1
|
Ornelas MY, Thomas AY, Johnson Rosas LI, Medina GN, Mehta AP. Characterization, Directed Evolution, and Targeting of DNA Virus-Encoded RNA Capping Enzymes Using Phenotypic Yeast Platforms. ACS Chem Biol 2023; 18:1808-1820. [PMID: 37498174 PMCID: PMC11024868 DOI: 10.1021/acschembio.3c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The constant and the sudden emergence of zoonotic human and animal viruses is a significant threat to human health, the world economy, and the world food supply. This has necessitated the development of broad-spectrum therapeutic strategies to combat these emerging pathogens. Mechanisms that are essential for viral replication and propagation have been successfully targeted in the past to develop broad-spectrum therapeutics that can be readily repurposed to combat new zoonotic pathogens. Because of the importance of viral RNA capping enzymes to viral replication and pathogenesis, as well as their presence in both DNA and RNA viruses, these viral proteins have been a long-standing therapeutic target. Here, we use genome sequencing information and yeast-based platforms (YeRC0M) to identify, characterize, and target viral genome-encoded essential RNA capping enzymes from emerging strains of DNA viruses, i.e., Monkeypox virus and African Swine Fever Virus, which are a significant threat to human and domestic animal health. We first identified and biochemically characterized these viral RNA capping enzymes and their necessary protein domains. We observed significant differences in functional protein domains and organization for RNA capping enzymes from emerging DNA viruses in comparison to emerging RNA viruses. We also observed several differences in the biochemical properties of these viral RNA capping enzymes using our phenotypic yeast-based approaches (YeRC0M) as compared to the previous in vitro studies. Further, using directed evolution, we were able to identify inactivation and attenuation mutations in these essential viral RNA capping enzymes; these data could have implications on virus biocontainment as well as live attenuated vaccine development. We also developed methods that would facilitate high-throughput phenotypic screening to identify broad-spectrum inhibitors that selectively target viral RNA capping enzymes over host RNA capping enzymes. As demonstrated here, our approaches to identify, characterize, and target viral genome-encoded essential RNA capping enzymes are highly modular and can be readily adapted for targeting emerging viral pathogens as well as their variants that emerge in the future.
Collapse
Affiliation(s)
- Marya Y Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
| | - Angela Y Thomas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
| | - L Idalee Johnson Rosas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
| | - Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, New York 11944, United States
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, Kansas 66502, United States
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Structure and Sequence Requirements for RNA Capping at the Venezuelan Equine Encephalitis Virus RNA 5' End. J Virol 2021; 95:e0077721. [PMID: 34011549 DOI: 10.1128/jvi.00777-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a reemerging arthropod-borne virus causing encephalitis in humans and domesticated animals. VEEV possesses a positive single-stranded RNA genome capped at its 5' end. The capping process is performed by the nonstructural protein nsP1, which bears methyl and guanylyltransferase activities. The capping reaction starts with the methylation of GTP. The generated m7GTP is complexed to the enzyme to form an m7GMP-nsP1 covalent intermediate. The m7GMP is then transferred onto the 5'-diphosphate end of the viral RNA. Here, we explore the specificities of the acceptor substrate in terms of length, RNA secondary structure, and/or sequence. Any diphosphate nucleosides but GDP can serve as acceptors of the m7GMP to yield m7GpppA, m7GpppC, or m7GpppU. We show that capping is more efficient on small RNA molecules, whereas RNAs longer than 130 nucleotides are barely capped by the enzyme. The structure and sequence of the short, conserved stem-loop, downstream to the cap, is an essential regulatory element for the capping process. IMPORTANCE The emergence, reemergence, and expansion of alphaviruses (genus of the family Togaviridae) are a serious public health and epizootic threat. Venezuelan equine encephalitis virus (VEEV) causes encephalitis in human and domesticated animals, with a mortality rate reaching 80% in horses. To date, no efficient vaccine or safe antivirals are available for human use. VEEV nonstructural protein 1 (nsP1) is the viral capping enzyme characteristic of the Alphavirus genus. nsP1 catalyzes methyltransferase and guanylyltransferase reactions, representing a good therapeutic target. In the present report, we provide insights into the molecular features and specificities of the cap acceptor substrate for the guanylylation reaction.
Collapse
|
3
|
Kasprzyk R, Fido M, Mamot A, Wanat P, Smietanski M, Kopcial M, Cowling VH, Kowalska J, Jemielity J. Direct High-Throughput Screening Assay for mRNA Cap Guanine-N7 Methyltransferase Activity. Chemistry 2020; 26:11266-11275. [PMID: 32259329 PMCID: PMC7262028 DOI: 10.1002/chem.202001036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Indexed: 12/16/2022]
Abstract
In eukaryotes, mature mRNA is formed through modifications of precursor mRNA, one of which is 5' cap biosynthesis, involving RNA cap guanine-N7 methyltransferase (N7-MTase). N7-MTases are also encoded by some eukaryotic viruses and facilitate their replication. N7-MTase inhibitors have therapeutic potential, but their discovery is difficult because long RNA substrates are usually required for activity. Herein, we report a universal N7-MTase activity assay based on small-molecule fluorescent probes. We synthesized 12 fluorescent substrate analogues (GpppA and GpppG derivatives) varying in the dye type, dye attachment site, and linker length. GpppA labeled with pyrene at the 3'-O position of adenosine acted as an artificial substrate with the properties of a turn-off probe for all three tested N7-MTases (human, parasite, and viral). Using this compound, a N7-MTase inhibitor assay adaptable to high-throughput screening was developed and used to screen synthetic substrate analogues and a commercial library. Several inhibitors with nanomolar activities were identified.
Collapse
Affiliation(s)
- Renata Kasprzyk
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02097WarsawPoland
- College of Inter-Faculty Individual Studies in Mathematics and Natural SciencesUniversity of WarsawBanacha 2c02097WarsawPoland
| | - Mateusz Fido
- Division of BiophysicsInstitute of Experimental PhysicsFaculty of PhysicsUniversity of WarsawPasteura 502093WarsawPoland
| | - Adam Mamot
- Division of BiophysicsInstitute of Experimental PhysicsFaculty of PhysicsUniversity of WarsawPasteura 502093WarsawPoland
| | - Przemyslaw Wanat
- Division of BiophysicsInstitute of Experimental PhysicsFaculty of PhysicsUniversity of WarsawPasteura 502093WarsawPoland
| | | | - Michal Kopcial
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02097WarsawPoland
- College of Inter-Faculty Individual Studies in Mathematics and Natural SciencesUniversity of WarsawBanacha 2c02097WarsawPoland
| | - Victoria H. Cowling
- Centre of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDD1 5EHDundeeUK
| | - Joanna Kowalska
- Division of BiophysicsInstitute of Experimental PhysicsFaculty of PhysicsUniversity of WarsawPasteura 502093WarsawPoland
| | - Jacek Jemielity
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02097WarsawPoland
| |
Collapse
|
4
|
Singh PK, Ratnam N, Narayanarao KB, Bugatha H, Karande AA, Melkote Subbarao S. A carboxy terminal domain of the L protein of rinderpest virus possesses RNA triphosphatase activity - The first enzyme in the viral mRNA capping pathway. Biochem Biophys Res Commun 2015; 464:629-34. [PMID: 26168720 DOI: 10.1016/j.bbrc.2015.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022]
Abstract
The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family. We had earlier shown that the large protein L of Rinderpest virus expressed as recombinant L-P complex in insect cells as well as the ribonucleoprotein complex from purified virus possesses RNA triphosphatase (RTPase) and guanylyltransferase activities, in addition to RNA dependent RNA polymerase activity. In the present work, we demonstrate that RTPase as well as nucleoside triphosphatase (NTPase) activities are exhibited by a subdomain of the L protein in the C terminal region (a.a. 1640-1840). The RTPase activity depends absolutely on a divalent cation, either magnesium or manganese. Both the RTPase and NTPase activities of the protein show dual metal specificity. Two mutant proteins having alanine mutations in the glutamic acid residues in motif-A of the RTPase domain did not show RTPase activity, while exhibiting reduced NTPase activity suggesting overlapping active sites for the two enzymatic functions. The RTPase and NTPase activities of the L subdomain resemble those of the Vaccinia capping enzyme D1 and the baculovirus LEF4 proteins.
Collapse
Affiliation(s)
- Piyush Kumar Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nivedita Ratnam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Kannan Boosi Narayanarao
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Harigopalarao Bugatha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shaila Melkote Subbarao
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus. Structure 2015; 22:452-65. [PMID: 24607143 DOI: 10.1016/j.str.2013.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 02/03/2023]
Abstract
Vaccinia virus capping enzyme is a heterodimer of D1 (844 aa) and D12 (287 aa) polypeptides that executes all three steps in m(7)GpppRNA synthesis. The D1 subunit comprises an N-terminal RNA triphosphatase (TPase)-guanylyltransferase (GTase) module and a C-terminal guanine-N7-methyltransferase (MTase) module. The D12 subunit binds and allosterically stimulates the MTase module. Crystal structures of the complete D1⋅D12 heterodimer disclose the TPase and GTase as members of the triphosphate tunnel metalloenzyme and covalent nucleotidyltransferase superfamilies, respectively, albeit with distinctive active site features. An extensive TPase-GTase interface clamps the GTase nucleotidyltransferase and OB-fold domains in a closed conformation around GTP. Mutagenesis confirms the importance of the TPase-GTase interface for GTase activity. The D1⋅D12 structure complements and rationalizes four decades of biochemical studies of this enzyme, which was the first capping enzyme to be purified and characterized, and provides new insights into the origins of the capping systems of other large DNA viruses.
Collapse
|
6
|
Moeder W, Garcia-Petit C, Ung H, Fucile G, Samuel MA, Christendat D, Yoshioka K. Crystal structure and biochemical analyses reveal that the Arabidopsis triphosphate tunnel metalloenzyme AtTTM3 is a tripolyphosphatase involved in root development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:615-26. [PMID: 24004165 DOI: 10.1111/tpj.12325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 05/15/2023]
Abstract
The Arabidopsis protein AtTTM3 belongs to the CYTH superfamily named after its two founding members, the CyaB adenylate cyclase from Aeromonas hydrophila and the mammalian thiamine triphosphatase. In this study we report the three-dimensional structure of a plant CYTH domain protein, AtTTM3, determined at 1.9 Å resolution. The crystal structure revealed the characteristic tunnel architecture of CYTH proteins, which specialize in the binding of nucleotides and other organic phosphates and in phosphoryl transfer reactions. The β barrel is composed of eight antiparallel β strands with a cluster of conserved inwardly facing acidic and basic amino acid residues. Mutagenesis of these residues in the catalytic core led to an almost complete loss of enzymatic activity. We established that AtTTM3 is not an adenylate cyclase. Instead, the enzyme displayed weak NTP phosphatase as well as strong tripolyphosphatase activities similar to the triphosphate tunnel metalloenzyme proteins from Clostridium thermocellum (CthTTM) and Nitrosomonas europaea (NeuTTM). AtTTM3 is most highly expressed in the proximal meristematic zone of the plant root. Furthermore, an AtTTM3 T-DNA insertion knockout line displayed a delay in root growth as well as reduced length and number of lateral roots, suggesting a role for AtTTM3 in root development.
Collapse
Affiliation(s)
- Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Roles of LEF-4 and PTP/BVP RNA triphosphatases in processing of baculovirus late mRNAs. J Virol 2008; 82:5573-83. [PMID: 18385232 DOI: 10.1128/jvi.00058-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The baculovirus Autographa californica nucleopolyhedrovirus encodes two proteins with RNA triphosphatase activity. Late expression factor LEF-4, which is an essential gene, is a component of the RNA polymerase and also encodes the RNA capping enzyme guanylyltransferase. PTP/BVP is also an RNA triphosphatase, but is not essential for viral replication, possibly because its activity is redundant to that of LEF-4. To elucidate the role of these proteins in mRNA cap formation, a mutant virus that lacked both RNA triphosphatase activities was constructed. Infection studies revealed that the double-mutant virus was viable and normal with respect to the production of budded virus. Pulse-labeling studies and immunoblot analyses showed that late gene expression in the double mutant was equivalent to that in the wild type, while polyhedrin expression was slightly reduced. Direct analysis of the mRNA cap structure indicated no alteration of cap processing in the double mutant. Together, these results reveal that baculoviruses replicate and express their late genes at normal levels in the absence of its two different types of RNA triphosphatases.
Collapse
|
8
|
Shatzer AN, Kato SEM, Condit RC. Phenotypic analysis of a temperature sensitive mutant in the large subunit of the vaccinia virus mRNA capping enzyme. Virology 2008; 375:236-52. [PMID: 18295814 DOI: 10.1016/j.virol.2008.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 12/17/2007] [Accepted: 01/21/2008] [Indexed: 11/25/2022]
Abstract
The heterodimeric vaccinia virus mRNA capping enzyme is a multifunctional enzyme, encoded by genes D1R and D12L. Published biochemical experiments demonstrate that, in addition to mRNA capping, the enzyme is involved in early viral gene transcription termination and intermediate viral gene transcription initiation. This paper presents the phenotypic characterization of Dts36, a temperature sensitive mutant in the large subunit of the mRNA capping enzyme (G705D), encoded by gene D1R. At the non-permissive temperature, Dts36 displays decreased steady state levels of some early RNAs, suggesting a defect in mRNA capping. Mutant infections also show decreased steady state levels of some early proteins, while DNA replication and post-replicative gene expression are absent. Under non-permissive conditions, the mutant directs synthesis of longer-than-normal early mRNAs from some genes, demonstrating that early gene transcription termination is defective. If mutant infections are initiated at the permissive temperature and shifted to the non-permissive temperature late during infection, steady state levels of intermediate gene transcripts decrease while the levels of late gene transcripts remain constant, consistent with a defect in intermediate gene transcription initiation. In addition to its previously described role in mRNA capping, the results presented in this study provide the first in vivo evidence that the vaccinia virus mRNA capping enzyme plays a role in early gene transcription termination and intermediate gene transcription.
Collapse
Affiliation(s)
- Amber N Shatzer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
9
|
Guarino LA. Processing of baculovirus late and very late mRNAs. Virol Sin 2008. [DOI: 10.1007/s12250-007-0012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Bougie I, Bisaillon M. Inhibition of a metal-dependent viral RNA triphosphatase by decavanadate. Biochem J 2006; 398:557-67. [PMID: 16761952 PMCID: PMC1559470 DOI: 10.1042/bj20060198] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Paramecium bursaria chlorella virus, a large DNA virus that replicates in unicellular Chlorella-like algae, encodes an RNA triphosphatase which is involved in the synthesis of the RNA cap structure found at the 5' end of the viral mRNAs. The Chlorella virus RNA triphosphatase is the smallest member of the metal-dependent RNA triphosphatases that include enzymes from fungi, DNA viruses, protozoans and microsporidian parasites. In the present study, we investigated the ability of various vanadate oxoanions to inhibit the phosphohydrolase activity of the enzyme. Fluorescence spectroscopy and CD studies were used to directly monitor the binding of decavanadate to the enzyme. Moreover, competition assays show that decavanadate is a potent non-competitive inhibitor of the phosphohydrolase activity, and mutagenesis studies indicate that the binding of decavanadate does not involve amino acids located in the active site of the enzyme. In order to provide additional insight into the relationship between the enzyme structure and decavanadate binding, we correlated the effect of decavanadate binding on protein structure using both CD and guanidinium chloride-induced denaturation as structural indicators. Our data indicated that no significant modification of the overall protein architecture was occurring upon decavanadate binding. However, both fluorescence spectroscopy and CD experiments clearly revealed that the binding of decavanadate to the enzyme significantly decreased the structural stability of the enzyme. Taken together, these studies provide crucial insights into the inhibition of metal-dependent RNA triphosphatases by decavanadate.
Collapse
Affiliation(s)
- Isabelle Bougie
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Martin Bisaillon
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
- To whom correspondence should be addressed (email )
| |
Collapse
|
11
|
Schwer B, Shuman S. Genetic analysis of poxvirus mRNA cap methyltransferase: suppression of conditional mutations in the stimulatory D12 subunit by second-site mutations in the catalytic D1 subunit. Virology 2006; 352:145-56. [PMID: 16716374 DOI: 10.1016/j.virol.2006.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 03/01/2006] [Accepted: 03/16/2006] [Indexed: 11/19/2022]
Abstract
The guanine-N7 methyltransferase domain of vaccinia virus mRNA capping enzyme, composed of catalytic vD1(498-844) and stimulatory vD12 subunits, can function in vivo in Saccharomyces cerevisiae in lieu of the essential cellular cap methyltransferase Abd1. Coexpression of both poxvirus subunits is required to complement the growth of abd1Delta cells. A double-alanine scan of the vD12 protein identified lethal and temperature-sensitive vD12 alleles. We used this mutant collection to perform a forward genetic screen for compensatory changes in the catalytic subunit that suppressed the growth phenotypes of the vD12 mutants. The screen reiteratively defined a small ensemble of amino acids in vD1(498-844) at which mutations restored methyltransferase function in conjunction with defective vD12 proteins. Reference to the crystal structure of the microsporidian cap methyltransferase suggests that distinct functional classes of suppressors were selected, including: (i) those that map to surface-exposed loops, which likely comprise the physical subunit interface; (ii) those in or near the substrate binding sites, which presumably affect or mimic inter-subunit allostery.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
12
|
Qiu T, Luongo CL. Identification of two histidines necessary for reovirus mRNA guanylyltransferase activity. Virology 2004; 316:313-24. [PMID: 14644613 DOI: 10.1016/j.virol.2003.08.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Grass carp reovirus, a segmented double-stranded RNA virus, is a member of the genus aquareovirus in the Reoviridae family. Grass carp reovirus VP1 was shown to be an mRNA guanylyltransferase. The enzyme demonstrated maximum activity <or= pH 6.0. This low pH maximum is conserved among the known guanylyltransferases of the Reoviridae family, but is not a property of the KxDG guanylyltransferases. The positive effect of low pH was detected for both autoguanylylation and GMP transfer, the two steps in the guanylyltransferase reaction. The effect of pH on enzymatic activity suggested that histidine protonation is responsible for the observed increase in guanylyltransferase activity. Mutagenesis of the two histidines conserved among the orthoreovirus and aquareovirus guanylyltransferases demonstrated that they are necessary for activity.
Collapse
Affiliation(s)
- Tao Qiu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | |
Collapse
|
13
|
Saha N, Shuman S, Schwer B. Yeast-based genetic system for functional analysis of poxvirus mRNA cap methyltransferase. J Virol 2003; 77:7300-7. [PMID: 12805428 PMCID: PMC164803 DOI: 10.1128/jvi.77.13.7300-7307.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structural differences between poxvirus and human mRNA capping enzymes recommend cap formation as a target for antipoxviral drug discovery. Genetic and pharmacologic analysis of the poxvirus capping enzymes requires in vivo assays in which the readout depends on the capacity of the viral enzyme to catalyze cap synthesis. Here we have used the budding yeast Saccharomyces cerevisiae as a genetic model for the study of poxvirus cap guanine-N7 methyltransferase. The S. cerevisiae capping system consists of separate triphosphatase (Cet1), guanylyltransferase (Ceg1), and methyltransferase (Abd1) components. All three activities are essential for cell growth. We report that the methyltransferase domain of vaccinia virus capping enzyme (composed of catalytic vD1-C and stimulatory vD12 subunits) can function in lieu of yeast Abd1. Coexpression of both vaccinia virus subunits is required for complementation of the growth of abd1Delta cells. Previously described mutations of vD1-C and vD12 that eliminate or reduce methyltransferase activity in vitro either abolish abd1Delta complementation or elicit conditional growth defects. We have used the yeast complementation assay as the primary screen in a new round of alanine scanning of the catalytic subunit. We thereby identified several new amino acids that are critical for cap methylation activity in vivo. Studies of recombinant proteins show that the lethal vD1-C mutations do not preclude heterodimerization with vD12 but either eliminate or reduce cap methyltransferase activity in vitro.
Collapse
Affiliation(s)
- Nayanendu Saha
- Department of Microbiology and Immunology, Weill Medical College of Cornell University. Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
14
|
Shuman S. The mRNA capping apparatus as drug target and guide to eukaryotic phylogeny. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:301-12. [PMID: 12762032 DOI: 10.1101/sqb.2001.66.301] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| |
Collapse
|
15
|
Abstract
The RNA triphosphatase component of vaccinia virus mRNA capping enzyme (the product of the viral D1 gene) belongs to a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, Chlorella virus, and baculoviruses. The family is defined by two glutamate-containing motifs (A and C) that form the metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight-stranded beta barrel (the so-called "triphosphate tunnel"). Here we queried whether vaccinia virus capping enzyme is a member of the tunnel subfamily, via mutational mapping of amino acids required for vaccinia triphosphatase activity. We identified four new essential side chains in vaccinia D1 via alanine scanning and illuminated structure-activity relationships by conservative substitutions. Our results, together with previous mutational data, highlight a constellation of six acidic and three basic amino acids that likely compose the vaccinia triphosphatase active site (Glu37, Glu39, Arg77, Lys107, Glu126, Asp159, Lys161, Glu192, and Glu194). These nine essential residues are conserved in all vertebrate and invertebrate poxvirus RNA capping enzymes. We discerned no pattern of clustering of the catalytic residues of the poxvirus triphosphatase that would suggest structural similarity to the tunnel proteins (exclusive of motifs A and C). We infer that the poxvirus triphosphatases are a distinct lineage within the metal-dependent RNA triphosphatase family. Their unique active site, which is completely different from that of the host cell's capping enzyme, recommends the poxvirus RNA triphosphatase as a molecular target for antipoxviral drug discovery.
Collapse
Affiliation(s)
- Chunling Gong
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
16
|
Lackner CA, D'Costa SM, Buck C, Condit RC. Complementation analysis of the dales collection of vaccinia virus temperature-sensitive mutants. Virology 2003; 305:240-59. [PMID: 12573570 DOI: 10.1006/viro.2002.1745] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A collection of randomly generated temperature-sensitive (ts) vaccinia virus (strain IHD-W) mutants were reported by S. Dales et al., (1978, Virology, 84, 403-428) in 1978 and characterized by electron microscopy. We have performed further genetic analysis on the Dales collection of mutants to make the mutants more useful to the scientific community. We obtained the entire Dales collection, 97 mutants, from the American Type Culture Center (ATCC). All 97 mutants were grown and reassessed for temperature sensitivity. Of these, 16 mutants were either very leaky or showed unacceptably high reversion indices even after plaque purification and therefore were not used for further analysis. The remaining 81 ts mutants were used to perform a complete complementation analysis with each other and the existing Condit collection of ts vaccinia virus (strain WR) mutants. Twenty-two of these 81 Dales mutants were dropped during complementation analysis due to erratic or weak behavior in the complementation test. Of the 59 mutants that were fit for further investigation, 30 fall into 13 of Condit's existing complementation groups, 5 comprise 3 previously identified complementation groups independent of the Condit collection, and 24 comprise 18 new complementation groups. The 59 mutants which were successfully characterized by complementation will be accessioned by and made available to the scientific community through the ATCC.
Collapse
Affiliation(s)
- Cari A Lackner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
17
|
Abstract
The 5' cap is a unique feature of eukaryotic cellular and viral messenger RNA that is absent from the bacterial and archaeal domains of life. The cap is formed by three enzymatic reactions at the 5' terminus of nascent mRNAs. Although the capping pathway is conserved in all eukaryotes, the structure and genetic organization of the component enzymes vary between species. These differences provide insights into the evolution of eukaryotes and eukaryotic viruses.
Collapse
|
18
|
Bartelma G, Padmanabhan R. Expression, purification, and characterization of the RNA 5'-triphosphatase activity of dengue virus type 2 nonstructural protein 3. Virology 2002; 299:122-32. [PMID: 12167347 DOI: 10.1006/viro.2002.1504] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dengue virus type 2 (DEN2), a member of the Flaviviridae family of positive-strand RNA viruses, contains a single RNA genome having a type I cap structure at the 5' end. The viral RNA is translated to produce a single polyprotein precursor that is processed to yield three virion proteins and at least seven nonstructural proteins (NS) in the infected host. NS3 is a multifunctional protein having a serine protease catalytic triad within the N-terminal 180 amino acid residues which requires NS2B as a cofactor for activation of protease activity. The C-terminal portion of this catalytic triad has conserved motifs present in several nucleoside triphosphatases (NTPases)/RNA helicases. In addition, subtilisin-treated West Nile (WN) virus NS3 from infected cells was reported to have 5'-RNA triphosphatase activity, suggesting its role in the synthesis of the 5'-cap structure. In this study, full-length DEN2 NS3 was expressed with an N-terminal histidine tag in Escherichia coli and purified in a soluble form. The purified protein has 5'-RNA triphosphatase activity that cleaves the gamma-phosphate moiety of the 5'-triphosphorylated RNA substrate. Biochemical and mutational analyses of the NS3 protein indicate that the nucleoside triphosphatase and 5'-RNA triphosphatase activities of NS3 share a common active site.
Collapse
Affiliation(s)
- Greg Bartelma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160-7421, USA
| | | |
Collapse
|
19
|
Gong C, Shuman S. Chlorella virus RNA triphosphatase. Mutational analysis and mechanism of inhibition by tripolyphosphate. J Biol Chem 2002; 277:15317-24. [PMID: 11844801 DOI: 10.1074/jbc.m200532200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlorella virus RNA triphosphatase (cvRtp1) is the smallest member of a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, poxviruses, and baculoviruses. The primary structure of cvRtp1 is more similar to that of the yeast RNA triphosphatase Cet1 than it is to the RNA triphosphatases of other DNA viruses. To evaluate the higher order structural similarities between cvRtp1 and the fungal enzymes, we performed an alanine scan of individual residues of cvRtp1 that were predicted, on the basis of the crystal structure of Cet1, to be located at or near the active site. Twelve residues (Glu(24), Glu(26), Asp(64), Arg(76), Lys(90), Glu(112), Arg(127), Lys(129), Arg(131), Asp(142), Glu(163), and Glu(165)) were deemed essential for catalysis by cvRtp1, insofar as their replacement by alanine reduced phosphohydrolase activity to <5% of the wild-type value. Structure-activity relationships were elucidated by introducing conservative substitutions at the essential positions. The mutational results suggest that the active site of cvRtp1 is likely to adopt a tunnel fold like that of Cet1 and that a similar constellation of side chains within the tunnel is responsible for metal binding and reaction chemistry. Nonetheless, there are several discordant mutational effects in cvRtp1 versus Cet1, which suggest that different members of the phosphohydrolase family vary in their reliance on certain residues within the active site tunnel. We found that tripolyphosphate and pyrophosphate were potent competitive inhibitors of cvRtp1 (K(i) = 0.6 microm tripolyphosphate and 2.4 microm pyrophosphate, respectively), whereas phosphate had little effect. cvRtp1 displayed a weak intrinsic tripolyphosphatase activity (3% of its ATPase activity) but was unable to hydrolyze pyrophosphate.
Collapse
Affiliation(s)
- Chunling Gong
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
20
|
Martins A, Shuman S. Mutational analysis of baculovirus capping enzyme Lef4 delineates an autonomous triphosphatase domain and structural determinants of divalent cation specificity. J Biol Chem 2001; 276:45522-9. [PMID: 11553638 DOI: 10.1074/jbc.m107615200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 464-amino acid baculovirus Lef4 protein is a bifunctional mRNA capping enzyme with triphosphatase and guanylyltransferase activities. The hydrolysis of 5'-triphosphate RNA and free NTPs by Lef4 is dependent on a divalent cation cofactor. RNA triphosphatase activity is optimal at pH 7.5 with either magnesium or manganese, yet NTP hydrolysis at neutral pH is activated only by manganese or cobalt. Here we show that Lef4 possesses an intrinsic magnesium-dependent ATPase with a distinctive alkaline pH optimum and a high K(m) for ATP (4 mm). Lef4 contains two conserved sequences, motif A ((8)IEKEISY(14)) and motif C ((180)LEYEF(184)), which define the fungal/viral/protozoal family of metal-dependent RNA triphosphatases. We find by mutational analysis that Glu(9), Glu(11), Glu(181), and Glu(183) are essential for phosphohydrolase chemistry and likely comprise the metal-binding site of Lef4. Conservative mutations E9D and E183D abrogate the magnesium-dependent triphosphatase activities of Lef4 and transform it into a strictly manganese-dependent RNA triphosphatase. Limited proteolysis of Lef4 and ensuing COOH-terminal deletion analysis revealed that the NH(2)-terminal 236-amino acid segment of Lef4 constitutes an autonomous triphosphatase catalytic domain.
Collapse
Affiliation(s)
- A Martins
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
21
|
Saha N, Shuman S. Effects of alanine cluster mutations in the D12 subunit of vaccinia virus mRNA (guanine-N7) methyltransferase. Virology 2001; 287:40-8. [PMID: 11504540 DOI: 10.1006/viro.2001.1006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The (guanine-N7)-methyltransferase domain of the vaccinia virus mRNA capping enzyme is a heterodimer composed of a catalytic subunit D1(498-844) bound to a stimulatory subunit D12. To identify structural elements of the 287-amino-acid D12 subunit that participate in binding and activation of the catalytic subunit, we introduced 12 double-alanine mutations at vicinal residues that are conserved in the D12 homologs of other vertebrate poxviruses. His-tagged D12 mutants were coexpressed in bacteria with the D1(498-544) subunit, and the recombinant D1(498-844)/His-D12 heterodimers were purified. Eight of the mutants (K111A-R112A, N120A-N121A, N126A-N127A, F141A-R142A, K223A-D224A, H260A-S261A, E275A-N276A, and R280A-R281A) had no significant effect on methyltransferase activity. Three of the mutants (L61A-K62A, F176A-K177A, and F245A-L246A) displayed an intermediate level of cap methylation (35-50% of wild-type activity). Only one mutation, N42A-Y43A, elicited a significant loss of the methyltransferase activation function (<20% of the wild-type activity). Nine of the D12-Ala/Ala proteins were produced individually in bacteria and tested for reconstitution of methyltransferase activity in vitro by mixing with the catalytic subunit. K111A-R112A, N120A-N121A, F176A-K177A, F245A-L246A, and L61A-K62A displayed diminished affinity for the D1 catalytic subunit. N42A-Y43A was uniquely defective in its ability to activate cap methylation by the catalytic subunit. Our results suggest that the methyltransferase activation function of D12, though clearly dependent on the physical interaction with D1, also requires constituents of D12 that are engaged specifically in catalysis.
Collapse
Affiliation(s)
- N Saha
- Molecular Biology Program, Sloan Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
22
|
Shuman S. Structure, mechanism, and evolution of the mRNA capping apparatus. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:1-40. [PMID: 11051760 DOI: 10.1016/s0079-6603(00)66025-7] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- S Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| |
Collapse
|
23
|
Ho CK, Gong C, Shuman S. RNA triphosphatase component of the mRNA capping apparatus of Paramecium bursaria Chlorella virus 1. J Virol 2001; 75:1744-50. [PMID: 11160672 PMCID: PMC114083 DOI: 10.1128/jvi.75.4.1744-1750.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramecium bursaria chlorella virus 1 (PBCV-1) elicits a lytic infection of its unicellular green alga host. The 330-kbp viral genome has been sequenced, yet little is known about how viral mRNAs are synthesized and processed. PBCV-1 encodes its own mRNA guanylyltransferase, which catalyzes the addition of GMP to the 5' diphosphate end of RNA to form a GpppN cap structure. Here we report that PBCV-1 encodes a separate RNA triphosphatase (RTP) that catalyzes the initial step in cap synthesis: hydrolysis of the gamma-phosphate of triphosphate-terminated RNA to generate an RNA diphosphate end. We exploit a yeast-based genetic system to show that Chlorella virus RTP can function as a cap-forming enzyme in vivo. The 193-amino-acid Chlorella virus RTP is the smallest member of a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi and other large eukaryotic DNA viruses (poxviruses, African swine fever virus, and baculoviruses). Chlorella virus RTP is more similar in structure to the yeast RNA triphosphatases than to the enzymes of metazoan DNA viruses. Indeed, PBCV-1 is unique among DNA viruses in that the triphosphatase and guanylyltransferase steps of cap formation are catalyzed by separate viral enzymes instead of a single viral polypeptide with multiple catalytic domains.
Collapse
Affiliation(s)
- C K Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
24
|
Pei Y, Schwer B, Hausmann S, Shuman S. Characterization of Schizosaccharomyces pombe RNA triphosphatase. Nucleic Acids Res 2001; 29:387-96. [PMID: 11139608 PMCID: PMC29678 DOI: 10.1093/nar/29.2.387] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA triphosphatase catalyzes the first step in mRNA cap formation which entails the cleavage of the beta-gamma phosphoanhydride bond of triphosphate-terminated RNA to yield a diphosphate end that is then capped with GMP by RNA guanylyltransferase. Here we characterize a 303 amino acid RNA triphosphatase (Pct1p) encoded by the fission yeast SCHIZOSACCHAROMYCES: pombe. Pct1p hydrolyzes the gamma phosphate of triphosphate-terminated poly(A) in the presence of magnesium. Pct1p also hydrolyzes ATP to ADP and P(i) in the presence of manganese or cobalt (K(m) = 19 microM ATP; k(cat) = 67 s(-1)). Hydrolysis of 1 mM ATP is inhibited with increasing potency by inorganic phosphate (I(0.5) = 1 mM), pyrophosphate (I(0.5) = 0.4 mM) and tripolyphosphate (I(0.5) = 30 microM). Velocity sedimentation indicates that Pct1p is a homodimer. Pct1p is biochemically and structurally similar to the catalytic domain of Saccharomyces cerevisiae RNA triphosphatase Cet1p. Mechanistic conservation between Pct1p and Cet1p is underscored by a mutational analysis of the putative metal-binding site of Pct1p. Pct1p is functional in vivo in S.cerevisiae in lieu of Cet1p, provided that it is coexpressed with the S.pombe guanylyltransferase. Pct1p and other yeast RNA triphosphatases are completely unrelated, mechanistically and structurally, to the metazoan RNA triphosphatases, suggesting an abrupt evolutionary divergence of the capping apparatus during the transition from fungal to metazoan species.
Collapse
Affiliation(s)
- Y Pei
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
25
|
Takase Y, Takagi T, Komarnitsky PB, Buratowski S. The essential interaction between yeast mRNA capping enzyme subunits is not required for triphosphatase function in vivo. Mol Cell Biol 2000; 20:9307-16. [PMID: 11094081 PMCID: PMC102187 DOI: 10.1128/mcb.20.24.9307-9316.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2000] [Accepted: 09/27/2000] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae mRNA capping enzyme consists of two subunits: an RNA 5'-triphosphatase (Cet1) and an mRNA guanylyltransferase (Ceg1). In yeast, the capping enzyme is recruited to the RNA polymerase II (Pol II) transcription complex via an interaction between Ceg1 and the phosphorylated carboxy-terminal domain of the Pol II largest subunit. Previous in vitro experiments showed that the Cet1 carboxy-terminal region (amino acids 265 to 549) carries RNA triphosphatase activity, while the region containing amino acids 205 to 265 of Cet1 has two functions: it mediates dimerization with Ceg1, but it also allosterically activates Ceg1 guanylyltransferase activity in the context of Pol II binding. Here we characterize several Cet1 mutants in vivo. Mutations or deletions of Cet1 that disrupt interaction with Ceg1 are lethal, showing that this interaction is essential for proper capping enzyme function in vivo. Remarkably, the interaction region of Ceg1 becomes completely dispensable when Ceg1 is substituted by the mouse guanylyltransferase, which does not require allosteric activation by Cet1. Although no interaction between Cet1 and mouse guanylyltransferase is detectable, both proteins are present at yeast promoters in vivo. These results strongly suggest that the primary physiological role of the Ceg1-Cet1 interaction is to allosterically activate Ceg1, rather than to recruit Cet1 to the Pol II complex.
Collapse
Affiliation(s)
- Y Takase
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Baculovirus phosphatase (BVP) is a member of the metazoan RNA triphosphatase enzyme family that includes the RNA triphosphatase component of the mRNA capping apparatus. BVP and other metazoan RNA triphosphatases belong to a superfamily of phosphatases that act via the formation and hydrolysis of a covalent cysteinyl-phosphate intermediate. Here we demonstrate the formation of a BVP phosphoenzyme upon reaction with [gamma-(32)P]ATP and identify the linkage as a thiophosphate based on its chemical lability. We surmise that the phosphate is linked to Cys(119) of BVP because replacement of Cys(119) by alanine or serine abrogates phosphoenzyme formation and phosphohydrolase activity. The catalytic cysteine is situated within a conserved phosphate-binding loop ((118)HCTHGINRTGY(128)). We show that all of the non-aliphatic side chains of the phosphate-binding loop are functionally important, insofar as mutants H118A, H121A, N124A, R125A, T126A, and Y128A were inactive in gamma phosphate hydrolysis and the T120A mutant was 7% as active as wild-type BVP. Structure-activity relationships at the essential positions of the phosphate-binding loop were elucidated by conservative substitutions. A conserved aspartic acid (Asp(60)) invoked as a candidate general acid catalyst was dispensable for phosphohydrolase activity and phosphoenzyme formation by BVP. We propose that the low pK(a) of the bridging oxygen of the beta phosphate leaving group circumvents a requirement for expulsion by a proton donor during attack by cysteine on the gamma phosphorus. In contrast, a conserved aspartic acid is essential for the phosphomonoesterase reactions catalyzed by protein phosphatases, where the serine or tyrosine leaving groups have a much higher pK(a) than does ADP.
Collapse
Affiliation(s)
- A Martins
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
27
|
Ho CK, Martins A, Shuman S. A yeast-based genetic system for functional analysis of viral mRNA capping enzymes. J Virol 2000; 74:5486-94. [PMID: 10823853 PMCID: PMC112033 DOI: 10.1128/jvi.74.12.5486-5494.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-encoded mRNA capping enzymes are attractive targets for antiviral therapy, but functional studies have been limited by the lack of genetically tractable in vivo systems that focus exclusively on the RNA-processing activities of the viral proteins. Here we have developed such a system by engineering a viral capping enzyme-vaccinia virus D1(1-545)p, an RNA triphosphatase and RNA guanylyltransferase-to function in the budding yeast Saccharomyces cerevisiae in lieu of the endogenous fungal triphosphatase (Cet1p) and guanylyltransferase (Ceg1p). This was accomplished by fusion of D1(1-545)p to the C-terminal guanylyltransferase domain of mammalian capping enzyme, Mce1(211-597)p, which serves as a vehicle to target the viral capping enzyme to the RNA polymerase II elongation complex. An inactivating mutation (K294A) of the mammalian guanylyltransferase active site in the fusion protein had no impact on genetic complementation of cet1Deltaceg1Delta cells, thus proving that (i) the viral guanylyltransferase was active in vivo and (ii) the mammalian domain can serve purely as a chaperone to direct other proteins to the transcription complex. Alanine scanning had identified five amino acids of vaccinia virus capping enzyme-Glu37, Glu39, Arg77, Glu192, and Glu194-that are essential for gamma phosphate cleavage in vitro. Here we show that the introduction of mutation E37A, R77A, or E192A into the fusion protein abrogates RNA triphosphatase function in vivo. The essential residues are located within three motifs that define a family of viral and fungal metal-dependent phosphohydrolases with a distinctive capacity to hydrolyze nucleoside triphosphates to nucleoside diphosphates in the presence of manganese or cobalt. The acidic residues Glu37, Glu39, and Glu192 likely comprise the metal-binding site of vaccinia virus triphosphatase, insofar as their replacement by glutamine abolishes the RNA triphosphatase and ATPase activities.
Collapse
Affiliation(s)
- C K Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Pei Y, Lehman K, Tian L, Shuman S. Characterization of Candida albicans RNA triphosphatase and mutational analysis of its active site. Nucleic Acids Res 2000; 28:1885-92. [PMID: 10756187 PMCID: PMC103306 DOI: 10.1093/nar/28.9.1885] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The RNA triphosphatase component (CaCet1p) of the mRNA capping apparatus of the pathogenic fungus Candida albicans differs mechanistically and structurally from the RNA triphosphatase of mammals. Hence, CaCet1p is an attractive antifungal target. Here we identify a C-terminal catalytic domain of CaCet1p from residue 257 to 520 and characterize a manganese-dependent and cobalt-dependent NTPase activity intrinsic to CaCet1p. The NTPase can be exploited to screen in vitro for inhibitors. The amino acids that comprise the active site of CaCet1p were identified by alanine-scanning mutagenesis, which was guided by the crystal structure of the homologous RNA triphosphatase from Saccharomyces cerevisiae (Cet1p). Thirteen residues required for the phosphohydrolase activity of CaCet1p (Glu287, Glu289, Asp363, Arg379, Lys396, Glu420, Arg441, Lys443, Arg445, Asp458, Glu472, Glu474 and Glu476) are located within the hydrophilic interior of an eight-strand beta barrel of Cet1p. Each of the eight strands contributes at least one essential amino acid. The essential CaCet1p residues include all of the side chains that coordinate manganese and sulfate (i.e., gamma phosphate) in the Cet1p product complex. These results suggest that the active site structure and catalytic mechanism are conserved among fungal RNA triphosphatases.
Collapse
Affiliation(s)
- Y Pei
- Molecular Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
29
|
Chen D, Luongo CL, Nibert ML, Patton JT. Rotavirus open cores catalyze 5'-capping and methylation of exogenous RNA: evidence that VP3 is a methyltransferase. Virology 1999; 265:120-30. [PMID: 10603323 DOI: 10.1006/viro.1999.0029] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rotavirus open cores prepared from purified virions consist of three proteins: the RNA-dependent RNA polymerase, VP1; the core shell protein, VP2; and the guanylyltransferase, VP3. In addition to RNA polymerase activity, open cores have been shown to contain a nonspecific guanylyltransferase activity that caps viral and nonviral RNAs in vitro. In this study, we examined the structure of RNA caps made by open cores and have analyzed open cores for other capping-related enzymatic activities. Utilizing RNase digestion and thin-layer chromatography, we found that the majority ( approximately 70%) of caps made by open cores contain the tetraphosphate linkage, GppppG, rather than the triphosphate linkage, GpppG, found on mRNAs made by rotavirus double-layered particles. Enzymatic analysis indicated that the GppppG caps resulted from the lack of a functional RNA 5'-triphosphatase in open cores, to remove the gamma-phosphate from the RNA prior to capping. RNA 5'-triphosphatases commonly exhibit an associated nucleoside triphosphatase activity, and this too was not detected in open cores. Caps of some RNAs contained an extra GMP moiety (underlined) and had the structure 3'-GpGp(p)ppGpGpC-RNA-3'. The origin of the extra GMP is not known but may reflect the cap serving as a primer for RNA synthesis. Methylated caps were produced in the presence of the substrate, S-adenosyl-l-methionine (SAM), indicating that open cores contain methyltransferase activity. UV cross-linking showed that VP3 specifically binds SAM. Combined with the results of earlier studies, our results suggest that the viral guanylyltransferase and methyltransferase are both components of VP3 and, therefore, that VP3 is a multifunctional capping enzyme.
Collapse
Affiliation(s)
- D Chen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 7 Center Drive, MSC 0720, Room 117, Bethesda, Maryland, 20892, USA
| | | | | | | |
Collapse
|
30
|
Lima CD, Wang LK, Shuman S. Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus. Cell 1999; 99:533-43. [PMID: 10589681 DOI: 10.1016/s0092-8674(00)81541-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNA triphosphatase is an essential mRNA processing enzyme that catalyzes the first step in cap formation. The 2.05 A crystal structure of yeast RNA triphosphatase Cet1p reveals a novel active site fold whereby an eight-stranded beta barrel forms a topologically closed triphosphate tunnel. Interactions of a sulfate in the center of the tunnel with a divalent cation and basic amino acids projecting into the tunnel suggest a catalytic mechanism that is supported by mutational data. Discrete surface domains mediate Cet1p homodimerization and Cet1p binding to the guanylyltransferase component of the capping apparatus. The structure and mechanism of fungal RNA triphosphatases are completely different from those of mammalian mRNA capping enzymes. Hence, RNA triphosphatase presents an ideal target for structure-based antifungal drug discovery.
Collapse
Affiliation(s)
- C D Lima
- Biochemistry Department, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
31
|
Pei Y, Ho CK, Schwer B, Shuman S. Mutational analyses of yeast RNA triphosphatases highlight a common mechanism of metal-dependent NTP hydrolysis and a means of targeting enzymes to pre-mRNAs in vivo by fusion to the guanylyltransferase component of the capping apparatus. J Biol Chem 1999; 274:28865-74. [PMID: 10506129 DOI: 10.1074/jbc.274.41.28865] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Cet1p is the prototype of a family of metal-dependent RNA 5'-triphosphatases/NTPases encoded by fungi and DNA viruses; the family is defined by conserved sequence motifs A, B, and C. We tested the effects of 12 alanine substitutions and 16 conservative modifications at 18 positions of the motifs. Eight residues were identified as important for triphosphatase activity. These were Glu-305, Glu-307, and Phe-310 in motif A (IELEMKF); Arg-454 and Lys-456 in motif B (RTK); Glu-492, Glu-494, and Glu-496 in motif C (EVELE). Four acidic residues, Glu-305, Glu-307, Glu-494, and Glu-496, may comprise the metal-binding site(s), insofar as their replacement by glutamine inactivated Cet1p. E492Q retained triphosphatase activity. Basic residues Arg-454 and Lys-456 in motif B are implicated in binding to the 5'-triphosphate. Changing Arg-454 to alanine or glutamine resulted in a 30-fold increase in the K(m) for ATP, whereas substitution with lysine increased K(m) 6-fold. Changing Lys-456 to alanine or glutamine increased K(m) an order of magnitude; ATP binding was restored when arginine was introduced. Alanine in lieu of Phe-310 inactivated Cet1p, whereas Tyr or Leu restored function. Alanine mutations at aliphatic residues Leu-306, Val-493, and Leu-495 resulted in thermal instability in vivo and in vitro. A second S. cerevisiae RNA triphosphatase/NTPase (named Cth1p) containing motifs A, B, and C was identified and characterized. Cth1p activity was abolished by E87A and E89A mutations in motif A. Cth1p is nonessential for yeast growth and, by itself, cannot fulfill the essential role played by Cet1p in vivo. Yet, fusion of Cth1p in cis to the guanylyltransferase domain of mammalian capping enzyme allowed Cth1p to complement growth of cet1Delta yeast cells. This finding illustrates that mammalian guanylyltransferase can be used as a vehicle to deliver enzymes to nascent pre-mRNAs in vivo, most likely through its binding to the phosphorylated CTD of RNA polymerase II.
Collapse
Affiliation(s)
- Y Pei
- Molecular Biology Program, Sloan-Kettering Institute, New York, USA
| | | | | | | |
Collapse
|
32
|
Lehman K, Schwer B, Ho CK, Rouzankina I, Shuman S. A conserved domain of yeast RNA triphosphatase flanking the catalytic core regulates self-association and interaction with the guanylyltransferase component of the mRNA capping apparatus. J Biol Chem 1999; 274:22668-78. [PMID: 10428848 DOI: 10.1074/jbc.274.32.22668] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 549-amino acid yeast RNA triphosphatase Cet1p catalyzes the first step in mRNA cap formation. Cet1p consists of three domains as follows: (i) a 230-amino acid N-terminal segment that is dispensable for catalysis in vitro and for Cet1p function in vivo; (ii) a protease-sensitive segment from residues 230 to 275 that is dispensable for catalysis but essential for Cet1p function in vivo; and (iii) a catalytic domain from residues 275 to 539. Sedimentation analysis indicates that purified Cet1(231-549)p is a homodimer. Cet1(231-549)p binds in vitro to the yeast RNA guanylyltransferase Ceg1p to form a 7.1 S complex that we surmise to be a trimer consisting of two molecules of Cet1(231-549)p and one molecule of Ceg1p. The more extensively truncated protein Cet1(276-549)p, which cannot support cell growth, sediments as a monomer and does not interact with Ceg1p. An intermediate deletion protein Cet1(246-549)p, which supports cell growth only when overexpressed, sediments principally as a discrete salt-stable 11.5 S homo-oligomeric complex. These data implicate the segment of Ceg1p from residues 230 to 275 in regulating self-association and in binding to Ceg1p. Genetic data support the existence of a Ceg1p-binding domain flanking the catalytic domain of Cet1p, to wit: (i) the ts growth phenotype of 2mu CET1(246-549) is suppressed by overexpression of Ceg1p; (ii) a ts alanine cluster mutation CET1(201-549)/K250A-W251A is suppressed by overexpression of Ceg1p; and (iii) 15 other cet-ts alleles with missense changes mapping elsewhere in the protein are not suppressed by Ceg1p overexpression. Finally, we show that the in vivo function of Cet1(275-549)p is completely restored by fusion to the guanylyltransferase domain of the mouse capping enzyme. We hypothesize that the need for Ceg1p binding by yeast RNA triphosphatase can by bypassed when the triphosphatase catalytic domain is delivered to the RNA polymerase II elongation complex by linkage in cis to the mammalian guanylyltransferase.
Collapse
Affiliation(s)
- K Lehman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | | | | | | | |
Collapse
|
33
|
Saha N, Schwer B, Shuman S. Characterization of human, Schizosaccharomyces pombe, and Candida albicans mRNA cap methyltransferases and complete replacement of the yeast capping apparatus by mammalian enzymes. J Biol Chem 1999; 274:16553-62. [PMID: 10347220 DOI: 10.1074/jbc.274.23.16553] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human and fission yeast cDNAs encoding mRNA (guanine-N7) methyltransferase were identified based on similarity of the human (Hcm1p; 476 amino acids) and Schizosaccharomyces pombe (Pcm1p; 389 amino acids) polypeptides to the cap methyltransferase of Saccharomyces cerevisiae (Abd1p). Expression of PCM1 or HCM1 in S. cerevisiae complemented the lethal phenotype resulting from deletion of the ABD1 gene, as did expression of the NH2-terminal deletion mutants PCM1(94-389) and HCM1(121-476). The CCM1 gene encoding Candida albicans cap methyltransferase (Ccm1p; 474 amino acids) was isolated from a C. albicans genomic library by selection for complementation of the conditional growth phenotype of S. cerevisiae abd1-ts mutants. Human cap methyltransferase was expressed in bacteria, purified, and characterized. Recombinant Hcm1p catalyzed quantitative S-adenosylmethionine-dependent conversion of GpppA-capped poly(A) to m7GpppA-capped poly(A). We identified by alanine-scanning mutagenesis eight amino acids (Asp-203, Gly-207, Asp-211, Asp-227, Arg-239, Tyr-289, Phe-291, and Phe-354) that are essential for human cap methyltransferase function in vivo. All eight residues are conserved in other cellular cap methyltransferases. Five of the mutant human proteins (D203A, R239A, Y289A, F291A, and F354A) were expressed in bacteria and found to be defective in cap methylation in vitro. Concordance of mutational effects on Hcm1p, Abd1p, and vaccinia capping enzyme underscores a conserved structural basis for cap methylation in DNA viruses, yeast, and metazoans. This is in contrast to the structural and mechanistic divergence of the RNA triphosphatase components of the yeast and metazoan capping systems. Nevertheless, we demonstrate that the entire three-component yeast capping apparatus, consisting of RNA 5'-triphosphatase (Cet1p), RNA guanylyltransferase (Ceg1p), and Abd1p could be replaced in vivo by the two-component mammalian apparatus consisting of a bifunctional triphosphatase-guanylyltransferase Mce1p and the methyltransferase Hcm1(121-476)p. Isogenic yeast strains with fungal versus mammalian capping systems should facilitate rational screens for antifungal drugs that target cap formation in vivo.
Collapse
Affiliation(s)
- N Saha
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
34
|
Ho CK, Pei Y, Shuman S. Yeast and viral RNA 5' triphosphatases comprise a new nucleoside triphosphatase family. J Biol Chem 1998; 273:34151-6. [PMID: 9852075 DOI: 10.1074/jbc.273.51.34151] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Cet1p catalyzes the first step of mRNA capping, the hydrolysis of the gamma phosphate of triphosphate-terminated RNA to form a 5' diphosphate end. The RNA triphosphatase activity of Cet1p is magnesium-dependent and has a turnover number of 1 s-1. Here we show that purified recombinant Cet1p possesses a robust ATPase activity (Km = 2.8 microM; Vmax = 25 s-1) in the presence of manganese. Cobalt is also an effective cofactor, but magnesium, calcium, copper, and zinc are not. Cet1p displays broad specificity in converting ribonucleoside triphosphates and deoxynucleoside triphosphates to their respective diphosphates. The manganese- and cobalt-dependent nucleoside triphosphatase of Cet1p resembles the nucleoside triphosphatase activities of the baculovirus LEF-4 and vaccinia virus D1 capping enzymes. Cet1p, LEF-4, and D1 share three collinear sequence motifs. Mutational analysis establishes that conserved glutamate and arginine side chains within these motifs are essential for the RNA triphosphatase and ATPase activities of Cet1p in vitro and for Cet1p function in vivo. These findings are in accord with the effects of single alanine mutations at analogous positions of vaccinia capping enzyme. We suggest that the metal-dependent RNA triphosphatases encoded by yeast and DNA viruses comprise a novel family of phosphohydrolase enzymes with a common active site.
Collapse
Affiliation(s)
- C K Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
35
|
Jin J, Dong W, Guarino LA. The LEF-4 subunit of baculovirus RNA polymerase has RNA 5'-triphosphatase and ATPase activities. J Virol 1998; 72:10011-9. [PMID: 9811739 PMCID: PMC110520 DOI: 10.1128/jvi.72.12.10011-10019.1998] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The baculovirus Autographa californica nuclear polyhedrosis virus encodes a DNA-dependent RNA polymerase that is required for transcription of viral late genes. This polymerase is composed of four equimolar subunits, LEF-8, LEF-4, LEF-9, and p47. The LEF-4 subunit has guanylyltransferase activity, suggesting that baculoviruses may encode a full complement of capping enzymes. Here we show that LEF-4 is a bifunctional enzyme that hydrolyzes the gamma phosphates of triphosphate-terminated RNA and also hydrolyzes ATP and GTP to the respective diphosphate forms. Alanine substitution of five residues previously shown to be essential for vaccinia virus RNA triphosphatase activity inactivated the triphosphatase component of LEF-4 but not the guanylyltransferase domain. Conversely, mutation of the invariant lysine in the guanylyltransferase domain abolished the guanylyltransferase activity without affecting triphosphatase function. We also investigated the effects of substituting phenylalanine for leucine at position 105, a mutation that results in a virus that is temperature sensitive for late gene expression. We found that this mutation had no significant effect on the ATPase or guanylyltransferase activity of LEF-4 but resulted in a modest decrease in RNA triphosphatase activity.
Collapse
Affiliation(s)
- J Jin
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | |
Collapse
|
36
|
Gross CH, Shuman S. RNA 5'-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein. J Virol 1998; 72:10020-8. [PMID: 9811740 PMCID: PMC110522 DOI: 10.1128/jvi.72.12.10020-10028.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autographa californica nuclear polyhedrosis virus late and very late mRNAs are transcribed by an RNA polymerase consisting of four virus-encoded polypeptides: LEF-8, LEF-9, LEF-4, and p47. The 464-amino-acid LEF-4 subunit contains the signature motifs of GTP:RNA guanylyltransferases (capping enzymes). Here, we show that the purified recombinant LEF-4 protein catalyzes two reactions involved in RNA cap formation. LEF-4 is an RNA 5'-triphosphatase that hydrolyzes the gamma phosphate of triphosphate-terminated RNA and a guanylyltransferase that reacts with GTP to form a covalent protein-guanylate adduct. The RNA triphosphatase activity depends absolutely on a divalent cation; the cofactor requirement is satisfied by either magnesium or manganese. LEF-4 also hydrolyzes ATP to ADP and Pi (Km = 43 microM ATP; Vmax = 30 s-1) and GTP to GDP and Pi. The LEF-4 nucleoside triphosphatase (NTPase) is activated by manganese or cobalt but not by magnesium. The RNA triphosphatase and NTPase activities of baculovirus LEF-4 resemble those of the vaccinia virus and Saccharomyces cerevisiae mRNA capping enzymes. We suggest that these proteins comprise a novel family of metal-dependent triphosphatases.
Collapse
Affiliation(s)
- C H Gross
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
37
|
Ho CK, Sriskanda V, McCracken S, Bentley D, Schwer B, Shuman S. The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 1998; 273:9577-85. [PMID: 9545288 DOI: 10.1074/jbc.273.16.9577] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have conducted a biochemical and genetic analysis of mouse mRNA capping enzyme (Mce1), a bifunctional 597-amino acid protein with RNA triphosphatase and RNA guanylyltransferase activities. The principal conclusions are as follows: (i) the mammalian capping enzyme consists of autonomous and nonoverlapping functional domains; (ii) the guanylyltransferase domain Mce1(211-597) is catalytically active in vitro and functional in vivo in yeast in lieu of the endogenous guanylyltransferase Ceg1; (iii) the guanylyltransferase domain per se binds to the phosphorylated RNA polymerase II carboxyl-terminal domain (CTD), whereas the triphosphatase domain, Mce1(1-210), does not bind to the CTD; and (iv) a mutation of the active site cysteine of the mouse triphosphatase elicits a strong growth-suppressive phenotype in yeast, conceivably by sequestering pre-mRNA ends in a nonproductive complex or by blocking access of the endogenous yeast triphosphatase to RNA polymerase II. These findings contribute to an emerging model of mRNA biogenesis wherein RNA processing enzymes are targeted to nascent polymerase II transcripts through contacts with the CTD. The phosphorylation-dependent interaction between guanylyltransferase and the CTD is conserved from yeast to mammals.
Collapse
Affiliation(s)
- C K Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
38
|
Deng L, Shuman S. Vaccinia NPH-I, a DExH-box ATPase, is the energy coupling factor for mRNA transcription termination. Genes Dev 1998; 12:538-46. [PMID: 9472022 PMCID: PMC316528 DOI: 10.1101/gad.12.4.538] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Accepted: 12/11/1997] [Indexed: 02/06/2023]
Abstract
Vaccinia virus RNA polymerase terminates transcription in response to a specific signal UUUUUNU in the nascent RNA. Transduction of this signal to the elongating polymerase requires a trans-acting viral termination factor (VTF/capping enzyme), and is coupled to the hydrolysis of ATP. Recent studies suggest that ATP hydrolysis is catalyzed by a novel termination protein (factor X), which is tightly associated with the elongation complex. Here, we identify factor X as NPH-I (nucleoside triphosphate phosphohydrolase-I), a virus-encoded DNA-dependent ATPase of the DExH-box family. We report that NPH-I serves two roles in transcription (1) it acts in concert with VTF/CE to catalyze release of UUUUUNU-containing nascent RNA from the elongation complex, and (2) it acts by itself as a polymerase elongation factor to facilitate readthrough of intrinsic pause sites. A mutation (K61A) in the GxGKT motif of NPH-I abolishes ATP hydrolysis and eliminates the termination and elongation factor activities. Related DExH proteins may have similar roles at postinitiation steps during cellular mRNA synthesis.
Collapse
Affiliation(s)
- L Deng
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|