that contain the Ad DNA-binding protein (pDBP) and VA I RNA (p2BalM) genes; however, a low level of in vivo AAV capsid protein was occasionally detected in cotransfections with pLH1 and a plasmid that contains both VA I and VA II RNA coding sequences (p2SalC). Cotransfection of pLH1 and pDBP or pLH1 and p2SalC showed complex alterations in the steady-state patterns of AAV cytoplasmic transcripts. In both cases, increased levels of transcripts, particularly the 2.3-kb spliced species, were detected in comparison to levels seen in cells transfected with pLH1 alone. Despite these increases, however, there was little, if any, induction of AAV protein synthesis unless both the DNA-binding protein (DBP) and VA I RNA coding sequences were present in cotransfection with pLH1. We conclude that, in 293-31 cells, the Ad VA I RNA and DBP gene products regulate AAV capsid protein synthesis at least at two levels: (i) by increasing the steady-state levels of structural protein transcripts in the cytoplasm, especially the spliced species, and (ii) by enhancing the translation of these messages.
Collapse
Affiliation(s)
- J E Janik
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
14
|
Gunther M, Tattersall P. The terminal protein of minute virus of mice is an 83 kilodalton polypeptide linked to specific forms of double-stranded and single-stranded viral DNA. FEBS Lett 1988; 242:22-6. [PMID: 3203742 DOI: 10.1016/0014-5793(88)80977-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new assay (label transfer from DNA to protein) enabled the identification of a terminal protein (TP) in nucleoprotein complexes extracted from cells infected with the parvovirus, minute virus of mice, MVM. In SDS-PAGE, TP migrates as a major band at 83 kDa, with a minor 65 kDa component, each of which exactly co-migrates with the cellular forms of the virally coded polypeptide NS-1. In parallel, the analysis of nucleoproteins by SDS-agarose gel electrophoresis allowed us to observe that the major species of viral DNA molecules (mRF, dRF and ssDNA) are all present in the form of DNA-protein complexes. Three forms of mRF DNA were identified, two of which are protein-associated and one which appears to be protein-free.
Collapse
Affiliation(s)
- M Gunther
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
15
|
|
16
|
Deppert W, Walser A, Klockmann U. A subclass of the adenovirus 72K DNA binding protein specifically associating with the cytoskeletal framework of the plasma membrane. Virology 1988; 165:457-68. [PMID: 2841795 DOI: 10.1016/0042-6822(88)90589-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have analyzed by immunofluorescence microscopy and by biochemical cell fractionation the subcellular distribution of the adenovirus type 2 72K DNA binding protein (DBP) during the course of infection in HeLa cells. Early in infection, the 72K DBP was strictly localized in the cell nucleus. However, as infection progressed, the 72K DBP was additionally found in other subcellular fractions, notably in association with the cytoskeletal framework of the plasma membrane, the plasma membrane lamina. Pulse-chase experiments demonstrated that this association was specific. Control experiments excluded the possibility of an artificial redistribution of the 72K DBP during cell fractionation. Our data, therefore, demonstrate that a significant portion of the 72K DBP during late times of infection associates specifically with the cytoskeletal framework of plasma membranes of infected cells.
Collapse
Affiliation(s)
- W Deppert
- Department of Biochemistry, University of Ulm, Federal Republic of Germany
| | | | | |
Collapse
|
17
|
Initiation of adenovirus DNA replication. I. Mechanism of action of a host protein required for replication of adenovirus DNA templates devoid of the terminal protein. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81589-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Kenny MK, Hurwitz J. Initiation of adenovirus DNA replication. II. Structural requirements using synthetic oligonucleotide adenovirus templates. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81590-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
O'Neill EA, Kelly TJ. Purification and characterization of nuclear factor III (origin recognition protein C), a sequence-specific DNA binding protein required for efficient initiation of adenovirus DNA replication. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)35442-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
21
|
Miller BW, Williams J. Cellular transformation by adenovirus type 5 is influenced by the viral DNA polymerase. J Virol 1987; 61:3630-4. [PMID: 3669154 PMCID: PMC255967 DOI: 10.1128/jvi.61.11.3630-3634.1987] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Early region 2B (E2B) of the group C adenoviruses encodes a number of proteins, including the 140-kilodalton DNA polymerase, which plays a role in the initiation of viral DNA replication. Temperature-sensitive (ts) mutants with mutations mapping to E2B are conditionally defective for both DNA replication in human cells and transformation of rat cells. Nucleotide sequence analysis shows that the E2B mutant ts36 possesses a single point mutation specific to the viral DNA polymerase; this transition of a C to a T at position 7623 changes leucine residue 249 in the polymerase to a phenylalanine. A wild-type (ts+) revertant possesses a codon specifying the original leucine at position 249. Phenotypic analysis of revertant and wild-type viruses derived by marker rescue from ts36 shows that these variants are wild type for both viral DNA replication and transformation. Thus, the single point mutation in the polymerase gene of ts36 is responsible for both defects.
Collapse
Affiliation(s)
- B W Miller
- Department of Biological Sciences, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213-3890
| | | |
Collapse
|
22
|
Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. Mol Cell Biol 1987. [PMID: 3821731 DOI: 10.1128/mcb.7.2.875] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus origin of DNA replication contains three functionally distinct sequence domains (A, B, and C) that are essential for initiation of DNA synthesis. Previous studies have shown that domain B contains the recognition site for nuclear factor I (NF-I), a cellular protein that is required for optimal initiation. In the studies reported here, we used highly purified NF-I, prepared by DNA recognition site affinity chromatography (P. J. Rosenfeld and T. J. Kelly, Jr., J. Biol. Chem. 261:1398-1408, 1986), to investigate the cellular protein requirements for initiation of viral DNA replication. Our data demonstrate that while NF-I is essential for efficient initiation in vitro, other cellular factors are required as well. A fraction derived from HeLa cell nuclear extract (BR-FT fraction) was shown to contain all the additional cellular proteins required for the complete reconstitution of the initiation reaction. Analysis of this complementing fraction by a gel electrophoresis DNA-binding assay revealed the presence of two site-specific DNA-binding proteins, ORP-A and ORP-C, that recognized sequences in domains A and C, respectively, of the viral origin. Both proteins were purified by DNA recognition site affinity chromatography, and the boundaries of their binding sites were defined by DNase I footprint analysis. Additional characterization of the recognition sequences of ORP-A, NF-I, and ORP-C was accomplished by determining the affinity of the proteins for viral origins containing deletion and base substitution mutations. ORP-C recognized a sequence between nucleotides 41 and 51 of the adenovirus genome, and analysis of mutant origins indicated that efficient initiation of replication is dependent on the presence of a high-affinity ORP-C-binding site. The ORP-A recognition site was localized to the first 12 base pairs of the viral genome within the minimal origin of replication. These data provide evidence that the initiation of adenovirus DNA replication involves multiple protein-DNA interactions at the origin.
Collapse
|
23
|
Adenovirus origin of DNA replication: sequence requirements for replication in vitro. Mol Cell Biol 1987. [PMID: 3821730 DOI: 10.1128/mcb.7.2.864] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initiation of adenovirus DNA takes place at the termini of the viral genome and requires the presence of specific nucleotide sequence elements. To define the sequence organization of the viral origin, we tested a large number of deletion, insertion, and base substitution mutants for their ability to support initiation and replication in vitro. The data demonstrate that the origin consists of at least three functionally distinct domains, A, B, and C. Domain A (nucleotides 1 to 18) contains the minimal sequence sufficient for origin function. Domains B (nucleotides 19 to 40) and C (nucleotides 41 to 51) contain accessory sequences that significantly increase the activity of the minimal origin. The presence of domain B increases the efficiency of initiation by more than 10-fold in vitro, and the presence of domains B and C increases the efficiency of initiation by more than 30-fold. Mutations that alter the distance between the minimal origin and the accessory domains by one or two base pairs dramatically decrease initiation efficiency. This critical spacing requirement suggests that there are specific interactions between the factors that recognize the two regions.
Collapse
|
24
|
Wides RJ, Challberg MD, Rawlins DR, Kelly TJ. Adenovirus origin of DNA replication: sequence requirements for replication in vitro. Mol Cell Biol 1987; 7:864-74. [PMID: 3821730 PMCID: PMC365145 DOI: 10.1128/mcb.7.2.864-874.1987] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The initiation of adenovirus DNA takes place at the termini of the viral genome and requires the presence of specific nucleotide sequence elements. To define the sequence organization of the viral origin, we tested a large number of deletion, insertion, and base substitution mutants for their ability to support initiation and replication in vitro. The data demonstrate that the origin consists of at least three functionally distinct domains, A, B, and C. Domain A (nucleotides 1 to 18) contains the minimal sequence sufficient for origin function. Domains B (nucleotides 19 to 40) and C (nucleotides 41 to 51) contain accessory sequences that significantly increase the activity of the minimal origin. The presence of domain B increases the efficiency of initiation by more than 10-fold in vitro, and the presence of domains B and C increases the efficiency of initiation by more than 30-fold. Mutations that alter the distance between the minimal origin and the accessory domains by one or two base pairs dramatically decrease initiation efficiency. This critical spacing requirement suggests that there are specific interactions between the factors that recognize the two regions.
Collapse
|
25
|
Rosenfeld PJ, O'Neill EA, Wides RJ, Kelly TJ. Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. Mol Cell Biol 1987; 7:875-86. [PMID: 3821731 PMCID: PMC365146 DOI: 10.1128/mcb.7.2.875-886.1987] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The adenovirus origin of DNA replication contains three functionally distinct sequence domains (A, B, and C) that are essential for initiation of DNA synthesis. Previous studies have shown that domain B contains the recognition site for nuclear factor I (NF-I), a cellular protein that is required for optimal initiation. In the studies reported here, we used highly purified NF-I, prepared by DNA recognition site affinity chromatography (P. J. Rosenfeld and T. J. Kelly, Jr., J. Biol. Chem. 261:1398-1408, 1986), to investigate the cellular protein requirements for initiation of viral DNA replication. Our data demonstrate that while NF-I is essential for efficient initiation in vitro, other cellular factors are required as well. A fraction derived from HeLa cell nuclear extract (BR-FT fraction) was shown to contain all the additional cellular proteins required for the complete reconstitution of the initiation reaction. Analysis of this complementing fraction by a gel electrophoresis DNA-binding assay revealed the presence of two site-specific DNA-binding proteins, ORP-A and ORP-C, that recognized sequences in domains A and C, respectively, of the viral origin. Both proteins were purified by DNA recognition site affinity chromatography, and the boundaries of their binding sites were defined by DNase I footprint analysis. Additional characterization of the recognition sequences of ORP-A, NF-I, and ORP-C was accomplished by determining the affinity of the proteins for viral origins containing deletion and base substitution mutations. ORP-C recognized a sequence between nucleotides 41 and 51 of the adenovirus genome, and analysis of mutant origins indicated that efficient initiation of replication is dependent on the presence of a high-affinity ORP-C-binding site. The ORP-A recognition site was localized to the first 12 base pairs of the viral genome within the minimal origin of replication. These data provide evidence that the initiation of adenovirus DNA replication involves multiple protein-DNA interactions at the origin.
Collapse
|
26
|
Rice SA, Klessig DF, Williams J. Multiple effects of the 72-kDa, adenovirus-specified DNA binding protein on the efficiency of cellular transformation. Virology 1987; 156:366-76. [PMID: 2949422 DOI: 10.1016/0042-6822(87)90416-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The early region 2A gene (E2A) of adenovirus types 2 and 5 encodes a 72-kDa DNA binding protein (DBP) which contains two physical domains comprising approximately the amino-terminal one-third and carboxyl-terminal two-thirds of the protein, respectively. Previous work has shown that some Ad5 mutants containing temperature-sensitive (ts) mutations in the carboxyl-terminal domain of DBP, such as Ad5ts125, show a 3- to 8-fold enhanced ability to transform rat cells. We have examined the transformation characteristics of a series of Ad5 E2A deletion mutants, Ad5dl801-5, which encode either no functional DBP or encode truncated, defective DBPs. The E2A deletion mutants transformed rat embryo cells at frequencies similar to wild-type (wt) Ad5. These results suggest that the high transformation phenotype of carboxyl-terminal E2A mutants like Ad5ts125 is not due to the simple inactivation of DBP function, but rather results from an activity possessed by an altered DBP. This hypothesis is supported by the fact that the transformation phenotype of Adsts125 and similar mutants is dominant over the wild-type phenotype. A number of additional Ad2 and Ad5 E2A mutants were examined with respect to their ability to transform primary rat embryo cells. It was found that a carboxyl-terminal E2A mutant, Ad2+ND1ts23, also showed the enhanced transformation phenotype. In contrast, several amino-terminal E2A host-range (hr) mutants, originally isolated on the basis of their ability to replicate in monkey cells, transformed rat embryo cells at a frequency similar to wild-type virus. Ad2ts400, and E2A mutant with alterations in both DBP domains, showed a wild-type frequency of transformation, while two similar mutants, Ad5ts125 X 405 and Ad5ts125 X 404, showed an enhanced frequency. Last, it was found that coinfection of primary rat embryo cells with the hr mutants plus Ad5ts125 or Ad2+ND1ts23 resulted in a wild-type frequency of transformation, demonstrating that the hr mutants are dominant to the ts mutants with regard to transformation phenotype. Thus, DBP can both positively and negatively affect viral transformation in this system.
Collapse
|
27
|
Purification of a cellular, double-stranded DNA-binding protein required for initiation of adenovirus DNA replication by using a rapid filter-binding assay. Mol Cell Biol 1987. [PMID: 3785168 DOI: 10.1128/mcb.6.5.1363] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A rapid and quantitative nitrocellulose filter-binding assay is described for the detection of nuclear factor I, a HeLa cell sequence-specific DNA-binding protein required for the initiation of adenovirus DNA replication. In this assay, the abundant nonspecific DNA-binding activity present in unfractionated HeLa nuclear extracts was greatly reduced by preincubation of these extracts with a homopolymeric competitor DNA. Subsequently, specific DNA-binding activity was detected as the preferential retention of a labeled 48-base-pair DNA fragment containing a functional nuclear factor I binding site compared with a control DNA fragment to which nuclear factor I did not bind specifically. This specific DNA-binding activity was shown to be both quantitative and time dependent. Furthermore, the conditions of this assay allowed footprinting of nuclear factor I in unfractionated HeLa nuclear extracts and quantitative detection of the protein during purification. Using unfrozen HeLa cells and reagents known to limit endogenous proteolysis, nuclear factor I was purified to near homogeneity from HeLa nuclear extracts by a combination of standard chromatography and specific DNA affinity chromatography. Over a 400-fold purification of nuclear factor I, on the basis of the specific activity of both sequence-specific DNA binding and complementation of adenovirus DNA replication in vitro, was affected by this purification. The most highly purified fraction was greatly enriched for a polypeptide of 160 kilodaltons on silver-stained sodium dodecyl sulfate-polyacrylamide gels. Furthermore, this protein cosedimented with specific DNA-binding activity on glycerol gradients. That this fraction indeed contained nuclear factor I was demonstrated by both DNase I footprinting and its function in the initiation of adenovirus DNA replication. Finally, the stoichiometry of specific DNA binding by nuclear factor I is shown to be most consistent with 2 mol of the 160-kilodalton polypeptide binding per mol of nuclear factor I-binding site.
Collapse
|
28
|
Abstract
The 34-kDa fragment of the carboxyl end of the adenovirus (Ad) DNA binding protein (DBP) binds to single-stranded (ss) DNA and is able to replace the intact 72-kDa DBP needed for Ad DNA replication in vitro. A similar fragment prepared from the temperature-sensitive (ts) mutant, H5ts107, which has a single amino acid change in the carboxyl end of the DBP, is temperature sensitive for DNA replication and defective in binding to ssDNA. However, in 20 mM NaCl which is the salt concentration during Ad DNA replication in vitro, the intact 72-kDa H5ts107 DBP is defective only in replication but not binding to DNA at nonpermissive temperatures. These observations indicate that the amino domain of the H5ts107 DBP can stabilize the binding of its carboxyl end to DNA.
Collapse
|
29
|
Vartapetian AB, Bogdanov AA. Proteins covalently linked to viral genomes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1987; 34:209-51. [PMID: 3326040 DOI: 10.1016/s0079-6603(08)60497-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Abstract
The adenovirus (Ad) DNA origin of replication was defined through an analysis of the DNA sequences necessary for the replication of plasmid DNAs with purified viral and cellular proteins. Results from several laboratories have shown that the origin consists of two functionally distinct domains: a 10-base-pair sequence present in the inverted terminal repetition (ITR) of all human serotypes and an adjacent sequence constituting the binding site for a cellular protein, nuclear factor I. To determine whether the same nucleotide sequences are necessary for origin function in vivo, we developed an assay for the replication of plasmid DNAs transfected into Ad5-infected cells. The assay is similar to that described by Hay et al. (J. Mol. Biol. 175:493-510, 1984). With this assay, plasmid DNA replication is dependent upon prior infection of cells with virus and only occurs with linear DNA molecules containing viral terminal sequences at each end. Replicated DNA is resistant to digestion with lambda-exonuclease, suggesting that a protein is covalently bound at both termini. A plasmid containing only the first 67 base pairs of the Ad2 ITR replicates as well as plasmids containing the entire ITR. Deletions or point mutations which reduce the binding of nuclear factor I to DNA in vitro reduce the efficiency of plasmid replication in vivo. A point mutation within the 10-base-pair conserved sequence has a similar effect upon replication. These results suggest that the two sequence domains of the Ad origin identified by in vitro studies are in fact important for viral DNA replication in infected cells. In addition, we found that two separate point mutations which lie outside these two sequence domains, and which have little or no effect upon DNA replication in vitro, also reduce the apparent efficiency of plasmid replication in vivo. Thus, there may be elements of the Ad DNA origin of replication which have not yet been identified by in vitro studies.
Collapse
|
31
|
Voelkerding K, Klessig DF. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J Virol 1986; 60:353-62. [PMID: 2945931 PMCID: PMC288900 DOI: 10.1128/jvi.60.2.353-362.1986] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The synthesis, accumulation, and subcellular distribution of the adenovirus serotype 5 DNA-binding protein (DBP) has been examined during the infectious cycle in HeLa cells. With the onset of viral DNA replication and entry into the late phase, two nuclear subclasses of DBP are distinguishable by immunofluorescence microscopy and can be separately isolated by in situ cell fractionation. The first subclass, represented by diffuse-staining DBP, is released by the addition of 1% Nonidet P-40-150 mM NaCl. The second subclass of DBP, which is sequestered into intranuclear globular structures, requires a high ionic strength (2 M NaCl) for extraction and appears to be associated with centers of active viral DNA replication. This association is based on the observations that: DBP within the globules and viral DNA, as detected by in situ hybridization, form identical structures that colocalize within the nuclei of infected cells, the formation of DBP globular structures requires the onset and continuation of viral DNA replication, and once formed, the globular structures can be perturbed by modulating viral DNA synthesis.
Collapse
|
32
|
Bernstein JA, Porter JM, Challberg MD. Template requirements for in vivo replication of adenovirus DNA. Mol Cell Biol 1986; 6:2115-24. [PMID: 3785188 PMCID: PMC367752 DOI: 10.1128/mcb.6.6.2115-2124.1986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The adenovirus (Ad) DNA origin of replication was defined through an analysis of the DNA sequences necessary for the replication of plasmid DNAs with purified viral and cellular proteins. Results from several laboratories have shown that the origin consists of two functionally distinct domains: a 10-base-pair sequence present in the inverted terminal repetition (ITR) of all human serotypes and an adjacent sequence constituting the binding site for a cellular protein, nuclear factor I. To determine whether the same nucleotide sequences are necessary for origin function in vivo, we developed an assay for the replication of plasmid DNAs transfected into Ad5-infected cells. The assay is similar to that described by Hay et al. (J. Mol. Biol. 175:493-510, 1984). With this assay, plasmid DNA replication is dependent upon prior infection of cells with virus and only occurs with linear DNA molecules containing viral terminal sequences at each end. Replicated DNA is resistant to digestion with lambda-exonuclease, suggesting that a protein is covalently bound at both termini. A plasmid containing only the first 67 base pairs of the Ad2 ITR replicates as well as plasmids containing the entire ITR. Deletions or point mutations which reduce the binding of nuclear factor I to DNA in vitro reduce the efficiency of plasmid replication in vivo. A point mutation within the 10-base-pair conserved sequence has a similar effect upon replication. These results suggest that the two sequence domains of the Ad origin identified by in vitro studies are in fact important for viral DNA replication in infected cells. In addition, we found that two separate point mutations which lie outside these two sequence domains, and which have little or no effect upon DNA replication in vitro, also reduce the apparent efficiency of plasmid replication in vivo. Thus, there may be elements of the Ad DNA origin of replication which have not yet been identified by in vitro studies.
Collapse
|
33
|
Diffley JF, Stillman B. Purification of a cellular, double-stranded DNA-binding protein required for initiation of adenovirus DNA replication by using a rapid filter-binding assay. Mol Cell Biol 1986; 6:1363-73. [PMID: 3785168 PMCID: PMC367659 DOI: 10.1128/mcb.6.5.1363-1373.1986] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A rapid and quantitative nitrocellulose filter-binding assay is described for the detection of nuclear factor I, a HeLa cell sequence-specific DNA-binding protein required for the initiation of adenovirus DNA replication. In this assay, the abundant nonspecific DNA-binding activity present in unfractionated HeLa nuclear extracts was greatly reduced by preincubation of these extracts with a homopolymeric competitor DNA. Subsequently, specific DNA-binding activity was detected as the preferential retention of a labeled 48-base-pair DNA fragment containing a functional nuclear factor I binding site compared with a control DNA fragment to which nuclear factor I did not bind specifically. This specific DNA-binding activity was shown to be both quantitative and time dependent. Furthermore, the conditions of this assay allowed footprinting of nuclear factor I in unfractionated HeLa nuclear extracts and quantitative detection of the protein during purification. Using unfrozen HeLa cells and reagents known to limit endogenous proteolysis, nuclear factor I was purified to near homogeneity from HeLa nuclear extracts by a combination of standard chromatography and specific DNA affinity chromatography. Over a 400-fold purification of nuclear factor I, on the basis of the specific activity of both sequence-specific DNA binding and complementation of adenovirus DNA replication in vitro, was affected by this purification. The most highly purified fraction was greatly enriched for a polypeptide of 160 kilodaltons on silver-stained sodium dodecyl sulfate-polyacrylamide gels. Furthermore, this protein cosedimented with specific DNA-binding activity on glycerol gradients. That this fraction indeed contained nuclear factor I was demonstrated by both DNase I footprinting and its function in the initiation of adenovirus DNA replication. Finally, the stoichiometry of specific DNA binding by nuclear factor I is shown to be most consistent with 2 mol of the 160-kilodalton polypeptide binding per mol of nuclear factor I-binding site.
Collapse
|
34
|
Chow M, Bodnar JW, Polvino-Bodnar M, Ward DC. Identification and characterization of a protein covalently bound to DNA of minute virus of mice. J Virol 1986; 57:1094-104. [PMID: 2936897 PMCID: PMC252843 DOI: 10.1128/jvi.57.3.1094-1104.1986] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We identified a protein which is covalently linked to a fraction of the DNA synthesized in cells infected with minute virus of mice. This protein is specifically bound to the 5' terminus of the extended terminal conformers of the minute virus of mice replicative-form DNA species and of a variable fraction of single-stranded viral DNA. The chemical stability of the protein-DNA linkage is characteristic of a phosphodiester bond between a tyrosine residue in the protein and the 5' end of the DNA. The terminal protein (TP) bound on all DNA forms has a relative molecular weight of 60,000; it is also seen free in extracts from infected cells. Immunologic comparison of the TP with the other known viral proteins suggests that the TP is not related to the capsid proteins or NS-1.
Collapse
|
35
|
Rosenfeld PJ, Kelly TJ. Purification of nuclear factor I by DNA recognition site affinity chromatography. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)36106-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Rice SA, Klessig DF. Isolation and analysis of adenovirus type 5 mutants containing deletions in the gene encoding the DNA-binding protein. J Virol 1985; 56:767-78. [PMID: 3864995 PMCID: PMC252647 DOI: 10.1128/jvi.56.3.767-778.1985] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A genetic system is described which allows the isolation and propagation of adenovirus mutants containing lesions in early region 2A (E2A), the gene encoding the multifunctional adenovirus DNA-binding protein (DBP). A cloned E2A gene was first mutagenized in vitro and then was introduced into the viral genome by in vivo recombination. The E2A mutants were propagated by growth in human cell lines which express an integrated copy of the DBP gene under the control of a dexamethasone-inducible promoter (D. F. Klessig, D. E. Brough, and V. Cleghon, Mol. Cell. Biol. 4:1354-1362, 1984). The protocol was used to construct five adenovirus mutants, Ad5d1801 through Ad5d1805, which contained deletions in E2A. One of the mutants, Ad5d1802, made no detectable DBP and thus represents the first DBP-negative adenovirus mutant, while the four other mutants made truncated DBP-related polypeptides. All five mutants were completely defective for growth and plaque formation on HeLa cell monolayers. Furthermore, the two mutants which were tested, Ad5d1801 and Ad5d1802, did not replicate their DNA in HeLa cells. The mutant Ad5d1804 encoded a truncated DBP-related protein which contained an entire amino-terminal domain derived from the host range mutant Ad5hr404, a variant of Ad5 which multiplies efficiently in monkey cells. While results of a previous study suggest that the amino-terminal domain of DBP could act independently of the carboxyl-terminal domain to enhance late gene expression in monkey cells, the Ad5d1804 polypeptide failed to relieve the block to late viral protein synthesis in monkey cells. The mutant Ad5d1802 was used to study the role of DBP in the regulation of early adenovirus gene expression in infected HeLa cells. These experiments show that E2A mRNA levels are consistently reduced approximately fivefold in Ad5d1802-infected cells, suggesting either a role for DBP in the expression of its own gene or a cis-acting defect caused by the E2A deletion. DBP does not appear to play a significant role in the regulation of adenovirus early regions 1A, 1B, 3, or 4 mRNA levels in infected HeLa cell monolayers since wild-type Ad5- and Ad5d1802-infected cells showed very little difference in the patterns of expression of these genes.
Collapse
|
37
|
Abstract
An assay is described that detects in vivo a single round of initiation and DNA synthesis directed by a linear molecule containing an exposed single copy of an adenovirus (Ad) origin of replication. This and a previously described assay, which measures multiple rounds of DNA replication, were used to identify DNA sequences within the Ad2 and Ad4 origins of replication that are important for ori function. Linear DNA molecules containing sequences from the Ad2 or Ad4 genome termini were cotransfected with homologous and heterologous helper virus, and net amounts of DNA synthesis were compared. Linear molecules containing the Ad4 inverted terminal repeats were replicated 20-fold better in the presence of the homologous helper, whereas both Ad2 and Ad4 inverted terminal repeats were utilized efficiently by Ad4. DNA sequence analysis of the Ad2 ori and the corresponding region in Ad4 indicated that, although there are only ten variant base-pairs, eight are located within the Ad2 DNA sequence recognized by the cellular protein nuclear factor I. This protein is required to achieve the maximal rate of Ad2 DNA replication in vitro, and these differences therefore identify DNA sequences that are crucial to Ad2 ori function. The Ad4 ITR does not contain a functional nuclear factor I binding site, and deletion analysis has demonstrated that this region of the Ad4 genome is not required for ori function. In contrast to Ad2, the DNA sequences required for the initiation of Ad4 DNA replication were shown to reside entirely within the terminal 18 base-pairs of the Ad4 inverted terminal repeat.
Collapse
|
38
|
de Vries E, van Driel W, Tromp M, van Boom J, van der Vliet PC. Adenovirus DNA replication in vitro: site-directed mutagenesis of the nuclear factor I binding site of the Ad2 origin. Nucleic Acids Res 1985; 13:4935-52. [PMID: 4040630 PMCID: PMC321836 DOI: 10.1093/nar/13.13.4935] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The template requirements for efficient adenovirus DNA replication were studied in vitro in a reconstituted system with cloned DNA fragments, containing the Ad2 origin region, as templates. Replication is enhanced by nuclear factor I, a cellular protein that binds specifically to the Ad2 origin. This stimulation is shown to be strongly dependent on the concentration of the adenovirus DNA binding protein. Using synthetic oligonucleotides we have constructed plasmids with base substitutions in the nuclear factor I binding region. Footprint analysis and competition filter binding studies show that two of the three small blocks of conserved nucleotides in this region are involved in the binding of nuclear factor I. The binding affinity can be influenced by the base composition of the degenerate region just outside these two blocks. In vitro initiation and DNA chain elongation experiments with the mutants demonstrate that binding of nuclear factor I to the Ad2 origin is necessary for stimulation. However, binding alone is not always sufficient since a mutation which only slightly disturbs binding is strongly impaired in stimulation of DNA replication by nuclear factor I.
Collapse
|
39
|
Molnar-Kimber KL, Summers JW, Mason WS. Mapping of the cohesive overlap of duck hepatitis B virus DNA and of the site of initiation of reverse transcription. J Virol 1984; 51:181-91. [PMID: 6328037 PMCID: PMC254416 DOI: 10.1128/jvi.51.1.181-191.1984] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The hepatitis B-like viruses have a approximately 3.2 kilobase, partially double-stranded DNA genome that is held in a circular conformation by a cohesive overlap between the 5' ends of the two strands. In addition, a protein is covalently bound to the 5' end of the minus strand of virion DNA. The sequence of the cohesive overlap region and its location relative to open reading frames and to the initiation site for minus-strand DNA synthesis, which occurs by reverse transcription of viral RNA, were investigated in duck hepatitis B virus. The 5' ends of virion DNA were mapped by restriction endonuclease analysis of labeled virion DNA, S1 nuclease digestion, and primer extension, using avian myeloblastosis virus DNA polymerase. The cohesive overlap region was shown to be 69 +/- 4 base pairs in length. It contained a 10-base pair inverted repeat in approximately the middle and a 12-base pair direct repeat near each end. The apparent initiation site of reverse transcription was determined by partial sequence analysis of dideoxynucleotide-truncated minus-strand DNA intermediates and comparison of their lengths with the length of a known DNA sequence. It mapped within two to four nucleotides of the 5' end of the minus strand of virion DNA. The results are consistent with the interpretation that the 5' end of the minus strand of virion DNA is the origin of reverse transcription and that the protein covalently bound to virion DNA is the primer of reverse transcription.
Collapse
|
40
|
Abstract
We have isolated adenovirus origins of DNA replication from both the right and left ends of the genome, which are functional on linear autonomously replicating mini-chromosomes. The mini-chromosomes contain two cloned inverted adenovirus termini and require non-defective adenovirus as a helper. Replicated molecules are covalently attached to protein, and DNA synthesis is initiated at the correct nucleotide even when the origins are not located at molecular ends. The activity of embedded origins leads to the generation of linear mini-chromosomes from circular or linear molecules. These observations therefore suggest that sequences within the adenovirus origin of replication position the protein priming event at the adenovirus terminus. Experiments investigating the regeneration of deleted viral inverted terminal repeat sequences show a sequence-independent requirement for inverted sequences in this process. This result strongly suggests that repair results from the formation of a panhandle structure by a displaced single strand. On the basis of these observations we propose a model for the generation of adenovirus mini-chromosomes from larger molecules.
Collapse
|
41
|
Guggenheimer RA, Nagata K, Kenny M, Hurwitz J. Protein-primed replication of plasmids containing the terminus of the adenovirus genome. II. Purification and characterization of a host protein required for the replication of DNA templates devoid of the terminal protein. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42867-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Guggenheimer RA, Nagata K, Lindenbaum J, Hurwitz J. Protein-primed replication of plasmids containing the terminus of the adenovirus genome. I. Characterization of an in vitro DNA replication system dependent on adenoviral DNA sequences. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42866-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
D'Halluin JC, Milleville M. Initiation rate of adenovirus DNA synthesis in infected cell. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 782:67-75. [PMID: 6426519 DOI: 10.1016/0167-4781(84)90107-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A method was developed to determine the rate of viral DNA synthesis initiation in adenovirus 2-infected cells. The initiation of DNA synthesis appeared as the rate-limiting step for accumulation of viral DNA. The multiplicity of infection slightly influenced the rate of synthesis of viral DNA, and only during the linear phase of viral DNA production. The initiation of DNA-synthesis was found to occur preferentially on newly synthesized DNA molecules. These kinetics data and the effect of novobiocin suggested that binding of viral DNA with some enzymatic complexes favored the replication of a minor, active class of adenovirus DNA molecules.
Collapse
|
44
|
Stillman BW, White E, Grodzicker T. Independent mutations in Ad2ts111 cause degradation of cellular DNA and defective viral DNA replication. J Virol 1984; 50:598-605. [PMID: 6368865 PMCID: PMC255680 DOI: 10.1128/jvi.50.2.598-605.1984] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An adenovirus mutant, Ad2ts111, has previously been shown to be temperature sensitive for viral DNA replication in vivo and also to induce degradation of cellular DNA. Soluble nuclear extracts prepared from Ad2ts111-infected HeLa cells grown at either the permissive (32 degrees C) or the nonpermissive (39.5 degrees C) temperature are thermolabile for elongation but not for initiation of DNA replication in vitro. Adenovirus single-stranded-DNA-binding protein purified from wild-type-infected cells can complement these extracts at the restrictive temperature in vitro. The DNA-binding protein synthesized in Ad2ts111-infected cells is stable at the nonpermissive temperature and is phosphorylated, as is the wild-type protein. In contrast, the mutant DNA-binding protein synthesized in Ad5ts125-infected cells is unstable. Ad2ts111 and Ad5ts125 do not complement each other for virus growth in vivo. These results suggest that Ad2ts111 contains a mutation in the DNA-binding protein that affects viral DNA synthesis. Finally, we demonstrated that, unlike viral DNA synthesis, the induction of cellular DNA degradation in Ad2ts111-infected cells is not temperature sensitive and that this phenotype is a result of a mutation in early region 1 on the virus genome. Thus, the two phenotypes displayed in Ad2ts111-infected cells, namely, the temperature-sensitive replication of viral DNA and the degradation of cell DNA, are the result of two separate mutations.
Collapse
|
45
|
Rawlins DR, Rosenfeld PJ, Wides RJ, Challberg MD, Kelly TJ. Structure and function of the adenovirus origin of replication. Cell 1984; 37:309-19. [PMID: 6722875 DOI: 10.1016/0092-8674(84)90327-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Efficient initiation of adenovirus DNA replication requires the presence of specific terminal nucleotide sequences that collectively constitute the viral origin of replication. Using plasmids with deletions or base substitutions in a cloned segment of DNA derived from the terminus of the adenovirus 2 genome, we have demonstrated that the origin contains two functionally distinct regions. The first 18 bp of the viral genome are sufficient to support a limited degree of initiation. However, the presence of a sequence in the region between nucleotides 19 and 67 greatly enhances the efficiency of the initiation reaction. This region contains a specific binding site for a protein present in uninfected cells (KD = 2 X 10(-11) M). The bound protein protects the DNA segment between base pairs 19 and 43 from attack by DNAase I. Studies with deletion mutants indicate that binding of the cellular protein is responsible for the enhancement of initiation.
Collapse
|
46
|
Guggenheimer RA, Stillman BW, Nagata K, Tamanoi F, Hurwitz J. DNA sequences required for the in vitro replication of adenovirus DNA. Proc Natl Acad Sci U S A 1984; 81:3069-73. [PMID: 6587341 PMCID: PMC345222 DOI: 10.1073/pnas.81.10.3069] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Initiation of adenovirus (Ad) DNA replication occurs on viral DNA containing a 55-kilodalton (kDa) protein at the 5' terminus of each viral DNA strand and on plasmid DNAs containing the origin of Ad replication but lacking the 55-kDa terminal protein (TP). Initiation of replication proceeds via the synthesis of a covalent complex between an 80-kDa precursor to the TP (pTP) and the 5'-terminal deoxynucleotide, dCMP. Formation of the covalent pTP-dCMP initiation complex with Ad DNA as the template requires the viral-encoded pTP and DNA polymerase and, in the presence of the Ad DNA binding protein, is dependent upon a 47-kDa host protein, nuclear factor I. Initiation of replication with recombinant plasmid templates requires the aforementioned proteins and an additional host protein, factor pL. Deletion mutants of the Ad DNA replication origin contained within the 6.6-kilobase plasmid pLA1 were used to analyze the nucleotide sequences required for the formation and subsequent elongation of the pTP-dCMP initiation complex. The existence of two domains within the first 50 base pairs of the Ad genome, both of which are required for the efficient use of recombinant DNA molecules as templates in an in vitro DNA replication system, was demonstrated. The first domain, consisting of a 10-base-pair "core" sequence located at nucleotide positions 9-18, has been identified tentatively as a binding site for the pTP [ Rijinders , A. W. M., van Bergen, B. G. M., van der Vliet , P. C. & Sussenbach , J. S. (1983) Nucleic Acids Res. 11, 8777-8789]. The second domain, consisting of a 32-base-pair region spanning nucleotides 17-48, was shown to be essential for the binding of nuclear factor I.
Collapse
|
47
|
Prieto I, Lázaro JM, García JA, Hermoso JM, Salas M. Purification in a functional form of the terminal protein of Bacillus subtilis phage phi 29. Proc Natl Acad Sci U S A 1984; 81:1639-43. [PMID: 6424120 PMCID: PMC344973 DOI: 10.1073/pnas.81.6.1639] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phage phi 29 terminal protein, p3, essentially pure, was isolated in a denatured form from viral particles, and anti-p3 antiserum was obtained. A radioimmunoassay to detect and quantitate protein p3 was developed. By using this assay, native protein p3 was highly purified from Escherichia coli cells harboring a gene 3-containing recombinant plasmid. After three purification steps, the protein was more than 96% pure; its amino acid composition was very similar to that deduced from the nucleotide sequence of gene 3. The purified protein was active in the formation of the covalent p3-dAMP initiation complex when supplemented with extracts of B. subtilis infected with a sus mutant of phi 29 in gene 3. No DNA polymerase or ATPase activities were present in the final preparation of protein p3.
Collapse
|
48
|
Shih MF, Watabe K, Yoshikawa H, Ito J. Antibodies specific for the phi 29 terminal protein inhibit the initiation of DNA replication in vitro. Virology 1984; 133:56-64. [PMID: 6422624 DOI: 10.1016/0042-6822(84)90425-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The phi 29 DNA-terminal protein serves as a primer for the initiation of DNA replication by covalently binding the first nucleotide in the DNA chain. Two distinct antibodies were used for functional analysis of this protein. One antibody was raised against sonicated phi 29 DNA-protein complex isolated from phage virions (anti-TP). The other antibody was raised against a conjugate of bovine serum albumin and a synthetic peptide corresponding to the carboxy-terminal of the phi 29 terminal protein (anti-gp3C), which was predicted from the nucleotide sequence of phi 29 DNA. Both antibodies react with native phi 29 terminal protein as determined by immunoprecipitation and enzyme-linked immunosorbent assay. Both antibodies specifically inhibit the complex-forming reaction between the phi 29 terminal protein and dAMP, the first nucleotide of phi 29 DNA.
Collapse
|
49
|
Escarmís C, Gómez A, García E, Ronda C, López R, Salas M. Nucleotide sequence at the termini of the DNA of Streptococcus pneumoniae phage Cp-1. Virology 1984; 133:166-71. [PMID: 6702104 DOI: 10.1016/0042-6822(84)90435-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The 5' ends of Cp-1 DNA, which have a covalently linked terminal protein, can be partially unblocked by treatment with 1 M NaOH (E. Garcia, A. Gomez, C. Ronda, C. Escarmis, and R. Lopez (1983) Virology 128, 92-104) and labeled with polynucleotide kinase and [gamma-32P]ATP. The sequence of the first 444 and 520 nucleotides at the termini of Cp-1 DNA has been determined. A 236-nucleotide-long inverted terminal repeat was found and, in addition, the 116 nucleotides following the repeat show 93% homology. The first 352 nucleotides at both ends have an adenine plus thymine content of 75%. More than 50% of the nucleotides of the sequenced regions are involved in repeats of a minimum of 8 nucleotides. Three promoter-like sequences were also found at each end of Cp-1 DNA.
Collapse
|
50
|
|