1
|
Tang KW, Norberg P, Holmudden M, Elias P, Liljeqvist JÅ. Rad51 and Rad52 are involved in homologous recombination of replicating herpes simplex virus DNA. PLoS One 2014; 9:e111584. [PMID: 25365323 PMCID: PMC4218770 DOI: 10.1371/journal.pone.0111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 10/04/2014] [Indexed: 12/27/2022] Open
Abstract
Replication of herpes simplex virus 1 is coupled to recombination, but the molecular mechanisms underlying this process are poorly characterized. The role of Rad51 and Rad52 recombinases in viral recombination was examined in human fibroblast cells 1BR.3.N (wild type) and in GM16097 with replication defects caused by mutations in DNA ligase I. Intermolecular recombination between viruses, tsS and tsK, harboring genetic markers gave rise to ∼17% recombinants in both cell lines. Knock-down of Rad51 and Rad52 by siRNA reduced production of recombinants to 11% and 5%, respectively, in wild type cells and to 3% and 5%, respectively, in GM16097 cells. The results indicate a specific role for Rad51 and Rad52 in recombination of replicating herpes simplex virus 1 DNA. Mixed infections using clinical isolates with restriction enzyme polymorphisms in the US4 and US7 genes revealed recombination frequencies of 0.7%/kbp in wild type cells and 4%/kbp in GM16097 cells. Finally, tandem repeats in the US7 gene remained stable upon serial passage, indicating a high fidelity of recombination in infected cells.
Collapse
Affiliation(s)
- Ka-Wei Tang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Norberg
- Department of Infectious Diseases, Section of Virology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Holmudden
- Department of Infectious Diseases, Section of Virology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Elias
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan-Åke Liljeqvist
- Department of Infectious Diseases, Section of Virology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Sauer A, Wang JB, Hahn G, McVoy MA. A human cytomegalovirus deleted of internal repeats replicates with near wild type efficiency but fails to undergo genome isomerization. Virology 2010; 401:90-5. [PMID: 20211481 PMCID: PMC2849842 DOI: 10.1016/j.virol.2010.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/28/2009] [Accepted: 02/10/2010] [Indexed: 01/30/2023]
Abstract
The class E genome of human cytomegalovirus (HCMV) contains long and short segments that invert due to recombination between flanking inverted repeats, causing the genome to isomerize into four distinct isomers. To determine if isomerization is important for HCMV replication, one copy of each repeat was deleted. The resulting virus replicated in cultured human fibroblasts with only a slight growth impairment. Restriction and Southern analyses confirmed that its genome is locked in the prototypic arrangement and unable to isomerize. We conclude that efficient replication of HCMV in fibroblasts does not require (i) the ability to undergo genome isomerization, (ii) genes that lie partially within the deleted repeats, or (iii) diploidy of genes that lie wholly within repeats. The simple genomic structure of this virus should facilitate studies of genome circularization, latency or persistence, and concatemer packaging as such studies are hindered by the complexities imposed by isomerization.
Collapse
Affiliation(s)
- Anne Sauer
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| | - Jian Ben Wang
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| | - Gabriele Hahn
- Institut für Laboratoriumsmedizin, Abteilung Mikrobiologie, Klinikum Ingolstadt, Krumenauerstr. 25, 85049 Ingolstadt, Germany
| | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| |
Collapse
|
3
|
Huang KJ, Zemelman BV, Lehman IR. Endonuclease G, a candidate human enzyme for the initiation of genomic inversion in herpes simplex type 1 virus. J Biol Chem 2002; 277:21071-9. [PMID: 11912214 DOI: 10.1074/jbc.m201785200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) a sequence is present as a direct repeat at the two termini of the 152-kilobase viral genome and as an inverted repeat at the junction of the two unique components L and S. During replication, the HSV-1 genome undergoes inversion of L and S, producing an equimolar mixture of the four possible isomers. Isomerization is believed to result from recombination triggered by breakage at the a sequence, a recombinational hot spot. We have identified an enzyme in HeLa cell extracts that preferentially cleaves the a sequence and have purified it to near homogeneity. Microsequencing showed it to be human endonuclease G, an enzyme with a strong preference for G+C-rich sequences. Endonuclease G appears to be the only cellular enzyme that can specifically cleave the a sequence. Endonuclease G also showed the predicted recombination properties in an in vitro recombination assay. Based on these findings, we propose that endonuclease G initiates the a sequence-mediated inversion of the L and S components during HSV-1 DNA replication.
Collapse
Affiliation(s)
- Ke-Jung Huang
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
4
|
Nimonkar AV, Boehmer PE. In vitro strand exchange promoted by the herpes simplex virus type-1 single strand DNA-binding protein (ICP8) and DNA helicase-primase. J Biol Chem 2002; 277:15182-9. [PMID: 11832483 DOI: 10.1074/jbc.m109988200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genome of herpes simplex virus type-1 undergoes a high frequency of homologous recombination in the absence of a virus-encoded RecA-type protein. We hypothesized that viral homologous recombination is mediated by the combined action of the viral single strand DNA-binding protein (ICP8) and helicase-primase. Our results show that ICP8 catalyzes the formation of recombination intermediates (joint molecules) between circular single-stranded acceptor and linear duplex donor DNA. Joint molecules formed by invasion of a 3'-terminal strand displaces the non-complementary 5'-terminal strand, thereby creating a loading site for the helicase-primase. Helicase-primase acts on these joint molecules to promote ATP-dependent branch migration. Finally, we have reconstituted strand exchange by the synchronous action of ICP8 and helicase-primase. Based on these data, we present a recombination mechanism for a eukaryotic DNA virus in which a single strand DNA-binding protein and helicase cooperate to promote homologous pairing and branch migration.
Collapse
Affiliation(s)
- Amitabh V Nimonkar
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | |
Collapse
|
5
|
Wang H, Fu X, Zhang X. Isomerization of a uniquely designed amplicon during herpes simplex virus-mediated replication. J Virol 2001; 75:10505-10. [PMID: 11581421 PMCID: PMC114627 DOI: 10.1128/jvi.75.21.10505-10510.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus (HSV) type 1 DNA isomerization was studied using a uniquely designed amplicon that mimics the viral genomic structure. The results revealed that amplicon concatemers frequently contain adjacent amplicon units with their segments in opposed orientations. These unusual concatemers were generated through homologous recombination, which does not require HSV DNA as the source of homology.
Collapse
Affiliation(s)
- H Wang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
6
|
McVoy MA, Ramnarain D. Machinery to support genome segment inversion exists in a herpesvirus which does not naturally contain invertible elements. J Virol 2000; 74:4882-7. [PMID: 10775628 PMCID: PMC112012 DOI: 10.1128/jvi.74.10.4882-4887.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many herpesviruses, genome segments flanked by inverted repeats invert during DNA replication. It is not known whether this inversion is a consequence of an inherently recombinagenic replicative mechanism common to all herpesviruses or whether the replication enzymes of viruses with invertible segments have specifically evolved additional enzymatic activities to drive inversion. By artificially inserting a fusion of terminal sequences into the genome of a virus which normally lacks invertible elements (murine cytomegalovirus), we created a genome composed of long and short segments flanked by 1,359- and 543-bp inverted repeats. Analysis of genomic DNA from this virus revealed that inversion of both segments generates equimolar amounts of four isomers during the viral propagation necessary to produce DNA for analysis from a single viral particle. We conclude that a herpesvirus which naturally lacks invertible elements is able to support efficient segment inversion. Thus, the potential to invert is probably inherent in the replication machinery of all herpesviruses, irrespective of genome structure, and therefore genomes with invertible elements could have evolved simply by acquisition of inverted repeats and without concomitant evolution of enzymatic activities to mediate inversion. Furthermore, the recombinagenicity of herpesvirus DNA replication must have some importance independent of genome segment inversion.
Collapse
Affiliation(s)
- M A McVoy
- Department of Pediatrics, Medical College of Virginia/Virginia Commonwealth University, Richmond, Virginia 23298-0163, USA.
| | | |
Collapse
|
7
|
Bataille D, Epstein AL. Equimolar generation of the four possible arrangements of adjacent L components in herpes simplex virus type 1 replicative intermediates. J Virol 1997; 71:7736-43. [PMID: 9311858 PMCID: PMC192125 DOI: 10.1128/jvi.71.10.7736-7743.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) replication generates high-molecular-weight intermediates containing branched DNA and concatemers carrying adjacent genomes with inverted L components. We have studied replicative intermediates generated by (i) wild-type HSV-1; (ii) 5dl1.2, an ICP27 null mutant which fails to synthesize normal amounts of DNA and late proteins; (iii) RBMu3, a mutant containing a deletion in the inverted repeats which fails to generate genomic isomers; and (iv) amplicon plasmids and vectors which contain no inverted sequences. Replication intermediates were analyzed by pulsed-field gel electrophoresis, after restriction enzyme digestion of infected-cell DNA, followed by blot hybridization. DNA fragments were statistically quantified after phosphorimaging. We observed that (i) the four possible configurations of L components of two adjacent genomes in the concatemers are present at equimolar amounts at any time during virus replication, (ii) ICP27 is not required for inversions or for branched DNA to occur, and (iii) replication intermediates of both RBMu3 mutant and amplicon plasmids or vectors do contain branched structures, although the concatemers they generate contain no inversions. These data indicate that inversions are generated by a mechanism intrinsically linked to virus DNA replication, most likely homologous recombination between inverted repeats. Branched structures are detected in all replicating molecules, including those that do not invert, suggesting that they are constitutively linked to virus DNA synthesis. Our results are consistent with the notion that the four HSV-1 genomic isomers are generated by alternative cleavage frames of replication concatemers containing equimolar amounts of L-component inversions.
Collapse
Affiliation(s)
- D Bataille
- Centre de Génétique Moléculaire et Cellulaire, CNRS-UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | |
Collapse
|
8
|
Abstract
The Herpesviridae comprise a large class of animal viruses of considerable public health importance. Of the Herpesviridae, replication of herpes simplex virustype-1 (HSV-1) has been the most extensively studied. The linear 152-kbp HSV-1 genome contains three origins of DNA replication and approximately 75 open-reading frames. Of these frames, seven encode proteins that are required for originspecific DNA replication. These proteins include a processive heterodimeric DNA polymerase, a single-strand DNA-binding protein, a heterotrimeric primosome with 5'-3' DNA helicase and primase activities, and an origin-binding protein with 3'-5' DNA helicase activity. HSV-1 also encodes a set of enzymes involved in nucleotide metabolism that are not required for viral replication in cultured cells. These enzymes include a deoxyuridine triphosphatase, a ribonucleotide reductase, a thymidine kinase, an alkaline endo-exonuclease, and a uracil-DNA glycosylase. Host enzymes, notably DNA polymerase alpha-primase, DNA ligase I, and topoisomerase II, are probably also required. Following circularization of the linear viral genome, DNA replication very likely proceeds in two phases: an initial phase of theta replication, initiated at one or more of the origins, followed by a rolling-circle mode of replication. The latter generates concatemers that are cleaved and packaged into infectious viral particles. The rolling-circle phase of HSV-1 DNA replication has been reconstituted in vitro by a complex containing several of the HSV-1 encoded DNA replication enzymes. Reconstitution of the theta phase has thus far eluded workers in the field and remains a challenge for the future.
Collapse
Affiliation(s)
- P E Boehmer
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
9
|
Pechan PA, Fotaki M, Thompson RL, Dunn R, Chase M, Chiocca EA, Breakefield XO. A novel 'piggyback' packaging system for herpes simplex virus amplicon vectors. Hum Gene Ther 1996; 7:2003-13. [PMID: 8930661 DOI: 10.1089/hum.1996.7.16-2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recombinant and amplicon vectors derived from herpes simplex virus type 1 (HSV-1) have proven to be an efficient means of gene delivery to cells in culture and in vivo. In this study, a system was developed to make propagation of the amplicon vector and helper virus mutually dependent on each other, in a "piggyback' fashion. This combined system supports maintenance and enrichment of the amplicon vector when propagating stocks, while allowing the helper virus to serve as a recombinant vector in its own right. Amplicons bearing a gene essential for HSV-1 replication, IE3, as well as the Escherichia coli lacZ marker gene, were propagated using a mutant virus (d120) deleted in the same essential gene. Vector stocks could be propagated in Vero cells and other cultured cells not transfected with the IE3 gene with markedly delayed cytopathic effects, as compared to wild-type virus. Relatively high titers of amplicon vectors (6 x 10(7) infectious units/ml) were achieved with this piggyback system in Vero cells, with an apparent ratio of amplicon vector: helper virus of up of 5:1 under some conditions; however, recombinant wild-type virus was also generated. Injection of these stocks into experimental gliomas in rodent brain revealed gene delivery to tumor cells mediated by both amplicon vectors (lacZ) and helper virus (HSV-thymidine kinase), with no apparent neuropathology of normal brain. This basic piggyback vector model is amenable to modifications to promote conditional propagation of vectors in vivo and to allow incorporation of multiple transgene elements into both the amplicon and recombinant helper virus vectors.
Collapse
Affiliation(s)
- P A Pechan
- Department of Neurology, Massachusetts General Hospital East, Boston, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Severini A, Scraba DG, Tyrrell DL. Branched structures in the intracellular DNA of herpes simplex virus type 1. J Virol 1996; 70:3169-75. [PMID: 8627797 PMCID: PMC190180 DOI: 10.1128/jvi.70.5.3169-3175.1996] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) replication produces large intracellular DNA molecules that appear to be in a head-to-tail concatemeric arrangement. We have previously suggested (A. Severini, A.R. Morgan, D.R. Tovell, and D.L.J. Tyrrell, Virology 200:428-435, 1994) that these DNA species may have a complex branched structure. We now provide direct evidence for the presence of branches in the high-molecular-weight DNA produced during HSV-1 replication. On neutral agarose two-dimensional gel electrophoresis, a technique that allows separation of branched restriction fragments from linear fragments, intracellular HSV-1 DNA produces arches characteristic of Y junctions (such as replication forks) and X junctions (such as merging replication forks or recombination intermediates). Branched structures were resolved by T7 phage endonuclease I (gene 3 endonuclease), an enzyme that specifically linearizes Y and X structures. Resolution was detected by the disappearance of the arches on two-dimensional gel electrophoresis. Branched structures were also visualized by electron microscopy. Molecules with a single Y junction were observed, as well as large tangles containing two or more consecutive Y junctions. We had previously shown that a restriction enzyme which cuts the HSV-1 genome once does not resolve the large structure of HSV-1 intracellular DNA on pulsed-field gel electrophoresis. We have confirmed that result by using sucrose gradient sedimentation, in which both undigested and digested replicative intermediates sediment to the bottom of the gradient. Taken together, our experiments show that the intracellular HSV-1 DNA is held together in a large complex by frequent branches that create a network of replicating molecules. The fact that most of these branches are Y structures suggests that the network is held together by frequent replication forks and that it resembles the replicative intermediates of bacteriophage T4. Our findings add complexity to the simple model of rolling-circle DNA replication, and they pose interesting questions as to how the network is formed and how it is resolved for packaging into progeny virions.
Collapse
Affiliation(s)
- A Severini
- GlaxoWellcome Heritage Research Insititute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
11
|
Dutch RE, Bianchi V, Lehman IR. Herpes simplex virus type 1 DNA replication is specifically required for high-frequency homologous recombination between repeated sequences. J Virol 1995; 69:3084-9. [PMID: 7707536 PMCID: PMC189009 DOI: 10.1128/jvi.69.5.3084-3089.1995] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using an assay for recombination that measures deletion of a beta-galactosidase gene positioned between two directly repeated 350-bp sequences in plasmids transiently maintained in COS cells, we have found that replication from a simian virus 40 origin produces a high frequency of nonhomologous recombination. In contrast, plasmids replicating from a herpesvirus origin (oris) in COS cells superinfected with herpes simplex virus type 1 (HSV-1) show high levels of homologous recombination between the repeats and an enhanced recombinogenicity of the HSV-1 a sequence that is not seen during simian virus 40 replication. When the same assay was used to study recombination between 120- to 150-bp repeats in uninfected Vero cells, the level of recombination was extremely low or undetectable (< 0.03%), consistent with the fact that these repeats are smaller than the minimal efficient processing sequence for homologous recombination in mammalian cells. Recombination between these short repeats was easily measurable (0.5 to 0.8%) following HSV-1 infection, suggesting that there is an alteration of the recombination machinery. The frequency of recombination between repeats of the Uc-DR1 region, previously identified as the only segment of the HSV-1 a sequence indispensable for enhanced a-sequence recombination, was not significantly higher than that measured for other short sequences.
Collapse
Affiliation(s)
- R E Dutch
- Department of Biochemistry, Beckman Center, Stanford University School of Medicine, California 94305, USA
| | | | | |
Collapse
|