1
|
Khalili A, Craigie M, Donadoni M, Sariyer IK. Host-Immune Interactions in JC Virus Reactivation and Development of Progressive Multifocal Leukoencephalopathy (PML). J Neuroimmune Pharmacol 2019; 14:649-660. [PMID: 31452013 PMCID: PMC6898772 DOI: 10.1007/s11481-019-09877-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
With the advent of immunomodulatory therapies and the HIV epidemic, the impact of JC Virus (JCV) on the public health system has grown significantly due to the increased incidence of Progressive Multifocal Leukoencephalopathy (PML). Currently, there are no pharmaceutical agents targeting JCV infection for the treatment and the prevention of viral reactivation leading to the development of PML. As JCV primarily reactivates in immunocompromised patients, it is proposed that the immune system (mainly the cellular-immunity component) plays a key role in the regulation of JCV to prevent productive infection and PML development. However, the exact mechanism of JCV immune regulation and reactivation is not well understood. Likewise, the impact of host factors on JCV regulation and reactivation is another understudied area. Here we discuss the current literature on host factor-mediated and immune factor-mediated regulation of JCV gene expression with the purpose of developing a model of the factors that are bypassed during JCV reactivation, and thus are potential targets for the development of therapeutic interventions to suppress PML initiation. Graphical Abstract.
Collapse
Affiliation(s)
- Amir Khalili
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Michael Craigie
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Martina Donadoni
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Ilker Kudret Sariyer
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
He J, Xie TL, Li X, Yu Y, Zhan ZP, Weng SP, Guo CJ, He JG. Molecular cloning of Y-Box binding protein-1 from mandarin fish and its roles in stress-response and antiviral immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 93:406-415. [PMID: 31369857 DOI: 10.1016/j.fsi.2019.07.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is a universally farmed fish species in China and has a large farming scale and economic value. With the high-density cultural mode in mandarin fish, viral diseases, such as infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV), have increased loss, which has seriously restricted the development of aquaculture. Y-Box binding protein 1 (YB-1) is a member of cold shock protein family that regulates multiple cellular processes. The roles of mammalian YB-1 protein in environmental stress and innate immunity have been studied well, but its roles in teleost fishes remain unknown. In the present study, the characteristic of S. chuatsi YB-1 (scYB-1) and its roles in cold stress and virus infection were investigated. The scYB-1 obtained an 1541 bp cDNA that contains a 903 bp open reading frame encoding a protein of 300 amino acids. Tissue distribution results showed that the scYB-1 is a ubiquitously expressed gene found among tissues from mandarin fish. Overexpression of scYB-1 can increase the expression levels of cold shock-responsive genes, such as scHsc70a, scHsc70b, and scp53. Furthermore, the role of scYB-1 in innate immunity was also investigated in mandarin fish fry (MFF-1) cells. The expression level of scYB-1 was significant change in response to poly (I:C), poly (dG:dC), PMA, ISKNV, or SCRV stimulation. The overexpression of scYB-1 can significantly increase the expression levels of NF-κB-responsive genes, including scIL-8, scTNF-α, and scIFN-h. The NF-κB-luciferase report assay results showed that the relative expression of luciferin was significantly increased in the cells overexpressed with scYB-1 compared with those in cells overexpressed with control plasmid. These results indicate that scYB-1 can induce the NF-κB signaling pathway in MFF-1 cells. Overexpressed scYB-1 can downregulate the expression of ISKNV viral major capsid protein (mcp) gene but upregulates the expression of SCRV mcp gene. Moreover, knockdown of scYB-1 using siRNA can upregulate the expression of ISKNV mcp gene but downregulates the expression of SCRV mcp gene. These results indicate that scYB-1 suppresses ISKNV infection while enhancing SCRV infection. The above observations suggest that scYB-1 is involved in cold stress and virus infection. Our study will provide an insight into the roles of teleost fish YB-1 protein in stress response and innate immunity.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Tao-Lin Xie
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Xiao Li
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Yang Yu
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Zhi-Peng Zhan
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Shao-Ping Weng
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| | - Jian-Guo He
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| |
Collapse
|
3
|
Weydert C, van Heertum B, Dirix L, De Houwer S, De Wit F, Mast J, Husson SJ, Busschots K, König R, Gijsbers R, De Rijck J, Debyser Z. Y-box-binding protein 1 supports the early and late steps of HIV replication. PLoS One 2018; 13:e0200080. [PMID: 29995936 PMCID: PMC6040738 DOI: 10.1371/journal.pone.0200080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
The human immunodeficiency virus (HIV) depends on cellular proteins, so-called cofactors, to complete its replication cycle. In search for new therapeutic targets we identified the DNA and RNA binding protein Y-box-binding Protein 1 (YB-1) as a cofactor supporting early and late steps of HIV replication. YB-1 depletion resulted in a 10-fold decrease in HIV-1 replication in different cell lines. Dissection of the replication defects revealed that knockdown of YB-1 is associated with a 2- to 5-fold decrease in virion production due to interference with the viral RNA metabolism. Using single-round virus infection experiments we demonstrated that early HIV-1 replication also depends on the cellular YB-1 levels. More precisely, using quantitative PCR and an in vivo nuclear import assay with fluorescently labeled viral particles, we showed that YB-1 knockdown leads to a block between reverse transcription and nuclear import of HIV-1. Interaction studies revealed that YB-1 associates with integrase, although a direct interaction with HIV integrase could not be unambiguously proven. In conclusion, our results indicate that YB-1 affects multiple stages of HIV replication. Future research on the interaction between YB-1 and the virus will reveal whether this protein qualifies as a new antiviral target.
Collapse
Affiliation(s)
- Caroline Weydert
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Bart van Heertum
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Lieve Dirix
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Belgium
| | - Stéphanie De Houwer
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Flore De Wit
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan Mast
- Veterinary and Agrochemical Research Centre, VAR-CODA-CERVA, Brussels, Belgium
| | - Steven J. Husson
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Systemic Physiological & Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, 2000 Antwerp, Belgium
| | - Katrien Busschots
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Renate König
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Rik Gijsbers
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan De Rijck
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
4
|
Burger-Calderon R, Ramsey KJ, Dolittle-Hall JM, Seaman WT, Jeffers-Francis LK, Tesfu D, Nickeleit V, Webster-Cyriaque J. Distinct BK polyomavirus non-coding control region (NCCR) variants in oral fluids of HIV- associated Salivary Gland Disease patients. Virology 2016; 493:255-66. [PMID: 27085139 DOI: 10.1016/j.virol.2016.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/27/2022]
Abstract
HIV-associated Salivary Gland Disease (HIVSGD) is among the most common salivary gland-associated complications in HIV positive individuals and was associated with the small DNA tumorvirus BK polyomavirus (BKPyV). The BKPyV non-coding control region (NCCR) is the main determinant of viral replication and rearranges readily. This study analyzed the BKPyV NCCR architecture and viral loads of 35 immunosuppressed individuals. Throatwash samples from subjects diagnosed with HIVSGD and urine samples from transplant patients were BKPyV positive and yielded BKPyV NCCR sequences. 94.7% of the BKPyV HIVSGD NCCRs carried a rearranged OPQPQQS block arrangement, suggesting a distinct architecture among this sample set. BKPyV from HIV positive individuals without HIVSGD harbored NCCR block sequences that were distinct from OPQPQQS. Cloned HIVSGD BKPyV isolates displayed active promoters and efficient replication capability in human salivary gland cells. The unique HIVSGD NCCR architecture may represent a potentially significant oral-tropic BKPyV substrain.
Collapse
Affiliation(s)
- Raquel Burger-Calderon
- Epidemiology Department, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathy J Ramsey
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet M Dolittle-Hall
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William T Seaman
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Daniel Tesfu
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Volker Nickeleit
- Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer Webster-Cyriaque
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Burger-Calderon R, Webster-Cyriaque J. Human BK Polyomavirus-The Potential for Head and Neck Malignancy and Disease. Cancers (Basel) 2015; 7:1244-70. [PMID: 26184314 PMCID: PMC4586768 DOI: 10.3390/cancers7030835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Members of the human Polyomaviridae family are ubiquitous and pathogenic among immune-compromised individuals. While only Merkel cell polyomavirus (MCPyV) has conclusively been linked to human cancer, all members of the polyomavirus (PyV) family encode the oncoprotein T antigen and may be potentially carcinogenic. Studies focusing on PyV pathogenesis in humans have become more abundant as the number of PyV family members and the list of associated diseases has expanded. BK polyomavirus (BKPyV) in particular has emerged as a new opportunistic pathogen among HIV positive individuals, carrying harmful implications. Increasing evidence links BKPyV to HIV-associated salivary gland disease (HIVSGD). HIVSGD is associated with elevated risk of lymphoma formation and its prevalence has increased among HIV/AIDS patients. Determining the relationship between BKPyV, disease and tumorigenesis among immunosuppressed individuals is necessary and will allow for expanding effective anti-viral treatment and prevention options in the future.
Collapse
Affiliation(s)
- Raquel Burger-Calderon
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jennifer Webster-Cyriaque
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Leiprecht N, Notz E, Schuetz J, Haedicke J, Stubenrauch F, Iftner T. A novel recombinant papillomavirus genome enabling in vivo RNA interference reveals that YB-1, which interacts with the viral regulatory protein E2, is required for CRPV-induced tumor formation in vivo. Am J Cancer Res 2014; 4:222-33. [PMID: 24959377 PMCID: PMC4065403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023] Open
Abstract
YB-1 is considered a negative prognostic marker for different types of cancer. Increased YB-1 protein levels in tumor cells indicate a worse prognosis. In a preceding study comparing the transcripts of CRPV-induced benign papillomas to mRNA levels of malignant epithelial tumors, we identified YB-1 as a gene that is up-regulated in papillomavirus-associated carcinomas and which causes an invasive phenotype in CRPV-positive cells in vitro. Here we demonstrate that YB-1 is a previously unknown factor required for papillomavirus-induced tumor development in the rabbit animal model system. By infecting the animals with a novel recombinant shRNA-expressing CRPV genome, we show that knock-down of YB-1 dramatically reduces papillomavirus-dependent tumor formation in vivo. Consistent with previous reports showing a nuclear distribution of YB-1 proteins as a hallmark of malignancy, we demonstrate a predominantly nuclear localization of YB-1 in CRPV-immortalized cells. Furthermore we give evidence of YB-1 regulating the CRPV URR and thereby viral gene expression and we identified YB-1 as a novel interactor of the CRPV regulatory protein E2. Taken together we hypothesize that YB-1 is essential for papillomavirus-induced tumor formation probably by regulating viral gene expression including expression of the oncogenes E6 and E7.
Collapse
Affiliation(s)
- Natalie Leiprecht
- Medical Virology, Division of Experimental Virology, University Hospital Tübingen Germany
| | - Ekaterina Notz
- Medical Virology, Division of Experimental Virology, University Hospital Tübingen Germany
| | - Johanna Schuetz
- Medical Virology, Division of Experimental Virology, University Hospital Tübingen Germany
| | - Juliane Haedicke
- Medical Virology, Division of Experimental Virology, University Hospital Tübingen Germany
| | - Frank Stubenrauch
- Medical Virology, Division of Experimental Virology, University Hospital Tübingen Germany
| | - Thomas Iftner
- Medical Virology, Division of Experimental Virology, University Hospital Tübingen Germany
| |
Collapse
|
7
|
Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 2012; 25:471-506. [PMID: 22763635 DOI: 10.1128/cmr.05031-11] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.
Collapse
|
8
|
Marshall LJ, Moore LD, Mirsky MM, Major EO. JC virus promoter/enhancers contain TATA box-associated Spi-B-binding sites that support early viral gene expression in primary astrocytes. J Gen Virol 2011; 93:651-661. [PMID: 22071512 DOI: 10.1099/vir.0.035832-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
JC virus (JCV) is the aetiological agent of the demyelinating disease progressive multifocal leukoencephalopathy, an AIDS defining illness and serious complication of mAb therapies. Initial infection probably occurs in childhood. In the working model of dissemination, virus persists in the kidney and lymphoid tissues until immune suppression/modulation causes reactivation and trafficking to the brain where JCV replicates in oligodendrocytes. JCV infection is regulated through binding of host factors such as Spi-B to, and sequence variation in the non-coding control region (NCCR). Although NCCR sequences differ between sites of persistence and pathogenesis, evidence suggests that the virus that initiates infection in the brain disseminates via B-cells derived from latently infected haematopoietic precursors in the bone marrow. Spi-B binds adjacent to TATA boxes in the promoter/enhancer of the PML-associated JCV Mad-1 and Mad-4 viruses but not the non-pathogenic, kidney-associated archetype. The Spi-B-binding site of Mad-1/Mad-4 differs from that of archetype by a single nucleotide, AAAAGGGAAGGGA to AAAAGGGAAGGTA. Point mutation of the Mad-1 Spi-B site reduced early viral protein large T-antigen expression by up to fourfold. Strikingly, the reverse mutation in the archetype NCCR increased large T-antigen expression by 10-fold. Interestingly, Spi-B protein binds the NCCR sequence flanking the viral promoter/enhancer, but these sites are not essential for early viral gene expression. The effect of mutating Spi-B-binding sites within the JCV promoter/enhancer on early viral gene expression strongly suggests a role for Spi-B binding to the viral promoter/enhancer in the activation of early viral gene expression.
Collapse
Affiliation(s)
- Leslie J Marshall
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892-1296, USA
| | - Lisa D Moore
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892-1296, USA
| | - Matthew M Mirsky
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892-1296, USA
| | - Eugene O Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892-1296, USA
| |
Collapse
|
9
|
Marshall LJ, Dunham L, Major EO. Transcription factor Spi-B binds unique sequences present in the tandem repeat promoter/enhancer of JC virus and supports viral activity. J Gen Virol 2010; 91:3042-52. [PMID: 20826618 PMCID: PMC3052566 DOI: 10.1099/vir.0.023184-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is an often fatal demyelinating disease caused by lytic infection of oligodendrocytes with JC virus (JCV). The development of PML in non-immunosuppressed individuals is a growing concern with reports of mortality in patients treated with mAb therapies. JCV can persist in the kidneys, lymphoid tissue and bone marrow. JCV gene expression is restricted by non-coding viral regulatory region sequence variation and cellular transcription factors. Because JCV latency has been associated with cells undergoing haematopoietic development, transcription factors previously reported as lymphoid specific may regulate JCV gene expression. This study demonstrates that one such transcription factor, Spi-B, binds to sequences present in the JCV promoter/enhancer and may affect early virus gene expression in cells obtained from human brain tissue. We identified four potential Spi-B-binding sites present in the promoter/enhancer elements of JCV sequences from PML variants and the non-pathogenic archetype. Spi-B sites present in the promoter/enhancers of PML variants alone bound protein expressed in JCV susceptible brain and lymphoid-derived cell lines by electromobility shift assays. Expression of exogenous Spi-B in semi- and non-permissive cells increased early viral gene expression. Strikingly, mutation of the Spi-B core in a binding site unique to the Mad-4 variant was sufficient to abrogate viral activity in progenitor-derived astrocytes. These results suggest that Spi-B could regulate JCV gene expression in susceptible cells, and may play an important role in JCV activity in the immune and nervous systems.
Collapse
Affiliation(s)
- Leslie J Marshall
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1296, USA
| | | | | |
Collapse
|
10
|
Marshall LJ, Major EO. Molecular regulation of JC virus tropism: insights into potential therapeutic targets for progressive multifocal leukoencephalopathy. J Neuroimmune Pharmacol 2010; 5:404-17. [PMID: 20401541 PMCID: PMC3201779 DOI: 10.1007/s11481-010-9203-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a growing concern for patients undergoing immune modulatory therapies for treatment of autoimmune diseases such as multiple sclerosis. Currently, there are no drugs approved for the treatment of PML that have been demonstrated in the patient to effectively and reproducibly alter the course of disease progression. The human polyoma virus JC is the causative agent of PML. JC virus (JCV) dissemination is tightly controlled by regulation of viral gene expression from the promoter by cellular transcription factors expressed in cells permissive for infection. JCV infection likely occurs during childhood, and latent virus containing PML-associated promoter sequences is maintained in lymphoid cells within the bone marrow. Because development of PML is tightly linked to suppression and or modulation of the immune system as in development of hematological malignancies, AIDS, and monoclonal antibody treatments, further scrutiny of the course of JCV infection in immune cells will be essential to our understanding of development of PML and identification of new therapeutic targets.
Collapse
Affiliation(s)
- Leslie J Marshall
- Laboratory of Molecular Medicine and Neuroscience, Molecular Medicine and Virology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10 Room 3B14 MSC 1295, Bethesda, MD 20892-1296, USA.
| | | |
Collapse
|
11
|
Piña-Oviedo S, Khalili K, Del Valle L. Hypoxia inducible factor-1 alpha activation of the JCV promoter: role in the pathogenesis of progressive multifocal leukoencephalopathy. Acta Neuropathol 2009; 118:235-47. [PMID: 19360424 PMCID: PMC2856344 DOI: 10.1007/s00401-009-0533-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/12/2009] [Accepted: 03/30/2009] [Indexed: 11/25/2022]
Abstract
Activation of viral promoter transcription is a crucial event in the life cycle of several viruses. Hypoxia inducible factor-1 alpha (HIF-1alpha) is an inducible transcription factor whose activity is dependent on environmental conditions, most notably oxygen levels and cellular stress. HIF-1alpha has been implicated in the pathogenesis of several viruses, including HIV-1, HHV-8 and RSV. Under hypoxic conditions or oxidative stress, HIF-1alpha becomes stable and translocates to the nucleus, where it modulates gene transcription. The objective of the present study was to investigate a possible role for HIF-1alpha in the activation of JCV. Glial cell cultures infected with JCV demonstrated a significant increase in the levels of HIF-1alpha, in where it is located to the nucleus. Immunohistochemical studies corroborated upregulation of HIF-1alpha in JCV infected oligodendrocytes and astrocytes in clinical samples of PML compared with normal glial cells from the same samples in which HIF-1alpha expression is weak. CAT assays performed in co-transfected glial cells demonstrated activation of the JCV early promoter in the presence of HIF-1alpha. This activation was potentiated in the presence of Smad3 and Smad4. Finally, chromatin immunoprecipitation assays demonstrated the binding of HIF-1alpha to the JCV control region. These results suggest a role for HIF-1alpha in the activation of JCV; understanding of this pathway may lead to the development of more effective therapies for PML, thus far an incurable disease.
Collapse
Affiliation(s)
- Sergio Piña-Oviedo
- Department of Neuroscience, Center for Neurovirology and Neuropathology Core, Temple University School of Medicine, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | - Luis Del Valle
- Department of Neuroscience, Center for Neurovirology and Neuropathology Core, Temple University School of Medicine, 1900 N. 12th Street, Philadelphia, PA 19122, USA,
| |
Collapse
|
12
|
Orba Y, Sunden Y, Suzuki T, Nagashima K, Kimura T, Tanaka S, Sawa H. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation. Virology 2007; 370:173-83. [PMID: 17919676 DOI: 10.1016/j.virol.2007.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/22/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation of the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML).
Collapse
Affiliation(s)
- Yasuko Orba
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, N18, W9, Kita-ku, 060-0818, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Ashok A, Atwood WJ. Virus receptors and tropism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 577:60-72. [PMID: 16626027 DOI: 10.1007/0-387-32957-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyomaviruses are small, tumorigenic, nonenveloped viruses that infect several different species. Interaction of these viruses with cell surface receptors represents the initial step during infection of host cells. This interaction can be a major determinant of viral host and tissue tropism. This chapter reviews what is currently known about the cellular receptors for each of five polyomavirus family members: Mouse polyomavirus (PyV), JC virus (JCV), BK virus (BKV), Lymphotropic papovavirus (LPV) and Simian virus 40 (SV40). These polyomaviruses serve to illustrate the enormous diversity of virus-cell surface interactions and allow us to closely evaluate the role of receptors in their life cycles. The contribution of other factors such as transcriptional regulators and signaling pathways are also summarized.
Collapse
|
14
|
Frisque RJ, Hofstetter C, Tyagarajan SK. Transforming Activities of JC Virus Early Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 577:288-309. [PMID: 16626044 DOI: 10.1007/0-387-32957-9_21] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polyomaviruses, as their name indicates, are viruses capable of inducing a variety of tumors in vivo. Members of this family, including the human JC and BK viruses (JCV, BKV), and the better characterized mouse polyomavirus and simian virus 40 (SV40), are small DNA viruses that commandeer a cell's molecular machinery to reproduce themselves. Studies of these virus-host interactions have greatly enhanced our understanding of a wide range of phenomena from cellular processes (e.g., DNA replication and transcription) to viral oncogenesis. The current chapter will focus upon the five known JCV early proteins and the contributions each makes to the oncogenic process (transformation) when expressed in cultured cells. Where appropriate, gaps in our understanding of JCV protein function will be supplanted with information obtained from the study of SV40 and BKV.
Collapse
|
15
|
Ravichandran V, Sabath BF, Jensen PN, Houff SA, Major EO. Interactions between c-Jun, nuclear factor 1, and JC virus promoter sequences: implications for viral tropism. J Virol 2006; 80:10506-13. [PMID: 16928756 PMCID: PMC1641797 DOI: 10.1128/jvi.01355-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The infectious cycle of the human polyomavirus JC (JCV) is ultimately regulated in cellular nuclei at the level of viral protein expression and genomic replication. Such activity is prompted by interactions between variant nucleotide sequences within the JCV regulatory region (promoter) and cellular transcription factors that bind specific DNA consensus sites. In previous work we identified an NF-1 class member, NF-1X, as a critical transcription factor affecting the JCV cellular host range. Within variant JCV promoters, as well as other viral and cellular promoters, adjacently located NF-1 and AP-1 consensus sites are often found. The close proximity of these two binding sites suggests the opportunity for interaction between NF-1 and AP-1 proteins. Here, by electrophoretic mobility shift assays, we show temporal and dose-dependent interference by an AP-1 family member, c-Jun, upon NF-1 proteins binding an NF-1 consensus site derived from JCV promoter sequence. Moreover, as demonstrated by protein-protein interaction assays, we identify specific binding affinity independent of DNA binding between NF-1X and c-Jun. Finally, to compare the binding profiles of NF-1X and c-Jun on JCV promoter sequence in parallel with in vivo detection of viral activity levels, we developed an anchored transcriptional promoter (ATP) assay. With use of extracts from JCV-infected cells transfected to overexpress either NF-1X or c-Jun, ATP assays showed concurrent increases in NF-1X binding and viral protein expression. Conversely, increased c-Jun binding accompanied decreases in both NF-1X binding and viral protein expression. Therefore, inhibition of NF-1X binding by c-Jun appears to play a role in regulating levels of JCV activity.
Collapse
Affiliation(s)
- Veerasamy Ravichandran
- Laboratory of Molecular Medicine and Neuroscience, NINDS, NIH, 10 Center Drive, Building 10, Room 3B14, MSC1296, Bethesda, Maryland 20892-1296, USA
| | | | | | | | | |
Collapse
|
16
|
Akan I, Sariyer IK, Biffi R, Palermo V, Woolridge S, White MK, Amini S, Khalili K, Safak M. Human polyomavirus JCV late leader peptide region contains important regulatory elements. Virology 2006; 349:66-78. [PMID: 16497349 DOI: 10.1016/j.virol.2006.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/01/2005] [Accepted: 01/18/2006] [Indexed: 10/25/2022]
Abstract
Transcription is a complex process that relies on the cooperative interaction between sequence-specific factors and the basal transcription machinery. The strength of a promoter depends on upstream or downstream cis-acting DNA elements, which bind transcription factors. In this study, we investigated whether DNA elements located downstream of the JCV late promoter, encompassing the late leader peptide region, which encodes agnoprotein, play regulatory roles in the JCV lytic cycle. For this purpose, the entire coding region of the leader peptide was deleted and the functional consequences of this deletion were analyzed. We found that viral gene expression and replication were drastically reduced. Gene expression also decreased from a leader peptide point mutant but to a lesser extent. This suggested that the leader peptide region of JCV might contain critical cis-acting DNA elements to which transcription factors bind and regulate viral gene expression and replication. We analyzed the entire coding region of the late leader peptide by a footprinting assay and identified three major regions (region I, II and III) that were protected by nuclear proteins. Further investigation of the first two protected regions by band shift assays revealed a new band that appeared in new infection cycles, suggesting that viral infection induces new factors that interact with the late leader peptide region of JCV. Analysis of the effect of the leader peptide region on the promoter activity of JCV by transfection assays demonstrated that this region has a positive and negative effect on the large T antigen (LT-Ag)-mediated activation of the viral early and late promoters, respectively. Furthermore, a partial deletion analysis of the leader peptide region encompassing the protected regions I and II demonstrated a significant down-regulation of viral gene expression and replication. More importantly, these results were similar to that obtained from a complete deletion of the late leader peptide region, indicating the critical importance of these two protected regions in JCV regulation. Altogether, these findings suggest that the late leader peptide region contains important regulatory elements to which transcription factors bind and contribute to the JCV gene regulation and replication.
Collapse
Affiliation(s)
- Ilhan Akan
- Department of Neuroscience, Center for Neurovirology, Laboratory of Molecular Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Klenova E, Scott AC, Roberts J, Shamsuddin S, Lovejoy EA, Bergmann S, Bubb VJ, Royer HD, Quinn JP. YB-1 and CTCF differentially regulate the 5-HTT polymorphic intron 2 enhancer which predisposes to a variety of neurological disorders. J Neurosci 2004; 24:5966-73. [PMID: 15229244 PMCID: PMC6729234 DOI: 10.1523/jneurosci.1150-04.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The serotonin transporter (5-HTT) gene contains a variable number tandem repeat (VNTR) domain within intron 2 that is often associated with a number of neurological conditions, including affective disorders. The implications of this polymorphism are not yet understood, however, we have previously demonstrated that the 5-HTT VNTR is a transcriptional regulatory domain, and the allelic variation supports differential reporter gene expression in vivo and in vitro. The aim of this study was to identify transcription factors responsible for the regulation of this VNTR. Using a yeast one-hybrid screen, we found the transcription factor Y box binding protein 1 (YB-1) interacts with the 5-HTT VNTR. Consistent with this, we demonstrate in a reporter gene assay that the polymorphic VNTR domains differentially respond to exogenous YB-1 and that YB-1 will bind to the VNTR in vitro in a sequence-specific manner. Interestingly, the transcription factor CCTC-binding factor (CTCF), previously shown to interact with YB-1, interferes with the ability of the VNTR to support YB-1-directed reporter gene expression. In addition, CTCF blocks the binding of YB-1 to its DNA recognition sequences in vitro, thus providing a possible mechanism of regulation of YB-1 activation of the VNTR by CTCF. Therefore, we have identified YB-1 and CTCF as transcription factors responsible, at least in part, for modulation of VNTR function as a transcriptional regulatory domain. Our data suggest a novel mechanism that explains, in part, the ability of the distinct VNTR copy numbers to support differential reporter gene expression based on YB-1 binding sites.
Collapse
Affiliation(s)
- Elena Klenova
- Department of Biological Sciences, University of Essex, Essex CO4 3SQ, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gee GV, Manley K, Atwood WJ. Derivation of a JC virus-resistant human glial cell line: implications for the identification of host cell factors that determine viral tropism. Virology 2003; 314:101-9. [PMID: 14517064 DOI: 10.1016/s0042-6822(03)00389-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
JC virus (JCV) is a common human polyomavirus that infects 70-80% of the population worldwide. In immunosuppressed individuals, JCV infects oligodendrocytes and causes a fatal demyelinating disease known as progressive multifocal leukoencephalopathy (PML). The tropism of JCV is restricted to oligodendrocytes, astrocytes, and B lymphocytes. Several mechanisms may contribute to the restricted tropism of JCV, including the presence or absence of cell-type-specific transcription and replication factors and the presence or absence of cell-type-specific receptors. We have established a system to investigate cellular factors that influence viral tropism by selecting JCV-resistant cells from a susceptible glial cell line (SVG-A). SVG-A cells were subjected to several rounds of viral infection using JC virus (M1/SVE Delta). A population of resistant cells emerged (SVGR2) that were refractory to infection with the Mad-4 strain of JCV, the hybrid virus M1/SVE Delta, as well as to the related polyomavirus SV40. SVGR2 cells were as susceptible as the SVG-A cells to infection with an unrelated amphotropic retrovirus. The stage at which these cells are resistant to infection was investigated and the block appears to be at early viral gene transcription. This system should ultimately allow us to identify glial specific factors that influence the tropism of JCV.
Collapse
Affiliation(s)
- Gretchen V Gee
- Graduate Program in Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
19
|
Safak M, Khalili K. An overview: Human polyomavirus JC virus and its associated disorders. J Neurovirol 2003; 9 Suppl 1:3-9. [PMID: 12709864 DOI: 10.1080/13550280390195360] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 10/24/2002] [Indexed: 10/20/2022]
Abstract
JC virus (JCV) is a polyomavirus infecting greater than 80% of the human population early in life. Replication of this virus in oligodendrocytes and astrocytes results in the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in immunocompromised individuals, most notably acquired immunodeficiency syndrome (AIDS) patients. Moreover, recent studies have pointed to the association of JCV with a variety of brain tumors, including medulloblastoma. The JCV genome encodes for viral early protein, including large and small T antigens and the newly discovered isoform T', at the early phase of infection and the structural proteins VP1, VP2, and VP3 at the late stage of the lytic cycle. In addition, the late gene is responsible for the production of a small nonstructural protein, agnoprotein, whose function is not fully understood. Here, we have summarized some aspects of the JCV genome structure and function, and its associated diseases, including PML and brain tumors.
Collapse
Affiliation(s)
- Mahmut Safak
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | |
Collapse
|
20
|
Kim J, Woolridge S, Biffi R, Borghi E, Lassak A, Ferrante P, Amini S, Khalili K, Safak M. Members of the AP-1 family, c-Jun and c-Fos, functionally interact with JC virus early regulatory protein large T antigen. J Virol 2003; 77:5241-52. [PMID: 12692226 PMCID: PMC153970 DOI: 10.1128/jvi.77.9.5241-5252.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The activating protein 1 (AP-1) family of regulatory proteins is characterized as immediate-early inducible transcription factors which were shown to be activated by a variety of stress-related stimuli and to be involved in numerous biological processes, including cellular and viral gene expression, cell proliferation, differentiation, and tumorigenesis. We have recently demonstrated the involvement of the AP-1 family members c-Jun and c-Fos in transcriptional regulation of the human polyomavirus, JC virus (JCV), genome. Here, we further examined their role in JCV gene regulation and replication through their physical and functional interaction with JCV early regulatory protein large T antigen (T-Ag). Transfection and replication studies indicated that c-Jun and c-Fos can significantly diminish T-Ag-mediated JCV gene transcription and replication. Affinity chromatography and coimmunoprecipitation assays demonstrated that c-Jun and T-Ag physically interact with each other. Results from band shift assays showed that the binding efficiency of c-Jun to the AP-1 site was reduced in the presence of T-Ag. In addition, we have mapped, through the use of a series of deletion mutants, the regions of these proteins which are important for their interaction. While the c-Jun interaction domain of T-Ag is localized to the middle portion of the protein, the T-Ag interacting domain of c-Jun maps to its basic-DNA binding region. Results of transient-transfection assays with various c-Jun mutants and T-Ag expression constructs further confirm the specificity of the functional interaction between c-Jun and T-Ag. Taken together, these data demonstrate that immediate-early inducible transcription factors c-Jun and c-Fos physically and functionally interact with JCV major early regulatory protein large T-Ag and that this interaction modulates JCV transcription and replication in glial cells.
Collapse
Affiliation(s)
- Joanne Kim
- Laboratory of Molecular Neurovirology, Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Seth P, Diaz F, Major EO. Advances in the biology of JC virus and induction of progressive multifocal leukoencephalopathy. J Neurovirol 2003; 9:236-46. [PMID: 12707854 DOI: 10.1080/13550280390194019] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Revised: 11/21/2002] [Accepted: 12/05/2002] [Indexed: 10/20/2022]
Abstract
Since the initial description of progressive multifocal leukoencephalopathy (PML) in 1958, clinical and basic science investigators have demonstrated a growing interest in the area of neurovirology, with a recent focus on polyomaviruses. In this review, the authors present an overview of the biological properties of the human polyomavirus, JC virus (JCV), and its association with PML as the etiologic agent. Additionally, the authors provide a discussion of the current understanding of JCV molecular pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Pankaj Seth
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4164, USA
| | | | | |
Collapse
|
22
|
Sabath BF, Major EO. Traffic of JC virus from sites of initial infection to the brain: the path to progressive multifocal leukoencephalopathy. J Infect Dis 2002; 186 Suppl 2:S180-6. [PMID: 12424695 DOI: 10.1086/344280] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disorder of the human brain caused by infection with the human polyomavirus, JC. Up to 80% of humans express serum antibodies to JC virus (JCV), yet considerably fewer people develop PML-predominantly those under immunosuppressive conditions. Recent research showed JCV infection in multiple tissues throughout the body, suggesting sites for viral latency. These observations allow the proposal of pathways that JCV may use from sites of initial infection to the brain. Results from investigations into cell-surface receptors, intracellular DNA-binding proteins, and variant viral regulatory regions also suggest mechanisms that may regulate cellular susceptibility to JCV infection. Together, these data elucidate how JCV may establish infection in various cell types, persist latently or become reactivated, and ultimately reach the brain to cause PML.
Collapse
Affiliation(s)
- Bruce F Sabath
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke/NIH, 36 Convent Drive, Bldg. 36, Rm. 5W21, Bethesda, MD 20892, USA
| | | |
Collapse
|
23
|
Safak M, Sadowska B, Barrucco R, Khalili K. Functional interaction between JC virus late regulatory agnoprotein and cellular Y-box binding transcription factor, YB-1. J Virol 2002; 76:3828-38. [PMID: 11907223 PMCID: PMC136065 DOI: 10.1128/jvi.76.8.3828-3838.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human polyomavirus JC virus (JCV) is a causative agent of progressive multifocal leukoencephalopathy which results from lytic infection of glial cells. Although significant progress has been made in understanding the regulation of JCV gene transcription, the mechanism(s) underlying the viral lytic cycle remains largely unknown. We recently reported that the JCV late auxiliary Agnoprotein may have a regulatory role in JCV gene transcription and replication. Here, we investigated its regulatory function in viral gene transcription through its physical and functional interaction with YB-1, a cellular transcription factor which contributes to JCV gene expression in glial cells. Time course studies revealed that Agnoprotein is first detected at day 3 postinfection and that its level increased during the late stage of the infection cycle. Agnoprotein is mainly localized to the cytoplasmic compartment of the infected cell, with high concentrations found in the perinuclear region. While the position of Agnoprotein throughout the infection cycle remained relatively unaltered, the subcellular distribution of YB-1 between the cytoplasm and nucleus changed. Results from coimmunoprecipitation and glutathione S-transferase pull-down experiments revealed that Agnoprotein physically interacts with YB-1 and that the amino-terminal region of Agnoprotein, between residues 1 and 36, is critical for this association. Further investigation of this interaction by functional assays demonstrated that Agnoprotein negatively regulates YB-1-mediated gene transcription and that the region corresponding to residues 1 to 36 of Agnoprotein is important for the observed regulatory event. Taken together, these data demonstrate that the interaction of the viral late regulatory Agnoprotein and cellular Y-box binding factor YB-1 modulates transcriptional activity of JCV promoters.
Collapse
Affiliation(s)
- Mahmut Safak
- Laboratory of Molecular Neurovirology, Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | |
Collapse
|
24
|
Safak M, Khalili K. Physical and functional interaction between viral and cellular proteins modulate JCV gene transcription. J Neurovirol 2001; 7:288-92. [PMID: 11517404 DOI: 10.1080/13550280152537111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The lytic phase of JC virus (JCV) appears to be highly complex and remains elusive. A growing body of experimental evidence suggests that the regulation of JCV gene expression and replication requires, in addition to the presence of specific transcription factors, cooperativity between viral and cellular regulatory proteins. This cooperativity may be accomplished by physical interaction of the participant proteins on and/or off the viral DNA sequence. Here, we present evidence of specific physical and functional interaction between a cellular factor, YB-1, and the JCV early protein, T-antigen, and showed that both proteins play important roles in JCV gene transcription. Additionally, our data indicate that YB-1 also functionally interact with another viral protein, designated agnoprotein, which is expressed late during the course of infection, adding further complexity to the currently known picture on JCV gene regulation.
Collapse
Affiliation(s)
- M Safak
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | |
Collapse
|
25
|
Diamond P, Shannon MF, Vadas MA, Coles LS. Cold shock domain factors activate the granulocyte-macrophage colony-stimulating factor promoter in stimulated Jurkat T cells. J Biol Chem 2001; 276:7943-51. [PMID: 11116154 DOI: 10.1074/jbc.m009836200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cold shock domain (CSD) family members have been shown to play roles in either transcriptional activation or repression of many genes in various cell types. We have previously shown that CSD proteins dbpAv and dbpB (also known as YB-1) act to repress granulocyte-macrophage colony-stimulating factor transcription in human embryonic lung (HEL) fibroblasts via binding to single-stranded DNA regions across the promoter. Here we show that the same CSD factors are involved in granulocyte-macrophage colony-stimulating factor transcriptional activation in Jurkat T cells. Unlike the mechanisms of CSD repression in HEL fibroblasts, CSD-mediated activation in Jurkat T cells is not mediated through DNA binding but presumably through protein-protein interactions via the C terminus of the CSD protein with transcription factors such as RelA/NF-kappaB p65. We demonstrate that Jurkat T cells lack truncated CSD factor subtypes present in HEL fibroblasts, which raises the possibility that the cellular content of CSD proteins may determine their final role as activators or repressors of transcription.
Collapse
Affiliation(s)
- P Diamond
- Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia, 5000, Australia.
| | | | | | | |
Collapse
|
26
|
Shannon MF, Coles LS, Attema J, Diamond P. The role of architectural transcription factors in cytokine gene transcription. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- M. F. Shannon
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra
| | - L. S. Coles
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, South Australia
| | - J. Attema
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra
| | - P. Diamond
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, South Australia
| |
Collapse
|
27
|
Winklhofer KF, Albrecht I, Wegner M, Heilbronn R. Human cytomegalovirus immediate-early gene 2 expression leads to JCV replication in nonpermissive cells via transcriptional activation of JCV T antigen. Virology 2000; 275:323-34. [PMID: 10998333 DOI: 10.1006/viro.2000.0503] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human papovavirus JCV is the causative agent of the demyelinating brain disease progressive multifocal leukoencephalopathy (PML) that typically develops as a complication of impaired immunocompetence. JCV displays a strong tropism for glial cells which is correlated by glial-specific transcriptional regulation of viral gene expression. In a previous report HCMV was shown to overcome the restricted cell specificity of JCV by inducing DNA replication of a PML-derived JCV strain in human fibroblasts which are nonpermissive for the replication of JCV alone. Here we show that productive JCV replication is induced by HCMV in human glioblastoma cells. Both in fibroblasts and in glioblastoma cells, the HCMV immediate-early transactivator 2 (IE2) is sufficient to mediate JCV replication. Furthermore, IE2 induces DNA replication of several structurally different brain- or kidney-derived JCV variants. IE2-induced JCV DNA replication is accompanied by the induction of JCV T antigen expression due to stimulation of the JCV early promoter. Our results indicate that stimulation of JCV early gene expression by HCMV-IE2 is sufficient to overcome the restricted cell specificity of JCV.
Collapse
Affiliation(s)
- K F Winklhofer
- Abteilung Virologie, Institut für Infektionsmedizin, Berlin, 12203, Germany
| | | | | | | |
Collapse
|
28
|
Lasham A, Lindridge E, Rudert F, Onrust R, Watson J. Regulation of the human fas promoter by YB-1, Puralpha and AP-1 transcription factors. Gene 2000; 252:1-13. [PMID: 10903433 DOI: 10.1016/s0378-1119(00)00220-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fas (CD95/Apo-1) gene expression is dysregulated in a number of diseased states. Towards understanding the regulation of fas gene expression, we previously identified activator and repressor elements within the human fas promoter. Using a combination of expression screening and reporter gene assays, we have identified transcription factors which bind to these elements and thereby regulate transcription of the fas promoter. These are three single-stranded DNA binding proteins, YB-1, Puralpha and Purbeta and two components of the AP-1 complex, c-Fos and c-Jun. c-Jun is a potent transcriptional activator of fas and stimulated expression levels up to 184-fold in reporter gene assays. Co-expression with c-Fos abrogated c-Jun-mediated activation. YB-1 and Puralpha are transcriptional repressors of fas and decreased basal transcription by 60-fold in reporter gene assays. Purbeta was predominantly an antagonist of YB-1/Puralpha-mediated repression. Overexpression of YB-1 and Puralpha in Jurkat cells was shown to reduce the level of cell surface Fas staining, providing further evidence that these proteins regulate the fas promoter. It has been suggested that YB-1 plays a role in cell proliferation as an activator of growth-associated gene expression. We have shown that YB-1 is a repressor of a cell death-associated gene fas. These results suggest that YB-1 may play an important role in controlling cell survival by co-ordinately regulating the expression of cell growth-associated and death-associated genes.
Collapse
Affiliation(s)
- A Lasham
- Genesis Research and Development Corporation Limited, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
29
|
Coles LS, Diamond P, Occhiodoro F, Vadas MA, Shannon MF. An ordered array of cold shock domain repressor elements across tumor necrosis factor-responsive elements of the granulocyte-macrophage colony-stimulating factor promoter. J Biol Chem 2000; 275:14482-93. [PMID: 10799531 DOI: 10.1074/jbc.275.19.14482] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor necrosis factor-alpha-responsive region of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) promoter (-114 to -31) encompasses binding sites for NF-kappaB, CBF, AP-1, ETS, and NFAT families of transcription factors. We show both here and previously that mutation of any one of these binding sites greatly reduces tumor necrosis factor-alpha induction of the GM-CSF promoter. Interspersed between these elements are sequences that when mutated lead to an increase in GM-CSF promoter activity. We have previously shown that two of these repressor elements bind proteins known as cold shock domain (CSD) factors and that overexpression of CSD proteins leads to repression of GM-CSF promoter activity in fibroblasts. CSD proteins are single strand DNA- and RNA-binding proteins that contact 5'-CCTG-3' sequences in the GM-CSF repressor elements. We show here that two newly identified repressor sequences in the proximal promoter can also bind CSD proteins. We have characterized the CSD-containing protein complexes that bind to the GM-CSF promoter and identified a novel protein related to mitochondrial single strand binding protein that forms part of one of these complexes. The four CSD-binding sites on the promoter occur in pairs on opposite strands of the DNA and appear to form an ordered array of binding elements. A similar ordered array of CSD sites are present in the promoters of the granulocyte colony-stimulating factor and interleukin-3 genes, implying a common mechanism for negative regulation of these myeloid growth factors.
Collapse
Affiliation(s)
- L S Coles
- Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia, 5000, Australia.
| | | | | | | | | |
Collapse
|
30
|
Imperiale MJ. The human polyomaviruses, BKV and JCV: molecular pathogenesis of acute disease and potential role in cancer. Virology 2000; 267:1-7. [PMID: 10648177 DOI: 10.1006/viro.1999.0092] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M J Imperiale
- Department of Microbiology, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, 48109-0942, USA.
| |
Collapse
|
31
|
Hu Z, Jin S, Scotto KW. Transcriptional activation of the MDR1 gene by UV irradiation. Role of NF-Y and Sp1. J Biol Chem 2000; 275:2979-85. [PMID: 10644769 DOI: 10.1074/jbc.275.4.2979] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MDR1 promoter is subject to control by various internal and external stimuli. We have previously shown that the CCAAT box-binding protein, NF-Y, mediates MDR1 activation by the histone deacetylase inhibitors, trichostatin A and sodium butyrate, through the recruitment of the co-activator, P/CAF. We have now extended our investigation to the activation of MDR1 by genotoxic stress. We show that activation of the MDR1 promoter by UV irradiation is also dependent on the CCAAT box (-82 to -73) as well as on a proximal GC element (-56 to -42). Gel shift and supershift analyses with nuclear extracts prepared from human KB-3-1 cells identified NF-Y as the transcription factor interacting with the CCAAT box, while Sp1 was the predominant factor binding to the GC element. Mutations that abrogated binding of either of these factors reduced or abolished activation by ultraviolet irradiation; moreover, co-expression of a dominant-negative NF-Y protein (NF-YA29) reduced UV-activated transcription. Interestingly, YB-1, a transcription factor that also recognizes the CCAAT motif and had been reported to mediate induction of the MDR1 promoter by ultraviolet light, was incapable of interacting with the double-stranded MDR1 CCAAT box oligonucleotide in nuclear extracts, although it did interact with a single-stranded oligonucleotide. Furthermore, a mutation that abolished activation of MDR1 by UV-irradiation had no effect on YB-1 binding and co-transfection of a YB-1 expression plasmid had a repressive effect on UV-inducible transcription. Taken together, these results indicate a role for both NF-Y and Sp1 in the transcriptional activation of the MDR1 gene by genotoxic stress, and indicate that YB-1, if involved, is not sufficient to mediate this activation.
Collapse
Affiliation(s)
- Z Hu
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
32
|
Safak M, Gallia GL, Ansari SA, Khalili K. Physical and functional interaction between the Y-box binding protein YB-1 and human polyomavirus JC virus large T antigen. J Virol 1999; 73:10146-57. [PMID: 10559330 PMCID: PMC113067 DOI: 10.1128/jvi.73.12.10146-10157.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Y-box binding protein YB-1 is a member of a family of DNA and RNA binding proteins which have been shown to affect gene expression at both the transcriptional and translational levels. We have previously shown that YB-1 modulates transcription from the promoters of the ubiquitous human polyomavirus JC virus (JCV). Here we investigate the physical and functional interplay between YB-1 and the viral regulatory protein large T antigen (T-antigen), using JCV as a model system. Results of mobility band shift assays demonstrated that the efficiency of binding of YB-1 to a 23-bp single-stranded viral target sequence was significantly increased when T-antigen was included in the binding reaction mixture. Affinity chromatography and coimmunoprecipitation assays demonstrated that YB-1 and T-antigen physically interact with each other. Additionally, results of transcription studies demonstrated that these two proteins interact functionally on the JCV early and late gene promoters. Whereas ectopic expression of YB-1 and T-antigen results in synergistic transactivation of the viral late promoter, YB-1 alleviates T-antigen-mediated transcriptional suppression of the viral early promoter activity. Furthermore, we have localized, through the use of a series of deletion mutants, the sequences of these proteins which are important for their interaction. The T-antigen-interacting region of YB-1 is located in the cold shock domain of YB-1 and its immediate flanking sequences, and the YB-1-interacting domain of T-antigen maps to the carboxy-terminal half of T-antigen. Results of transient transfection assays with various YB-1 mutants and T-antigen expression constructs confirm the specificity of the functional interaction between YB-1 and T-antigen. Taken together, these data demonstrate that the cellular factor YB-1 and the viral regulatory protein T-antigen interact both physically and functionally and that this interaction modulates transcription from the JCV promoters.
Collapse
Affiliation(s)
- M Safak
- Center for NeuroVirology, MCP Hahnemann University, Philadelphia, Pennsylvania 19102, USA
| | | | | | | |
Collapse
|
33
|
Ansari SA, Safak M, Gallia GL, Sawaya BE, Amini S, Khalili K. Interaction of YB-1 with human immunodeficiency virus type 1 Tat and TAR RNA modulates viral promoter activity. J Gen Virol 1999; 80 ( Pt 10):2629-2638. [PMID: 10573156 DOI: 10.1099/0022-1317-80-10-2629] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulation of the human immunodeficiency virus type 1 (HIV-1) genome is mediated by viral and cellular factors. TAR, an unusual RNA regulatory element with a stem-bulge-loop structure at the 5' ends of all nascent viral transcripts is critical for HIV-1 transcription. TAR is the target for Tat, a viral transcription factor encoded early in the HIV-1 life-cycle and essential for gene expression. Evidence demonstrating the interaction of a cellular ssDNA/RNA binding protein, YB-1, with TAR through a region which is important for Tat interaction is presented. Interestingly, results from protein-protein interaction studies revealed that YB-1 can also form a complex with Tat. Results from mapping experiments suggest that while the region spanning aa 125-203 within YB-1 is essential for its association with TAR, a truncated YB-1 spanning aa 1-125 can weakly bind to Tat. Functionally, overexpression of full-length YB-1 enhanced Tat-induced activation of the HIV-1 minimal promoter containing TAR sequences, whereas mutant YB- 1 with no ability to bind to Tat and TAR failed to affect Tat-mediated activation. Expression of mutant YB-1(1-125), which binds to Tat but not RNA, decreased Tat-mediated enhancement of virus transcription. These observations suggest that while full-length YB-1 may function as a facilitator and, by interaction with both Tat and TAR, increase the level of Tat:TAR association, mutant YB-1 with no TAR binding activity, by complexing with Tat, may prevent Tat interaction with TAR. The importance of these findings in light of the proposed mechanism of Tat function is discussed.
Collapse
Affiliation(s)
- Sameer A Ansari
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University, Broad and Vine, MS #406, Philadelphia, PA 19102, USA 1
| | - Mahmut Safak
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University, Broad and Vine, MS #406, Philadelphia, PA 19102, USA 1
| | - Gary L Gallia
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University, Broad and Vine, MS #406, Philadelphia, PA 19102, USA 1
| | - Bassel E Sawaya
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University, Broad and Vine, MS #406, Philadelphia, PA 19102, USA 1
| | - Shohreh Amini
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University, Broad and Vine, MS #406, Philadelphia, PA 19102, USA 1
| | - Kamel Khalili
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University, Broad and Vine, MS #406, Philadelphia, PA 19102, USA 1
| |
Collapse
|
34
|
Safak M, Gallia GL, Khalili K. Reciprocal interaction between two cellular proteins, Puralpha and YB-1, modulates transcriptional activity of JCVCY in glial cells. Mol Cell Biol 1999; 19:2712-23. [PMID: 10082537 PMCID: PMC84064 DOI: 10.1128/mcb.19.4.2712] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cross communication between regulatory proteins is an important event in the control of eukaryotic gene transcription. Here we have examined the structural and functional interaction between two cellular regulatory proteins, YB-1 and Puralpha, on the 23-bp sequence element derived from the enhancer-promoter of the human polyomavirus JCV. YB-1 and Puralpha are single-stranded DNA binding proteins which recognize C/T- and GC/GA-rich sequences, respectively. Results from band shift studies demonstrated that while both proteins interact directly with their DNA target sequences within the 23-bp motif, each protein can regulate the association of the other one with the DNA. Affinity chromatography and coimmunoprecipitation provide evidence for a direct interaction between Puralpha and YB-1 in the absence of the DNA sequence. Ectopic expression of YB-1 and Puralpha in glial cells synergistically stimulated viral promoter activity via the 23-bp sequence element. Results from mutational studies revealed that residues between amino acids 75 and 203 of YB-1 and between amino acids 85 and 215 of Puralpha are important for the interaction between these two proteins. Functional studies with glial cells indicated that the region within Puralpha which mediates its association with YB-1 and binding to the 23-bp sequence is important for the observed activation of the JCV promoter by the Puralpha and YB-1 proteins. The results of this study suggest that the cooperative interaction between YB-1 and Puralpha mediates the synergistic activation of the human polyomavirus JCV genome by these cellular proteins. The importance of these findings for cellular and viral genes which are regulated by Puralpha and YB-1 is discussed.
Collapse
Affiliation(s)
- M Safak
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University, Philadelphia, Pennsylvania 19102, USA
| | | | | |
Collapse
|
35
|
Liu M, Kumar KU, Pater MM, Pater A. Identification and characterization of a JC virus pentanucleotide repeat element binding protein: cellular nucleic acid binding protein. Virus Res 1998; 58:73-82. [PMID: 9879764 DOI: 10.1016/s0168-1702(98)00108-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The JC virus (JCV) control region contains AGGGAAGGGA, the tandem pentanucleotide repeat element (Pnt2). Several proteins specifically interacted via Pnt2 to regulate the expression of JCV early promoter-enhancer (JCV(E)) or late promoter-enhancer (JCV(L)). In this study, a JCV Pnt2 oligonucleotide probe was used to screen a cDNA expression library from glial P19 mouse embryonal carcinoma cells. A cDNA clone was isolated by Southwestern blot assay and it produced a protein that reproducibly and specifically bound to Pnt2. This cDNA had 100% homology to one of three previously identified mouse cDNAs called cellular nucleic acid binding proteins (Cnbps). Cnbps are a highly homologous family of eukaryotic genes implicated in functional interactions with cytoplasmic RNA and regulatory DNA elements. An mRNA of 2.2 kb of Pnt2-interacting Cnbp (PCnbp) was seen in undifferentiated, muscle or glial P19 cells. When expressed from a cDNA expression vector as a fusion protein that also contained 115 kDa from beta-galactosidase, a Pnt2 binding protein (PCNBP) specifically bound to Pnt2 in Southwestern blots as a 30 kDa component of the 145 kDa fusion protein. Furthermore, JCV(E) expression was negatively regulated by PCnbp produced in vivo from the cDNA expression vector. Regulation of JCV(L) was unaffected. We suggest a novel role for CNBP as a PCNBP that interacts with Pnt2 in the negative transcriptional regulation of JCV(E).
Collapse
Affiliation(s)
- M Liu
- Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | | | | | | |
Collapse
|
36
|
Nambiar A, Swamynathan SK, Kandala JC, Guntaka RV. Characterization of the DNA-binding domain of the avian Y-box protein, chkYB-2, and mutational analysis of its single-strand binding motif in the Rous sarcoma virus enhancer. J Virol 1998; 72:900-9. [PMID: 9444981 PMCID: PMC124559 DOI: 10.1128/jvi.72.2.900-909.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
chkYB-2 is a sequence-specific, single-stranded DNA binding chicken Y-box protein that promotes Rous sarcoma virus long terminal repeat (RSV LTR)-driven transcription in avian fibroblasts. The DNA-binding domain of chkYB-2 has been mapped by characterizing the DNA binding properties of purified recombinant chkYB-2 mutant polypeptides. The data indicate that the invariant cold shock domain (CSD) is necessary but not sufficient for association with DNA and suggest that another conserved region, adjacent to the carboxyl boundary of the CSD, plays a role in high-affinity DNA binding. chkYB-2 binds to a tandem repeat of the 5'-GTACCACC-3' motif on the RSV LTR. Mutational analysis of this recognition sequence revealed the requirement of an essentially unaltered template for both high-affinity binding by chkYB-2 as well as maximal transcriptional activity of the RSV LTR in vivo. The single-stranded DNA binding activity of chkYB-2 is augmented by Mg2+. The possible significance of this finding for transactivation by a single-strand DNA binding protein is discussed.
Collapse
Affiliation(s)
- A Nambiar
- Molecular Microbiology and Immunology, University of Missouri-Columbia School of Medicine, 65212, USA
| | | | | | | |
Collapse
|
37
|
Ammerpohl O, Short ML, Asbrand C, Schmitz A, Renkawitz R. Complex protein binding to the mouse M-lysozyme gene downstream enhancer involves single-stranded DNA binding. Gene 1997; 200:75-84. [PMID: 9373140 DOI: 10.1016/s0378-1119(97)00377-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mouse M-lysozyme downstream enhancer has been previously characterized on several levels of gene regulation. The enhancer was co-localized with a DNase I hypersensitive site in the chromatin of mature macrophages, the in vivo interaction of transcription factor GABP with the enhancer core (MLDE) demonstrated binding being restricted to mature macrophage cells, and analysis of the MLDE methylation state revealed a correlation between demethylation of CpG dinucleotides and the in vivo GABP binding. Here, we analyzed in detail the full-length enhancer in addition to the core element. We identified a total of nine binding sites for nuclear factors. Most of these factors are found ubiquitously in all cell types tested. These factors include several unknown proteins as well as the transcription factor NF-Y. In addition, three binding sites for a new single-stranded DNA binding protein were found. The presence of this factor in mature macrophages correlates with the in vivo DNA melting of one of the binding sites and with the enhancer strength.
Collapse
Affiliation(s)
- O Ammerpohl
- Genetisches Institut, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | | | |
Collapse
|
38
|
Franco GR, Garratt RC, Tanaka M, Simpson AJ, Pena SD. Characterization of a Schistosoma mansoni gene encoding a homologue of the Y-box binding protein. Gene 1997; 198:5-16. [PMID: 9370259 DOI: 10.1016/s0378-1119(97)00261-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have cloned and characterized a Schistosoma mansoni cDNA encoding a basic protein homologous to the human Y-box binding protein 1 (YB-1). The 1.3-kb S. mansoni YB-1 transcript, which was shown to be expressed in various stages of the parasite life cycle, codes for a protein of 217 amino acids containing, towards its N-terminus, a nucleic acid binding motif, known as the cold-shock domain (CSD). This domain is 64% identical to the cold-shock domain of other members of the Y-box binding protein family and 43% identical to the cold-shock protein CspA of Escherichia coli. In S. mansoni YB-1, the cold-shock domain possess some structural characteristics that permit dimer formation as occurs in the Bacillus subtilis cold-shock protein CspB. The C-terminal region of S. mansoni YB-1 differs from the other Y-box binding proteins because of the presence of tandem repeats of Arg and Gly, suggesting the formation of a fibroin-like beta-sandwich structure. This novel folding pattern for the C-terminus of S. mansoni YB-1 might suggest a distinct specific function for this protein in the parasite.
Collapse
Affiliation(s)
- G R Franco
- Departamento de Bioquímica e Immunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
39
|
Chen NN, Kerr D, Chang CF, Honjo T, Khalili K. Evidence for regulation of transcription and replication of the human neurotropic virus JCV genome by the human S(mu)bp-2 protein in glial cells. Gene 1997; 185:55-62. [PMID: 9034313 DOI: 10.1016/s0378-1119(96)00630-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glial factor 1 (GF-1) is a partial cDNA isolated from a human brain cDNA library which encodes a truncated protein with binding ability to the B-regulatory domain of the human neurotropic virus, JCV. GF-1 exhibits sequence homology to the central region of the newly identified human DNA-binding protein S(mu)bp-2. GF-1 appears to be a partial cDNA for human S(mu)bp-2 based on its sequence homology to S(mu)bp-2 and their chromosomal co-localization. In this report, we have employed transfection assay and have compared the ability of GF-1 and its full-length form, S(mu)bp-2, on regulating the activity of JCV promoters in glial cells. Our results demonstrate that, unlike GF-1 which stimulates JCV early promoter in glial cells, overexpression of S(mu)bp-2 exhibits no drastic effect on the transcription of the viral early promoter. The activity of the viral late promoter was noticeably increased by both GF-1 and S(mu)bp-2, although the level of induction by GF-1 was consistently higher than that detected by S(mu)bp-2. Use of deletion constructs in co-transfection assay revealed that the B-domain of the JCV promoter is required for transcriptional activation by GF-1 and S(mu)bp-2. Expression of GF-1 and S(mu)bp-2 in glial cells increased the induced level of JCV late gene transcription by the viral early protein, T-antigen. Examination of the viral DNA replication by DpnI assay indicated that, unlike GF-1, S(mu)bp-2 has the ability to decrease the level of JCV DNA replication in glial cells. These observations suggest that the N-terminal portion of S(mu)bp-2 which encompasses several helicase motifs and/or its C-terminus, both of which are missing in GF-1, may confer differential effects on viral gene transcription and replication. The biological importance of our findings in regulation of the JCV lytic cycle in glial cells is discussed.
Collapse
MESH Headings
- Antigens, Viral, Tumor/biosynthesis
- Blotting, Northern
- Cells, Cultured
- Chromosome Mapping
- DNA, Complementary/genetics
- DNA, Viral/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Gene Expression Regulation, Viral
- Gene Library
- Genes, Reporter
- Genome, Viral
- Humans
- JC Virus/genetics
- JC Virus/growth & development
- Neuroglia/cytology
- Neuroglia/virology
- Papillomavirus Infections/genetics
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Sequence Deletion
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- N N Chen
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
40
|
Li WW, Hsiung Y, Wong V, Galvin K, Zhou Y, Shi Y, Lee AS. Suppression of grp78 core promoter element-mediated stress induction by the dbpA and dbpB (YB-1) cold shock domain proteins. Mol Cell Biol 1997; 17:61-8. [PMID: 8972186 PMCID: PMC231730 DOI: 10.1128/mcb.17.1.61] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The highly conserved grp78 core promoter element plays an important role in the induction of grp78 under diverse stress signals. Previous studies have established a functional region in the 3' half of the core (stress-inducible change region [SICR]) which exhibits stress-inducible changes in stressed nuclei. The human transcription factor YY1 is shown to bind the SICR and transactivate the core element under stress conditions. Here we report that expression library screening with the core element has identified two new core binding proteins, YB-1 and dbpA. Both proteins belong to the Y-box family of proteins characterized by an evolutionarily conserved DNA binding motif, the cold shock domain (CSD). In contrast to YY1, which binds only double-stranded SICR, the Y-box/CSD proteins much prefer the lower strand of the SICR. The Y-box proteins can repress the inducibility of the grp78 core element mediated by treatment of cells with A23187, thapsigargin, and tunicamycin. In gel shift assays, YY1 binding to the core element is inhibited by either YB-1 or dbpA. A yeast interaction trap screen using LexA-YY1 as a bait and a HeLa cell cDNA-acid patch fusion library identified YB-1 as a YY1-interacting protein. In cotransfection experiments, the Y-box proteins antagonize the YY1-mediated enhancement of transcription directed by the grp78 core in stressed cells. Thus, the CSD proteins may be part of the stress signal transduction mechanism in the mammalian system.
Collapse
Affiliation(s)
- W W Li
- Department of Biochemistry and Molecular Biology, Norris Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- K Dörries
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| |
Collapse
|
42
|
Raj GV, Safak M, MacDonald GH, Khalili K. Transcriptional regulation of human polyomavirus JC: evidence for a functional interaction between RelA (p65) and the Y-box-binding protein, YB-1. J Virol 1996; 70:5944-53. [PMID: 8709216 PMCID: PMC190614 DOI: 10.1128/jvi.70.9.5944-5953.1996] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The transcriptional control region of the human neurotropic polyomavirus JC virus contains a consensus NF-kappa B site which has been shown to enhance both basal and extracellular stimulus-induced levels of transcription of JC promoters. Here, we show that the expression of JC late promoter constructs containing the NF-kappa B site is decreased by cotransfection with the NF-kappa B/rel subunits, p50 and p52, but enhanced by the p65 subunit. However, JC promoter constructs lacking the NF-kappa B site were activated by p52 and p50 and repressed by p65. This antithetical response of the JC promoter mapped specifically to the D domain, which is a target site for the cellular transcription factor, YB-1. Band shift studies indicated that YB-1 and p65 modulate each other's binding to DNA: YB-1 augments the affinity of p65 for the NF-kappa B site, while p65 reduces the binding of YB-1 to the D domain. Results from coimmunoprecipitation followed by Western blot (immunoblot) analysis suggest an in vivo interaction between p65 and YB-1 in glial cells. Functionally, YB-1 appears to act synergistically with p65 to control transcription from the NF-kappa B site. A converse pattern is seen with the D domain, in which YB-1 acts synergistically with p50 and p52 to regulate transcription. p50 and p52 may function as transcriptional activators on the D domain by removing the repressive effect of p65 on YB-1 binding to the D domain. On the basis of these data, we propose a model in which NF-kappa B/rel subunits functionally interact with consensus NF-kappa B sites or YB-1-binding sites, with disparate effects on eukaryotic gene expression.
Collapse
Affiliation(s)
- G V Raj
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
43
|
Coles LS, Diamond P, Occhiodoro F, Vadas MA, Shannon MF. Cold shock domain proteins repress transcription from the GM-CSF promoter. Nucleic Acids Res 1996; 24:2311-7. [PMID: 8710501 PMCID: PMC145951 DOI: 10.1093/nar/24.12.2311] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human granulocyte-macrophage colony stimulating factor (GM-CSF) gene promoter binds a sequence-specific single-strand DNA binding protein termed NF-GMb. We previously demonstrated that the NF-GMb binding sites were required for repression of tumor necrosis factor-alpha (TNF-alpha) induction of the proximal GM-CSF promoter sequences in fibroblasts. We now describe the isolation of two different cDNA clones that encode cold shock domain (CSD) proteins with NF-GMb binding characteristics. One is identical to the previously reported CSD protein dbpB and the other is a previously unreported variant of the dbpA CSD factor. This is the first report of CSD factors binding to a cytokine gene. Nuclear NF-GMb and expressed CSD proteins have the same binding specificity for the GM-CSF promoter and other CSD binding sites. We present evidence that CSD factors are components of the nuclear NF-GMb complex. We also demonstrate that overexpression of the CSD proteins leads to complete repression of the proximal GM-CSF promoter containing the NF-GMb/CSD binding sites. Surprisingly, we show that CSD overexpression can also directly repress a region of the promoter which apparently lacks NF-GMb/CSD binding sites. NF-GMb/CSD factors may hence be acting by two different mechanisms. We discuss the potential importance of CSD factors in maintaining strict regulation of the GM-CSF gene.
Collapse
Affiliation(s)
- L S Coles
- Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
44
|
Wolffe AP, Meric F. Coupling transcription to translation: a novel site for the regulation of eukaryotic gene expression. Int J Biochem Cell Biol 1996; 28:247-57. [PMID: 8920634 DOI: 10.1016/1357-2725(95)00141-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent experiments using Xenopus oocytes demonstrate that the history of a particular mRNA in the nucleus can influence the efficiency with which that mRNA will be utilized by the translational machinery. Individual promoter elements, specific protein-RNA interactions and the splicing process within the nucleus can all influence translational fate within the cytoplasm. Central to the regulatory mechanisms influencing the translation process is the packaging of mRNA by a highly conserved family of Y-box proteins. These Y-box proteins are found in cytoplasmic messenger ribonucleoprotein particles where they have a causal role in restricting the recruitment of mRNA to the translational machinery. Nuclear processes influence the packaging of mRNA by the Y-box proteins in the cytoplasm and in consequence mRNA translation. This functional coupling provides a novel site for the regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-2710, USA
| | | |
Collapse
|
45
|
Bouvet P, Matsumoto K, Wolffe AP. Sequence-specific RNA recognition by the Xenopus Y-box proteins. An essential role for the cold shock domain. J Biol Chem 1995; 270:28297-303. [PMID: 7499328 DOI: 10.1074/jbc.270.47.28297] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Xenopus Y-box protein FRGY2 has a role in the translational silencing of masked maternal mRNA. Here, we determine that FRGY2 will recognize specific RNA sequences. The evolutionarily conserved nucleic acid-binding cold shock domain is required for sequence-specific interactions with RNA. However, RNA binding by FRGY2 is facilitated by N- and C-terminal regions flanking the cold shock domain. The hydrophilic C-terminal tail domain of FRGY2 interacts with RNA independent of the cold shock domain but does not determine sequence specificity. Thus, both sequence-specific and nonspecific RNA recognition domains are contained within the FRGY2 protein.
Collapse
Affiliation(s)
- P Bouvet
- Laboratory of Molecular Embryology, NICHID, National Institutes of Health, Bethesda, Maryland 20892-2710, USA
| | | | | |
Collapse
|
46
|
MacDonald GH, Itoh-Lindstrom Y, Ting JP. The transcriptional regulatory protein, YB-1, promotes single-stranded regions in the DRA promoter. J Biol Chem 1995; 270:3527-33. [PMID: 7876087 DOI: 10.1074/jbc.270.8.3527] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
YB-1 is a member of a newly defined family of DNA- and RNA-binding proteins, the Y box factors. These proteins have been shown to affect gene expression at both the transcriptional and translational levels. Recently, we showed that YB-1 represses interferon-gamma-induced transcription of class II human major histocompatibility (MHC) genes (1). Studies in this report characterize the DNA binding properties of purified, recombinant YB-1 on the MHC class II DRA promoter. The generation of YB-1-specific antibodies further permitted an analysis of the DNA binding properties of endogenous YB-1. YB-1 specifically binds single-stranded templates of the DRA promoter with greater affinity than double-stranded templates. The single-stranded DNA binding sites of YB-1 were mapped to the X box, whereas the double-stranded binding sites were mapped to the Y box of the DRA promoter, by methylation interference analysis. Most significantly, YB-1 can induce or stabilize single-stranded regions in the X and Y elements of the DRA promoter, as revealed by mung bean nuclease analysis. In concert with the findings that YB-1 represses DRA transcription, this study of YB-1 binding properties suggests a model of repression in which YB-1 binding results in single-stranded regions within the promoter, thus preventing loading and/or function of other DRA-specific transactivating factors.
Collapse
Affiliation(s)
- G H MacDonald
- Department of Microbiology-Immunology, University of North Carolina at Chapel Hill 27599-7295
| | | | | |
Collapse
|