1
|
Abstract
As the largest RNA virus, coronavirus replication employs complex mechanisms and involves various viral and cellular proteins. The first open reading frame of the coronavirus genome encodes a large polyprotein, which is processed into a number of viral proteins required for viral replication directly or indirectly. These proteins include the RNA-dependent RNA polymerase (RdRp), RNA helicase, proteases, metal-binding proteins, and a number of other proteins of unknown function. Genetic studies suggest that most of these proteins are involved in viral RNA replication. In addition to viral proteins, several cellular proteins, such as heterogeneous nuclear ribonucleoprotein (hnRNP) A1, polypyrimidine-tract-binding (PTB) protein, poly(A)-binding protein (PABP), and mitochondrial aconitase (m-aconitase), have been identified to interact with the critical cis-acting elements of coronavirus replication. Like many other RNA viruses, coronavirus may subvert these cellular proteins from cellular RNA processing or translation machineries to play a role in viral replication.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Campus Universidad Autónoma, Cantoblanco, 38049 Madrid, Spain
| |
Collapse
|
2
|
Abstract
In addition to the SARS coronavirus (treated separately elsewhere in this volume), the complete genome sequences of six species in the coronavirus genus of the coronavirus family [avian infectious bronchitis virus-Beaudette strain (IBV-Beaudette), bovine coronavirus-ENT strain (BCoV-ENT), human coronavirus-229E strain (HCoV-229E), murine hepatitis virus-A59 strain (MHV-A59), porcine transmissible gastroenteritis-Purdue 115 strain (TGEV-Purdue 115), and porcine epidemic diarrhea virus-CV777 strain (PEDV-CV777)] have now been reported. Their lengths range from 27,317 nt for HCoV-229E to 31,357 nt for the murine hepatitis virus-A59, establishing the coronavirus genome as the largest known among RNA viruses. The basic organization of the coronavirus genome is shared with other members of the Nidovirus order (the torovirus genus, also in the family Coronaviridae, and members of the family Arteriviridae) in that the nonstructural proteins involved in proteolytic processing, genome replication, and subgenomic mRNA synthesis (transcription) (an estimated 14–16 end products for coronaviruses) are encoded within the 5′-proximal two-thirds of the genome on gene 1 and the (mostly) structural proteins are encoded within the 3′-proximal one-third of the genome (8–9 genes for coronaviruses). Genes for the major structural proteins in all coronaviruses occur in the 5′ to 3′ order as S, E, M, and N. The precise strategy used by coronaviruses for genome replication is not yet known, but many features have been established. This chapter focuses on some of the known features and presents some current questions regarding genome replication strategy, the cis-acting elements necessary for genome replication [as inferred from defective interfering (DI) RNA molecules], the minimum sequence requirements for autonomous replication of an RNA replicon, and the importance of gene order in genome replication.
Collapse
Affiliation(s)
- D A Brian
- Departments of Microbiology and Pathobiology, University of Tennessee, College of Veterinary Medicine, Knoxville, TN 37996-0845, USA.
| | | |
Collapse
|
3
|
Narayanan K, Kim KH, Makino S. Characterization of N protein self-association in coronavirus ribonucleoprotein complexes. Virus Res 2004; 98:131-40. [PMID: 14659560 PMCID: PMC7125804 DOI: 10.1016/j.virusres.2003.08.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mouse hepatitis virus (MHV) nucleocapsid (N) protein binds to the large, single-stranded, positive-sense viral genomic RNA to form a helical nucleocapsid structure in mature virions. In addition N protein binds the intracellular form of the genomic RNA, all of the MHV subgenomic mRNAs, and expressed non-MHV RNA transcripts to form ribonucleoprotein (RNP) complexes in infected cells. Among the intracellular viral RNP complexes, only the genomic RNP complex is packaged into virus particles. The present study demonstrated that N protein in the MHV virion nucleocapsid and in the intracellular genome-length RNP complex that bound to viral envelope M protein was tightly self-associated such that its association was retained even after extensive RNase A-treatment of the RNP complexes. The RNase A-resistant tight N protein association in the virion nucleocapsid was not mediated by an intermolecular disulfide bridge between N proteins. In contrast, N protein association in the majority of the intracellular RNP complexes was susceptible to RNase A-treatment. Because the RNP complexes that specifically interact with the M protein are selectively packaged into MHV particles, the present data suggested that there was a distinct difference between N protein association in viral genomic RNP complexes that undergo packaging into virus particles and the subgenomic RNP complexes that are not packaged into MHV particles.
Collapse
Affiliation(s)
- Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, USA
| | | | | |
Collapse
|
4
|
Che X, Dawson WO, Bar-Joseph M. Defective RNAs of Citrus tristeza virus analogous to Crinivirus genomic RNAs. Virology 2003; 310:298-309. [PMID: 12781717 DOI: 10.1016/s0042-6822(03)00127-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The family Closteroviridae includes the genera Closterovirus and Ampelovirus with monopartite genomes and the genus Crinivirus with bipartite genomes. Plants infected with the Closterovirus, Citrus tristeza virus (CTV), often contain one or more populations of defective RNAs (dRNAs). Although most dRNAs are comparatively small (2-5 kb) consisting of the genomic RNA termini with large internal deletions, we recently characterized large dRNAs of approximately 12 kb that retained the open reading frames (ORFs) 1a plus 1b. These were self-replicating RNAs and appeared to be analogous to the genomic RNA 1 of the bipartite criniviruses. The present report describes the finding of an additional group of large dRNAs (LdRNAs) that retained all or most of the 10 3' ORFs and appeared to be analogous to genomic RNA 2 of criniviruses. Isolates associated with LdRNAs were found associated with double-recombinant dRNAs (DR-dRNAs) of various sizes (1.7 to 5.1 kb) that comprised the two termini and a noncontiguous internal sequence from ORF2. The genetic and epidemiological implications of the architectural identities of LdRNAs and DR dRNAs and their apparent analogy with the genomic RNA 2 of criniviruses are discussed.
Collapse
Affiliation(s)
- Xibing Che
- The S. Tolkowsky Laboratory, Department of Virology, Agricultural Research Organization, the Volcani Center, Bet Dagan, Israel
| | | | | |
Collapse
|
5
|
Maeda A, Lee BH, Yoshimatsu K, Saijo M, Kurane I, Arikawa J, Morikawa S. The intracellular association of the nucleocapsid protein (NP) of hantaan virus (HTNV) with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). Virology 2003; 305:288-97. [PMID: 12573574 DOI: 10.1006/viro.2002.1767] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9) conjugates SUMO-1 to target proteins and modulates cellular processes such as signal transduction, transcription regulation, and cell growth regulation. We demonstrated here that the nucleocapsid protein (NP) of Hantaan virus (HTNV) was associated with Ubc9 and SUMO-1 in vivo. Analysis of the interaction between the truncated NPs and Ubc9 revealed that the amino acid residues at the positions between 101 and 238 in the NP were responsible for the interaction. Furthermore, a consensus binding motif of Ubc9 and SUMO-1, MKAE, within this region, especially the second amino acid of the motif, K residue, was crucial for the interaction, and the interaction was essential for the NP to be localized in the perinuclear region. These results indicate that the assembly of the HTNV-NP is regulated by the interaction between the NP and Ubc9. This is the first report to demonstrate the interaction of Ubc9 with a structural protein of negative-strand RNA viruses.
Collapse
Affiliation(s)
- Akihiko Maeda
- Department of Virology 1, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Che X, Mawassi M, Bar-Joseph M. A novel class of large and infectious defective RNAs of Citrus tristeza virus. Virology 2002; 298:133-45. [PMID: 12093181 DOI: 10.1006/viro.2002.1472] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Citrus tristeza virus (CTV)-infected plants contain one or more populations of defective RNAs (dRNAs), mostly with a size range of ca. 2.0 to 5.0 kb. Several CTV dRNAs have been characterized and found to consist mainly of the two termini of the genomic RNA, with extensive internal deletions. The present paper describes a new class of large ( approximately 12.0 kb) dRNAs from three different CTV isolates with two unusual features. First is their composition with intact replicase genes. These dRNAs contained a large 5' portion of the genomic RNA terminus, which apparently corresponded to the recently described 5' large single-stranded subgenomic RNA (sgRNA) of ORF1a+1b (Che et al., 2001). The 3' portion of the large dRNAs varied among the 10 different cDNA clones examined in this work. In 2 dRNAs this portion consisted of truncated ORF10 (p20), and in 5 dRNAs it contained truncated ORF11 (p23). Two dRNA molecules were found with a 3' portion that started in the exact 5' position of the intergenic region between the p20 and p23 ORFs. In one dRNA, this portion coincided with the full-length sgRNA corresponding to ORF10. The second unusual feature was their ability to be readily transmitted mechanically to citrus plants by stem slashing and also to Nicotiana benthamiana protoplasts. The possibility that these dRNAs may be encapsidated and be capable of self-replication is discussed.
Collapse
Affiliation(s)
- Xibing Che
- The S. Tolkowsky Laboratory, Agricultural Research Organization, the Volcani Center, Bet Dagan, Israel
| | | | | |
Collapse
|
7
|
Abstract
Naturally occurring defective interfering RNAs have been found in 4 of 14 coronavirus species. They range in size from 2.2 kb to approximately 25 kb, or 80% of the 30-kb parent virus genome. The large DI RNAs do not in all cases appear to require helper virus for intracellular replication and it has been postulated that they may on their own function as agents of disease. Coronavirus DI RNAs appear to arise by internal deletions (through nonhomologous recombination events) on the virus genome or on DI RNAs of larger size by a polymerase strand-switching (copy-choice) mechanism. In addition to their use in the study of virus RNA replication and virus assembly, coronavirus DI RNAs are being used in a major way to study the mechanism of a high-frequency, site-specific RNA recombination event that leads to leader acquisition during virus replication (i.e., the leader fusion event that occurs during synthesis of subgenomic mRNAs, and the leader-switching event that can occur during DI RNA replication), a distinguishing feature of coronaviruses (and arteriviruses). Coronavirus DI RNAs are also being engineered as vehicles for the generation of targeted recombinants of the parent virus genome.
Collapse
Affiliation(s)
- David A Brian
- Department of Microbiology, College of Veterinary Medicine, M409 Walters Life Sciences Building, University of Tennessee, Knoxville, Tennessee, 37996-0845
| | - Willy J M Spaan
- Department of Virology, Institute of Medical Microbiology, Leiden University, 2300, RC Leiden, The Netherlands
| |
Collapse
|
8
|
Thiel V, Herold J, Schelle B, Siddell SG. Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 2001; 75:6676-81. [PMID: 11413334 PMCID: PMC114390 DOI: 10.1128/jvi.75.14.6676-6681.2001] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2001] [Accepted: 04/23/2001] [Indexed: 12/23/2022] Open
Abstract
We have used vaccinia virus as a vector to clone a 22.5-kbp cDNA that represents the 5' and 3' ends of the human coronavirus 229E (HCoV 229E) genome, the HCoV 229E replicase gene, and a single reporter gene (coding for green fluorescent protein [GFP]) located downstream of a regulatory element for coronavirus mRNA transcription. When RNA transcribed from this cDNA was transfected into BHK-21 cells, a small percentage of cells displayed strong fluorescence. A region of the mRNA encoding GFP was amplified by PCR and shown to have the unique mRNA leader-body junction indicative of coronavirus-mediated transcription. These data show that the coronavirus replicase gene products suffice for discontinuous subgenomic mRNA transcription.
Collapse
Affiliation(s)
- V Thiel
- Institute of Virology and Immunology, University of Würzburg, 97078 Würzburg, Germany.
| | | | | | | |
Collapse
|
9
|
Banerjee S, An S, Zhou A, Silverman RH, Makino S. RNase L-independent specific 28S rRNA cleavage in murine coronavirus-infected cells. J Virol 2000; 74:8793-802. [PMID: 10982321 PMCID: PMC102073 DOI: 10.1128/jvi.74.19.8793-8802.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized a novel 28S rRNA cleavage in cells infected with the murine coronavirus mouse hepatitis virus (MHV). The 28S rRNA cleavage occurred as early as 4 h postinfection (p.i.) in MHV-infected DBT cells, with the appearance of subsequent cleavage products and a decrease in the amount of intact 28S rRNA with increasing times of infection; almost all of the intact 28S rRNA disappeared by 24 h p.i. In contrast, no specific 18S rRNA cleavage was detected in infected cells. MHV-induced 28S rRNA cleavage was detected in all MHV-susceptible cell lines and all MHV strains tested. MHV replication was required for the 28S rRNA cleavage, and mature cytoplasmic 28S rRNA underwent cleavage. In certain combination of cells and viruses, pretreatment of virus-infected cells with interferon activates a cellular endoribonuclease, RNase L, that causes rRNA degradation. No interferon was detected in the inoculum used for MHV infection. Addition of anti-interferon antibody to MHV-infected cells did not inhibit 28S rRNA cleavage. Furthermore, 28S rRNA cleavage occurred in an MHV-infected mouse embryonic fibroblast cell line derived from RNase L knockout mice. Thus, MHV-induced 28S rRNA cleavage was independent of the activation of RNase L. MHV-induced 28S rRNA cleavage was also different from apoptosis-related rRNA degradation, which usually occurs concomitantly with DNA fragmentation. In MHV-infected 17Cl-1 cells, 28S rRNA cleavage preceded DNA fragmentation by at least 18 h. Blockage of apoptosis in MHV-infected 17Cl-1 cells by treatment with a caspase inhibitor did not block 28S rRNA cleavage. Furthermore, MHV-induced 28S rRNA cleavage occurred in MHV-infected DBT cells that do not show apoptotic signs, including activation of caspase-3 and DNA fragmentation. Thus, MHV-induced 28S rRNA cleavage appeared to differ from any rRNA degradation mechanism described previously.
Collapse
Affiliation(s)
- S Banerjee
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1019, USA
| | | | | | | | | |
Collapse
|
10
|
Narayanan K, Maeda A, Maeda J, Makino S. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol 2000; 74:8127-34. [PMID: 10933723 PMCID: PMC112346 DOI: 10.1128/jvi.74.17.8127-8134.2000] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Coronavirus contains three envelope proteins, M, E and S, and a nucleocapsid, which consists of genomic RNA and N protein, within the viral envelope. We studied the macromolecular interactions involved in coronavirus assembly in cells infected with a murine coronavirus, mouse hepatitis virus (MHV). Coimmunoprecipitation analyses demonstrated an interaction between N protein and M protein in infected cells. Pulse-labeling experiments showed that newly synthesized, unglycosylated M protein interacted with N protein in a pre-Golgi compartment, which is part of the MHV budding site. Coimmunoprecipitation analyses further revealed that M protein interacted with only genomic-length MHV mRNA, mRNA 1, while N protein interacted with all MHV mRNAs. These data indicated that M protein interacted with the nucleocapsid, consisting of N protein and mRNA 1, in infected cells. The M protein-nucleocapsid interaction occurred in the absence of S and E proteins. Intracellular M protein-N protein interaction was maintained after removal of viral RNAs by RNase treatment. However, the M protein-N protein interaction did not occur in cells coexpressing M protein and N protein alone. These data indicated that while the M protein-N protein interaction, which is independent of viral RNA, occurred in the M protein-nucleocapsid complex, some MHV function(s) was necessary for the initiation of M protein-nucleocapsid interaction. The M protein-nucleocapsid interaction, which occurred near or at the MHV budding site, most probably represented the process of specific packaging of the MHV genome into MHV particles.
Collapse
Affiliation(s)
- K Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1019, USA
| | | | | | | |
Collapse
|
11
|
Peremyslov VV, Hagiwara Y, Dolja VV. Genes required for replication of the 15.5-kilobase RNA genome of a plant closterovirus. J Virol 1998; 72:5870-6. [PMID: 9621048 PMCID: PMC110390 DOI: 10.1128/jvi.72.7.5870-5876.1998] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Accepted: 04/14/1998] [Indexed: 02/07/2023] Open
Abstract
A full-length cDNA clone of beet yellows closterovirus (BYV) was engineered and used to map functions involved in the replication of the viral RNA genome and subgenomic RNA formation. Among 10 open reading frames (ORFs) present in BYV, ORFs 1a and 1b suffice for RNA replication and transcription. The proteins encoded in these ORFs harbor putative methyltransferase, RNA helicase, and RNA polymerase domains common to Sindbis virus-like viruses and a large interdomain region that is unique to closteroviruses. The papain-like leader proteinase (L-Pro) encoded in the 5'-proximal region of ORF 1a was found to have a dual function in genome amplification. First, the autocatalytic cleavage between L-Pro and the remainder of the ORF 1a product was essential for replication of RNA. Second, an additional L-Pro function that was separable from proteolytic activity was required for efficient RNA accumulation. The deletion of a large, approximately 5.6-kb, 3'-terminal region coding for a 6-kDa hydrophobic protein, an HSP70 homolog, a 64-kDa protein, minor and major capsid proteins, a 20-kDa protein, and a 21-kDa protein (p21) resulted in replication-competent RNA. However, examination of mutants with replacements of start codons in each of these seven 3'-terminal ORFs revealed that p21 functions as an enhancer of genome amplification. The intriguing analogies between the genome organization and replicational requirements of plant closteroviruses and animal coronavirus-like viruses are discussed.
Collapse
Affiliation(s)
- V V Peremyslov
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
12
|
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
13
|
Kim KH, Narayanan K, Makino S. Assembled coronavirus from complementation of two defective interfering RNAs. J Virol 1997; 71:3922-31. [PMID: 9094669 PMCID: PMC191544 DOI: 10.1128/jvi.71.5.3922-3931.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the presence of an RNA- temperature-sensitive (ts) mutant helper virus, two coronavirus mouse hepatitis virus (MHV) defective interfering (DI) RNAs complemented each other, resulting in the assembly of MHV particles; we used this ability to complement as a means to study coronavirus assembly. One of the two DI RNAs was DIssA, a naturally occurring self-replicating DI RNA encoding N protein and the gene 1 proteins that encode RNA polymerase function; DIssA supports the replication and transcription of other non-self-replicating DI RNAs. The other DI was a genetically engineered DI RNA that encoded sM and M proteins. Coinfection of these two DIs at the nonpermissive temperature for the ts helper virus resulted in replication and transcription of both DI RNAs but not in synthesis of the helper virus RNAs. MHV particles containing DI RNAs, N protein, and M protein, all of which were exclusively derived from the two DI RNAs, were released from the coinfected cells; the amount of sM protein was below the limits of detection. Analyses of DI RNAs with mutations in the two envelope protein genes demonstrated that M and sM proteins appeared to be required for assembly and release of MHV particles that contained DI RNAs and N protein, while S protein was not required for assembly and release of MHV particles.
Collapse
Affiliation(s)
- K H Kim
- Department of Microbiology, The University of Texas at Austin, 78712, USA
| | | | | |
Collapse
|
14
|
Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997; 48:1-100. [PMID: 9233431 PMCID: PMC7130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
15
|
Chang RY, Brian DA. cis Requirement for N-specific protein sequence in bovine coronavirus defective interfering RNA replication. J Virol 1996; 70:2201-7. [PMID: 8642643 PMCID: PMC190059 DOI: 10.1128/jvi.70.4.2201-2207.1996] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A naturally occurring 2.2-kb defective interfering (DI) RNA of the bovine coronavirus, structurally a simple fusion of the genomic termini, contains a single contiguous open reading frame (ORF) or 1.7 kb composed of the 5'-terminal 288 nucleotides of polymerase gene 1a and all 1,344 nucleotides of the nucleocapsid protein (N) gene. The ORF must remain open throughout most of its sequence for replication to occur. To determine the qualitative importance of the N portion of the chimeric ORF in DI RNA replication, transcripts of mutated reporter-containing constructs were tested for replication in helper virus-infected cells. It was determined that the N ORF could not be replaced by the naturally occurring internal I protein ORF, accomplished by deleting the first base in the N start codon which leads to a +1 frameshift, nor could it be replaced by the chloramphenicol acetyltransferase ORF. Furthermore, 3'-terminal truncations of the N gene leaving less than 85% of its total length were likewise not tolerated. Small in-frame deletions and in-frame foreign sequence insertions of up to 99 nucleotides within certain regions of the N ORF were tolerated, however, but the rate of DI RNA accumulation in these cases was lower. These results indicate that there is a requirement for translation of most if not all of the N protein in cis for optimal replication of the bovine coronavirus DI RNA and suggest that a similar requirement may exist for viral genome replication.
Collapse
Affiliation(s)
- R Y Chang
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996-0845, USA
| | | |
Collapse
|