1
|
Sogbein O, Paul P, Umar M, Chaari A, Batuman V, Upadhyay R. Bortezomib in cancer therapy: Mechanisms, side effects, and future proteasome inhibitors. Life Sci 2024; 358:123125. [PMID: 39413903 DOI: 10.1016/j.lfs.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
The ubiquitin-proteasome pathway (UPP) regulates protein stability and normal cellular functions with the help of autocatalytic proteasome complex. Studies have linked aberrant proteasome activity to malignant cells and found that proteasome inhibitors play a significant role as therapeutic drugs for various types of cancer, specifically multiple myeloma and mantle cell lymphoma. Bortezomib, the first FDA-approved proteasome inhibitor for treating different stages of multiple myeloma, acts on cancer cells by inhibiting the 26S proteasome, modulating NF-κB, phosphorylating Bcl-2, upregulating of NOXA, blocking p53 degradation, activating caspase, generating reactive oxygen species (ROS), and inhibiting angiogenesis. However, its efficacy is limited due to side effects such as peripheral neuropathy (PN), thrombotic microangiopathy (TMA), and acute interstitial nephritis (AIN). Therefore, a better understanding of its precise mechanism of action may help mitigate these side effects. In this review, we have discussed the proposed mechanisms of action and off target effects of Bortezomib, along with the prospects of next generation potential proteasome inhibitor drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Olusola Sogbein
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Meenakshi Umar
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Vecihi Batuman
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Rohit Upadhyay
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Chen W, Sun M, Sun Y, Yang Q, Gao H, Li L, Fu R, Dong N. Proteasome inhibition induces apoptosis through simultaneous inactivation of MCL-1/BCL-XL by NOXA independent of CHOP and JNK pathways. Toxicology 2024; 508:153906. [PMID: 39117261 DOI: 10.1016/j.tox.2024.153906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Proteasome inhibitors have been employed in the treatment of relapsed multiple myeloma and mantle cell lymphoma. The observed toxicity caused by proteasome inhibitors is a universal phenotype in numerous cancer cells with different sensitivity. In this study, we investigate the conserved mechanisms underlying the toxicity of the proteasome inhibitor bortezomib using gene editing approaches. Our findings utilizing different caspase knocking out cells reveal that bortezomib induces classic intrinsic apoptosis by activating caspase-9 and caspase-3/7, leading to pore-forming protein GSDME cleavage and subsequent lytic cell death or called secondary necrosis, a phenotype also observed in many apoptosis triggers like TNFα plus CHX, DTT and tunicamycin treatment in HeLa cells. Furthermore, through knocking out of nearly all BH3-only proteins including BIM, BAD, BID, BMF and PUMA, we demonstrate that NOXA is the sole BH3-only protein responsible for bortezomib-induced apoptosis. Of note, NOXA is well known for selectively binding to MCL-1 and A1, but our studies utilizing different BH3 mimetics as well as immunoprecipitation assays indicate that, except for the constitutive interaction of NOXA with MCL-1, the accumulation of NOXA after bortezomib treatment allows it to interact with BCL-XL, then simultaneous relieving suppression on apoptosis by both anti-apoptotic proteins BCL-XL and MCL-1. In addition, though bortezomib-induced significant ER stress and JNK activation were observed in the study, further genetic depletion experiments prove that bortezomib-induced apoptosis occurs independently of ER stress-related apoptosis factor CHOP and JNK. In summary, these results provide a solid conclusion about the critical role of NOXA in inactivation of BCL-XL except MCL-1 in bortezomib-induced apoptosis.
Collapse
Affiliation(s)
- Wenjuan Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengning Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qinglan Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rongrong Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Dong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Roufayel R, Younes K, Al-Sabi A, Murshid N. BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Life (Basel) 2022; 12:life12020256. [PMID: 35207544 PMCID: PMC8875537 DOI: 10.3390/life12020256] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is an evolutionarily conserved and tightly regulated cell death pathway. Physiological cell death is important for maintaining homeostasis and optimal biological conditions by continuous elimination of undesired or superfluous cells. The BH3-only pro-apoptotic members are strong inducers of apoptosis. The pro-apoptotic BH3-only protein Noxa activates multiple death pathways by inhibiting the anti-apoptotic Bcl-2 family protein, Mcl-1, and other protein members leading to Bax and Bak activation and MOMP. On the other hand, Puma is induced by p53-dependent and p53-independent apoptotic stimuli in several cancer cell lines. Moreover, this protein is involved in several physiological and pathological processes, such as immunity, cancer, and neurodegenerative diseases. Future heat shock research could disclose the effect of hyperthermia on both Noxa and BH3-only proteins. This suggests post-transcriptional mechanisms controlling the translation of both Puma and Noxa mRNA in heat-shocked cells. This study was also the chance to recapitulate the different reactional mechanisms investigated for caspases.
Collapse
|
4
|
The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Biomolecules 2020; 10:biom10010128. [PMID: 31940915 PMCID: PMC7022251 DOI: 10.3390/biom10010128] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsic apoptosis, the response to intracellular cell death stimuli, is regulated by the interplay of the B-cell lymphoma 2 (Bcl-2) family and their membrane interactions. Bcl-2 proteins mediate a number of processes including development, homeostasis, autophagy, and innate and adaptive immune responses and their dysregulation underpins a host of diseases including cancer. The Bcl-2 family is characterized by the presence of conserved sequence motifs called Bcl-2 homology motifs, as well as a transmembrane region, which form the interaction sites and intracellular location mechanism, respectively. Bcl-2 proteins have been recognized in the earliest metazoans including Porifera (sponges), Placozoans, and Cnidarians (e.g., Hydra). A number of viruses have gained Bcl-2 homologs and subvert innate immunity and cellular apoptosis for their replication, but they frequently have very different sequences to their host Bcl-2 analogs. Though most mechanisms of apoptosis initiation converge on activation of caspases that destroy the cell from within, the numerous gene insertions, deletions, and duplications during evolution have led to a divergence in mechanisms of intrinsic apoptosis. Currently, the action of the Bcl-2 family is best understood in vertebrates and nematodes but new insights are emerging from evolutionarily earlier organisms. This review focuses on the mechanisms underpinning the activity of Bcl-2 proteins including their structures and interactions, and how they have changed over the course of evolution.
Collapse
|
5
|
Montero J, Gstalder C, Kim DJ, Sadowicz D, Miles W, Manos M, Cidado JR, Paul Secrist J, Tron AE, Flaherty K, Stephen Hodi F, Yoon CH, Letai A, Fisher DE, Haq R. Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies. Nat Commun 2019; 10:5157. [PMID: 31727958 PMCID: PMC6856172 DOI: 10.1038/s41467-019-12477-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Most targeted cancer therapies fail to achieve complete tumor regressions or attain durable remissions. To understand why these treatments fail to induce robust cytotoxic responses despite appropriately targeting oncogenic drivers, here we systematically interrogated the dependence of cancer cells on the BCL-2 family of apoptotic proteins after drug treatment. We observe that multiple targeted therapies, including BRAF or EGFR inhibitors, rapidly deplete the pro-apoptotic factor NOXA, thus creating a dependence on the anti-apoptotic protein MCL-1. This adaptation requires a pathway leading to destabilization of the NOXA mRNA transcript. We find that interruption of this mechanism of anti-apoptotic adaptive resistance dramatically increases cytotoxic responses in cell lines and a murine melanoma model. These results identify NOXA mRNA destabilization/MCL-1 adaptation as a non-genomic mechanism that limits apoptotic responses, suggesting that sequencing of MCL-1 inhibitors with targeted therapies could overcome such widespread and clinically important resistance. MAPK-targeted therapies fail to achieve complete remission. Here, the authors show that anti-apoptosis resistance is acquired in these targeted therapies through the mRNA destabilization of NOXA which leads to dependence on MCL-1, and that sequential combination of MCL-1 inhibition with targeted therapies overcomes this resistance.
Collapse
Affiliation(s)
- Joan Montero
- Division of Hematologic Neoplasia/Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Institute for Bioengineering of Catalonia, C/Baldiri Reixac 15-21, Ed. Hèlix 3ª planta · 08028, Barcelona, Spain
| | - Cécile Gstalder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Daniel J Kim
- Department of Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA
| | - Dorota Sadowicz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Wayne Miles
- Department of Molecular Genetics, The Ohio State University, 820 Biomedical Research Tower 460 West 12th Avenue, Columbus, 43210, OH, USA
| | - Michael Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Justin R Cidado
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA
| | - J Paul Secrist
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA.,LifeMine Therapeutics, 100 Acorn Park Drive, 6th Floor Cambridge, Cambridge, MA, 02140, USA
| | - Adriana E Tron
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA
| | - Keith Flaherty
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Charles H Yoon
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, 02115, USA
| | - Anthony Letai
- Division of Hematologic Neoplasia/Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - David E Fisher
- Department of Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA. .,Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA.
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA. .,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.
| |
Collapse
|
6
|
Mitochondrial targeting domain of NOXA causes necrosis in apoptosis-resistant tumor cells. Amino Acids 2018; 50:1707-1717. [DOI: 10.1007/s00726-018-2644-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/27/2018] [Indexed: 11/27/2022]
|
7
|
Abstract
Apoptosis is often deregulated in a number of human diseases. Heat-induced apoptosis is a model system for studying the consequences of protein misfolding and is mediated by the Bcl-2 family of proteins. This family consists of both pro-apoptotic and anti-apoptotic members that control mitochondrial integrity. The BH3-only pro-apoptotic members are strong inducers of apoptotic cell death. Protein damaging stress can activate a process of cellular destruction known as apoptosis. The pro-apoptotic BH3-only proteins and transcription factors activate this death pathway by inhibiting the anti-apoptotic Bcl-2 family proteins eliminating cancer cells in a short period of time.
Collapse
Affiliation(s)
- Rabih Roufayel
- a Department of Science , American University of the Middle East , Egaila , Kuwait
| |
Collapse
|
8
|
Guikema JE, Amiot M, Eldering E. Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer. Expert Opin Ther Targets 2017; 21:767-779. [PMID: 28670929 DOI: 10.1080/14728222.2017.1349754] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jeroen E Guikema
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Martine Amiot
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, Nantes, France
| | - Eric Eldering
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| |
Collapse
|
9
|
Roufayel R, Kadry S. Expression of miR-23a by apoptotic regulators in human cancer: A review. Cancer Biol Ther 2017; 18:269-276. [PMID: 28453394 DOI: 10.1080/15384047.2017.1310342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
MicroRNAs play fundamental roles in mammalian development, differentiation and cellular homeostasis by regulating essential processes such as proliferation, migration, metabolism, migration and cell death. These small non-coding RNAs are also responsible in RNA silencing, and in many developmental and pathological processes. Not surprisingly, miR-23a misexpression contributes to numerous diseases including cancer where certain miRNA genes have been classified as either oncogenes or tumor suppressor genes. Since a single microRNA is capable of targeting a large number of mRNA sequences, de-regulated miRNA expression has the ability to alter various transcripts and activate a wide range of cancer-related pathways. This review article documents reduced levels of mature miR-23a in various tumors, primarily due to epigenetic silencing or alterations in biogenesis pathways. Moreover, inhibition of miR-23a in stressed cells represent a general mechanism for inducing apoptosis and these microRNAs are showed to be regulated by molecular chaperon HSP70. Microarray expression analysis of miRNA overexpression or depletion is now used in the characterization of cancer development pathways and as a biomarker for early cancer detection.
Collapse
Affiliation(s)
- Rabih Roufayel
- a Department of Science , American University of the Middle East , Kuwait
| | - Seifedine Kadry
- a Department of Science , American University of the Middle East , Kuwait
| |
Collapse
|
10
|
Palker TJ. Human T-cell Lymphotropic Viruses: Review and Prospects for Antiviral Therapy. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029200300301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human T-cell lymphotropic viruses types I and II (HTLV-I, II) pose challenges to researchers and clinicians who seek to unveil mechanisms of viral transformation and pathogenesis. HTLV-I infection in humans is associated with a wide array of primary and secondary diseases ranging from mild immunosuppression to adult T-cell leukaemia/lymphoma and HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a neurological degenerative syndrome. As retroviruses, HTLV-I and II share similar replicative cycles with human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome. However, in contrast to HIV-I which destroys CD4+ T cells, HTLV-I and II can preferentially transform a CD4+ T-cell subset to an unrestricted growth state. HTLV-I and II, along with simian T-lymphotropic virus (STLV) and bovine leukaemia virus (BLV), form a phylogenetic group which is distinct from ungulate, non-human primate and human lentiviruses such as visna, simian immunodeficiency virus (SIV), and human immunodeficiency viruses types 1 and 2. The proviral genome of HTLV-I is flanked at the 5′ and 3′ ends by long terminal repeats (LTR) and is further subdivided into structural gag and env genes, a pro gene encoding an aspartyl protease, a pol gene which encodes reverse transcriptase and endonuclease, and the regulatory gene elements tax and rex. Regions within the LTR contain recognition sites for cellular proteins and the tax gene product that collectively promote viral expression. Tax-mediated activation of cellular genes involved in growth and differentiation is suspected to play a dominant role in the leukaemogenic process associated with HTLV-I infection. Differential rex-regulated splicing of viral message gives rise to transcripts encoding the polyprotein precursor gag-pro-pol (unspliced), envelope (single spliced), or tax/rex (doubly spliced). The 100nm HTLV virion contains an electron-dense core surrounding a divalent-single stranded DNA genome. This core is in turn enclosed by concentric shells of matrix protein and an outer lipid bilayer, the latter acquired as the virus buds from the surface of the infected cell. Envelope glycoproteins associated with the outside of this lipid bilayer can interact with viral receptors on cells and mediate virus entry. Antiviral strategies have been directed at inhibiting viral entry into cells (sulphated and non-sulphated polysaccharides, vaccines), blocking of viral replication (AZT, suramin), intracellular immunization (transdominant repression of rex), and elimination of virus infected cells (IL-2 receptor-directed toxins). Serological screening of the blood supply and curtailing breast feeding of children by HTLV-I + mothers have likely had a major impact in preventing HTLV-I infection.
Collapse
Affiliation(s)
- T. J. Palker
- Duke University Medical Center, P.O. Box 3307, Durham, NC, 27710, USA
| |
Collapse
|
11
|
Matsumoto M, Nakajima W, Seike M, Gemma A, Tanaka N. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells. Biochem Biophys Res Commun 2016; 473:490-6. [DOI: 10.1016/j.bbrc.2016.03.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
12
|
Ouchi K, Kuwahara Y, Iehara T, Miyachi M, Katsumi Y, Tsuchiya K, Konishi E, Yanagisawa A, Hosoi H. A NOXA/MCL-1 Imbalance Underlies Chemoresistance of Malignant Rhabdoid Tumor Cells. J Cell Physiol 2016; 231:1932-40. [PMID: 26680268 DOI: 10.1002/jcp.25293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/15/2015] [Indexed: 01/19/2023]
Abstract
Malignant rhabdoid tumor (MRT) is a rare aggressive pediatric cancer characterized by inactivation of SNF5, a core subunit of SWI/SNF complexes. Previously, we showed that SNF5 contributes to transcriptional activation of NOXA, a pro-apoptotic protein that binds and inhibits the anti-apoptotic protein MCL-1. In this study, we found that NOXA expression was downregulated in MRT cell lines as well as in clinical MRT samples and that ectopically expressed NOXA bound MCL-1 and increased the sensitivity of MRT cell lines to doxorubicin (DOX) by promoting apoptosis. Consistent with this finding, knockdown of MCL-1 in MRT cell lines induced apoptosis and increased DOX sensitivity in MRT cells, and the MCL-1 inhibitor TW-37 synergized with DOX to induce MRT cell death. Our results suggest that modulation of the NOXA/MCL-1 pathway may be a potential strategy for the treatment of patients with MRT. J. Cell. Physiol. 231: 1932-1940, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kazutaka Ouchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasumichi Kuwahara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiki Katsumi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kunihiko Tsuchiya
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akio Yanagisawa
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Sarker-Nag A, Hutcheon AEK, Karamichos D. Mitochondrial Profile and Responses to TGF-β Ligands in Keratoconus. Curr Eye Res 2015; 41:900-7. [PMID: 26430764 DOI: 10.3109/02713683.2015.1078361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Keratoconus (KC) is a complex corneal dystrophy with multifactorial etiology. Previous studies have shown evidence of mitochondrial abnormalities in KC; however, the exact cause of these abnormalities remains unknown. The aim of this study was to identify if transforming growth factor-β (TGF-β) isoforms play a role in the regulation of mitochondrial proteins in human KC cells (HKC). MATERIALS AND METHODS Human corneal fibroblasts (HCF) and HKC were isolated and cultured for 4 weeks in three different conditions: (a) CONTROL MEM + 10%FBS, (b) MEM + 10%FBS + TGF-β1 and (c) MEM + 10%FBS + TGF-β3. All samples were processed for mitochondrial damage analysis using real-time PCR. RESULTS We quantified and analyzed 84 mitochondrial and five housekeeping genes in HCFs and HKCs. Our data showed that when TGF-β1 and/or TGF-β3 were compared with control in HCFs, nine genes were significantly different; however, no genes were significantly regulated by the TGF-β isoforms in HKCs. Significant differences were also seen in seven genes when HFCs were compared with HKCs, in all three conditions. CONCLUSIONS Overall, our data support the growing consensus that mitochondrial dysfunction is a key player in KC disease. These in vitro data show clear links between mitochondrial function and TGF-β isoforms, with TGF-β1 severely disrupting KC-mitochondrial function, while TGF-β3 maintained it, thus suggesting that TGF-β may play a role in KC-disease treatment.
Collapse
Affiliation(s)
- Akhee Sarker-Nag
- a Department of Ophthalmology/Dean McGee Eye Institute , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Audrey E K Hutcheon
- b Schepens Eye Research Institute/MEE and Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| | - Dimitrios Karamichos
- a Department of Ophthalmology/Dean McGee Eye Institute , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA.,c Department of Cell Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
14
|
Bin L, Luping D, Bing S, Zhengyu Y, Maojun L, Zhixin F, Yanna W, Haiyan W, Guoqing S, Kongwang H. Transcription analysis of the porcine alveolar macrophage response to Mycoplasma hyopneumoniae. PLoS One 2014; 9:e101968. [PMID: 25098731 PMCID: PMC4123846 DOI: 10.1371/journal.pone.0101968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/13/2014] [Indexed: 12/22/2022] Open
Abstract
Mycoplasma hyopneumoniae is considered the major causative agent of porcine respiratory disease complex, occurs worldwide and causes major economic losses to the pig industry. To gain more insights into the pathogenesis of this organism, the high throughput cDNA microarray assays were employed to evaluate host responses of porcine alveolar macrophages to M. hyopneumoniae infection. A total of 1033 and 1235 differentially expressed genes were identified in porcine alveolar macrophages in responses to exposure to M. hyopneumoniae at 6 and 15 hours post infection, respectively. The differentially expressed genes were involved in many vital functional classes, including inflammatory response, immune response, apoptosis, cell adhesion, defense response, signal transduction, protein folding, protein ubiquitination and so on. The pathway analysis demonstrated that the most significant pathways were the chemokine signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, nucleotide-binding oligomerization domains (Nod)-like receptor signaling pathway and apoptosis signaling pathway. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR. The expression kinetics of chemokines was further analyzed. The present study is the first to document the response of porcine alveolar macrophages to M. hyopneumoniae infection. The data further developed our understanding of the molecular pathogenesis of M. hyopneumoniae.
Collapse
Affiliation(s)
- Li Bin
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (LB); (HK)
| | - Du Luping
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Sun Bing
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Yu Zhengyu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Liu Maojun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Feng Zhixin
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wei Yanna
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wang Haiyan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shao Guoqing
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - He Kongwang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (LB); (HK)
| |
Collapse
|
15
|
Albert MC, Brinkmann K, Kashkar H. Noxa and cancer therapy: Tuning up the mitochondrial death machinery in response to chemotherapy. Mol Cell Oncol 2014; 1:e29906. [PMID: 27308315 PMCID: PMC4905168 DOI: 10.4161/mco.29906] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022]
Abstract
Biochemical analyses have characterized the BH3-only protein family member Noxa as a “sensitizer” with weak pro-apoptotic activity. Investigations into cancer cell responses to chemotherapeutic agents have identified Noxa as a pivotal factor mediating the cytotoxic effect of a plethora of anticancer treatments independent of its own pro-apoptotic activity. Accumulating evidence now suggests that tumor cells exert a number of strategies to counteract Noxa function by exploiting diverse cellular regulatory circuits that normally govern Noxa expression during cellular stress responses. Here, we summarize data concerning the role of Noxa in cancer chemosensitivity and highlight the potential of this enigmatic BH3-only protein family member in current and novel anticancer therapies.
Collapse
Affiliation(s)
- Marie-Christine Albert
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| | - Kerstin Brinkmann
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| |
Collapse
|
16
|
Zhong JX, Zhou L, Li Z, Wang Y, Gui JF. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis. Cell Death Differ 2014; 21:1013-24. [PMID: 24608793 PMCID: PMC4013518 DOI: 10.1038/cdd.2014.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/02/2014] [Accepted: 01/20/2014] [Indexed: 01/16/2023] Open
Abstract
Noxa functions in apoptosis and immune system of vertebrates, but its activities in embryo development remain unclear. In this study, we have studied the role of zebrafish Noxa (zNoxa) by using zNoxa-specifc morpholino knockdown and overexpression approaches in developing zebrafish embryos. Expression pattern analysis indicates that zNoxa transcript is of maternal origin, which displays a uniform distribution in early embryonic development until shield stage, and the zygote zNoxa transcription is initiated from this stage and mainly localized in YSL of the embryos. The zNoxa expression alterations result in strong embryonic development defects, demonstrating that zNoxa regulates apoptosis from 75% epiboly stage of development onward, in which zNoxa firstly induces the expression of zBik, and then cooperates with zBik to regulate apoptosis. Moreover, zNoxa knockdown also causes a reduction in number of mitotic cells before 8 h.p.f., suggesting that zNoxa also promotes mitosis before 75% epiboly stage. The effect of zNoxa on mitosis is mediated by zWnt4b in early embryos, whereas zMcl1a and zMcl1b suppress the ability of zNoxa to regulate mitosis and apoptosis at different developmental stages. In addition, mammalian mouse Noxa (mNoxa) mRNA was demonstrated to rescue the arrest of mitosis when zNoxa was knocked down, suggesting that mouse and zebrafish Noxa might have similar dual functions. Therefore, the current findings indicate that Noxa is a novel regulator of early mitosis before 75% epiboly stage when it translates into a key mediator of apoptosis in subsequent embryogenesis.
Collapse
Affiliation(s)
- J-X Zhong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - L Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Z Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Y Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - J-F Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
17
|
Pang X, Zhang J, Lopez H, Wang Y, Li W, O'Neill KL, Evans JJD, George NM, Long J, Chen Y, Luo X. The carboxyl-terminal tail of Noxa protein regulates the stability of Noxa and Mcl-1. J Biol Chem 2014; 289:17802-11. [PMID: 24811167 DOI: 10.1074/jbc.m114.548172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The BH3-only protein Noxa is a critical mediator of apoptosis and functions primarily by sequestering/inactivating the antiapoptotic Bcl-2 family protein Mcl-1. Although Noxa is a highly labile protein, recent studies suggested that it is degraded by the proteasome in a ubiquitylation-independent manner. In the present study, we investigated the mechanism of Noxa degradation and its ability to regulate the stability of Mcl-1. We found that the ubiquitylation-independent degradation of Noxa does not require a physical association with Mcl-1. A short stretch of amino acid residues in the C-terminal tail was found to mediate the proteasome-dependent degradation of Noxa. Ectopic placement of this degron was able to render other proteins unstable. Surprisingly, mutation of this sequence not only attenuated the rapid degradation of Noxa, but also stabilized endogenous Mcl-1 through the BH3-mediated direct interaction. Together, these results suggest that the C-terminal tail of Noxa regulates the stability of both Noxa and Mcl-1.
Collapse
Affiliation(s)
- Xiaming Pang
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Jingjing Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, the Xiangya School of Medicine, Central South University, Changsha 410013, China, and
| | - Hernando Lopez
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Yushu Wang
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, the School of Medicine, Shandong University, Jinan 250100, China
| | - Wenyang Li
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Katelyn L O'Neill
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Jacquelynn J D Evans
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Nicholas M George
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Jianhong Long
- the Xiangya School of Medicine, Central South University, Changsha 410013, China, and
| | - Yi Chen
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Xu Luo
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696,
| |
Collapse
|
18
|
Abstract
Noxa is a member of the pro-apoptotic BH3-only group of Bcl-2 proteins that is known to bind specifically to anti-apoptotic Mcl-1 and A1, antagonizing their function. Mcl-1 has been reported to have a short half-life, and Noxa up-regulation accelerates Mcl-1 degradation by the proteasome. Unlike human Noxa, mouse Noxa has two BH3-domains, which both have affinity for Mcl-1. We here investigate two aspects of the molecular function of Noxa, namely the requirements for the two BH3-domains in mouse Noxa and the role of Noxa in Mcl-1-degradation. We found that only the C-terminal BH3-domain of mouse Noxa is active in neutralizing Mcl-1. This was the result of the targeting of Noxa to the outer mitochondrial membrane through its C-terminal alpha-helix, which allowed Mcl-1-neutralization only when the BH3-domain was immediately N-terminal of the membrane anchor. However, the N-terminal BH3-domain enhanced interaction with Mcl-1 and A1. The Noxa-dependent degradation of Mcl-1 was independent of the kinase GSK3 and the deubiquitinase Usp9x in mouse embryonic fibroblasts. These data show that Noxa is targeted to the mitochondrial membrane where it neutralises Mcl-1 via its C-terminal BH3-domain and suggest that Noxa is co-degraded with Noxa, in a way independent of ubiquitin-modifying enzymes described for Mcl-1.
Collapse
|
19
|
Pang YP, Dai H, Smith A, Meng XW, Schneider PA, Kaufmann SH. Bak Conformational Changes Induced by Ligand Binding: Insight into BH3 Domain Binding and Bak Homo-Oligomerization. Sci Rep 2012; 2:257. [PMID: 22355769 PMCID: PMC3277102 DOI: 10.1038/srep00257] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/16/2012] [Indexed: 11/09/2022] Open
Abstract
Recently we reported that the BH3-only proteins Bim and Noxa bind tightly but transiently to the BH3-binding groove of Bak to initiate Bak homo-oligomerization. However, it is unclear how such tight binding can induce Bak homo-oligomerization. Here we report the ligand-induced Bak conformational changes observed in 3D models of Noxa·Bak and Bim·Bak refined by molecular dynamics simulations. In particular, upon binding to the BH3-binding groove, Bim and Noxa induce a large conformational change of the loop between helices 1 and 2 and in turn partially expose a remote groove between helices 1 and 6 in Bak. These observations, coupled with the reported experimental data, suggest formation of a pore-forming Bak octamer, in which the BH3-binding groove is at the interface on one side of each monomer and the groove between helices 1 and 6 is at the interface on the opposite side, initiated by ligand binding to the BH3-binding groove.
Collapse
|
20
|
Elkholi R, Floros KV, Chipuk JE. The Role of BH3-Only Proteins in Tumor Cell Development, Signaling, and Treatment. Genes Cancer 2011; 2:523-37. [PMID: 21901166 DOI: 10.1177/1947601911417177] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/18/2011] [Indexed: 12/19/2022] Open
Abstract
Tumor cells have devised several strategies to block the mitochondrial pathway of apoptosis despite endogenous or pharmacological cues to die. This process of cell death proceeds through the coordinated regulation of multiple anti-apoptotic and pro-apoptotic BCL-2 family proteins that ultimately impinge on the integrity of the outer mitochondrial membrane. Once compromised, mitochondria release pro-apoptotic factors to promote caspase activation and the apoptotic phenotype. Within the BCL-2 family exists a subclass of pro-apoptotic members termed the BH3-only proteins, which directly and/or indirectly functionally regulate the remaining anti- and pro-apoptotic BCL-2 proteins to compromise mitochondria and engage apoptosis. The focus of this review is to discuss the cellular and pharmacological regulation of the BH3-only proteins to gain a better understanding of the signaling pathways and agents that regulate this class of proteins. As the BH3-only proteins increase cellular sensitivity to pro-apoptotic agents such as chemotherapeutics, numerous small-molecule BH3 mimetics have been developed and are currently in various phases of clinical trials. Toward the end of the review, the discovery and application of the small-molecule BH3 mimetics will be discussed.
Collapse
Affiliation(s)
- Rana Elkholi
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
21
|
Dai H, Smith A, Meng XW, Schneider PA, Pang YP, Kaufmann SH. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. ACTA ACUST UNITED AC 2011; 194:39-48. [PMID: 21727192 PMCID: PMC3135403 DOI: 10.1083/jcb.201102027] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism by which the proapoptotic Bcl-2 family members Bax and Bak release cytochrome c from mitochondria is incompletely understood. In this paper, we show that activator BH3-only proteins bind tightly but transiently to the Bak hydrophobic BH3-binding groove to induce Bak oligomerization, liposome permeabilization, mitochondrial cytochrome c release, and cell death. Analysis by surface plasmon resonance indicated that the initial binding of BH3-only proteins to Bak occurred with similar kinetics with or without detergent or mitochondrial lipids, but these reagents increase the strength of the Bak-BH3-only protein interaction. Point mutations in Bak and reciprocal mutations in the BH3-only proteins not only confirmed the identity of the interacting residues at the Bak-BH3-only protein interface but also demonstrated specificity of complex formation in vitro and in a cellular context. These observations indicate that transient protein-protein interactions involving the Bak BH3-binding groove initiate Bak oligomerization and activation.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lowman XH, McDonnell MA, Kosloske A, Odumade OA, Jenness C, Karim CB, Jemmerson R, Kelekar A. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol Cell 2011; 40:823-33. [PMID: 21145489 DOI: 10.1016/j.molcel.2010.11.035] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/20/2010] [Accepted: 10/05/2010] [Indexed: 01/11/2023]
Abstract
The BH3-only protein, Noxa, is induced in response to apoptotic stimuli, such as DNA damage, hypoxia, and proteasome inhibition in most human cells. Noxa is constitutively expressed in proliferating cells of hematopoietic lineage and required for apoptosis in response to glucose stress. We show that Noxa is phosphorylated on a serine residue (S(13)) in the presence of glucose. Phosphorylation promotes its cytosolic sequestration and suppresses its apoptotic function. We identify Cdk5 as the Noxa kinase and show that Cdk5 knockdown or expression of a Noxa S(13) to A mutant increases sensitivity to glucose starvation, confirming that the phosphorylation is protective. Both glucose deprivation and Cdk5 inhibition promote apoptosis by dephosphorylating Noxa. Paradoxically, Noxa stimulates glucose consumption and may enhance glucose turnover via the pentose phosphate pathway rather than through glycolysis. We propose that Noxa plays both growth-promoting and proapoptotic roles in hematopoietic cancers with phospho-S(13) as the glucose-sensitive toggle switch controlling these opposing functions.
Collapse
Affiliation(s)
- Xazmin H Lowman
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gu J, Ye Y, Spitz MR, Lin J, Kiemeney LA, Xing J, Hildebrandt MAT, Ki Hong W, Amos CI, Wu X. A genetic variant near the PMAIP1/Noxa gene is associated with increased bleomycin sensitivity. Hum Mol Genet 2010; 20:820-6. [PMID: 21106707 DOI: 10.1093/hmg/ddq509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutagen sensitivity, a measurement of chromatid breaks induced by various mutagens in short-term cultures of peripheral blood lymphocytes, is an established risk factor for a number of cancers and is highly heritable. The purpose of this study is to identify genetic predictors of mutagen sensitivity. Therefore, we conducted a multi-stage genome-wide association study. The primary scan analyzed 539,437 autosomal SNPs in 673 healthy individuals, followed by validations in two independent sets of 575 and 259 healthy individuals, respectively. One SNP, rs8093763, on chromosome 18q21 showed significant association with bleomycin (BLM) sensitivity (combined P = 2.64 × 10⁻⁸). We observed significantly lower BLM-induced chromotid breaks for genotypes containing wild-type allele compared with the homozygous variant genotype in the discovery set (0.71 versus 0.90, P= 3.77 × 10⁻⁵) and in replication phase 1 (0.61 versus 0.84, P= 7.00 × 10⁻⁵). The result of replication phase 2 was not statistically significant (0.65 versus 0.68, P= 0.44). This SNP is approximately 64 kb from PMAIP1/Noxa, which is a radiation-inducible gene and exhibits higher expression in BLM-sensitive lymphoblastoid cell lines than insensitive cell lines upon BLM treatment. In conclusion, we identified a biologically plausible genetic variant on 18q21 near the PMAIP1/Noxa gene that is associated with BLM sensitivity.
Collapse
Affiliation(s)
- Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zall H, Weber A, Besch R, Zantl N, Häcker G. Chemotherapeutic drugs sensitize human renal cell carcinoma cells to ABT-737 by a mechanism involving the Noxa-dependent inactivation of Mcl-1 or A1. Mol Cancer 2010; 9:164. [PMID: 20576107 PMCID: PMC2901261 DOI: 10.1186/1476-4598-9-164] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 06/24/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human renal cell carcinoma (RCC) is very resistant to chemotherapy. ABT-737 is a novel inhibitor of anti-apoptotic proteins of the Bcl-2 family that has shown promise in various preclinical tumour models. RESULTS We here report a strong over-additive pro-apoptotic effect of ABT-737 and etoposide, vinblastine or paclitaxel but not 5-fluorouracil in cell lines from human RCC. ABT-737 showed very little activity as a single agent but killed RCC cells potently when anti-apoptotic Mcl-1 or, unexpectedly, A1 was targeted by RNAi. This potent augmentation required endogenous Noxa protein since RNAi directed against Noxa but not against Bim or Puma reduced apoptosis induction by the combination of ABT-737 and etoposide or vinblastine. At the level of mitochondria, etoposide-treatment had a similar sensitizing activity and allowed for ABT-737-induced release of cytochrome c. CONCLUSIONS Chemotherapeutic drugs can overcome protection afforded by Mcl-1 and A1 through endogenous Noxa protein in RCC cells, and the combination of such drugs with ABT-737 may be a promising strategy in RCC. Strikingly, A1 emerged in RCC cell lines as a protein of similar importance as the well-established Mcl-1 in protection against apoptosis in these cells.
Collapse
Affiliation(s)
- Henry Zall
- Institute for Medical Microbiology, Technische Universitat Munchen, Trogerstr., Munich, Germany
| | | | | | | | | |
Collapse
|
25
|
Seo YW, Woo HN, Piya S, Moon AR, Oh JW, Yun CW, Kim KK, Min JY, Jeong SY, Chung S, Song PI, Jeong SY, Choi EK, Seol DW, Kim TH. The Cell Death–Inducing Activity of the Peptide Containing Noxa Mitochondrial-Targeting Domain Is Associated with Calcium Release. Cancer Res 2009; 69:8356-65. [DOI: 10.1158/0008-5472.can-09-0349] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Ploner C, Kofler R, Villunger A. Noxa: at the tip of the balance between life and death. Oncogene 2009; 27 Suppl 1:S84-92. [PMID: 19641509 DOI: 10.1038/onc.2009.46] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Among all Bcl2 homology domain 3 (BH3)-only proteins known to date, APR/PMAIP1/Noxa, albeit showing weak proapoptotic potential on its own, appears to be crucial in fine-tuning cell death decisions by targeting the prosurvival molecule Mcl1 for proteasomal degradation. This event appears critical for cell death induction along the mitochondrial Bcl2-regulated apoptosis pathway in response to factor deprivation or DNA damage, presumably by sensitizing the cell toward the action of additional BH3-only protein family members. This review aims to summarize the function of Noxa in normal physiology, stress-induced cell death and tumorigenesis.
Collapse
Affiliation(s)
- C Ploner
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | |
Collapse
|
27
|
Martin AG, Trama J, Crighton D, Ryan KM, Fearnhead HO. Activation of p73 and induction of Noxa by DNA damage requires NF-kappa B. Aging (Albany NY) 2009; 1:335-49. [PMID: 20195489 PMCID: PMC2830049 DOI: 10.18632/aging.100026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/10/2009] [Indexed: 01/17/2023]
Abstract
Although the
transcription factor NF-κB is most clearly linked to the inhibition of
extrinsic apoptotic signals such as TNFα by upregulating known anti-apoptotic genes, NF-κB has also been proposed to be required for
p53-induced apoptosis in transformed cells. However, the involvement of NF-κB in this process is poorly understood. Here we investigate this mechanism and show that in
transformed MEFs lacking NF-κB (p65-null cells) genotoxin-induced cytochrome c release is
compromised. To further address how NF-κB contributes to apoptosis, gene
profiling by microarray analysis of MEFs was
performed, revealing that NF-κB is required for
expression of Noxa, a pro-apoptotic BH3-only protein that is induced by
genotoxins and that triggers cytochrome c release. Moreover, we find
that in the absence of NF-κB, genotoxin treatment cannot induce Noxa
mRNA expression. Noxa expression had been shown to be regulated directly by
genes of the p53 family, like p73 and p63, following genotoxin treatment.
Here we show that p73 is activated after genotoxin treatment only in the
presence of NF-κB and that p73 induces Noxa gene
expression through the p53 element in the promoter. Together our data
provides an explanation for how loss of NF-κB abrogates
genotoxin-induced apoptosis.
Collapse
Affiliation(s)
- Angel G Martin
- Apoptosis Section, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
28
|
Noxa/Mcl-1 balance regulates susceptibility of cells to camptothecin-induced apoptosis. Neoplasia 2007; 9:871-81. [PMID: 17971907 DOI: 10.1593/neo.07589] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/26/2007] [Accepted: 08/27/2007] [Indexed: 12/21/2022] Open
Abstract
Although camptothecin (CPT) has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that BH3-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay and cAMP response element binding protein (CREB) knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA) significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA) was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa and Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa and Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis.
Collapse
|
29
|
Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition. Proc Natl Acad Sci U S A 2007; 104:19488-93. [PMID: 18042711 DOI: 10.1073/pnas.0708380104] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome controls a plethora of survival factors in all mammalian cells analyzed to date. Therefore, it is puzzling that proteasome inhibitors such as bortezomib can display a preferential toxicity toward malignant cells. In fact, proteasome inhibitors have the salient feature of promoting a dramatic induction of the proapoptotic protein NOXA in a tumor cell-restricted manner. However, the molecular determinants that control this specific regulation of NOXA are unknown. Here, we show that the induction of NOXA by bortezomib is directly dependent on the oncogene c-MYC. This requirement for c-MYC was found in a variety of tumor cell types, in marked contrast with dispensable roles of p53, HIF-1alpha, and E2F-1 (classical proteasomal targets that can regulate NOXA mRNA under stress). Conserved MYC-binding sites identified at the NOXA promoter were validated by ChIP and reporter assays. Down-regulation of the endogenous levels of c-MYC abrogated the induction of NOXA in proteasome-defective tumor cells. Conversely, forced expression of c-MYC enabled normal cells to accumulate NOXA and subsequently activate cell death programs in response to proteasome blockage. c-MYC is itself a proteasomal target whose levels or function are invariably up-regulated during tumor progression. Our data provide an unexpected function of c-MYC in the control of the apoptotic machinery, and reveal a long sought-after oncogenic event conferring sensitivity to proteasome inhibition.
Collapse
|
30
|
Kurata K, Yanagisawa R, Ohira M, Kitagawa M, Nakagawara A, Kamijo T. Stress via p53 pathway causes apoptosis by mitochondrial Noxa upregulation in doxorubicin-treated neuroblastoma cells. Oncogene 2007; 27:741-54. [PMID: 17653088 DOI: 10.1038/sj.onc.1210672] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this study, we employed a panel of cell lines to determine whether p53-dependent cell death in neuroblastoma (NB) cells is caused by apoptotic cellular function, and we further studied the molecular mechanism of apoptosis induced via the p53-dependent pathway. We obtained evidence that a type of p53-dependent stress, doxorubicin (Doxo) administration, causes accumulation of p53 in the nucleus of NB cells and phosphorylation of several serine residues in both Doxo-sensitive and -resistant cell lines. Upregulation of p53-downstream molecules in cells and upregulation of Noxa in the mitochondrial fraction were observed only in Doxo-sensitive NB cells. Significance of Noxa in the Doxo-induced NB cell death was confirmed by Noxa-knockdown experiments. Mitochondrial dysfunction, including cytochrome-c release and membrane potential disregulation, occurred and resulted in the activation of the intrinsic caspase pathway. However, in the Doxo-resistant cells, the accumulation in the nucleus and phosphorylation of p53 did not induce p53-downstream p21(Cip1/Waf1) expression and the Noxa upregulation, resulting in the retention of the mitochondrial homeostasis. Taken together, these findings indicate that the p53 pathway seems to play a crucial role in NB cell death by Noxa regulation in mitochondria, and inhibition of the induction of p53-downstream effectors may regulate drug resistance of NB cells.
Collapse
Affiliation(s)
- K Kurata
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Olsson A, Manzl C, Strasser A, Villunger A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 2007; 14:1561-75. [PMID: 17627286 DOI: 10.1038/sj.cdd.4402196] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A number of elegant studies exploring the consequences of expression of various mutant forms of p53 in mice have been published over the last years. The results and conclusions drawn from these studies often contradict results previously obtained in biochemical assays and cell biology studies, questioning their relevance for p53 function in vivo. Owing to the multitude of post-translational modifications imposed on p53, however, the in vivo validation of their relevance for proper protein function and tumour suppression is constantly lagging behind new biochemical discoveries. Nevertheless, mouse genetics presents again its enormous power. Despite being relatively slow and tedious, it has become indispensable for researchers to sort out the wheat from the chaff in an endless sea of publications on p53.
Collapse
Affiliation(s)
- A Olsson
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
32
|
Han J, Goldstein LA, Hou W, Rabinowich H. Functional linkage between NOXA and Bim in mitochondrial apoptotic events. J Biol Chem 2007; 282:16223-31. [PMID: 17374615 DOI: 10.1074/jbc.m611186200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NOXA is a BH3-only protein whose expression is induced by certain p53-depenent or independent apoptotic stimuli. Both NOXA and Bim are avid binders of Mcl-1, but a functional linkage between these BH3-only proteins has not yet been reported. In this study, we demonstrate that Mcl-1 binding of endogenously induced NOXA interferes with the ability of Mcl-1 to efficiently sequester endogenous Bim, as Bim is displaced from its complex with Mcl-1. Induced NOXA significantly enhances the UV sensitivity of cells, and the ensuing mitochondrial depolarization is entirely abrogated by Bim knockdown. These results demonstrate a Mcl-1-mediated cross-talk between endogenous NOXA and Bim that occurs upstream of the Bak/Bax-dependent execution of UV-induced mitochondrial depolarization. The current findings demonstrate that the mitochondrial response to an induced expression of NOXA is executed by endogenous Bim and suggest a plausible mechanism for the observed NOXA-Bim linkage.
Collapse
Affiliation(s)
- Jie Han
- Department of Pathology, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | |
Collapse
|
33
|
Webster KA, Graham RM, Thompson JW, Spiga MG, Frazier DP, Wilson A, Bishopric NH. Redox stress and the contributions of BH3-only proteins to infarction. Antioxid Redox Signal 2006; 8:1667-76. [PMID: 16987020 DOI: 10.1089/ars.2006.8.1667] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ischemia followed by reperfusion is the primary cause of tissue injury and infarction during heart attack and stroke. The initiating stimulus is believed to involve reactive oxygen species that are produced during reperfusion when electron transport resumes in the mitochondria after suppression by ischemia. Programmed death has been shown to be a significant component of infarction, and evidence indicates that multiple pathways are initiated during both ischemia and reperfusion phases. Major infarction is preceded by severe ischemia that includes hypoxia, intracellular acidosis, glucose depletion, loss of ATP, and elevation of cytoplasmic calcium. The superimposition of a reactive oxygen surge on the latter condition provides the impetus for maximal damage. Compelling evidence implicates mitochondria not only as the source of initiating ROS but also as the focal sensors that translate the redox stress signal into a cellular-death response. Pivotal to this response are the BH3-only proteins that are activated by death signals and regulate mitochondrial communication with executioner proteins in the cytoplasm. The BH3-only proteins do this by controlling the activity of pores and channels in the outer mitochondrial membrane. To date at least six BH3-only proteins have been shown to contribute to ischemia-reperfusion death pathways in heart and/or brain; these include Bnip3, PUMA, Bid, Bad, HGTD-P, and Noxa. Here we review the evidence for these cell-death pathways and discuss their relevance to ischemic disease and infarction.
Collapse
Affiliation(s)
- Keith A Webster
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute, University of Miami Medical Center, Florida 33395, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Labi V, Erlacher M, Kiessling S, Villunger A. BH3-only proteins in cell death initiation, malignant disease and anticancer therapy. Cell Death Differ 2006; 13:1325-38. [PMID: 16645634 DOI: 10.1038/sj.cdd.4401940] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Induction of apoptosis in tumour cells, either by direct activation of the death receptor pathway using agonistic antibodies or recombinant ligands, or direct triggering of the Bcl-2-regulated intrinsic apoptosis pathway by small molecule drugs, carries high hopes to overcome the shortcomings of current anticancer therapies. The latter therapy concept builds on a more detailed understanding of how Bcl-2-like molecules maintain mitochondrial integrity and how BH3-only proteins and Bax/Bak-like molecules can undermine it. Means to unleash the apoptotic potential of BH3-only proteins in tumour cells, or bypass the need for BH3-only proteins by blocking possible interactions of Bcl-2-like prosurvival molecules with Bax and/or Bak allowing their direct activation, constitute interesting options for the design of novel anticancer therapies.
Collapse
Affiliation(s)
- V Labi
- Division of Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Austria
| | | | | | | |
Collapse
|
35
|
Sun Y, Leaman DW. Involvement of Noxa in Cellular Apoptotic Responses to Interferon, Double-stranded RNA, and Virus Infection. J Biol Chem 2005; 280:15561-8. [PMID: 15705586 DOI: 10.1074/jbc.m412630200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Double-stranded RNA (dsRNA) accumulates in virally infected cells, leading to induction of genes encoding proteins involved in signaling, apoptosis, protein synthesis/processing, and cell metabolism. Noxa is a BH3-containing mitochondrial protein that contributes to apoptosis by disrupting mitochondrial outer membrane integrity. Here we demonstrate potent induction of Noxa expression by exposure of cells to dsRNA, interferon (IFN), and virus. Noxa induction was confirmed by using reverse transcriptase-PCR and immunoblot analyses in multiple human tumor cell lines. Importantly, Noxa regulation by IFN and dsRNA was independent of p53, thereby identifying a novel mechanism of Noxa induction. Ectopic expression of Noxa in HT1080 fibrosarcoma cells enhanced cellular sensitivity to viral or dsRNA/actinomycin D-induced apoptosis, typified by enhanced cytochrome c release from the mitochondrial to the cytosolic fraction and increased cleavage of caspases 3 and 9. Point and deletion mutations of Noxa confirmed that both the BH3 domain and the mitochondrial-targeting domain were necessary for enhanced cellular apoptotic responses to dsRNA, IFN, or virus. Treatment of cells with dsRNA or virus, but not etoposide, induced interaction between Noxa and Bax that required an intact Noxa BH3 domain. Interestingly, the Noxa mitochondrial-targeting domain deletion mutant interacted with Bax in a dsRNA-dependent manner and redirected Bax away from the mitochondria, thus acting as a dominant-negative protein. Together, these data suggest that Noxa is an important component of the innate immune response of cells to viral infection, leading to enhanced cellular apoptosis that may play a role in limiting viral dissemination.
Collapse
Affiliation(s)
- Yaping Sun
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606, USA
| | | |
Collapse
|
36
|
Wang D, McDonnell MA, Kelekar A. Multi-probe RPA template sets to study RNA modulation and transcriptional control of BH3-only members of the Bcl-2 family. ACTA ACUST UNITED AC 2005; 29:189-200. [PMID: 15829380 DOI: 10.1016/j.cdp.2004.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 12/22/2004] [Indexed: 11/23/2022]
Abstract
The Bcl-2 family of apoptotic regulators comprises both pro- and anti-apoptotic proteins. Pro-apoptotic BH3-only members of the Bcl-2 family are subject to stringent control in normal proliferating cells, but can be activated by a variety of mechanisms in response to diverse apoptotic signals. To facilitate the simultaneous identification of BH3-only targets that are regulated at the RNA level, we have designed and assembled multi-probe ribonuclease protection assay templates and demonstrated their ability to detect multiple BH3-only transcripts in a variety of human cell lines and primary tissues. Following this, we have determined the modulation of BH3-only transcripts to a variety of apoptotic stimuli, in selected primary and transformed cell lines. Early experiments, showing that a given cell type upregulates a unique subset of BH3-only RNAs in response to different death-inducing stimuli, indicate that the multi-probe BH3-only RPA template sets could serve as useful diagnostic and analytical tools in cancer research.
Collapse
Affiliation(s)
- Dehua Wang
- Johns Hopkins University, Department of Pediatric Oncology, Baltimore, MD, USA
| | | | | |
Collapse
|
37
|
Kim JY, Ahn HJ, Ryu JH, Suk K, Park JH. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. ACTA ACUST UNITED AC 2003; 199:113-24. [PMID: 14699081 PMCID: PMC1887730 DOI: 10.1084/jem.20030613] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypoxia is a common cause of cell death and is implicated in many disease processes including stroke and chronic degenerative disorders. In response to hypoxia, cells express a variety of genes, which allow adaptation to altered metabolic demands, decreased oxygen demands, and the removal of irreversibly damaged cells. Using polymerase chain reaction–based suppression subtractive hybridization to find genes that are differentially expressed in hypoxia, we identified the BH3-only Bcl-2 family protein Noxa. Noxa is a candidate molecule mediating p53-induced apoptosis. We show that Noxa promoter responds directly to hypoxia via hypoxia-inducible factor (HIF)-1α. Suppression of Noxa expression by antisense oligonucleotides rescued cells from hypoxia-induced cell death and decreased infarction volumes in an animal model of ischemia. Further, we show that reactive oxygen species and resultant cytochrome c release participate in Noxa-mediated hypoxic cell death. Altogether, our results show that Noxa is induced by HIF-1α and mediates hypoxic cell death.
Collapse
Affiliation(s)
- Jee-Youn Kim
- Department of Pathology, College of Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-Koo, Seoul 130-701, Korea
| | | | | | | | | |
Collapse
|
38
|
Miyanari Y, Hijikata M, Yamaji M, Hosaka M, Takahashi H, Shimotohno K. Hepatitis C virus non-structural proteins in the probable membranous compartment function in viral genome replication. J Biol Chem 2003; 278:50301-8. [PMID: 12963739 DOI: 10.1074/jbc.m305684200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism of hepatitis C virus(HCV) RNA replication is still unknown. Recently, a cell culture system in which the HCV subgenomic replicon is efficiently replicated and maintained for a long period in Huh-7 cells has been established. Taking advantage of this replicon system, we detected the activity to synthesize the subgenomic RNA in the digitonin-permeabilized replicon cells. To elucidate how and where this viral RNA replicates in the cells, we monitored the activity for HCV RNA synthesis in the permeabilized replicon cells under several conditions. We obtained results suggesting that HCV replication complexes functioning to synthesize the replicon RNA are protected from access of nuclease and proteinase by possible cellular lipid membranes. We also found that a large part of the replicon RNA, including newly synthesized RNA, was present in such a membranous structure but a large part of each NS protein was not. A small part of each NS protein that was resistant to the proteinase action was shown to contribute sufficiently to the synthesis of HCV subgenomic RNA in the permeabilized replicon cells. These results suggested that a major subcellular site of HCV genome replication is probably compartmentalized by lipid membranes and that only a part of each NS protein forms the active replication complex in the replicon cells.
Collapse
Affiliation(s)
- Yusuke Miyanari
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Lee SH, Soung YH, Lee JW, Kim HS, Lee JH, Kim HS, Lee JH, Park JY, Cho YG, Kim CJ, Kim SY, Park WS, Kim SH, Lee JY, Yoo NJ. Mutational analysis of Noxa gene in human cancers. APMIS 2003; 111:599-604. [PMID: 12969015 DOI: 10.1034/j.1600-0463.2003.1110602.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There has been mounting evidence that dysregulation of apoptosis is involved in the mechanisms of cancer development and somatic mutations of apoptosis-related genes have been reported in human cancers. Noxa, a Bcl-2 homology 3 (BH3)-only member of the Bcl-2 family, is known to interact with anti-apoptotic Bcl-2 family members and induces apoptosis. The aim of this study was to explore the possibility that the Noxa gene is mutated in human cancers. We have analyzed the entire coding region and all splice sites of the Noxa gene for the detection of somatic mutations in a series of human cancers, including carcinomas from stomach, colon, liver, urinary bladder and lung by polymerase chain reaction (PCR), single strand conformation polymorphism (SSCP), and DNA sequencing. We found one somatic mutation of the Noxa gene in a transitional cell carcinoma (TCC) of the urinary bladder. To evaluate the functional alterations of the mutant in apoptosis, we overexpressed the mutant and wild-type Noxa in 293T and HeLa cells, but could not find any significant difference in cell death between the wild-type and mutant Noxa. These data suggest that Noxa is rarely mutated in human carcinomas and that the contribution of Noxa gene mutation in the pathogenesis of human cancer might not be related to cell death mechanisms.
Collapse
Affiliation(s)
- Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Martinez-Climent JA, Alizadeh AA, Segraves R, Blesa D, Rubio-Moscardo F, Albertson DG, Garcia-Conde J, Dyer MJS, Levy R, Pinkel D, Lossos IS. Transformation of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations. Blood 2003; 101:3109-17. [PMID: 12406872 DOI: 10.1182/blood-2002-07-2119] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genomic aberrations in a series of paired biopsy samples from patients who presented initially with follicle center lymphoma (FCL) and subsequently transformed to diffuse large B-cell lymphoma (DLBCL) were measured by array comparative genomic hybridization (CGH). The consequences of these aberrations on gene expression were determined by comparison with expression analysis on these specimens using cDNA microarrays. A heterogeneous pattern of acquired genomic abnormalities was observed upon transformation, some of which were recurrent in small subsets of patients. Some of the genomic aberration acquired upon transformation, such as gain/amplification of 1q21-q24, 2p16 (REL/BCL11A gene loci), 3q27-q29 (including the BCL6 locus), 7q11.2-q22.1, 12pter-q12, 18q21 (including the BCL2 locus) and Xq, and deletion of 6q22-q24, 13q14-q21 and 17p13 (P53 locus) have been previously implicated in the FCL/DLBCL pathogenesis. In addition, novel genomic imbalances not previously reported in association with FCL transformation, such as overrepresentation of 4p12-pter, 5p12-p15, 6p12.3-p21, 9p23, 9q13-q31, 16q, 17q21, and loss of 1p36.3, 4q21-q23, 5q21-q23, 9q31-qter, 11q24-q25, and 15q23, were identified. We observed a differential expression profile of many genes within regions of gain and deletion upon transformation, including novel target genes associated with FCL transformation. However, other genes did not show deregulated expression despite their location within these areas. In summary, the combination of array CGH and expression analysis provides a more comprehensive picture of the transformation of FCL to DLBCL. This process is associated with the acquisition of a variable spectrum of genomic imbalances affecting recurrent chromosomal areas that harbor overexpressed or underexpressed genes targeted upon transformation.
Collapse
MESH Headings
- Allelic Imbalance
- Cell Transformation, Neoplastic/genetics
- Chromosome Aberrations
- Chromosome Deletion
- Chromosomes, Human/genetics
- Chromosomes, Human/ultrastructure
- DNA, Complementary/genetics
- DNA, Neoplasm/genetics
- Disease Progression
- Gene Amplification
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Oligonucleotide Array Sequence Analysis
Collapse
Affiliation(s)
- Jose A Martinez-Climent
- Department of Hematology and Medical Oncology, Hospital Clinico, University of Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rapid Selection of Differentially Expressed Genes in TNFα-activated Endothelial Cells. Mol Med 2002. [DOI: 10.1007/bf03402166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
42
|
Kishine H, Sugiyama K, Hijikata M, Kato N, Takahashi H, Noshi T, Nio Y, Hosaka M, Miyanari Y, Shimotohno K. Subgenomic replicon derived from a cell line infected with the hepatitis C virus. Biochem Biophys Res Commun 2002; 293:993-9. [PMID: 12051758 DOI: 10.1016/s0006-291x(02)00342-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recently, cell culture systems have been established, where a hepatitis C virus (HCV) subgenomic replicon was efficiently replicated and maintained for a long period. To see whether a HCV sequence derived from HCV-infected cultured cell sequence can be used for the construction of a functional replicon, a HCV subgenomic RNA carrying a neomycin-resistant gene was constructed using the HCV genome RNA obtained from cultured cells infected with HCV. After transfection, G418-resistant Huh-7 cells were selected and subcloned. Finally, the production of HCV proteins and de novo synthesis of subgenomic RNA were confirmed in the selected cell clone, indicating that this subgenomic RNA replicated in cultured cells and functioned as a replicon. These results suggest that the HCV genome obtained from an in vitro HCV infection system with cultured cells can be used to develop a subgenomic replicon system with diverse HCV sequences.
Collapse
Affiliation(s)
- Hiroe Kishine
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, 53 Kawara-cho Shogo-in, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000; 288:1053-8. [PMID: 10807576 DOI: 10.1126/science.288.5468.1053] [Citation(s) in RCA: 1533] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A critical function of tumor suppressor p53 is the induction of apoptosis in cells exposed to noxious stresses. We report a previously unidentified pro-apoptotic gene, Noxa. Expression of Noxa induction in primary mouse cells exposed to x-ray irradiation was dependent on p53. Noxa encodes a Bcl-2 homology 3 (BH3)-only member of the Bcl-2 family of proteins; this member contains the BH3 region but not other BH domains. When ectopically expressed, Noxa underwent BH3 motif-dependent localization to mitochondria and interacted with anti-apoptotic Bcl-2 family members, resulting in the activation of caspase-9. We also demonstrate that blocking the endogenous Noxa induction results in the suppression of apoptosis. Noxa may thus represent a mediator of p53-dependent apoptosis.
Collapse
Affiliation(s)
- E Oda
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhu Y, Hon T, Zhang L. Heme initiates changes in the expression of a wide array of genes during the early erythroid differentiation stage. Biochem Biophys Res Commun 1999; 258:87-93. [PMID: 10222240 DOI: 10.1006/bbrc.1999.0586] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heme is central to oxygen sensing and utilization in all living organisms. It directly regulates numerous molecular and cellular processes for systems that sense or use oxygen. In mammals, heme plays an indispensable role in erythroid cell differentiation. To investigate heme regulatory functions, we identified, by differential display, and confirmed, by quantitative RT-PCR and Northern blotting analysis, the genes whose expression is altered by heme during the early stage of K562 cell differentiation. These include genes encoding a GAP-associated p62 protein, histone H2A.Z, a subunit of the small nuclear ribonucleoprotein complex, and the chaperonin Tcp20, and a cellular immediate-early-response gene. The results suggest that heme initiates changes in key factors that control a wide array of processes ranging from cell cycle and Ras signaling to chromatin structure, splicing and protein folding. These key factors might act together to mediate heme action, which is critical for erythroid cell differentiation.
Collapse
Affiliation(s)
- Y Zhu
- Department of Biochemistry, NYU Medical Center, 550 First Avenue, New York, New York, 10016, USA
| | | | | |
Collapse
|
45
|
Mizushima H, Hijikata M, Asabe S, Hirota M, Kimura K, Shimotohno K. Two hepatitis C virus glycoprotein E2 products with different C termini. J Virol 1994; 68:6215-22. [PMID: 8083961 PMCID: PMC237041 DOI: 10.1128/jvi.68.10.6215-6222.1994] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Processing of the boundary region between the putative structural and nonstructural regions of the hepatitis C virus precursor polyprotein was analyzed by in vitro translation using reticulocyte lysate in the presence of canine microsomal membranes. At this boundary in the precursor polyprotein, the most carboxy-terminal of the structural proteins, gp70 (E2), is proximal to the amino terminal of the nonstructural protein p21 (NS2). The presence of a novel microsomal membrane-dependent cleavage site was observed at the region upstream of the amino-terminal end of p21 (NS2) in the precursor polyprotein. The cleavage site was assigned to amino acid residues 746/747 in the hepatitis C virus precursor polyprotein. Inefficient cleavage of this site resulted in the production of two forms of E2 products with different sizes of peptide backbones. Translation and cleavage of various C-terminal deletion constructs established the significance of the C-terminal hydrophobic amino acid sequences of E2 products in membrane anchoring.
Collapse
Affiliation(s)
- H Mizushima
- Virology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Mizushima H, Hijikata M, Tanji Y, Kimura K, Shimotohno K. Analysis of N-terminal processing of hepatitis C virus nonstructural protein 2. J Virol 1994; 68:2731-4. [PMID: 8139048 PMCID: PMC236751 DOI: 10.1128/jvi.68.4.2731-2734.1994] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We determined the partial amino (N)-terminal amino acid sequence of hepatitis C virus p21 (nonstructural protein 2 [NS2]). Cleavage at the p21 (NS2) N terminus depended on the presence of microsomal membranes. The amino-terminal position of p21 (NS2) was assigned to amino acid 810 of the hepatitis C virus strain IIJ precursor polyprotein. Mutation of the alanine residue at position P1 of the putative cleavage site inhibited membrane-dependent processing. This alteration in processing together with the fact that hydrophobic amino acid residues are clustered upstream of the putative cleavage site suggested the involvement of a signal peptidase(s) in the cleavage. Furthermore, mutation analysis of this possible cleavage site revealed the presence of another microsome membrane-dependent cleavage site upstream of the N terminus of p21 (NS2).
Collapse
Affiliation(s)
- H Mizushima
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
47
|
Siderovski DP, Heximer SP, Forsdyke DR. A human gene encoding a putative basic helix-loop-helix phosphoprotein whose mRNA increases rapidly in cycloheximide-treated blood mononuclear cells. DNA Cell Biol 1994; 13:125-47. [PMID: 8179820 DOI: 10.1089/dna.1994.13.125] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
G0S8 is a member of a set of putative G0/G1 switch regulatory genes (G0S genes) selected by screening cDNA libraries prepared from blood mononuclear cells cultured for 2 hr with lectin and cycloheximide. Comparison of a full-length cDNA sequence with the corresponding genomic sequence reveals an open reading frame of 211 amino acids, distributed across 5 exons. The 24-kD protein has a basic domain preceding a potential helix-loop-helix domain which contains a QTK motif found about 60 amino acids from the carboxyl terminus in the loop region of several helix-loop-helix proteins. There are potential phosphorylation sites for protein kinase C, creatine kinase II, and protein tyrosine kinases and regions of sequence similarity to helix-loop-helix proteins, tyrosine phosphatases, and RNA and DNA polymerases. The genomic sequence contains a CpG island, suggesting expression in the germ line. Potential binding sites for transcription factors are present in the 5' flank and introns; these include Zif268/NGFI-A/EGR1/G0S30, NGFI-B, Ap1, and factors that react with retroviral long terminal repeats (LTRs). There are several potential interferon response elements and a serum response element in the 3' flank overlapping a region of similarity to a cytomegalovirus immediate-early gene enhancer. Many of these motifs are found in immediate-early G0/G1 switch genes; however, we were unable to demonstrate an increase in G0S8 mRNA in response to lectin alone. Sequence similarities are noted between G0S8 and a variety of genes involved in the immune system, in the regulation of retroviruses, and in the cell cycle.
Collapse
Affiliation(s)
- D P Siderovski
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
48
|
Hijikata M, Mizushima H, Tanji Y, Komoda Y, Hirowatari Y, Akagi T, Kato N, Kimura K, Shimotohno K. Proteolytic processing and membrane association of putative nonstructural proteins of hepatitis C virus. Proc Natl Acad Sci U S A 1993; 90:10773-7. [PMID: 7504283 PMCID: PMC47860 DOI: 10.1073/pnas.90.22.10773] [Citation(s) in RCA: 265] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
By using a plasmid-based transient protein expression system in cultured cells and an in vitro transcription/translation system, we analyzed the proteolytic processing of the putative nonstructural protein region of the precursor polyprotein from a Japanese type of hepatitis C virus. In addition to the previously reported viral proteins, p21 and p70, we identified products of 4 kDa (p4), 27 kDa (p27), 56 kDa (p56), 58 kDa (p58), and 66 kDa (p66). These products were produced in a viral serine proteinase (proteinase 2)-dependent manner from the region downstream of p70 in the precursor polyprotein and were arranged as NH2-p70-p4-p27-p58(p56)-p66-COOH as determined with region-specific antibodies. We showed that p56 was an N-terminally truncated form of p58, which suggested that a small polypeptide of 2 kDa (p2) was produced from the N-terminal part of p58. Cleavage between p4 and p27 was inefficient in vitro and we saw the 31-kDa precursor polypeptide (p31) accumulate. Furthermore, efficient cleavage at this site in vivo required the presence of p58/p56. Immunoprecipitation analysis in vitro also suggested the mutual interaction of those nonstructural protein products. An especially close association of p4 with p70 may contribute to association of p70 with microsomal membranes.
Collapse
Affiliation(s)
- M Hijikata
- Virology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hijikata M, Mizushima H, Akagi T, Mori S, Kakiuchi N, Kato N, Tanaka T, Kimura K, Shimotohno K. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J Virol 1993; 67:4665-75. [PMID: 8392606 PMCID: PMC237852 DOI: 10.1128/jvi.67.8.4665-4675.1993] [Citation(s) in RCA: 375] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gene products of hepatitis C virus (HCV), a possible major causative agent of posttransfusion non-A, non-B hepatitis, are considered to be produced from a precursor polyprotein via proteolytic processing mediated by either host cell or viral proteinases. The presence of HCV serine proteinase has been proposed from analyses of amino acid sequence homology. To examine the processing mechanism of the HCV precursor polyprotein, the amino-terminal region of the putative nonstructural protein region of the HCV genome, containing the serine proteinase motif, was expressed and analyzed by using an in vitro transcription/translation system and a transient expression system in cultured cells. Two distinct proteinase activities which function in the production of a 70-kDa protein (p70) from the precursor polyprotein were detected. One of these proteinase activities, which cleaved the carboxyl (C)-terminal side of p70, required the presence of the serine proteinase motif, which is located in the amino (N)-terminal region of p70. That suggested that the predicted HCV serine proteinase was functional. The other activity, which was responsible for the cleavage of the N-terminal side of p70, required the expression of the region upstream and downstream of that cleavage site, including the p70 serine proteinase domain. From the results of pulse-chase analysis, using proteinase inhibitors coupled with a point mutation analysis, the latter activity was proposed to be a novel zinc-dependent metalloproteinase.
Collapse
Affiliation(s)
- M Hijikata
- Virology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Akagi T, Shimotohno K. Proliferative response of Tax1-transduced primary human T cells to anti-CD3 antibody stimulation by an interleukin-2-independent pathway. J Virol 1993; 67:1211-7. [PMID: 8437212 PMCID: PMC237486 DOI: 10.1128/jvi.67.3.1211-1217.1993] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The growth properties of human T-cell leukemia virus Tax1-transduced primary human T cells derived from peripheral blood lymphocytes were compared with those of the same subset of T cells transduced with a control vector. Tax1-transduced T cells exhibited slightly elevated responsiveness to externally added interleukin-2 (IL-2) and a markedly higher proliferative response to stimulation with anti-CD3 antibody. The proliferation after anti-CD3 antibody stimulation was mainly via an IL-2-independent pathway. Therefore, some other mechanism than the previously proposed IL-2 autocrine model seems to be involved in the process of deregulation of T-cell proliferation by Tax1. Moreover, Tax1-transduced T cells have continued to proliferate in medium containing IL-2 long after control T cells ceased to grow, and so they are considered to be immortalized.
Collapse
Affiliation(s)
- T Akagi
- Virology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | |
Collapse
|