1
|
Geisshüsler H, Marti E, Stoffel M, Kühni K, Stojiljkovic A, von Tscharner C, Vidondo B, Gerber V, Koch C. Quantitative analysis of infiltrating immune cells and bovine papillomavirus type 1 E2-positive cells in equine sarcoids. Vet J 2016; 216:45-52. [DOI: 10.1016/j.tvjl.2016.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/25/2022]
|
2
|
Papillomavirus associated diseases of the horse. Vet Microbiol 2013; 167:159-67. [DOI: 10.1016/j.vetmic.2013.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/04/2013] [Accepted: 08/05/2013] [Indexed: 12/30/2022]
|
3
|
Abstract
The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Nasir L, Campo MS. Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Vet Dermatol 2008; 19:243-54. [PMID: 18927950 DOI: 10.1111/j.1365-3164.2008.00683.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bovine papillomavirus (BPV) is perhaps the most extensively studied animal papillomavirus. In cattle BPVs induce benign tumours of cutaneous or mucosal epithelia, called papillomas or warts. Cattle papillomas are benign tumours and generally regress without eliciting any serious clinical problems in the host, but occasionally persist and provide the focus for malignant transformation to squamous cell carcinoma, as in the case of cancer of the urinary bladder and cancer of the upper alimentary canal. BPV is the only papillomavirus that jumps species: the virus also infects equids, and gives rise to fibroblastic tumours called sarcoids. Sarcoids very rarely regress, more often they persist and can be locally aggressive. These tumours are the most common dermatological tumour of equids worldwide. The purpose of this review is to discuss the biology of BPV, the biology of bovine tumours and equine sarcoids, and present the current understanding of BPV in tumour pathogenesis in its natural host, cattle, and in its heterologous host, equids. Finally, the use of anti-BPV vaccines as a therapy for equine sarcoids will be discussed. Only limited information on the clinical or pathological aspects of either bovine or equine tumours will be provided as this subject has been extensively addressed previously.
Collapse
Affiliation(s)
- Lubna Nasir
- Division of Pathological Sciences, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH.
| | | |
Collapse
|
5
|
Nasir L, Gault E, Morgan IM, Chambers G, Ellsmore V, Campo MS. Identification and functional analysis of sequence variants in the long control region and the E2 open reading frame of bovine papillomavirus type 1 isolated from equine sarcoids. Virology 2007; 364:355-61. [PMID: 17412385 DOI: 10.1016/j.virol.2007.02.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/10/2007] [Accepted: 02/12/2007] [Indexed: 11/30/2022]
Abstract
BPV-1 DNA is the predominant viral type detected in equine sarcoids and represents the only reported natural cross species infection of papillomaviruses. In this study, nucleotide variations in the LCR and the E2 regions of equine sarcoid-associated BPV-1 were characterised by sequence analysis. Variants particular to sarcoid BPV-1 were identified in both the LCR and E2 sequence. The functionality of the most common LCR variant was examined in equine and bovine cells. These studies showed that the activity of the variant LCR was higher in equine cells than bovine cells; the activity of the variant LCR in the presence of the E2 variant was similar to the reference/wild-type sequences in equine cells, whereas in bovine cells the variant function was reduced by 50%. These data suggest the viral BPV variants commonly detected in sarcoids have an enhanced function in equine cells compared to their function in bovine cells.
Collapse
Affiliation(s)
- L Nasir
- Division of Pathological Sciences, Institute of Comparative Medicine, University of Glasgow Faculty of Veterinary Medicine, Bearsden Road, Glasgow, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
6
|
Beniston RG, Campo MS. HPV-18 transformed cells fail to arrest in G1 in response to quercetin treatment. Virus Res 2005; 109:203-9. [PMID: 15763151 DOI: 10.1016/j.virusres.2004.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 12/02/2004] [Accepted: 12/21/2004] [Indexed: 11/19/2022]
Abstract
Previous work with primary human keratinocytes demonstrated that quercetin, a potent mutagen found in high levels in bracken fern (Pteridium aquilinum), arrested cells in G1 with concomitant elevation of the cyclin-dependent kinase inhibitor (cdki) p27Kip1. Expression of the human papillomavirus type 16 (HPV-16) E6 and E7 oncoproteins, under transcriptional control of a heterologous promoter, in transformed keratinocytes failed to abrogate this arrest [Beniston, R., Campo, M.S., 2003. Quercetin elevates p27Kip1 and arrests both primary and HPV-16 E6/E7 transformed human keratinocytes in G1. Oncogene 22, 5504-5514]. Given the link between papillomavirus infection, bracken fern in the diet and cancer of the oesophagus in humans, we wished to investigate further whether cells transformed by the whole genome of HPV-16 or HPV-18, with E6 and E7 under the transcriptional control of their respective homologous promoters, would be similarly arrested in G1 by quercetin. In agreement with earlier work, quercetin arrested HPV-16 transformed cells in G1 with an increase in the cyclin-dependent kinase inhibitor p27Kip1. However, HPV-18 transformed cells did not arrest after quercetin treatment. The failure of HPV-18 transformed cells to arrest in G1 was linked to the up-regulation of the HPV-18 long control region (LCR) by quercetin, maintaining high expression of the viral transforming proteins. Transcriptional up-regulation of the HPV-18 LCR was mediated by a "quercetin responsive element" homologous to the one identified previously in the bovine papillomavirus type 4 (BPV-4) LCR.
Collapse
Affiliation(s)
- R G Beniston
- Institute of Comparative Medicine, University of Glasgow, Garscube Estate G61 1QH, Glasgow, UK
| | | |
Collapse
|
7
|
Tian Y, Li D, Dahl J, You J, Benjamin T. Identification of TAZ as a binding partner of the polyomavirus T antigens. J Virol 2004; 78:12657-64. [PMID: 15507652 PMCID: PMC525041 DOI: 10.1128/jvi.78.22.12657-12664.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A polyomavirus mutant isolated by the tumor host range selection procedure (19) has a three-amino-acid deletion (Delta2-4) in the common N terminus of the T antigens. To search for a cellular protein bound by wild-type but not the mutant T antigen(s), a yeast two-hybrid screen of a mouse embryo cDNA library was carried out with a bait of wild-type small T antigen (sT) fused N terminally to the DNA-binding domain of Gal4. TAZ, a transcriptional coactivator with a WW domain and PDZ-binding motif (17), was identified as a binding partner. TAZ bound in vivo to all three T antigens with different apparent affinities estimated as 1:7:100 (large T antigen [lT]:middle T antigen [mT]:sT). The Delta2-4 mutant T antigens showed no detectable binding. The sT and mT of the host range transformation-defective (hr-t) mutant NG59 with an alteration in the common sT/mT region (179 D-->NI) and a normal N terminus also failed to bind TAZ, while the unaltered lT bound but with reduced affinity compared to that seen in a wild-type virus infection. The WW domain but not the PDZ-binding motif of TAZ was essential for T antigen binding. The Delta2-4 mutant was defective in viral DNA replication. Forced overexpression of TAZ blocked wild-type DNA replication in a manner dependent on the binding site for the polyomavirus enhancer-binding protein 2alpha. Wild-type polyomavirus T antigens effectively block transactivation by TAZ. The functional significance of TAZ interactions with polyomavirus T antigens is discussed.
Collapse
Affiliation(s)
- Yu Tian
- Department of Pathology, Harvard Medical School, 77 Louis Pasteur Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
8
|
Hou SY, Wu SY, Chiang CM. Transcriptional activity among high and low risk human papillomavirus E2 proteins correlates with E2 DNA binding. J Biol Chem 2002; 277:45619-29. [PMID: 12239214 DOI: 10.1074/jbc.m206829200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The full-length E2 protein, encoded by human papillomaviruses (HPVs), is a sequence-specific transcription factor found in all HPVs, including cancer-causing high risk HPV types 16 and 18 and wart-inducing low risk HPV types 6 and 11. To investigate whether E2 proteins encoded by high risk HPVs may function differentially from E2 proteins encoded by low risk HPVs and animal papillomaviruses, we conducted comparative DNA-binding and transcription studies using electrophoretic mobility shift assays and cell-free transcription systems reconstituted with purified general transcription factors, cofactor, RNA polymerase II, and with E2 proteins encoded by HPV-16, HPV-18, HPV-11, and bovine papillomavirus type 1 (BPV-1). We found that although different types of E2 proteins all exhibited transactivation and repression activities, depending on the sequence context of the E2-binding sites, HPV-16 E2 shows stronger transcription activity and greater DNA-binding affinity than those displayed by the other E2 proteins. Surprisingly, HPV-18 E2 behaves more similarly to BPV-1 E2 than HPV-16 E2 in its functional properties. Our studies thus categorize HPV-18 E2 and BPV-1 E2 in the same protein family, a finding consistent with the available E2 structural data that separate the closely related HPV-16 and HPV-18 E2 proteins but classify together the more divergent BPV-1 and HPV-18 E2 proteins.
Collapse
Affiliation(s)
- Samuel Y Hou
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | |
Collapse
|
9
|
Müller A, Ritzkowsky A, Steger G. Cooperative activation of human papillomavirus type 8 gene expression by the E2 protein and the cellular coactivator p300. J Virol 2002; 76:11042-53. [PMID: 12368347 PMCID: PMC136630 DOI: 10.1128/jvi.76.21.11042-11053.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E2 proteins of papillomaviruses (PV) bind to the coactivator CBP/p300 as do many other transcription factors, but the precise role of CBP/p300 in E2-specific functions is not yet understood. We show that the E2 protein of human PV type 8 (HPV8) directly binds to p300. Activation of HPV8 gene expression by low amounts of HPV8 E2 was stimulated up to sevenfold by coexpression of p300. The interaction between E2 and p300 may play a role in differentiation-dependent activation of PV gene expression, since we can show that the expression level of p300 increases during keratinocyte differentiation. Surprisingly, sequence-specific binding of E2 to its recognition sites within the regulatory region of HPV8 is not necessary for this cooperation, indicating that E2 can be recruited to the promoter via protein-protein interaction. HPV8 E2 binds via its N-terminal activation domain (AD), its C-terminal DNA binding domain (DBD), and its internal hinge region to p300 in vitro. Transient-transfection assays revealed that the AD is necessary and sufficient for cooperative activation with p300. However, we provide evidence that the interaction of the hinge and the DBD of HPV8 E2 with p300 may contribute. Our data suggest an important role of p300 in regulation of HPV8 gene expression and reveal a new mechanism by which E2 may be recruited to a promoter to activate transcription without sequence specific DNA binding.
Collapse
Affiliation(s)
- Andreas Müller
- Institute of Virology, University of Cologne, 50935 Cologne. Institute of Dermatology, University of Cologne, 50931 Cologne, Germany
| | | | | |
Collapse
|
10
|
Boeckle S, Pfister H, Steger G. A new cellular factor recognizes E2 binding sites of papillomaviruses which mediate transcriptional repression by E2. Virology 2002; 293:103-17. [PMID: 11853404 DOI: 10.1006/viro.2001.1231] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repression of transcription by the full-length E2 protein of papillomaviruses (PV) seems to occur when the E2 binding sites and those of positively acting cellular factors overlap. Previously, we showed that RUNX1 (formerly called CBF) binds to the repression-mediating E2 binding site P2 of human PV type 8 (HPV8). By a yeast one-hybrid system we could identify an unknown protein binding also to P2, tentatively called PBF (papillomavirus binding factor). PBF recognizes the sequence CCGG, which represents the 3' half of the E2 binding site just adjacent to the RUNX1 motif. PBF also binds to the repression-mediating E2 BS-1 in BPV1, which is conserved to P2 of HPV8. Point mutations destroying PBF binding to HPV8 P2 and BPV-1 E2 BS-1 in vitro reduce promoter activity in corresponding reporter constructs. Our results suggest that PBF might play a role in transcription of PV genes and in E2-mediated repression.
Collapse
Affiliation(s)
- Steffi Boeckle
- Institute of Virology, University of Cologne, Fürst-Pückler-Strasse 56, 50935 Cologne, Germany
| | | | | |
Collapse
|
11
|
Vance KW, Campo MS, Morgan IM. A novel silencer element in the bovine papillomavirus type 4 promoter represses the transcriptional response to papillomavirus E2 protein. J Virol 2001; 75:2829-38. [PMID: 11222708 PMCID: PMC115909 DOI: 10.1128/jvi.75.6.2829-2838.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The long control regions (LCRs) of mucosal epitheliotropic papillomaviruses have similar organizations: a promoter region, an enhancer region, and a highly conserved distribution of E2 DNA binding sites (C. Desaintes and C. Demeret, Semin. Cancer Biol. 7:339--347, 1996). The enhancer of these viruses is epithelial cell specific, as it fails to activate transcription from heterologous promoters in nonepithelial cell types (B. Gloss, H. U. Bernard, K. Seedorf, and G. Klock, EMBO J. 6:3735--3743, 1987). Using the bovine papillomavirus type 4 (BPV-4) LCR and a bovine primary cell system, we have shown previously that a level of epithelial specificity resides in a papillomavirus promoter region. The BPV-4 promoter shows an enhanced response to transcriptional activators in epithelial cells compared with that of fibroblasts (K. W. Vance, M. S. Campo, and I. M. Morgan, J. Biol. Chem. 274:27839--27844, 1999). A chimeric lcr/tk promoter suggests that the upstream BPV-4 promoter region determines the cell-type-selective response of this promoter in fibroblasts and keratinocytes. Promoter deletion analysis identified two novel repressor elements that are, at least in part, responsible for mediating the differential response of this promoter to upstream activators in fibroblasts and keratinocytes. One of these elements, promoter repressor element 2 (PRE-2), is conserved in position and sequence in the related mucosal epitheliotropic papillomaviruses, BPV-3 and BPV-6. PRE-2 functions in cis to repress the basal activity of the simian virus 40 promoter and binds a specific protein complex. We identify the exact nucleotides necessary for binding and correlate loss of binding with loss of transcriptional repression. We also incorporate these mutations into the BPV-4 promoter and demonstrate an enhanced response of the mutated promoter to E2 in fibroblasts. The DNA binding protein in the detected complex is shown to have a molecular mass of approximately 50 kDa. The PRE-2 binding protein represents a novel transcriptional repressor and regulator of papillomavirus transcription.
Collapse
Affiliation(s)
- K W Vance
- Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD, Scotland
| | | | | |
Collapse
|
12
|
Nishimura A, Ono T, Ishimoto A, Dowhanick JJ, Frizzell MA, Howley PM, Sakai H. Mechanisms of human papillomavirus E2-mediated repression of viral oncogene expression and cervical cancer cell growth inhibition. J Virol 2000; 74:3752-60. [PMID: 10729150 PMCID: PMC111884 DOI: 10.1128/jvi.74.8.3752-3760.2000] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E2 gene product plays a pivotal role in viral replication. E2 has multiple functions, including (i) transcriptional activation and repression of viral promoters and (ii) the enhancement of viral DNA replication. It was previously reported that E2 suppressed the growth of papillomavirus-positive cervical carcinoma cell lines. In the present study, we investigated the mechanisms of E2 growth inhibition. We found that the transcriptional activation function of E2 is required for inhibition of the growth of HeLa cells as well as for transcriptional repression of the viral E6/E7 promoter. It had been previously postulated that transcriptional repression of the E6/E7 promoter results from E2 binding its cognate sites proximal to the E6/E7 promoter and displacing other cellular transcriptional factors. In this study, we report a requirement for the transcription activation function for the binding of E2 to transcriptionally active templates.
Collapse
Affiliation(s)
- A Nishimura
- Laboratory of Gene Analysis, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Vance KW, Campo MS, Morgan IM. An enhanced epithelial response of a papillomavirus promoter to transcriptional activators. J Biol Chem 1999; 274:27839-44. [PMID: 10488130 DOI: 10.1074/jbc.274.39.27839] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mucosal epitheliotropic papillomaviruses have a similar long control region (LCR) organization: a promoter region, an enhancer region, and a highly conserved distribution of E2 DNA binding sites. The enhancer of these viruses is epithelial-specific, as it fails to activate transcription from heterologous promoters in nonepithelial cell types (Gloss, B., Bernard, H. U., Seedorf, K., and Klock, G. (1987) EMBO J. 6, 3735-3743; Morgan, I. M., Grindlay, G. J., and Campo, M. S. (1999) J. Gen. Virol. 80, 23-27). Studies on E2 transcriptional regulation of the human mucosal epitheliotropic papillomaviruses have been hindered by poor access to the natural target cell type and by the observation that some of the human papillomavirus promoters, including human papillomavirus-16, are repressed in immortalized epithelial cells. Here we present results using the bovine papillomavirus-4 (BPV-4) LCR and a bovine primary cell system as a model to study the mechanism of E2 transcriptional regulation of mucosal epitheliotropic papillomaviruses and the cell type specificity of this regulation. E2 up-regulates transcription from the BPV-4 LCR preferentially in epithelial cells (Morgan, I. M., Grindlay, G. J., and Campo, M. S. (1998) J. Gen. Virol. 79, 501-508). We demonstrate that the epithelial-specific enhancer element of the BPV-4 LCR is not required for the enhanced activity of E2 in epithelial cells and that the BPV-4 promoter is more responsive, not only to E2, but to other transcriptional activators in epithelial cells. This is the first time a level of epithelial specificity has been shown to reside in a papillomavirus promoter region.
Collapse
Affiliation(s)
- K W Vance
- Beatson Institute for Cancer Research, Cancer Research Campaign Beatson Laboratories, Garscube Estate, Glasgow G61 1BD, Scotland
| | | | | |
Collapse
|
14
|
Lewis H, Webster K, Sanchez-Perez AM, Gaston K. Cellular transcription factors regulate human papillomavirus type 16 gene expression by binding to a subset of the DNA sequences recognized by the viral E2 protein. J Gen Virol 1999; 80 ( Pt 8):2087-2096. [PMID: 10466807 DOI: 10.1099/0022-1317-80-8-2087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human papillomavirus type 16 (HPV-16) is a DNA tumour virus that has been implicated in the development of cervical cancer. The HPV-16 E2 protein binds to four sites that are present upstream of the viral P97 promoter and regulates transcription of the E6 and E7 oncogenes. Here, it is shown that cellular transcription factors bind to two of these E2 sites. One cellular E2 site-binding factor, which is here named CEF-1, binds tightly to E2 site 1. CEF-2, an unrelated cellular E2 site-binding factor, binds tightly to E2 site 3. Transient transfection studies performed in the absence of the E2 protein showed that mutations that blocked the binding of CEF-1 to E2 site 1 or CEF-2 to E2 site 3 significantly reduced P97 promoter activity. Further characterization of CEF-1 indicated that this factor has not previously been identified and that CEF-1 and E2 competed for binding at E2 site 1.
Collapse
Affiliation(s)
- Hannah Lewis
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK1
| | - Kenneth Webster
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK1
| | - Ana-Maria Sanchez-Perez
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK1
| | - Kevin Gaston
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK1
| |
Collapse
|
15
|
Goodwin EC, Naeger LK, Breiding DE, Androphy EJ, DiMaio D. Transactivation-competent bovine papillomavirus E2 protein is specifically required for efficient repression of human papillomavirus oncogene expression and for acute growth inhibition of cervical carcinoma cell lines. J Virol 1998; 72:3925-34. [PMID: 9557678 PMCID: PMC109618 DOI: 10.1128/jvi.72.5.3925-3934.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1997] [Accepted: 02/10/1998] [Indexed: 02/07/2023] Open
Abstract
The papillomavirus E2 proteins can function as sequence-specific transactivators or transrepressors of transcription and as cofactors in viral DNA replication. We previously demonstrated that acute expression of the bovine papillomavirus type 1 (BPV1) E2 protein in HeLa and HT-3 cervical carcinoma cell lines greatly reduced cellular proliferation by imposing a specific G1/S phase growth arrest. In this report, we analyzed the effects of a panel of point mutations in the BPV1 E2 protein to identify the functional requirements for acute growth inhibition. Disruption of E2-specific transactivation by mutations within either the transactivation domain or the DNA binding domain severely impaired E2-mediated growth inhibition in HeLa and HT-3 cells, even though these mutants retain various other E2 activities. This result indicates that functional transactivation activity is required for acute E2-mediated growth inhibition. HeLa cells, which contain a wild-type p53 gene, and HT-3 cells, which contain a transactivation-defective p53 gene, exhibited similar responses to the E2 mutants, suggesting that identical functions of the E2 protein were required for growth arrest regardless of p53 status. Replacement of the E2 transactivation domain with that of the herpes simplex virus VP16 generated a chimeric transactivator that efficiently stimulated expression of an E2-responsive reporter plasmid yet was completely defective for growth inhibition, suggesting that an E2-specific transactivation function is required for growth arrest. Surprisingly, the transactivation-defective E2 mutants were also markedly defective in their ability to repress transcription of the native human papillomavirus type 18 (HPV18) E6/E7 oncogenes in HeLa cells and of the HPV18 promoter present in a transfected reporter plasmid. These mutants were also defective in their ability to increase p53 levels. Therefore, efficient repression of the HPV18 promoter in HeLa cells is not merely a consequence of the binding of an E2 protein to appropriately situated binding sites in the promoter.
Collapse
Affiliation(s)
- E C Goodwin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8005, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Bovine papillomavirus (BPV) induces papillomas of cutaneous or mucosal epithelia in cattle. The papillomas are benign tumours and generally regress, but occasionally persist and provide the focus for malignant transformation to squamous cell carcinoma, particularly in the presence of environmental cofactors. This has been experimentally demonstrated for BPV-2 and cancer of the urinary bladder, and BPV-4 and cancer of the upper alimentary canal in cattle feeding on bracken fern. In this review, several aspects of the biology of the virus are described including viral genome structure, regulation of transcription of the viral oncogenes, function of the viral oncoproteins, cooperation between virus and chemical cofactors in carcinogenesis, virus latency and prophylactic and therapeutic vaccination programmes.
Collapse
Affiliation(s)
- M S Campo
- Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow, Scotland, UK
| |
Collapse
|
17
|
Schmidt HM, Steger G, Pfister H. Competitive binding of viral E2 protein and mammalian core-binding factor to transcriptional control sequences of human papillomavirus type 8 and bovine papillomavirus type 1. J Virol 1997; 71:8029-34. [PMID: 9311900 PMCID: PMC192167 DOI: 10.1128/jvi.71.10.8029-8034.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The promoter P7535 of human papillomavirus type 8 and the promoter P7185 of bovine papillomavirus type 1 are negatively regulated by viral E2 proteins via the promoter proximal binding sites P2 and BS1, respectively. Mutations of these E2 binding sites can reduce basal promoter activity. This suggests binding of a transcription-stimulating factor and may indicate that repression by E2 is due to competitive binding of viral and cellular proteins. A computer search revealed putative binding sites for core-binding factor (CBF; also referred to as PEA2, PEBP2, or AML), overlapping with P2 and BS1. Binding of recombinant CBF proteins to these sites was confirmed by band shift analysis. Competition of CBF and E2 protein for DNA binding was shown for both human papillomavirus type 8 and bovine papillomavirus type 1. The importance of CBF-E2 competition in E2-mediated repression could be demonstrated by comparing the E2 effect on P7185 activity in two cell lines containing different amounts of endogenous CBF. In cells with large amounts of CBF, E2 repressed P7185 wild-type constructs to the basal promoter activity of a mutant (50%) that could not bind this protein any more. In contrast, in a cell line containing small amounts of CBF, the promoter activities of constructs with wild-type and mutated CBF binding sites hardly differed and specific repression by E2 was not detectable.
Collapse
Affiliation(s)
- H M Schmidt
- Institut für Virologie der Universität zu Köln, Cologne, Germany
| | | | | |
Collapse
|
18
|
Rapp B, Pawellek A, Kraetzer F, Schaefer M, May C, Purdie K, Grassmann K, Iftner T. Cell-type-specific separate regulation of the E6 and E7 promoters of human papillomavirus type 6a by the viral transcription factor E2. J Virol 1997; 71:6956-66. [PMID: 9261424 PMCID: PMC191980 DOI: 10.1128/jvi.71.9.6956-6966.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gene expression of human papillomaviruses (HPV) is tightly controlled by cellular factors and by the virally encoded E2 protein through binding to distinct sites within the regulatory noncoding region. While for the high-risk genital papillomaviruses a single promoter drives the expression of all early genes, a second promoter present in the E6 open reading frame of the low-risk HPV type 6 (HPV6) would allow an independent regulation of E6 and E7 oncogene expression. In this report, we provide the first evidence that E2 regulates both early promoters of HPV6 separately and we show that promoter usage as well as E2 regulation is cell type dependent. Among the different epithelial cell lines tested, only RTS3b cells allowed an expression pattern similar to that observed in naturally infected benign condylomas. While the E6 promoter was repressed by E2 to 50% of its basal activity, the E7 promoter was simultaneously stimulated up to fivefold. Activation of the E7 promoter was mediated predominantly by the binding of E2 to the most promoter-distal E2 binding site. Repression of the E6 promoter depended on the presence of two intact promoter-proximal binding sites. Mutation of both of these repressor binding sites reversed the effect of E2 on the E6 promoter from repression to activation. In contrast, in HT3 cells we observed an E2-mediated activation of the E6 promoter in the context of the wild-type noncoding region. This indicated that repression of the E6 promoter by binding of E2 to both promoter-proximal binding sites did not function in the cellular environment provided by HT3 cells. These data suggest that the separate regulation of the E6 and E7 promoters of HPV6 is mediated through successive occupation of binding sites with different affinities for E2 depending on the intracellular concentration of E2 and on the cellular environment provided by the infected cell.
Collapse
Affiliation(s)
- B Rapp
- Institut für Klinische und Molekulare Virologie, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Steger G, Corbach S. Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol 1997; 71:50-8. [PMID: 8985322 PMCID: PMC191023 DOI: 10.1128/jvi.71.1.50-58.1997] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The activity of the E6/E7 promoter of genital human papillomaviruses (HPVs) is positively and negatively modulated by a complex interplay between a variety of cellular transcription factors and the virally encoded E2 protein. The long control region of genital HPVs contains four E2 binding sites in conserved positions, two of which are very close to the TATA box. Binding of E2 to these two sites has been shown to repress the promoter. To carefully analyze the effect of E2 on the activity of the early promoter P105 of HPV18, we used an in vitro transcription system, which allowed titration of the amount of E2 protein. We found that low amounts of HPV18 E2 stimulated the promoter, whereas increasing amounts resulted in promoter repression. When the affinity was analyzed, it became obvious that E2 bound with highest affinity to E2 binding site 4 (BS-4), located 500 bp upstream of the promoter. The promoter most proximal binding site (BS-1) was the weakest site. Transient transfection assays confirmed that small amounts of HPV type (HPV18) E2 and also of bovine papillomavirus type 1 (BPV1) E2 were able to activate the P105, which was dependent on an intact BS-4. The positive role of BS-4 was also obvious at higher E2 concentrations, since mutation of BS-4 enhanced repression. In contrast to HPV18 E2, BPV1 E2 bound better to BS-1 and, in correlation, was able to more strongly repress the P105 in vivo. Our results suggest a dose-dependent regulation of the HPV18 E6/E7 promoter by E2 due to variable occupancy of its binding sites, which have antagonizing effects on the activity of the E6/E7 promoter.
Collapse
Affiliation(s)
- G Steger
- Institut für Virologie der Universität zu Köln, Cologne, Germany.
| | | |
Collapse
|
20
|
Turek LP, Smith EM. The genetic program of genital human papillomaviruses in infection and cancer. Obstet Gynecol Clin North Am 1996; 23:735-58. [PMID: 8989774 DOI: 10.1016/s0889-8545(05)70275-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human papillomavirus (HPV) infection has been recognized as the major cause of cervical cancer. This article summarizes the functions of HPV gene products that cause abnormal cell growth--E6 and E7--and reviews how cellular and viral factors influence their synthesis. E6 and E7 inactivate two cellular tumor-suppressor gene products, p53 and RB. In cervical cancer, E6-E7 gene control is deranged by mutations in viral control sequences and in integrated HPV fragments by the disruption of the viral repressor E2. Elimination of this sequence makes E6-E7 mRNAs unstable, and deranges cellular regulation at the integration site. It is apparent that an intricate interplay of cellular and viral factors determines whether the outcome is active papillomavirus infection, viral latency, or ultimately, genital cancer.
Collapse
Affiliation(s)
- L P Turek
- Department of Pathology, Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | | |
Collapse
|