1
|
Lopez MA, Mackler RM, Altman MP, Yoder KE. Detection and Removal of Nuclease Contamination During Purification of Recombinant Prototype Foamy Virus Integrase. J Vis Exp 2017. [PMID: 29286489 DOI: 10.3791/56605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The integrase (IN) protein of the retrovirus prototype foamy virus (PFV) is a model enzyme for studying the mechanism of retroviral integration. Compared to IN from other retroviruses, PFV IN is more soluble and more amenable to experimental manipulation. Additionally, it is sensitive to clinically relevant human immunodeficiency virus (HIV-1) IN inhibitors, suggesting that the catalytic mechanism of PFV IN is similar to that of HIV-1 IN. IN catalyzes the covalent joining of viral complementary DNA (cDNA) to target DNA in a process called strand transfer. This strand transfer reaction introduces nicks to the target DNA. Analysis of integration reaction products can be confounded by the presence of nucleases that similarly nick DNA. A bacterial nuclease has been shown to co-purify with recombinant PFV IN expressed in Escherichia coli (E. coli). Here we describe a method to isolate PFV IN from the contaminating nuclease by heparin affinity chromatography. Fractions are easily screened for nuclease contamination with a supercoiled plasmid and agarose gel electrophoresis. PFV IN and the contaminating nuclease display alternative affinities for heparin sepharose allowing a nuclease-free preparation of recombinant PFV IN suitable for bulk biochemical or single molecule analysis of integration.
Collapse
Affiliation(s)
- Miguel A Lopez
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine
| | - Randi M Mackler
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine
| | - Matthew P Altman
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine
| | - Kristine E Yoder
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine;
| |
Collapse
|
2
|
Pommier Y, Pilon A, Bajaj K, Mazumder A, Neamati N. HIV-1 Integrase as a Target for Antiviral Drugs. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/095632029700800601] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Aa Pilon
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - K Bajaj
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - A Mazumder
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - N Neamati
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| |
Collapse
|
3
|
Lopez MA, Mackler RM, Yoder KE. Removal of nuclease contamination during purification of recombinant prototype foamy virus integrase. J Virol Methods 2016; 235:134-138. [PMID: 27269588 DOI: 10.1016/j.jviromet.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
Abstract
Retroviral infection requires integration of the viral genome into the host genome. Recombinant integrase proteins may be purified following bacterial expression. A bulk biochemical assay of integrase function relies on the conversion of supercoiled plasmids to linear or relaxed circles. Single molecule molecular tweezer assays of integrase also evaluate the conversion of supercoiled DNA to nicked and broken species. A bacterial nuclease that co-purifies with retroviral integrase may affect the quantitation of integration activity in bulk or single molecule assays. During purification of retroviral integrase from bacteria, fractions may be screened for contaminating nuclease activity. In order to efficiently separate the nuclease from integrase, the binding affinities of each protein must differ. We find that a co-purifying nuclease may be efficiently separated from integrase based on heparin affinity, but not ionic affinity.
Collapse
Affiliation(s)
- Miguel A Lopez
- Molecular Virology, Immunology, and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Randi M Mackler
- Molecular Virology, Immunology, and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Kristine E Yoder
- Molecular Virology, Immunology, and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, United States.
| |
Collapse
|
4
|
Moreau K, Charmetant J, Gallay K, Faure C, Verdier G, Ronfort C. Avian sarcoma and leukemia virus (ASLV) integration in vitro: mutation or deletion of integrase (IN) recognition sequences does not prevent but only reduces the efficiency and accuracy of DNA integration. Virology 2009; 392:94-102. [PMID: 19638332 DOI: 10.1016/j.virol.2009.06.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/21/2009] [Accepted: 06/18/2009] [Indexed: 11/15/2022]
Abstract
Integrase (IN) is the enzyme responsible for provirus integration of retroviruses into the host cell genome. We used an Avian Sarcoma and Leukemia Viruses (ASLV) integration assay to investigate the way in which IN integrates substrates mutated or devoid of one or both IN recognition sequences. We found that replacing U5 by non-viral sequences (U5del) or U3 by a mutated sequence (pseudoU3) resulted in two and three fold reduction of two-ended integration (integration of the two ends from a donor DNA) respectively, but had a slight effect on concerted integration (integration of both ends at the same site of target DNA). Further, IN was still able to integrate the viral ends of the double mutant (pseudoU3/U5del) in a two-ended and concerted integration reaction. However, efficiency and accuracy (i.e. fidelity of size duplication and of end cleavage) of integration were reduced.
Collapse
Affiliation(s)
- Karen Moreau
- Institut National de la Recherche Agronomique, UMR754, Lyon, F-69007, France
| | | | | | | | | | | |
Collapse
|
5
|
Grandgenett DP, Bera S, Pandey KK, Vora AC, Zahm J, Sinha S. Biochemical and biophysical analyses of concerted (U5/U3) integration. Methods 2009; 47:229-36. [PMID: 19049878 PMCID: PMC2693883 DOI: 10.1016/j.ymeth.2008.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/31/2008] [Accepted: 11/04/2008] [Indexed: 01/07/2023] Open
Abstract
Retrovirus integrase (IN) integrates the viral linear DNA genome ( approximately 10 kb) into a host chromosome, a step which is essential for viral replication. Integration occurs via a nucleoprotein complex, termed the preintegration complex (PIC). This article focuses on the reconstitution of synaptic complexes from purified components whose molecular properties mirror those of the PIC, including the efficient concerted integration of two ends of linear viral DNA into target DNA. The methods described herein permit the biochemical and biophysical analyses of concerted integration. The methods enable (1) the study of interactions between purified recombinant IN and its viral DNA substrates at the molecular level; (2) the identification and characterization of nucleoprotein complexes involved in the human immunodeficiency virus type-1 (HIV-1) concerted integration pathway; (3) the determination of the multimeric state of IN within these complexes; (4) dissection of the interaction between HIV-1 IN and cellular proteins such as lens epithelium-derived growth factor (LEDGF/p75); (5) the examination of HIV-1 Class II and strand transfer inhibitor resistant IN mutants; (6) the mechanisms associated with strand transfer inhibitors directed against HIV-1 IN that have clinical relevance in the treatment of HIV-1/AIDS.
Collapse
Affiliation(s)
- Duane P Grandgenett
- Saint Louis University Health Sciences Center, Institute for Molecular Virology, Doisy Research Center, Rm 621, 1100 South Grand, St. Louis, MO 63104-1009, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
HIV integrates a DNA copy of its genome into a host cell chromosome in each replication cycle. The essential DNA cleaving and joining chemistry of integration is known, but there is less understanding of the process as it occurs in a cell, where two complex and dynamic macromolecular entities are joined: the viral pre-integration complex and chromatin. Among implicated cellular factors, much recent attention has coalesced around LEDGF/p75, a nuclear protein that may act as a chromatin docking factor or receptor for lentiviral pre-integration complexes. LEDGF/p75 tethers HIV integrase to chromatin, protects it from degradation, and strongly influences the genome-wide pattern of HIV integration. Depleting the protein from cells and/or over-expressing its integrase-binding domain blocks viral replication. Current goals are to establish the underlying mechanisms and to determine whether this knowledge can be exploited for antiviral therapy or for targeting lentiviral vector integration in human gene therapy.
Collapse
Affiliation(s)
- E M Poeschla
- Guggenheim 18, Mayo Clinic College of Medicine, 200 First Street SW, Rochester 55905, USA.
| |
Collapse
|
7
|
Pandey KK, Sinha S, Grandgenett DP. Transcriptional coactivator LEDGF/p75 modulates human immunodeficiency virus type 1 integrase-mediated concerted integration. J Virol 2007; 81:3969-79. [PMID: 17267486 PMCID: PMC1866116 DOI: 10.1128/jvi.02322-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human transcriptional coactivator p75/lens epithelium-derived growth factor (LEDGF) binds human immunodeficiency virus type 1 (HIV-1) integrase (IN). We studied the effects of LEDGF on the assembly and activity of HIV-1 synaptic complexes, which, upon association with a target, mediate concerted integration of viral DNA substrates in vitro. We found that while augmenting single-ended viral DNA integration into target DNA, the host factor was able to either stimulate or abrogate concerted integration in a concentration-dependent manner. LEDGF modestly stimulated (two- to threefold) concerted integration at low molar ratios to IN (<1). The modest stimulation was independent of solution conditions and several different viral DNA substrates. In solution, concerted integration was inhibited if the molar ratios of LEDGF to IN were >1, apparently due to the disruption of IN-IN interactions essential for the formation of active synaptic complexes prior to their association with a circular target. The isolated IN binding domain of LEDGF was sufficient to stimulate and inhibit concerted integration, as observed with full-length protein, albeit at lower efficiencies. Our data show that LEDGF differentially affects IN-DNA complexes mediating single-ended viral DNA integration and synaptic complexes mediating concerted integration. Synaptic complexes associated with target, termed strand transfer complexes, are resistant to disruption by high concentrations of LEDGF. The results suggest that LEDGF may influence HIV-1 integration in vivo.
Collapse
Affiliation(s)
- Krishan K Pandey
- Institute for Molecular Virology, 3681 Park Avenue, Saint Louis University Health Sciences Center, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
8
|
Li M, Craigie R. Processing of viral DNA ends channels the HIV-1 integration reaction to concerted integration. J Biol Chem 2005; 280:29334-9. [PMID: 15958388 PMCID: PMC8742673 DOI: 10.1074/jbc.m505367200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Retroviral DNA made by reverse transcription is blunt-ended, and the viral integrase protein must remove two nucleotides from each 3′ end prior to integration into chromosomal DNA. Under most reaction conditions for integration in vitro, the majority of the reaction products are “half-site” products that result from integration of only one viral DNA end into one strand of the target DNA. Preprocessed DNA substrates are more efficient substrates for half-site reactions than are blunt-ended substrates, which require the removal of two nucleotides prior to integration. In contrast, we find that blunt-ended DNA is a better substrate for the biologically relevant reaction of concerted integration of pairs of viral DNA ends. The reaction pathway is channeled to concerted integration, and half-site integration products are reduced with blunt-ended DNA substrate that must first be processed by integrase. In addition, the terminal nucleotide requirements for concerted integration are more stringent than for the half-site reaction. Longer DNA is more efficient for the concerted reaction than is shorter DNA that is capable of efficient half-site integration. This suggests that nonspecific interactions of integrase with viral DNA distant from the termini contribute to the assembly of a complex that is competent for concerted integration. Finally, differential effects of mutation of a residue in the C-terminal domain of integrase on concerted versus half-site integration implicate protein-protein interactions involving this domain as important for concerted integration.
Collapse
Affiliation(s)
| | - Robert Craigie
- To whom correspondence should be addressed: Laboratory of Molecular Biology, NIDDK, Bldg. 5, Rm. 301, 5 Center Dr. MSC 0560, National Institutes of Health, Bethesda, MD 20892. Tel.: 301-496-4081; Fax: 301-496-0201;
| |
Collapse
|
9
|
Faure A, Calmels C, Desjobert C, Castroviejo M, Caumont-Sarcos A, Tarrago-Litvak L, Litvak S, Parissi V. HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res 2005; 33:977-86. [PMID: 15718297 PMCID: PMC549407 DOI: 10.1093/nar/gki241] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The oligomeric state of active human immunodeficiency virus type 1 (HIV-1) integrase (IN) has not been clearly elucidated. We analyzed the activity of the different purified oligomeric forms of recombinant IN obtained after stabilization by platinum crosslinking. The crosslinked tetramer isolated by gel chromatography was able to catalyze the full-site integration of the two viral LTR ends into a target DNA in vitro, whereas the isolated dimeric form of the enzyme was involved in the processing and integration of only one viral end. Accurate concerted integration by IN tetramers was confirmed by cloning and sequencing. Kinetic studies of DNA-integrase complexes led us to propose a model explaining the formation of an active complex. Our data suggest that the tetrameric IN bound to the viral DNA ends is the minimal complex involved in the concerted integration of both LTRs and should be the oligomeric form targeted by future inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vincent Parissi
- To whom correspondence should be addressed at UMR 5097, CNRS-Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux cedex, France. Tel: +33 0 5 57 57 17 40; Fax: +33 0 5 57 57 17 66;
| |
Collapse
|
10
|
Vora A, Bera S, Grandgenett D. Structural organization of avian retrovirus integrase in assembled intasomes mediating full-site integration. J Biol Chem 2004; 279:18670-8. [PMID: 14990573 DOI: 10.1074/jbc.m314270200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retrovirus preintegration complexes (PIC) purified from virus-infected cells are competent for efficient concerted integration of the linear viral DNA ends by integrase (IN) into target DNA (full-site integration). In this report, we have shown that the assembled complexes (intasomes) formed in vitro with linear 3.6-kbp DNA donors possessing 3'-OH-recessed attachment (att) site sequences and avian myeloblastosis virus IN (4 nm) were as competent for full-site integration as isolated retrovirus PIC. The att sites on DNA with 3'-OH-recessed ends were protected by IN in assembled intasomes from DNase I digestion up to approximately 20 bp from the terminus. Several DNA donors containing either normal blunt-ended att sites or different end mutations did not allow assembly of complexes that exhibit the approximately 20-bp DNase I footprint at 14 degrees C. At 50 and 100 mm NaCl, the approximately 20-bp DNase I footprints were produced with wild type (wt) U3 and gain-of-function att site donors for full-site integration as previously observed at 320 mm NaCl. Although the wt U5 att site donors were fully competent for full-site integration at 37 degrees C, the approximately 20-bp DNase I footprint was not observed under a variety of assembly conditions including low NaCl concentrations at 14 degrees C. Under suboptimal assembly conditions for intasomes using U3 att DNA, DNase I probing demonstrated an enhanced cleavage site 9 bp from the end of U3 suggesting that a transient structural intasome intermediate was identified. Using a single nucleotide change at position 7 from the end and a series of small size deletions of wt U3 att site sequences, we determined that sequences upstream of the 11th nucleotide position were not required by IN to produce the approximately 20-bp DNase I footprint and full-site integration. The results suggest the structural organization of IN at the att sites in reconstituted intasomes was similar to that observed in PIC.
Collapse
Affiliation(s)
- Ajaykumar Vora
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
11
|
Moreau K, Faure C, Violot S, Gouet P, Verdier G, Ronfort C. Mutational analyses of the core domain of Avian Leukemia and Sarcoma Viruses integrase: critical residues for concerted integration and multimerization. Virology 2004; 318:566-81. [PMID: 14972525 DOI: 10.1016/j.virol.2003.09.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 09/25/2003] [Accepted: 09/25/2003] [Indexed: 11/19/2022]
Abstract
During replicative cycle of retroviruses, the reverse-transcribed viral DNA is integrated into the cell DNA by the viral integrase (IN) enzyme. The central core domain of IN contains the catalytic site of the enzyme and is involved in binding viral ends and cell DNA as well as dimerization. We previously performed single amino acid substitutions in the core domain of an Avian Leukemia and Sarcoma Virus (ALSV) IN [Arch. Virol. 147 (2002) 1761]. Here, we modeled the resulting IN mutants and analyzed the ability of these mutants to mediate concerted DNA integration in an in vitro assay, and to form dimers by protein-protein cross-linking and size exclusion chromatography. The N197C mutation resulted in the inability of the mutant to perform concerted integration that was concomitant with a loss of IN dimerization. Surprisingly, mutations Q102G and A106V at the dimer interface resulted in mutants with higher efficiencies than the wild-type IN in performing two-ended concerted integration of viral DNA ends. The G139D and A195V mutants had a trend to perform one-ended DNA integration of viral ends instead of two-ended integration. More drastically, the I88L and L135G mutants preferentially mediated nonconcerted DNA integration although the proteins form dimers. Therefore, these mutations may alter the formation of IN complexes of higher molecular size than a dimer that would be required for concerted integration. This study points to the important role of core domain residues in the concerted integration of viral DNA ends as well as in the oligomerization of the enzyme.
Collapse
Affiliation(s)
- Karen Moreau
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard, Lyon, France
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
A key early step in the retroviral life cycle is the integration of reverse-transcribed viral cDNA into a chromosome of an infected cell. The key protein player in retroviral integration is the viral integrase, which enters the cell as part of the virus. Although purified integrase protein is necessary and sufficient to perform the basic catalytic DNA breakage and joining steps of retroviral integration, a variety of normal cellular proteins have been implicated as playing important roles in establishing the integrated provirus in cells. This chapter reviews the roles of host cell factors that function during integrase catalysis, during the repair of the resulting DNA recombination intermediate, and by potentially guiding viral preintegration complexes to their chromosomal locations for cDNA integration. The potential to interfere with proper integration by blocking either integrase catalysis or the function of cellular integration cofactors is also discussed.
Collapse
Affiliation(s)
- A Engelman
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Chiu R, Grandgenett DP. Molecular and genetic determinants of rous sarcoma virus integrase for concerted DNA integration. J Virol 2003; 77:6482-92. [PMID: 12743305 PMCID: PMC155021 DOI: 10.1128/jvi.77.11.6482-6492.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Site-directed mutagenesis of recombinant Rous sarcoma virus (RSV) integrase (IN) allowed us to gain insights into the protein-protein and protein-DNA interactions involved in reconstituted IN-viral DNA complexes capable of efficient concerted DNA integration (termed full-site). At 4 nM IN, wild-type (wt) RSV IN incorporates approximately 30% of the input donor into full-site integration products after 10 min of incubation at 37 degrees C, which is equivalent to isolated retrovirus preintegration complexes for full-site integration activity. DNase I protection analysis demonstrated that wt IN was able to protect the viral DNA ends, mapping approximately 20 bp from the end. We had previously mapped the replication capabilities of several RSV IN mutants (A48P and P115S) which appeared to affect viral DNA integration in vivo. Surprisingly, recombinant RSV A48P IN retained wt IN properties even though the virus carrying this mutation had significantly reduced integrated viral DNA in comparison to wt viral DNA in virus-infected cells. Recombinant RSV P115S IN also displayed all of the properties of wt RSV IN. Upon heating of dimeric P115S IN in solution at 57 degrees C, it became apparent that the mutation in the catalytic core of RSV IN exhibited the same thermolabile properties for 3' OH processing and strand transfer (half-site and full-site integration) activities consistent with the observed temperature-sensitive defect for integration in vivo. The average half-life for inactivation of the three activities were similar, ranging from 1.6 to 1.9 min independent of the IN concentrations in the assay mixtures. Wt IN was stable under the same heat treatment. DNase I protection analysis of several conservative and nonconservative substitutions at W233 (a highly conserved residue of the retrovirus C-terminal domain) suggests that this region is involved in protein-DNA interactions at the viral DNA attachment site. Our data suggest that the use of recombinant RSV IN to investigate efficient full-site integration in vitro with reference to integration in vivo is promising.
Collapse
Affiliation(s)
- Roger Chiu
- St. Louis University Health Sciences Center, Institute for Molecular Virology, Missouri 63110, USA
| | | |
Collapse
|
14
|
Gao K, Gorelick RJ, Johnson DG, Bushman F. Cofactors for human immunodeficiency virus type 1 cDNA integration in vitro. J Virol 2003; 77:1598-603. [PMID: 12502875 PMCID: PMC140775 DOI: 10.1128/jvi.77.2.1598-1603.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the function of two DNA binding proteins that stimulate human immunodeficiency virus type 1 cDNA integration in vitro, the cellular HMGa1 protein and the viral nucleocapsid (NC) protein. Of the three forms of NC (NCp7, NCp9, and NCp15), we find that NCp9 is the most effective at increasing integration in vitro; thus, processing of NC may potentially modulate its activities during infection. We also found that maximal stimulation by NCp9 required roughly enough NC to coat the reactant DNAs whereas less HMGa1 was required, and the reactions displayed different optima for divalent metal cofactors and order of addition. These findings reveal probable distinct mechanisms of action in vitro.
Collapse
Affiliation(s)
- Kui Gao
- Infectious Disease Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
15
|
Piefer AJ, Jonsson CB. A comparative study of the human T-cell leukemia virus type 2 integrase expressed in and purified from Escherichia coli and Pichia pastoris. Protein Expr Purif 2002; 25:291-9. [PMID: 12135562 DOI: 10.1016/s1046-5928(02)00011-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The human T-cell leukemia virus type-2 (HTLV-2) integrase (IN) catalyzes the insertion of the viral genome into the host chromosome. HTLV-2 IN was expressed as an N-terminal hexa-histidine tagged protein in the methylotrophic yeast Pichia pastoris and as a C-terminal hexa-histidine fusion in Escherichia coli. Maximal IN expression was observed at 48h post-induction for the yeast system and 2h post-induction for E. coli. Effective purification strategies were developed using non-ionic and zwitterionic detergents for initial protein extraction, followed by a one-step nickel-chelating chromatography purification. IN from both sources was routinely greater than 90% pure with yields exceeding 1.5mg of purified IN per liter of culture for P. pastoris. The relative pI was defined for both INs, pH 5.0-5.4, by 2D-gel electrophoresis. Specific activities for IN purified from E. coli and P. pastoris were calculated from in vitro 3(') processing assays and were comparable. In vitro IN assays were also performed to optimize reaction buffer pH and metal concentrations for both 3(') processing and strand transfer assays. Strand transfer was optimal from pH 6.2-6.8, more than 1.5 pH units below the optimal 3(') processing pH of 8.3. IN from both sources showed no enhancement in activity with MnCl(2) concentrations greater than 5mM. The specific activity of P. pastoris purified IN was 0.35 product (pmol)/h/microg IN, and E. coli produced IN was 0.48 product (pmol)/h/microg IN.
Collapse
Affiliation(s)
- Andrew J Piefer
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | | |
Collapse
|
16
|
Werner S, Hindmarsh P, Napirei M, Vogel-Bachmayr K, Wöhrl BM. Subcellular localization and integration activities of rous sarcoma virus reverse transcriptase. J Virol 2002; 76:6205-12. [PMID: 12021354 PMCID: PMC136205 DOI: 10.1128/jvi.76.12.6205-6212.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse transcriptases (RTs) alphabeta and beta from avian Rous sarcoma virus (RSV) harbor an integrase domain which is absent in nonavian retroviral RTs. RSV integrase contains a nuclear localization signal which enables the enzyme to enter the nucleus of the cell in order to perform integration of the proviral DNA into the host genome. In the present study we analyzed the subcellular localization of RSV RT, since previous results indicated that RSV finishes synthesis of the proviral DNA in the nucleus. Our results demonstrate that the heterodimeric RSV RT alphabeta and the beta subunit, when expressed independently, can be detected in the nucleus, whereas the separate alpha subunit lacking the integrase domain is prevalent in the cytoplasm. These data suggest an involvement of RSV RT in the transport of the preintegration complex into the nucleus. In addition, to analyze whether the integrase domain, located at the carboxyl terminus of beta, exhibits integration activities, we investigated the nicking and joining activities of heterodimeric RSV RT alphabeta with an oligodeoxynucleotide-based assay system and with a donor substrate containing the supF gene flanked by the viral long terminal repeats. Our data show that RSV RT alphabeta is able to perform the integration reaction in vitro; however, it does so with an estimated 30-fold lower efficiency than the free RSV integrase, indicating that RSV RT is not involved in integration in vivo. Integration with RSV RT alphabeta could be stimulated in the presence of human immunodeficiency virus type 1 nucleocapsid protein or HMG-I(Y).
Collapse
Affiliation(s)
- Susanne Werner
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Physikalische Biochemie, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
17
|
Bao KK, Skalka AM, Wong I. Presteady-state analysis of avian sarcoma virus integrase. II. Reverse-polarity substrates identify preferential processing of the U3-U5 pair. J Biol Chem 2002; 277:12099-108. [PMID: 11821408 DOI: 10.1074/jbc.m111314200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrase-catalyzed insertion of the retroviral genome into the host chromosome involves two reactions in vivo: 1) the binding and endonucleolytic removal of the terminal dinucleotides of the viral DNA termini and 2) the recombination of the ends with the host DNA. Kukolj and Skalka (Kukolj, G., and Skalka, A. M. (1995) Genes Dev. 9, 2556-2567) have previously shown that tethering of the termini enhances the endonucleolytic activities of integrase. We have used 5'-5' phosphoramidites to design reverse-polarity tethers that allowed us to examine the reactivity of two viral long terminal repeat-derived sequences when concurrently bound to integrase and, additionally, developed presteady-state assays to analyze the initial exponential phase of the reaction, which is a measure of the amount of productive nucleoprotein complexes formed during preincubation of integrase and DNA. Furthermore, the reverse-polarity tether circumvents the integrase-catalyzed splicing reaction (Bao, K., Skalka, A. M., and Wong, I. (2002) J. Biol. Chem. 277, 12089-12098) that obscures accurate analysis of the reactivities of synapsed DNA substrates. Consequently, we were able to establish a lower limit of 0.2 s(-1) for the rate constant of the processing reaction. The analysis showed the physiologically relevant U3/U5 pair of viral ends to be the preferred substrate for integrase with the U3/U3 combination favored over the U5/U5 pair.
Collapse
Affiliation(s)
- Kogan K Bao
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
18
|
Brin E, Leis J. Changes in the mechanism of DNA integration in vitro induced by base substitutions in the HIV-1 U5 and U3 terminal sequences. J Biol Chem 2002; 277:10938-48. [PMID: 11788585 DOI: 10.1074/jbc.m108116200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reconstituted concerted human immunodeficiency virus type 1 (HIV-1) integration with specially designed mini-donor DNA, a supercoiled plasmid acceptor, purified bacterial-derived HIV-1 integrase (IN), and host HMG-I(Y) protein (Hindmarsh, P., Ridky, T., Reeves, R., Andrake, M., Skalka, A. M., and Leis, J. (1999) J. Virol. 73, 2994-3003). Integration in this system is dependent upon the mini donor DNA having IN recognition sequences at both ends and the reaction products have all of the features associated with integration of viral DNA in vivo. Using this system, we explored the relationship between the HIV-1 U3 and U5 IN recognition sequences by analyzing substrates that contain either two U3 or two U5 terminal sequences. Both substrates caused severe defects to integration but with different effects on the mechanism indicating that the U3 and the U5 sequences are both required for concerted DNA integration. We have also used the reconstituted system to compare the mechanism of integration catalyzed by HIV-1 to that of avian sarcoma virus by analyzing the effect of defined mutations introduced into U3 or U5 ends of the respective wild type DNA substrates. Despite sequence differences between avian sarcoma virus and HIV-1 IN and their recognition sequences, the consequences of analogous base pair substitutions at the same relative positions of the respective IN recognition sequences were very similar. This highlights the common mechanism of integration shared by these two different viruses.
Collapse
Affiliation(s)
- Elena Brin
- Department of Microbiology and Immunology, Northwestern University School of Medicine, Chicago, Illinois 60611, USA
| | | |
Collapse
|
19
|
Yang F, Roth MJ. Assembly and catalysis of concerted two-end integration events by Moloney murine leukemia virus integrase. J Virol 2001; 75:9561-70. [PMID: 11559787 PMCID: PMC114526 DOI: 10.1128/jvi.75.20.9561-9570.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Retroviral integration results in the stable and coordinated insertion of the two termini of the linear viral DNA into the host genome. An in vitro concerted two-end integration reaction catalyzed by the Moloney murine leukemia virus (M-MuLV) integrase (IN) was used to investigate the binding and coordination of the two viral DNA ends. Comparison of the two-end integration and strand transfer assays indicates that zinc is required for efficient concerted integration utilizing plasmid DNA as target. Complementation assays using a pair of nonoverlapping integrase domains, consisting of the HHCC domain and the core/C-terminal region, yielded products containing the correct 4-base target site duplication. The efficiency of the coordinated two-end integration varied depending on the order of addition of the individual protein and DNA components in the complementation assay. Two-end integration was most efficient when the long terminal repeat (LTR) was premixed with either the target DNA or the HHCC domain. The preference for two-end integration through preincubation of the HHCC finger with the viral DNA supports the role of this domain in the recognition and/or positioning of the LTR.
Collapse
Affiliation(s)
- F Yang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-- Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
20
|
Vora A, Grandgenett DP. DNase protection analysis of retrovirus integrase at the viral DNA ends for full-site integration in vitro. J Virol 2001; 75:3556-67. [PMID: 11264345 PMCID: PMC114847 DOI: 10.1128/jvi.75.8.3556-3567.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retrovirus intasomes purified from virus-infected cells contain the linear viral DNA genome and integrase (IN). Intasomes are capable of integrating the DNA termini in a concerted fashion into exogenous target DNA (full site), mimicking integration in vivo. Molecular insights into the organization of avian myeloblastosis virus IN at the viral DNA ends were gained by reconstituting nucleoprotein complexes possessing intasome characteristics. Assembly of IN-4.5-kbp donor complexes capable of efficient full-site integration appears cooperative and is dependent on time, temperature, and protein concentration. DNase I footprint analysis of assembled IN-donor complexes capable of full-site integration shows that wild-type U3 and other donors containing gain-of-function attachment site sequences are specifically protected by IN at low concentrations (<20 nM) with a defined outer boundary mapping ~20 nucleotides from the ends. A donor containing mutations in the attachment site simultaneously eliminated full-site integration and DNase I protection by IN. Coupling of wild-type U5 ends with wild-type U3 ends for full-site integration shows binding by IN at low concentrations probably occurs only at the very terminal nucleotides (<10 bp) on U5. The results suggest that assembly requires a defined number of avian IN subunits at each viral DNA end. Among several possibilities, IN may bind asymmetrically to the U3 and U5 ends for full-site integration in vitro.
Collapse
Affiliation(s)
- A Vora
- St. Louis University Health Sciences Center, Institute for Molecular Virology, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
21
|
Abstract
The retrovirus-like mobile genetic element of Saccharomyces cerevisiae, Ty1, transposes to new genomic locations via the element-encoded integrase (IN). Here we report that purified recombinant IN catalyzed correct integration of a linear DNA into a supercoiled target plasmid. Ty1 virus-like particles (VLPs) integrated donor DNA more efficiently than IN. VLP and IN-mediated insertions occurred at random sites in the target. Mg(2+) was preferred over Mn(2+) for correct integration, and neither cation enhanced nonspecific nuclease activity of IN. Products consistent with correct integration events were also obtained by Southern analysis. Recombinant IN and VLPs utilized many, but not all, linear donor fragments containing non-Ty1 ends, including a U3 mutation which has been shown to be defective for transposition in vivo. Together, our results suggest that IN is sufficient for Ty1 integration in vitro and IN interacts with exogenous donors less stringently than with endogenous elements.
Collapse
Affiliation(s)
- S P Moore
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, National Institutes of Health, Frederick, Maryland 21702-1201, USA.
| | | |
Collapse
|
22
|
Chiu R, Grandgenett DP. Avian retrovirus DNA internal attachment site requirements for full-site integration in vitro. J Virol 2000; 74:8292-8. [PMID: 10954527 PMCID: PMC116338 DOI: 10.1128/jvi.74.18.8292-8298.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Concerted integration of retrovirus DNA termini into the host chromosome in vivo requires specific interactions between the cis-acting attachment (att) sites at the viral termini and the viral integrase (IN) in trans. In this study, reconstruction experiments with purified avian myeloblastosis virus (AMV) IN and retrovirus-like donor substrates containing wild-type and mutant termini were performed to map the internal att DNA sequence requirements for concerted integration, here termed full-site integration. The avian retrovirus mutations were modeled after internal att site mutations studied at the in vivo level with human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). Systematic overlapping 4-bp deletions starting at nucleotide positions 7, 8, and 9 in the U3 terminus had a decreasing detrimental gradient effect on full-site integration, while more internal 4-bp deletions had little or no effect. This decreasing detrimental gradient effect was measured by the ability of mutant U3 ends to interact with wild-type U3 ends for full-site integration in trans. Modification of the highly conserved C at position 7 on the catalytic strand to either A or T resulted in the same severe decrease in full-site integration as the 4-bp deletion starting at this position. These studies suggest that nucleotide position 7 is crucial for interactions near the active site of IN for integration activity and for communication in trans between ends bound by IN for full-site integration. The ability of AMV IN to interact with internal att sequences to mediate full-site integration in vitro is similar to the internal att site requirements observed with MLV and HIV-1 in vivo and with their preintegration complexes in vitro.
Collapse
Affiliation(s)
- R Chiu
- Institute for Molecular Virology, St. Louis University Health Sciences Center, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
23
|
Morgan AL, Katzman M. Subterminal viral DNA nucleotides as specific recognition signals for human immunodeficiency virus type 1 and visna virus integrases under magnesium-dependent conditions. J Gen Virol 2000; 81:839-49. [PMID: 10675422 DOI: 10.1099/0022-1317-81-3-839] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many reports describe the characteristics of susceptible viral DNA substrates to various retroviral integrases during in vitro reactions in which manganese serves as the divalent cation cofactor for site-specific nicking. However, manganese is known to alter the specificity of some endonucleases and magnesium may be the divalent cation used during retroviral integration in vivo. To address these concerns, we identified conditions under which the integrases of human immunodeficiency virus type 1 and visna virus were optimally active with magnesium (the first time such activity was shown for visna virus integrase) and used these conditions to test the susceptibility of a series of oligodeoxynucleotide substrates. The data show that two base pairs immediately internal to the conserved CA dinucleotide near the termini of retroviral DNA are selectively recognized by the two integrases and that the final six base pairs of viral DNA contain sufficient sequence information for specific recognition and cleavage by each enzyme. The results validate the importance of the subterminal viral DNA positions even in the presence of magnesium and identify viral DNA positions that functionally interact with integrase. The data obtained under magnesium-dependent conditions, which were obtained with substrates containing single and multiple base-pair substitutions and two different retroviral integrases, are consistent with those previously obtained with manganese. Thus, the large body of manganese-dependent data identifying terminal viral DNA positions that are important in substrate recognition by various integrases likely reflects interactions that are biologically relevant.
Collapse
Affiliation(s)
- A L Morgan
- Department of Microbiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA
| | | |
Collapse
|
24
|
Goodarzi G, Pursley M, Felock P, Witmer M, Hazuda D, Brackmann K, Grandgenett D. Efficiency and fidelity of full-site integration reactions using recombinant simian immunodeficiency virus integrase. J Virol 1999; 73:8104-11. [PMID: 10482559 PMCID: PMC112826 DOI: 10.1128/jvi.73.10.8104-8111.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Full-site integration by recombinant wild-type and mutant simian immunodeficiency virus (SIV) integrase (IN) was investigated with linear retrovirus-like DNA (469 bp) as a donor substrate and circular DNA (2,867 bp) as a target substrate. Under optimized conditions, recombinant SIV IN produced donor-target products consistent with full-site (two donor ends) and half-site (one donor end) reactions with equivalent frequency. Restriction enzyme analysis of the 3.8-kbp full-site reaction products confirmed the concerted insertion of two termini from separate donors into a single target molecule. Donor ends carrying the viral U5 termini were preferred over U3 termini for producing both half-site and full-site products. Bacterial genetic selection was used to isolate individual donor-target recombinants, and the donor-target junctions of the cloned products were characterized by sequencing. Analysis of 149 recombinants demonstrated approximately 84% fidelity for the appropriate simian retrovirus 5-bp host duplication. As seen previously in similar reactions with human immunodeficiency virus type 1 (HIV-1) IN from lysed virions, approximately 8% of the donor-target recombinants generated with recombinant SIV IN incurred specific 17- to 18- or 27- to 29-bp deletions. The efficiency and fidelity of the full-site integration reaction mediated by the purified, recombinant SIV IN is comparable to that of HIV-1 IN from virions. These observations suggest that a purified recombinant lentivirus IN is itself sufficient to recapitulate the full-site integration process.
Collapse
Affiliation(s)
- G Goodarzi
- Institute for Molecular Virology, St. Louis University Health Sciences Center, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Carteau S, Gorelick RJ, Bushman FD. Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein. J Virol 1999; 73:6670-9. [PMID: 10400764 PMCID: PMC112751 DOI: 10.1128/jvi.73.8.6670-6679.1999] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of retroviral cDNA involves coupled joining of the two ends of the viral genome at precisely spaced positions in the host cell DNA. Correct coupled joining is essential for viral replication, as shown, for example, by the finding that viral mutants defective in coupled joining are defective in integration and replication. To date, reactions with purified human immunodeficiency virus type 1 (HIV-1) integrase protein in vitro have supported mainly uncoupled joining of single cDNA ends. We have analyzed an activity stimulating coupled joining present in HIV-1 virions, which led to the finding that the HIV-1 nucleocapsid (NC) protein can stimulate coupled joining more than 1,000-fold under some conditions. The requirements for stimulating coupled joining were investigated in assays with mutant NC proteins, revealing that mutations in the zinc finger domains can influence stimulation of integration. These findings (i) provide a means for assembling more authentic integrase complexes for mechanistic studies, (ii) reveal a new activity of NC protein in vitro, (iii) indicate a possible role for NC in vivo, and (iv) provide a possible method for identifying a new class of inhibitors that disrupt coupled joining.
Collapse
Affiliation(s)
- S Carteau
- Infectious Disease Laboratory, Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
26
|
McCord M, Chiu R, Vora AC, Grandgenett DP. Retrovirus DNA termini bound by integrase communicate in trans for full-site integration in vitro. Virology 1999; 259:392-401. [PMID: 10388663 DOI: 10.1006/viro.1999.9782] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integration of linear retrovirus DNA involves the concerted insertion of the viral termini (full-site integration) into the host chromosome. We investigated the interactions that occur between long terminal repeat (LTR) termini bound by avian retrovirus integrase (IN) for full-site integration in vitro. Wild-type (wt) or mutant LTR donors that possess gain-of-function ("G") or loss-of-function ("L") for full-site integration activity were used. G LTR termini are characterized as having significantly higher strand transfer activity than the wt and the L LTR termini. L LTR mutations are classified as partially or extremely defective for strand transfer activity. The L mutations were further classified by their ability to either permit or block the assembly of G or wt LTR termini into nucleoprotein complexes capable of full-site strand transfer. We demonstrated that avian myeloblastosis virus IN bound to G LTR termini increased the incorporation of partially defective L LTR termini into nucleoprotein complexes that were capable of full-site integration. The observed full-site integration activity of these assembled nucleoprotein complexes appeared to be influenced by each individual IN-LTR complex in trans. In contrast, extremely defective L LTR termini exhibited the ability to effectively block the assembly of wt LTR termini into nucleoprotein complexes capable of full-site strand transfer. Data from nonspecific DNA competition experiments suggested that IN had an apparent higher affinity for G LTR donor termini than for partially defective L LTR donor termini as measured by full-site integration activity. However, assembled nucleoprotein complexes containing either two G or two L LTR donors were stable, having a similar half-life of approximately 2 h on ice. The results suggest that LTR termini bound by IN exhibit an allosteric effect to modulate full-site integration in vitro. Similar regulatory controls also appear to exist in vivo between the wt U3 and wt U5 LTR termini in retroviruses as well as purified retrovirus preintegration complexes that promoted full-site integration in vitro.
Collapse
Affiliation(s)
- M McCord
- St. Louis University Health Sciences Center, Institute for Molecular Virology, 3681 Park Ave., St. Louis, 63110, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Substrate recognition by the retroviral IN enzyme is critical for retroviral integration. To catalyze this recombination event, IN must recognize and act on two types of substrates, viral DNA and host DNA, yet the necessary interactions exhibit markedly different degrees of specificity. Although particular sequences at the viral DNA termini are recognized by IN, many host DNA sequences can serve as the target for integration. Over the last decade, both in vitro and in vivo data have contributed to our understanding of how IN recognizes its substrates. This review provides an overview of the sequence and structure requirements for recognition of viral and host DNA by different retroviral INs and discusses recent progress in mapping protein domains involved in these interactions.
Collapse
Affiliation(s)
- M Katzman
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033-0850, USA
| | | |
Collapse
|
28
|
Affiliation(s)
- F D Bushman
- Infectious Disease Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
29
|
McCord M, Stahl SJ, Mueser TC, Hyde CC, Vora AC, Grandgenett DP. Purification of recombinant Rous sarcoma virus integrase possessing physical and catalytic properties similar to virion-derived integrase. Protein Expr Purif 1998; 14:167-77. [PMID: 9790878 DOI: 10.1006/prep.1998.0954] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant Rous sarcoma virus integrase cloned from the Prague A (PrA) virus strain was expressed in Escherichia coli. Here we report the detailed purification procedure resulting in an apparently homogeneous integrase. Recombinant PrA integrase was compared at both the protein structural and the catalytic levels to avian myeloblastosis virus integrase purified from virions. Both proteins exist minimally in a dimeric state at low nanomolar concentrations as analyzed by glycerol gradient sedimentation and protein crosslinking studies. Likewise, both proteins have similar specific activities for full-site (concerted integration reaction) and half-site strand transfer activities using linear 480-bp retrovirus-like donor substrates that contain wild-type or mutant termini. They respond similarly to high NaCl concentrations ( approximately 350 mM) as well as aprotic solvents for efficient full-site strand transfer. The data suggest that recombinant integrase proteins with physical and catalytic properties similar to the virion counterpart can be purified using these techniques and will faithfully and efficiently promote the full-site integration reaction in vitro.
Collapse
Affiliation(s)
- M McCord
- Institute for Molecular Virology, St. Louis University Health Sciences Center, St. Louis, Missouri, 63110, USA
| | | | | | | | | | | |
Collapse
|
30
|
Li L, Farnet CM, Anderson WF, Bushman FD. Modulation of activity of Moloney murine leukemia virus preintegration complexes by host factors in vitro. J Virol 1998; 72:2125-31. [PMID: 9499068 PMCID: PMC109507 DOI: 10.1128/jvi.72.3.2125-2131.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1997] [Accepted: 11/25/1997] [Indexed: 02/06/2023] Open
Abstract
We have explored the requirements for host proteins in the integration of Moloney murine leukemia virus (MoMuLV) cDNA in vitro. Following infection, it is possible to lyse cells and obtain preintegration complexes (PICs) capable of integrating the MoMuLV cDNA into an added target DNA in vitro (intermolecular integration). PICs can be stripped of required proteins by gel filtration in high-salt buffers (600 mM KCI), allowing the nature of the removed factors to be investigated by in vitro reconstitution. In a previous study of human immunodeficiency virus type 1 (HIV-1) PICs, the host protein HMG I(Y) was found to be able to restore activity to salt-stripped PICs. In contrast, salt stripping and reconstitution of MoMuLV PICs led to the proposal that a host factor is important for a different activity, blocking integration into the cDNA itself (autointegration). In this report, we investigated reconstitution of salt-stripped MoMuLV PICs and found that addition of cellular extract from uninfected NIH 3T3 cells could block autointegration and also restore intermolecular integration. Isolation of the intermolecular integration-complementing activity yielded HMG I(Y), as in the HIV-1 case. However, HMG I(Y) could not block autointegration, implicating a different host factor in this process. Additionally, when MoMuLV PICs were partially purified but not salt stripped, the intermolecular integration activity was reduced but could be stimulated by the addition of any of several purified DNA binding proteins. In summary, three activities were detected: (i) the intermolecular integration cofactor HMG I(Y), (ii) an autointegration barrier protein, and (iii) stimulatory DNA binding proteins.
Collapse
Affiliation(s)
- L Li
- Gene Therapy Laboratories, Norris Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | |
Collapse
|
31
|
Wei SQ, Mizuuchi K, Craigie R. A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J 1997; 16:7511-20. [PMID: 9405379 PMCID: PMC1170350 DOI: 10.1093/emboj/16.24.7511] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have probed the nucleoprotein organization of Moloney murine leukemia virus (MLV) pre-integration complexes using a novel footprinting technique that utilizes a simplified in vitro phage Mu transposition system. We find that several hundred base pairs at each end of the viral DNA are organized in a large nucleoprotein complex, which we call the intasome. This structure is not formed when pre-integration complexes are made by infecting cells with integrase-minus virus, demonstrating a requirement for integrase. In contrast, footprinting of internal regions of the viral DNA did not reveal significant differences between pre-integration complexes with and without integrase. Treatment with high salt disrupts the intasome in parallel with loss of intermolecular integration activity. We show that a cellular factor is required for reconstitution of the intasome. Finally, we demonstrate that DNA-protein interactions involving extensive regions at the ends of the viral DNA are functionally important for retroviral DNA integration activity. Current in vitro integration systems utilizing purified integrase lack the full fidelity of the in vivo reaction. Our results indicate that both host factors and long viral DNA substrates may be required to reconstitute an in vitro system with all the hallmarks of DNA integration in vivo.
Collapse
Affiliation(s)
- S Q Wei
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
32
|
Vora AC, Chiu R, McCord M, Goodarzi G, Stahl SJ, Mueser TC, Hyde CC, Grandgenett DP. Avian retrovirus U3 and U5 DNA inverted repeats. Role Of nonsymmetrical nucleotides in promoting full-site integration by purified virion and bacterial recombinant integrases. J Biol Chem 1997; 272:23938-45. [PMID: 9295344 DOI: 10.1074/jbc.272.38.23938] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The U3 and U5 termini of linear retrovirus DNA contain imperfect inverted repeats that are necessary for the concerted insertion of the termini into the host chromosome by viral integrase. Avian myeloblastosis virus integrase can efficiently insert the termini of retrovirus-like DNA donor substrates (480 base pairs) by a concerted mechanism (full-site reaction) into circular target DNA in vitro. The specific activities of virion-derived avian myeloblastosis virus integrase and bacterial recombinant Rous sarcoma virus (Prague A strain) integrase (approximately 50 nM or less) appear similar upon catalyzing the full-site reaction with 3'-OH recessed wild type or mutant donor substrates. We examined the role of the three nonsymmetrical nucleotides located at the 5th, 8th, and 12th positions in the U3 and U5 15-base pair inverted repeats for their ability to modify the full-site and simultaneously, the half-site strand transfer reactions. Our data suggest that the nucleotide at the 5th position appears to be responsible for the 3-5-fold preference for wild type U3 ends over wild type U5 ends by integrase for concerted integration. Additional mutations at the 5th or 6th position, or both, of U3 or U5 termini significantly increased (approximately 3 fold) the full-site reactions of mutant donors over wild type donors.
Collapse
Affiliation(s)
- A C Vora
- St. Louis University Health Sciences Center, Institute for Molecular Virology, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Goodarzi G, Chiu R, Brackmann K, Kohn K, Pommier Y, Grandgenett DP. Host site selection for concerted integration by human immunodeficiency virus type-1 virions in vitro. Virology 1997; 231:210-7. [PMID: 9168883 DOI: 10.1006/viro.1997.8558] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Host site selection for full-site integration by human immunodeficiency virus type-1 (HIV-1) intergrase (IN) from nonionic detergent-lysed virions was investigated. Linear retrovirus-like DNA (469 bp) possessing 3' OH recessed long terminal repeat termini was efficiently inserted by a bimolecular donor reaction into a supercoiled DNA target (2867 bp), producing the HIV-1 5-bp host site duplication. Sequence data were analyzed from 193 donor-target recombinants obtained from the linear 3.8-kb DNA product. The selection of host target sites appeared randomly distributed and was independent of lysis and assay conditions. The fidelity of the 5-bp duplications in comparison to other size duplications was highest (94%) with high-salt (300 mM NaCl) lysis of the virions and 60 mM NaCl for strand transfer using Mg2+ as the divalent cation. Base sequence analysis demonstrated some biases in the 5-bp duplications at the sites of strand transfer and at the immediate host sequences surrounding the duplications. In addition to the observed duplications, approximately 30% of the recombinants isolated from the linear 3.8-kb DNA product contained specific and repetitive small-size deletions. No deletions smaller that 17 bp were observed and the distance between the deletion sets had a periodicity of approximately 10 bp. The mechanisms involved in how HIV-1 IN produces the 5-bp duplications and the repetitive host site deletions are discussed.
Collapse
Affiliation(s)
- G Goodarzi
- Institute for Molecular Virology, St. Louis University Health Sciences Center, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hansen MS, Bushman FD. Human immunodeficiency virus type 2 preintegration complexes: activities in vitro and response to inhibitors. J Virol 1997; 71:3351-6. [PMID: 9060709 PMCID: PMC191478 DOI: 10.1128/jvi.71.4.3351-3356.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have established an assay for the function of preintegration complexes (PICs) of human immunodeficiency virus type 2 (HIV-2) to investigate the integration mechanism and to develop additional methods for screening candidate integration inhibitors. We partially purified HIV-2 PICs and found that they were competent to integrate viral cDNA into target DNA in vitro. Analysis of the structure of integration products on Southern blots revealed forms consistent with those expected for authentic integration products and circular forms containing one and two long terminal repeats. To determine whether in vitro products had the detailed structure expected of integration products formed in vivo, we recovered product molecules and analyzed junctions between viral DNA and target DNA. In the integration junctions of all nine molecules examined, we observed the 5-bp duplication of target sequence characteristic of integration in vivo. We investigated the possible role in integration of Vpx, a protein present in HIV-2 but not HIV-1 and known to be present in viral cores. Although association of Vpx with viral cDNA was detectable, our studies revealed no obvious role of Vpx in integration since the activities of PICs from Vpx- virions were indistinguishable from those of wild type. We have also investigated the use of HIV-2 PICs as tools to screen candidate HIV inhibitors. Assays with HIV-2 PICs, like assays with HIV-1 PICs, were less sensitive to many small molecule inhibitors than were reactions with purified integrase only. Comparing results of assays with PICs from HIV-1 and HIV-2 may be particularly useful, since inhibitors active against both may be more widely useful and less vulnerable to escape mutants.
Collapse
Affiliation(s)
- M S Hansen
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
35
|
Singh IR, Crowley RA, Brown PO. High-resolution functional mapping of a cloned gene by genetic footprinting. Proc Natl Acad Sci U S A 1997; 94:1304-9. [PMID: 9037048 PMCID: PMC19786 DOI: 10.1073/pnas.94.4.1304] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We describe an efficient method for introducing and analyzing a comprehensive set of mutations in a cloned gene to map its functional organization. The technique, genetic footprinting, uses a retroviral integrase to generate a comprehensive library of mutants, each of which bears a single insertion of a defined oligonucleotide at a random position in the gene of interest. This mutant library is selected for gene function en masse. DNA samples are isolated from the library both before and after selection, and the mutations represented in each sample are then analyzed. The analysis is designed so that a mutation at a particular location gives rise to an electrophoretic band of discrete mobility. For the whole library, this results in a ladder of bands, each band representing a specific mutation. Mutants in which the inserted sequence disrupts a feature that is required for the selected function, ipso facto, fail the selection. The corresponding bands are therefore absent from the ladder of bands obtained from the library after selection, giving rise to a footprint representing features of the gene that are essential for the selected function. Because the sequence of the inserted oligonucleotide is known, and its position can be inferred precisely from the electrophoretic mobility of the corresponding band, the precise location and sequence of mutations that disrupt gene function can be determined without isolating or sequencing individual mutants. This method should be generally applicable for saturation mutagenesis and high-resolution functional mapping of cloned DNA sequences.
Collapse
Affiliation(s)
- I R Singh
- Department of Biochemistry, Stanford University Medical Center, CA 94305-5428, USA
| | | | | |
Collapse
|
36
|
Hazuda D, Felock P, Hastings J, Pramanik B, Wolfe A, Goodarzi G, Vora A, Brackmann K, Grandgenett D. Equivalent inhibition of half-site and full-site retroviral strand transfer reactions by structurally diverse compounds. J Virol 1997; 71:807-11. [PMID: 8985421 PMCID: PMC191122 DOI: 10.1128/jvi.71.1.807-811.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In vitro assay systems which use recombinant retroviral integrase (IN) and short DNA oligonucleotides fail to recapitulate the full-site integration reaction as it is known to occur in vivo. The relevance of using such circumscribed in vitro assays to define inhibitors of retroviral integration has not been formerly demonstrated. Therefore, we analyzed a series of structurally diverse inhibitors with respect to inhibition of both half-site and full-site strand transfer reactions with either recombinant or virion-produced IN. Half-site and full-site reactions catalyzed by avian myeloblastosis virus and human immunodeficiency virus type 1 (HIV-1) IN from virions are shown to be equivalently sensitive to inhibition by compounds which inhibit half-site reactions catalyzed by the recombinant HIV-1 IN. These studies therefore support the utility of using in vitro assays employing either recombinant or virion-derived IN to identify inhibitors of integration.
Collapse
Affiliation(s)
- D Hazuda
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | |
Collapse
|