1
|
Zoulim F, Chen PJ, Dandri M, Kennedy PT, Seeger C. Hepatitis B virus DNA integration: Implications for diagnostics, therapy, and outcome. J Hepatol 2024; 81:1087-1099. [PMID: 38971531 DOI: 10.1016/j.jhep.2024.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Hepatitis B virus (HBV) DNA integration - originally recognised as a non-functional byproduct of the HBV life cycle - has now been accepted as a significant contributor to HBV pathogenesis and hepatitis D virus (HDV) persistence. Integrated HBV DNA is derived from linear genomic DNA present in viral particles or produced from aberrantly processed relaxed circular genomic DNA following an infection, and can drive expression of hepatitis B surface antigen (HBsAg) and HBx. DNA integration events accumulate over the course of viral infection, ranging from a few percent during early phases to nearly 100 percent of infected cells after prolonged chronic infections. HBV DNA integration events have primarily been investigated in the context of hepatocellular carcinoma development as they can activate known oncogenes and other growth promoting genes, cause chromosomal instability and, presumably, induce epigenetic alterations, promoting tumour growth. More recent evidence suggests that HBsAg expression from integrated DNA might contribute to HBV pathogenesis by attenuating the immune response. Integrated DNA provides a source for envelope proteins required for HDV replication and hence represents a means for HDV persistence. Because integrated DNA is responsible for persistence of HBsAg in the absence of viral replication it impacts established criteria for the resolution of HBV infection, which rely on HBsAg as a diagnostic marker. Integrated HBV DNA has been useful in assessing the turnover of infected hepatocytes which occurs during all phases of chronic hepatitis B including the initial phase of infection historically termed immune tolerant. HBV DNA integration has also been shown to impact the development of novel therapies targeting viral RNAs.
Collapse
Affiliation(s)
- Fabien Zoulim
- Université Claude Bernard Lyon 1, Hospices Civils de Lyon, INSERM, Lyon Hepatology Institute, Lyon, France.
| | - Pei-Jer Chen
- Hepatitis Research Center and Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Partner Site, Germany
| | - Patrick T Kennedy
- Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | | |
Collapse
|
2
|
Yang Z, Zeng J, Chen Y, Wang M, Luo H, Huang AL, Deng H, Hu Y. Detection of HBV DNA integration in plasma cell-free DNA of different HBV diseases utilizing DNA capture strategy. Virol Sin 2024; 39:655-666. [PMID: 38852920 PMCID: PMC11401475 DOI: 10.1016/j.virs.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
The landscape of hepatitis B virus (HBV) integration in the plasma cell-free DNA (cfDNA) of HBV-infected patients with different stages of liver diseases [chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC)] remains unclear. In this study, we developed an improved strategy for detecting HBV DNA integration in plasma cfDNA, based on DNA probe capture and next-generation sequencing. Using this optimized strategy, we successfully detected HBV integration events in chimeric artificial DNA samples and HBV-infected HepG2-NTCP cells at day one post infection, with high sensitivity and accuracy. The characteristics of HBV integration events in the HBV-infected HepG2-NTCP cells and plasma cfDNA from HBV-infected individuals (CHB, LC, and HCC) were further investigated. A total of 112 and 333 integration breakpoints were detected in the HepG2-NTCP cells and 22 out of 25 (88%) clinical HBV-infected samples, respectively. In vivo analysis showed that the normalized number of support unique sequences (nnsus) in HCC was significantly higher than in CHB or LC patients (P values < 0.05). All integration breakpoints are randomly distributed on human chromosomes and are enriched in the HBV genome around nt 1800. The majority of integration breakpoints (61.86%) are located in the gene-coding region. Both non-homologous end-joining (NHEJ) and microhomology-mediated end-joining (MMEJ) interactions occurred during HBV integration across the three different stages of liver diseases. Our study provides evidence that HBV DNA integration can be detected in the plasma cfDNA of HBV-infected patients, including those with CHB, LC, or HCC, using this optimized strategy.
Collapse
Affiliation(s)
- Zerui Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jingyan Zeng
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yueyue Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Mengchun Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hongchun Luo
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Haijun Deng
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Yuan Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Meier MA, Calabrese D, Suslov A, Terracciano LM, Heim MH, Wieland S. Ubiquitous expression of HBsAg from integrated HBV DNA in patients with low viral load. J Hepatol 2021; 75:840-847. [PMID: 34004216 DOI: 10.1016/j.jhep.2021.04.051] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Loss of serum HBsAg is a hallmark of spontaneous and therapy induced resolution of HBV infection, since it generally reflects a profound decrease in viral replication. However, integrated HBV DNA can contribute to HBsAg expression independent of viral replication. The relative contributions of these sources of HBsAg are not well understood. Specifically, it is not known whether actively transcribed HBV integration could spread throughout the entire liver. METHODS The relative distribution of HBsAg and HBV RNA in liver biopsy tissue from HBeAg-negative (HBe-) patients was analyzed by immunohistochemistry and in situ hybridization (ISH), respectively. Frozen biopsy tissue was used for molecular analysis of intrahepatic viral RNA, virus-host chimeric transcripts and viral DNA. RESULTS Immunohistochemistry and ISH analysis revealed HBsAg and HBV RNA positivity in virtually all hepatocytes in the liver of some HBe- patients despite very low viremia. Reverse transcription quantitative PCR and RNA-sequencing analysis confirmed high expression levels of HBV envelope-encoding RNAs. However, the amount of viral transcriptional template (covalently closed circular (ccc)DNA) was too low to support this ubiquitous HBV RNA expression. In contrast, levels of total cellular HBV DNA were consistent with ubiquitous HBV integration. Finally, RNA-sequencing revealed the presence of many HBV-host chimeric transcripts with the potential for HBsAg expression. CONCLUSIONS Transcriptionally active HBV integration can extend to the entire liver in some HBe- patients. This can lead to ubiquitous HBsAg expression independent of HBV replication. In such patients, HBsAg is probably not a clinically useful surrogate marker for viral resolution or functional cure. LAY SUMMARY Loss of serum hepatitis B surface antigen (HBsAg) indicates resolution of HBV infection. However, integrated HBV DNA can contribute to HBsAg production independently of viral replication. We investigated the extent of HBsAg-producing viral integration in the livers of patients with low serum viral loads. Our findings suggest that transcriptionally active HBV integration can extend to the entire liver in some patients, questioning the clinical utility of HBsAg as a surrogate marker for viral replication.
Collapse
Affiliation(s)
- Marie-Anne Meier
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland; Institute of Pathology, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Aleksei Suslov
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Luigi M Terracciano
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel CH-4031, Switzerland
| | - Markus H Heim
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland; Institute of Pathology, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland.
| | - Stefan Wieland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland.
| |
Collapse
|
4
|
Hepatitis B Virus DNA Integration and Clonal Expansion of Hepatocytes in the Chronically Infected Liver. Viruses 2021; 13:v13020210. [PMID: 33573130 PMCID: PMC7911963 DOI: 10.3390/v13020210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Human hepatitis B virus (HBV) can cause chronic, lifelong infection of the liver that may lead to persistent or episodic immune-mediated inflammation against virus-infected hepatocytes. This immune response results in elevated rates of killing of virus-infected hepatocytes, which may extend over many years or decades, lead to fibrosis and cirrhosis, and play a role in the high incidence of hepatocellular carcinoma (HCC) in HBV carriers. Immune-mediated inflammation appears to cause oxidative DNA damage to hepatocytes, which may also play a major role in hepatocarcinogenesis. An additional DNA damaging feature of chronic infections is random integration of HBV DNA into the chromosomal DNA of hepatocytes. While HBV DNA integration does not have a role in virus replication it may alter gene expression of the host cell. Indeed, most HCCs that arise in HBV carriers contain integrated HBV DNA and, in many, the integrant appears to have played a role in hepatocarcinogenesis. Clonal expansion of hepatocytes, which is a natural feature of liver biology, occurs because the hepatocyte population is self-renewing and therefore loses complexity due to random hepatocyte death and replacement by proliferation of surviving hepatocytes. This process may also represent a risk factor for the development of HCC. Interestingly, during chronic HBV infection, hepatocyte clones detected using integrated HBV DNA as lineage-specific markers, emerge that are larger than those expected to occur by random death and proliferation of hepatocytes. The emergence of these larger hepatocyte clones may reflect a survival advantage that could be explained by an ability to avoid the host immune response. While most of these larger hepatocyte clones are probably not preneoplastic, some may have already acquired preneoplastic changes. Thus, chronic inflammation in the HBV-infected liver may be responsible, at least in part, for both initiation of HCC via oxidative DNA damage and promotion of HCC via stimulation of hepatocyte proliferation through immune-mediated killing and compensatory division.
Collapse
|
5
|
Hepatitis B Virus DNA Integration Occurs Early in the Viral Life Cycle in an In Vitro Infection Model via Sodium Taurocholate Cotransporting Polypeptide-Dependent Uptake of Enveloped Virus Particles. J Virol 2018; 92:JVI.02007-17. [PMID: 29437961 DOI: 10.1128/jvi.02007-17] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
Chronic infection by hepatitis B virus (HBV) is the major contributor to liver disease worldwide. Though HBV replicates via a nuclear episomal DNA (covalently closed circular DNA [cccDNA]), integration of HBV DNA into the host cell genome is regularly observed in the liver in infected patients. While reported as a prooncogenic alteration, the mechanism(s) and timing of HBV DNA integration are not well understood, chiefly due to the lack of in vitro infection models that have detectable integration events. In this study, we have established an in vitro system in which integration can be reliably detected following HBV infection. We measured HBV DNA integration using inverse nested PCR in primary human hepatocytes, HepaRG-NTCP, HepG2-NTCP, and Huh7-NTCP cells after HBV infection. Integration was detected in all cell types at a rate of >1 per 10,000 cells, with the most consistent detection in Huh7-NTCP cells. The integration rate remained stable between 3 and 9 days postinfection. HBV DNA integration was efficiently blocked by treatment with a 200 nM concentration of the HBV entry inhibitor Myrcludex B, but not with 10 μM tenofovir, 100 U of interferon alpha, or a 1 μM concentration of the capsid assembly inhibitor GLS4. This suggests that integration of HBV DNA occurs immediately after infection of hepatocytes and is likely independent of de novo HBV genome replication in this model. Site analysis revealed that HBV DNA integrations were distributed over the entire human genome. Further, integrated HBV DNA sequences were consistent with double-stranded linear HBV DNA being the major precursor. Thus, we have established an in vitro system to interrogate the mechanisms of HBV DNA integration.IMPORTANCE Hepatitis B virus (HBV) is a common blood-borne pathogen and, following a chronic infection, can cause liver cancer and liver cirrhosis. Integration of HBV DNA into the host genome occurs in all known members of the Hepadnaviridae family, despite this form not being necessary for viral replication. HBV DNA integration has been reported to drive liver cancer formation and persistence of virus infection. However, when and the mechanism(s) by which HBV DNA integration occurs are not clear. In this study, we have developed and characterized an in vitro system to reliably detect HBV DNA integrations that result from a true HBV infection event and that closely resemble those found in patient tissues. Using this model, we showed that integration occurs when the infection is first established. Importantly, we provide here a system to analyze molecular factors involved in HBV integration, which can be used to develop strategies to halt its formation.
Collapse
|
6
|
Kennedy PTF, Litwin S, Dolman GE, Bertoletti A, Mason WS. Immune Tolerant Chronic Hepatitis B: The Unrecognized Risks. Viruses 2017; 9:v9050096. [PMID: 28468285 PMCID: PMC5454409 DOI: 10.3390/v9050096] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic infection with hepatitis B virus (HBV) progresses through multiple phases, including immune tolerant, immune active, immune control, and, in a subset of patients who achieve immune control, reactivation. The first, the immune tolerant phase, is considered to be prolonged in duration but essentially benign in nature, lacking long-term consequences, and thus not recommended for antiviral therapy. This review challenges the notion that the immune tolerant phase is truly benign and considers the possibility that events during this phase may contribute significantly to cirrhosis, hepatocellular carcinoma (HCC), and the premature death of 25% of HBV carriers worldwide. Thus, earlier treatment than recommended by current guidelines should be considered. Low therapeutic coverage exacerbated by restrictive treatment guidelines may facilitate disease progression in many patients but also increase the risk of neonatal and horizontal transmission from untreated mothers to their children. While a prophylactic vaccine exists, there are many areas worldwide where the treatment of adults and the delivery of an effective vaccination course to newborns present difficult challenges.
Collapse
Affiliation(s)
- Patrick T F Kennedy
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine & Dentistry, QMUL, London E1 2AT, UK.
| | - Samuel Litwin
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | - Grace E Dolman
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine & Dentistry, QMUL, London E1 2AT, UK.
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore.
| | | |
Collapse
|
7
|
Tu T, Budzinska MA, Shackel NA, Urban S. HBV DNA Integration: Molecular Mechanisms and Clinical Implications. Viruses 2017; 9:v9040075. [PMID: 28394272 PMCID: PMC5408681 DOI: 10.3390/v9040075] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with the Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality. One peculiar observation in cells infected with HBV (or with closely‑related animal hepadnaviruses) is the presence of viral DNA integration in the host cell genome, despite this form being a replicative dead-end for the virus. The frequent finding of somatic integration of viral DNA suggests an evolutionary benefit for the virus; however, the mechanism of integration, its functions, and the clinical implications remain unknown. Here we review the current body of knowledge of HBV DNA integration, with particular focus on the molecular mechanisms and its clinical implications (including the possible consequences of replication-independent antigen expression and its possible role in hepatocellular carcinoma). HBV DNA integration is likely to influence HBV replication, persistence, and pathogenesis, and so deserves greater attention in future studies.
Collapse
Affiliation(s)
- Thomas Tu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| | - Magdalena A Budzinska
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Nicholas A Shackel
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
- Liverpool Hospital, Gastroenterology, Sydney, NSW 2170, Australia.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Mason WS, Gill US, Litwin S, Zhou Y, Peri S, Pop O, Hong ML, Naik S, Quaglia A, Bertoletti A, Kennedy PT. HBV DNA Integration and Clonal Hepatocyte Expansion in Chronic Hepatitis B Patients Considered Immune Tolerant. Gastroenterology 2016; 151:986-998.e4. [PMID: 27453547 PMCID: PMC8406433 DOI: 10.1053/j.gastro.2016.07.012] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Chronic infection with hepatitis B virus (HBV) progresses through different phases. The first, called the immune-tolerant phase, has been associated with a lack of disease activity. We examined HBV-DNA integration, clonal hepatocyte expansion, HBV antigen expression, and HBV-specific immune responses in patients in the immune-tolerant phase to assess whether this designation is appropriate or if there is evidence of disease activity. METHODS We studied HBV-DNA integration, clonal hepatocyte expansion, and expression of hepatitis B surface antigen and core antigen in liver tissues from 26 patients with chronic HBV infection (ages, 14-39 y); 9 patients were positive for hepatitis B e antigen (HBeAg) in the immune-tolerant phase and were matched for age with 10 HBeAg-positive patients with active disease and 7 HBeAg-negative patients with active disease. Peripheral blood samples were collected and HBV-specific T cells were quantified for each group. RESULTS Detection of HBV antigens differed among groups. However, unexpectedly high numbers of HBV-DNA integrations, randomly distributed among chromosomes, were detected in all groups. Clonal hepatocyte expansion in patients considered immune tolerant also was greater than expected, potentially in response to hepatocyte turnover mediated by HBV-specific T cells, which were detected in peripheral blood cells from patients in all phases of infection. CONCLUSIONS We measured HBV-specific T cells, HBV-DNA integration, and clonal hepatocyte expansion in different disease phases of young patients with chronic hepatitis B, with emphasis on the so-called immune-tolerant phase. A high level of HBV-DNA integration and clonal hepatocyte expansion in patients considered immune tolerant indicated that hepatocarcinogenesis could be underway-even in patients with early stage chronic HBV infection. Our findings do not support the concepts that this phase is devoid of markers of disease progression or that an immune response has not been initiated. We propose that this early phase be called a high-replication, low-inflammation stage. The timing of therapeutic interventions to minimize further genetic damage to the hepatocyte population should be reconsidered.
Collapse
Affiliation(s)
| | - Upkar S. Gill
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, QMUL, London, UK
| | - Samuel Litwin
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Suraj Peri
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Oltin Pop
- Histopathology, Institute of Liver Studies, Kings College Hospital, London, UK
| | - Michelle L.W. Hong
- Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore
| | - Sandhia Naik
- Department of Paediatric Gastroenterology & Hepatology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Alberto Quaglia
- Histopathology, Institute of Liver Studies, Kings College Hospital, London, UK
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore
| | - Patrick T.F. Kennedy
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, QMUL, London, UK
| |
Collapse
|
9
|
Zhao XL, Yang JR, Lin SZ, Ma H, Guo F, Yang RF, Zhang HH, Han JC, Wei L, Pan XB. Serum viral duplex-linear DNA proportion increases with the progression of liver disease in patients infected with HBV. Gut 2016; 65:502-11. [PMID: 26045139 DOI: 10.1136/gutjnl-2014-308989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/19/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE HBV has two forms of genomic DNA, relaxed-circular DNA (rcDNA) and duplex-linear DNA (dlDNA). Compared to rcDNA, dlDNA has been demonstrated to integrate more frequently into host cellular chromosomes, which may have oncogenic consequences. However, the dlDNA proportion relative to total HBV DNA and its clinical significance in patients remain to be investigated. DESIGN Based on the structural difference between rcDNA and dlDNA, we developed a peptide nucleic acid (PNA)-mediated quantitative real-time PCR (qPCR) clamping assay to measure the proportions of dlDNA in total HBV DNA in sera obtained from patients with chronic hepatitis B (CHB), liver cirrhosis (LC) or LC-developed hepatocellular carcinoma (HCC). The factors that influence the proportion of dlDNA were also investigated. RESULTS The average dlDNA proportion was approximately 7% in the sera of chronic HBV-infected patients and was elevated in CHB patients with abnormal levels of alanine aminotransferase. The sera dlDNA proportions increased to approximately 14% and 20% in the patients with LC and HCC, respectively. Interferon-α treatment slightly increased the dlDNA proportion in the responders; and nucleotide analogue therapy spuriously elevated the proportion. Moreover, treatment of human hepatoma cells supporting HBV replication with inflammatory cytokines significantly altered the dlDNA proportion in vitro. CONCLUSIONS Using a novel PNA-mediated qPCR clamping assay, we first showed that serum dlDNA proportions progressively increased during the development of HBV-related liver diseases. The dlDNA proportion can be regulated by inflammatory cytokines, suggesting an association among inflammation, increased production of HBV dlDNA and development of HCC.
Collapse
Affiliation(s)
- Xing-Liang Zhao
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Jian-Rong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Sheng-Zhang Lin
- Department of Hepato-Biliary-Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Hui Ma
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Fang Guo
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, Pennsylvania, USA
| | - Rui-Feng Yang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Heng-Hui Zhang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Jin-Chao Han
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Lai Wei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Xiao-Ben Pan
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| |
Collapse
|
10
|
Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology 2015; 479-480:672-86. [PMID: 25759099 PMCID: PMC4424072 DOI: 10.1016/j.virol.2015.02.031] [Citation(s) in RCA: 619] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 02/06/2023]
Abstract
Human hepatitis B virus (HBV) is the prototype of a family of small DNA viruses that productively infect hepatocytes, the major cell of the liver, and replicate by reverse transcription of a terminally redundant viral RNA, the pregenome. Upon infection, the circular, partially double-stranded virion DNA is converted in the nucleus to a covalently closed circular DNA (cccDNA) that assembles into a minichromosome, the template for viral mRNA synthesis. Infection of hepatocytes is non-cytopathic. Infection of the liver may be either transient (<6 months) or chronic and lifelong, depending on the ability of the host immune response to clear the infection. Chronic infections can cause immune-mediated liver damage progressing to cirrhosis and hepatocellular carcinoma (HCC). The mechanisms of carcinogenesis are unclear. Antiviral therapies with nucleoside analog inhibitors of viral DNA synthesis delay sequelae, but cannot cure HBV infections due to the persistence of cccDNA in hepatocytes.
Collapse
|
11
|
Abstract
Australian antigen, the envelope protein of hepatitis B virus (HBV), was discovered in 1967 as a prevalent serum antigen in hepatitis B patients. Early electron microscopy (EM) studies showed that this antigen was present in 22-nm particles in patient sera, which were believed to be incomplete virus. Complete virus, much less abundant than the 22-nm particles, was finally visualized in 1970. HBV was soon found to infect chimpanzees, gorillas, orangutans, gibbon apes, and, more recently, tree shrews (Tupaia belangeri) and cynomolgus macaques (Macaca fascicularis). This restricted host range placed limits on the kinds of studies that might be performed to better understand the biology and molecular biology of HBV and to develop antiviral therapies to treat chronic infections. About 10 years after the discovery of HBV, this problem was bypassed with the discovery of viruses related to HBV in woodchucks, ground squirrels, and ducks. Although unlikely animal models, their use revealed the key steps in hepadnavirus replication and in the host response to infection, including the fact that the viral nuclear episome is the ultimate target for immune clearance of transient infections and antiviral therapy of chronic infections. Studies with these and other animal models have also suggested interesting clues into the link between chronic HBV infection and hepatocellular carcinoma.
Collapse
|
12
|
Human plasmacytoid dendritic cells sense lymphocytic choriomeningitis virus-infected cells in vitro. J Virol 2013; 88:752-7. [PMID: 24155390 DOI: 10.1128/jvi.01714-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that exosomal transfer of hepatitis C virus (HCV) positive-strand RNA from human Huh-7 hepatoma cells to human plasmacytoid dendritic cells (pDCs) triggers pDC alpha/beta interferon (IFN-α/β) production in a Toll-like receptor 7 (TLR7)-dependent, virus-independent manner. Here we show that human pDCs are also activated by a TLR7-dependent, virus-independent, exosomal RNA transfer mechanism by human and mouse hepatoma and nonhepatoma cells that replicate the negative-strand lymphocytic choriomeningitis virus (LCMV).
Collapse
|
13
|
Mason WS. Hepadnaviruses and Hepatocellular Carcinoma. CANCER ASSOCIATED VIRUSES 2012:531-569. [DOI: 10.1007/978-1-4614-0016-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Clonal expansion of normal-appearing human hepatocytes during chronic hepatitis B virus infection. J Virol 2010; 84:8308-15. [PMID: 20519397 DOI: 10.1128/jvi.00833-10] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infections are associated with persistent immune killing of infected hepatocytes. Hepatocytes constitute a largely self-renewing population. Thus, immune killing may exert selective pressure on the population, leading it to evolve in order to survive. A gradual course of hepatocyte evolution toward an HBV-resistant state is suggested by the substantial decline in the fraction of infected hepatocytes that occurs during the course of chronic infections. Consistent with hepatocyte evolution, clones of >1,000 hepatocytes develop postinfection in the noncirrhotic livers of chimpanzees chronically infected with HBV and of woodchucks infected with woodchuck hepatitis virus (W. S. Mason, A. R. Jilbert, and J. Summers, Proc. Natl. Acad. Sci. U. S. A. 102:1139-1144, 2005; W. S. Mason et al., J. Virol. 83:8396-8408, 2009). The present study was carried out to determine (i) if extensive clonal expansion of hepatocytes also occurred in human HBV carriers, particularly in the noncirrhotic liver, and (ii) if clonal expansion included normal-appearing hepatocytes, not just hepatocytes that appear premalignant. Host DNA extracted from fragments of noncancerous liver, collected during surgical resection of hepatocellular carcinoma (HCC), was analyzed by inverse PCR for randomly integrated HBV DNA as a marker of expanding hepatocyte lineages. This analysis detected extensive clonal expansion of hepatocytes, as previously found in chronically infected chimpanzees and woodchucks. Tissue sections were stained with hematoxylin and eosin (H&E), and DNA was extracted from the adjacent section for inverse PCR to detect integrated HBV DNA. This analysis revealed that clonal expansion can occur among normal-appearing human hepatocytes.
Collapse
|
15
|
Antiviral treatment of chronic hepatitis B virus (HBV) infections. Viruses 2010; 2:1279-1305. [PMID: 21994680 PMCID: PMC3185710 DOI: 10.3390/v2061279] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/18/2010] [Accepted: 05/25/2010] [Indexed: 12/21/2022] Open
Abstract
While 25 compounds have been formally licensed for the treatment of HIV infection (AIDS), only seven licensed products are currently available for the treatment of chronic hepatitis B virus (HBV) infection: interferon-α, pegylated interferon-α, lamivudine, adefovir (dipivoxil), entecavir, telbivudine and tenofovir (disoproxil fumarate). In contrast to the treatment of HIV infections where the individual drugs are routinely used in combination, for the treatment of chronic HBV infection the individual drugs are generally used in monotherapy. In principle, combination drug therapy should allow reducing the likelihood of drug-resistant development.
Collapse
|
16
|
Detection of clonally expanded hepatocytes in chimpanzees with chronic hepatitis B virus infection. J Virol 2009; 83:8396-408. [PMID: 19535448 DOI: 10.1128/jvi.00700-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During a hepadnavirus infection, viral DNA integrates at a low rate into random sites in the host DNA, producing unique virus-cell junctions detectable by inverse nested PCR (invPCR). These junctions serve as genetic markers of individual hepatocytes, providing a means to detect their subsequent proliferation into clones of two or more hepatocytes. A previous study suggested that the livers of 2.4-year-old woodchucks (Marmota monax) chronically infected with woodchuck hepatitis virus contained at least 100,000 clones of >1,000 hepatocytes (W. S. Mason, A. R. Jilbert, and J. Summers, Proc. Natl. Acad. Sci. USA 102:1139-1144, 2005). However, possible correlations between sites of viral-DNA integration and clonal expansion could not be explored because the woodchuck genome has not yet been sequenced. In order to further investigate this issue, we looked for similar clonal expansion of hepatocytes in the livers of chimpanzees chronically infected with hepatitis B virus (HBV). Liver samples for invPCR were collected from eight chimpanzees chronically infected with HBV for at least 20 years. Fifty clones ranging in size from approximately 35 to 10,000 hepatocytes were detected using invPCR in 32 liver biopsy fragments (approximately 1 mg) containing, in total, approximately 3 x 10(7) liver cells. Based on searching the analogous human genome, integration sites were found on all chromosomes except Y, approximately 30% in known or predicted genes. However, no obvious association between the extent of clonal expansion and the integration site was apparent. This suggests that the integration site per se is not responsible for the outgrowth of large clones of hepatocytes.
Collapse
|
17
|
The amount of hepatocyte turnover that occurred during resolution of transient hepadnavirus infections was lower when virus replication was inhibited with entecavir. J Virol 2008; 83:1778-89. [PMID: 19073743 DOI: 10.1128/jvi.01587-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transient hepadnavirus infections can involve spread of virus to the entire hepatocyte population. In this situation hepatocytes present following recovery are derived from infected hepatocytes. During virus clearance antiviral cytokines are thought to block virus replication and formation of new covalently closed circular DNA (cccDNA), the viral transcriptional template. It remains unclear if existing cccDNA is eliminated noncytolytically or if hepatocyte death and proliferation, to compensate for killing of some of the infected hepatocytes, are needed to remove cccDNA from surviving infected hepatocytes. Interpreting the relationship between hepatocyte death and cccDNA elimination requires knowing both the amount of hepatocyte turnover and whether cccDNA synthesis is effectively blocked during the period of immune destruction of infected hepatocytes. We have addressed these questions by asking if treatment of woodchucks with the nucleoside analog inhibitor of viral DNA synthesis entecavir (ETV) reduced hepatocyte turnover during clearance of transient woodchuck hepatitis virus (WHV) infections. To estimate hepatocyte turnover, complexity analysis was carried out on virus-cell DNA junctions created by integration of WHV and present following recovery in the livers of WHV-infected control or ETV-treated woodchucks. We estimated that, on average, 2.2 to 4.8 times less hepatocyte turnover occurred during immune clearance in the ETV-treated woodchucks. Computer modeling of the complexity data suggests that mechanisms in addition to hepatocyte death were responsible for elimination of cccDNA during recovery from transient infections.
Collapse
|
18
|
Férir G, Kaptein S, Neyts J, De Clercq E. Antiviral treatment of chronic hepatitis B virus infections: the past, the present and the future. Rev Med Virol 2008; 18:19-34. [PMID: 17966115 DOI: 10.1002/rmv.554] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A decade ago, standard therapy against chronic hepatitis B virus infections only consisted of lamivudine or IFN-alpha. Treatment with lamivudine and IFN has been compounded by, respectively, the emergence of drug-resistant virus strains and the appearance of serious side effects. In the last 10 years, hepatitis B treatment has made much progress. Several treatments are now licensed for the treatment of patients with chronic hepatitis B and others are under development. Here, we provide an overview of the potential and mode of action of anti-HBV agents that are currently available, and/or may become available in the near future. Foremost among these newer compounds are adefovir dipivoxil, entecavir and telbivudine.
Collapse
Affiliation(s)
- Geoffrey Férir
- Rega Institute for Medical Research, KULeuven, Leuven, Belgium
| | | | | | | |
Collapse
|
19
|
Immune selection during chronic hepadnavirus infection. Hepatol Int 2007; 2:3-16. [PMID: 19669275 DOI: 10.1007/s12072-007-9024-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/25/2007] [Accepted: 07/28/2007] [Indexed: 12/17/2022]
Abstract
PURPOSE Late-stage outcomes of chronic hepatitis B virus (HBV) infection, including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) result from persistent liver injury mediated by HBV antigen specific cytotoxic T lymphocytes (CTLs). Two other outcomes that often accompany chronic infection, the emergence of mutant viruses, including HBe-antigen negative (HBeAg (-)) HBV, and a reduction over time in the fraction of hepatocytes productively infected with HBV, may also result from persistent immune attack by antiviral CTLs. To gain insights into how these latter changes take place, we employed computer simulations of the chronically infected liver. METHODS Computational programs were used to model the emergence of both virus-free hepatocytes and mutant strains of HBV. RESULTS The computer modeling predicted that if cell-to-cell spread of virus is an efficient process during chronic infections, an HBV mutant that replicated significantly more efficiently than the wild type would emerge as the prevalent virus in a few years, much more rapidly than observed, while a mutant that replicated with the same or lower efficiency would fail to emerge. Thus, either cell-to-cell spread is inefficient or mutants do not replicate appreciably more efficiently than wild type. In contrast, with immune selection and a higher rate of killing of hepatocytes infected with wild-type virus, emergence of mutant virus can be explained without the need for a higher replication rate. Immune selection could also explain the emergence of virus-free hepatocytes that are unable to support HBV infection, since they should have a lower turnover rate than infected hepatocytes.
Collapse
|
20
|
Wong DKH, Yuen MF, Poon RTP, Yuen JCH, Fung J, Lai CL. Quantification of hepatitis B virus covalently closed circular DNA in patients with hepatocellular carcinoma. J Hepatol 2006; 45:553-9. [PMID: 16904225 DOI: 10.1016/j.jhep.2006.05.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 05/19/2006] [Accepted: 05/20/2006] [Indexed: 01/21/2023]
Abstract
BACKGROUND/AIMS This study aimed to measure the intrahepatic total hepatitis B virus (HBV) DNA and covalently closed circular DNA (cccDNA) levels in tumor and non-tumor tissues in hepatocellular carcinoma (HCC) patients. METHODS Intrahepatic total HBV DNA and cccDNA were measured in 25 HCC patients (21 hepatitis B surface antigen [HBsAg]-positive and 4 HBsAg-negative) by the Invader assay. RESULTS A low level of intrahepatic HBV DNA was detectable in all HBsAg-negative patients. For HBsAg-positive patients, the intrahepatic total HBV DNA levels in the tumor and non-tumor tissues were comparable (P=0.903). However, the tumor tissues had significantly higher levels of cccDNA (0.35 vs. 0.16 copies/cell, P=0.030) and higher proportion of intrahepatic HBV DNA in the form of cccDNA (100% vs. 84%, P=0.004) than the non-tumor tissues. Seventeen out of 21 (81%) tumor tissues had intrahepatic HBV DNA solely in cccDNA form. Analysis of HBV mRNA expression indicated that HBV replication appeared to be lower in the tumor tissues than the non-tumor tissues. CONCLUSIONS Compared to the non-tumor tissues, the levels of HBV replication in the tumor tissues appeared to be lower, and cccDNA was the predominant form of HBV DNA in the tumor tissues.
Collapse
MESH Headings
- Adult
- Aged
- Carcinoma, Hepatocellular/virology
- DNA, Circular/analysis
- DNA, Circular/isolation & purification
- DNA, Viral/analysis
- DNA, Viral/isolation & purification
- Female
- Gene Expression Regulation, Viral
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B virus/genetics
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/virology
- Humans
- Liver/virology
- Liver Neoplasms/virology
- Male
- Middle Aged
- RNA, Messenger/analysis
- RNA, Messenger/isolation & purification
- RNA, Viral/analysis
- RNA, Viral/isolation & purification
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Danny Ka-Ho Wong
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
21
|
Dandri M, Volz T, Lutgehetmann M, Petersen J. Modeling infection with hepatitis B viruses in vivo. Future Virol 2006. [DOI: 10.2217/17460794.1.4.461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatitis B virus (HBV) is a human-specific liver pathogen whose viral cycle and mechanisms of pathogenesis are not yet fully understood. Along with invaluable infection studies in chimpanzees, avian and mammalian HBV-related viruses continue to offer ample opportunities for studies in their natural hosts. Yet, none of these hosts are commonly used laboratory animals; the lack of reliable in vitro infection systems and convenient animal models has severely hampered progress in HBV research. The need to perform studies in HBV-permissive hepatocytes has led researchers to create new, challenging human–mouse chimera infection models. The types of animal models currently available to perform infection studies with HBV are presented and discussed in this review.
Collapse
Affiliation(s)
- Maura Dandri
- University Hospital Hamburg, Department of Medicine, University of Hamburg, Eppendorf, Martinistr 52, D-20246 Hamburg, Germany
| | - Tassilo Volz
- University Hospital Hamburg, Department of Medicine, University of Hamburg, Eppendorf, Martinistr 52, D-20246 Hamburg, Germany
| | - Marc Lutgehetmann
- University Hospital Hamburg, Department of Medicine, University of Hamburg, Eppendorf, Martinistr 52, D-20246 Hamburg, Germany
| | - Jorg Petersen
- University Hospital Hamburg, Department of Medicine, University of Hamburg, Eppendorf, Martinistr 52, D-20246 Hamburg, Germany
| |
Collapse
|
22
|
Dandri M, Volz TK, Lütgehetmann M, Petersen J. Animal models for the study of HBV replication and its variants. J Clin Virol 2005; 34 Suppl 1:S54-62. [PMID: 16461225 DOI: 10.1016/s1386-6532(05)80011-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enormous progresses in hepatitis B virus research have been made through the identification of avian and mammalian HBV related viruses, which offer ample opportunities for studies in naturally occurring hosts. However, none of these natural hosts belongs to the commonly used laboratory animals, and the development of various mouse strains carrying HBV transgenes offered unique opportunities to investigate some mechanisms of viral pathogenesis. Furthermore, the need to perform infection studies in a system harbouring HBV-permissive hepatocytes has lately led researchers to create new challenging human mouse chimera models of HBV infection. In this review, we will overview the type of animal models currently available in hepadnavirus research.
Collapse
Affiliation(s)
- M Dandri
- Department of Medicine, University Hospital Eppendorf University of Hamburg, Martinistr 52, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
23
|
Abstract
Chronic hepadnavirus infections cause liver damage with ongoing death and regeneration of hepatocytes. In the present study, we set out to quantify the extent of liver turnover by measuring the clonal proliferation of hepatocytes by using integrated viral DNA as a genetic marker for individual hepatocyte lineages. Liver tissue from woodchucks with chronic woodchuck hepatitis virus (WHV) infection was assayed for randomly integrated viral DNA by using inverse PCR. Serial endpoint dilution of viral-cell junction fragments into 96-well plates, followed by nested PCR and DNA sequencing, was used to determine the copy number of specific viral cell junctions as a measure of the clonal distribution of infected cell subpopulations. The results indicated that the livers contained a minimum of 100,000 clones of >1,000 cells containing integrated DNA, representing at least 0.2% of the hepatocyte population of the liver. Because cells with integrated WHV DNA comprised only 1-2% of total liver cells, it is likely that the total number of clones far exceeds this estimate, with as much as one half of the liver derived from high copy clones of >1,000 cells. It may be inferred that these clones have a strong selective growth or survival advantage. The results provide evidence for a large amount of hepatocyte proliferation and selection having occurred during the period of chronic WHV infection (approximately 1.5 years) in these animals.
Collapse
Affiliation(s)
- Maura Dandri
- Medizinische Klinik I, Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Hamburg--Eppendorf, Germany
| | | |
Collapse
|
24
|
Abstract
AIM: To examine the serum from black African patients with acute hepatitis B to ascertain if integrants of viral DNA can be detected in fragments of cellular DNA leaking from damaged hepatocytes into the circulation.
METHODS: DNA was extracted from the sera of five patients with uncomplicated acute hepatitis B and one with fulminant disease. Two subgenomic PCRs designed to amplify the complete genome of HBV were used and the resulting amplicons were cloned and sequenced.
RESULTS: HBV and chromosomal DNA were amplified from the sera of all the patients. In one patient with uncomplicated disease, HBV DNA was integrated into host chromosome 7 q11.23 in the WBSCR1 gene. The viral DNA comprised 200 nucleotides covering the S and X genes in opposite orientation, with a 1 169 nucleotide deletion. The right virus/host junction was situated at nucleotide 1 774 in the cohesive overlap region of the viral genome, at a preferred topoisomerase I cleavage motif. The chromosomal DNA was not rearranged. The patient made a full recovery and seroconverted to anti-HBs- and anti-HBe-positivity. Neither HBV nor chromosomal DNA could be amplified from his serum at that time.
CONCLUSION: Integration of viral DNA into chromosomal DNA may occur rarely during acute hepatitis B and, with clonal propagation of the integrant, might play a role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Gerald C Kimbi
- Department of Medicine, University of the Witwatersrand Medical School, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | | | | |
Collapse
|
25
|
Mason WS, Jilbert AR, Summers J. Clonal expansion of hepatocytes during chronic woodchuck hepatitis virus infection. Proc Natl Acad Sci U S A 2005; 102:1139-44. [PMID: 15657132 PMCID: PMC544623 DOI: 10.1073/pnas.0409332102] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic hepadnavirus infections cause liver damage with ongoing death and regeneration of hepatocytes. In the present study we set out to quantify the extent of liver turnover by measuring the clonal proliferation of hepatocytes by using integrated viral DNA as a genetic marker for individual hepatocyte lineages. Liver tissue from woodchucks with chronic woodchuck hepatitis virus (WHV) infection was assayed for randomly integrated viral DNA by using inverse PCR. Serial endpoint dilution of viral-cell junction fragments into 96-well plates, followed by nested PCR and DNA sequencing, was used to determine the copy number of specific viral cell junctions as a measure of the clonal distribution of infected cell subpopulations. The results indicated that the livers contained a minimum of 100,000 clones of >1,000 cells containing integrated DNA, representing at least 0.2% of the hepatocyte population of the liver. Because cells with integrated WHV DNA comprised only 1-2% of total liver cells, it is likely that the total number of clones far exceeds this estimate, with as much as one-half of the liver derived from high copy clones of >1,000 cells. It may be inferred that these clones have a strong selective growth or survival advantage. The results provide evidence for a large amount of hepatocyte proliferation and selection having occurred during the period of chronic WHV infection ( approximately 1.5 years) in these animals.
Collapse
Affiliation(s)
- William S Mason
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | | | |
Collapse
|
26
|
Wong DKH, Yuen MF, Yuan H, Sum SSM, Hui CK, Hall J, Lai CL. Quantitation of covalently closed circular hepatitis B virus DNA in chronic hepatitis B patients. Hepatology 2004; 40:727-37. [PMID: 15349913 DOI: 10.1002/hep.20353] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study examined a signal amplification assay, the Invader assay, for the quantitation of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) in liver biopsies and sera. DNA was extracted from liver biopsy and serum samples were collected from 16 hepatitis B e antigen (HBeAg)-positive and 36 antibody-to-HBeAg-positive (anti-HBe-positive) chronic hepatitis B patients. The amount of total HBV DNA and cccDNA was measured using the Invader assay. Anti-HBe-positive patients had lower median total intrahepatic HBV DNA (P < .001) and intrahepatic cccDNA levels (P = .001) than HBeAg-positive patients. Intrahepatic cccDNA correlated positively with the total intrahepatic HBV DNA (r = 0.950, P < .001). However, the proportion of intrahepatic HBV DNA in the form of cccDNA was inversely related to the amount of total intrahepatic HBV DNA (r = -0.822, P < .001). A small amount of cccDNA was detected in 39 of 52 (75%) serum samples. Anti-HBe-positive patients had lower median serum cccDNA levels than HBeAg-positive patients (P = .002). Serum HBV DNA correlated positively with intrahepatic total HBV DNA (r = 0.778, P < .001) and intrahepatic cccDNA (r = 0.481, P = .002). In conclusion, the Invader assay is a reliable assay for the quantitation of cccDNA. Serum and intrahepatic total HBV DNA and cccDNA levels become lower as the disease progresses from HBeAg-positive to anti-HBe-positive phase, with cccDNA becoming the predominant form of intrahepatic HBV DNA.
Collapse
Affiliation(s)
- Danny Ka-Ho Wong
- Division of Gastroenterology and Hepatology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Bill CA, Summers J. Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. Proc Natl Acad Sci U S A 2004; 101:11135-40. [PMID: 15258290 PMCID: PMC503752 DOI: 10.1073/pnas.0403925101] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Integrated hepadnaviral DNA in livers and tumors of chronic hepatitis B patients has been reported for many years. In this study, we investigated whether hepatitis B virus DNA integration occurs preferentially at sites of cell DNA damage. A single I-SceI homing endonuclease recognition site was introduced into the DNA of the chicken hepatoma cell line LMH by stable DNA transfection, and double-strand breaks were induced by transient expression of I-SceI after transfection of an I-SceI expression vector. Alteration of the target cleavage site by imprecise nonhomologous end joining occurred at a frequency of approximately 10(-3) per transfected cell. When replication of an avian hepadnavirus, duck hepatitis B virus, occurred at the time of double-strand break repair, we observed integration of viral DNA at the site of the break with a frequency of approximately 10(-4) per transfected cell. Integration depended on the production of viral double-stranded linear DNA and the expression of I-SceI, and integrated DNA was stable through at least 17 cell divisions. Integration appeared to occur through nonhomologous end joining between the viral linear DNA ends and the I-SceI-induced break, because small deletions or insertions were observed at the sites of end joining. The results suggest that integration of hepadnaviral DNA in infected livers occurs at sites of DNA damage and may indicate the presence of more widespread genetic changes beyond that caused by viral DNA integration itself [corrected].
Collapse
Affiliation(s)
- Colin A Bill
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | | |
Collapse
|
28
|
Summers J, Mason WS. Residual integrated viral DNA after hepadnavirus clearance by nucleoside analog therapy. Proc Natl Acad Sci U S A 2004; 101:638-40. [PMID: 14699050 PMCID: PMC327200 DOI: 10.1073/pnas.0307422100] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We determined the frequency of integrated viral DNA in the livers of three woodchucks chronically infected with the woodchuck hepatitis virus before and during 30 weeks of therapy with the nucleoside analog L-FMAU [1-(2-fluoro-5-methyl-beta, L-arabinofuranosyl)uracil, clevudine]. We found that although viral covalently closed circular DNA declined 20- to 100-fold, integrated viral DNA showed no discernable decrease over the course of treatment. Thus, chemotherapeutic clearance of covalently closed circular DNA did not involve the replacement of the infected hepatocyte population with uninfected progenitors, but rather, uninfected hepatocytes in the treated liver were derived from the infected hepatocyte population. The frequency of integrated DNA in chronically infected woodchucks was found to be 1 or 2 orders of magnitude higher than that in transiently infected woodchucks, implying that integration and other genomic damage accumulate over the duration of infection. Our results indicate that genetic changes from this damage remain in the liver even while virus infection is cleared and argue for early antiviral intervention in chronic hepatitis.
Collapse
Affiliation(s)
- Jesse Summers
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
29
|
Klöcker U, Oberwinkler H, Kürschner T, Protzer U. Presence of replicating virus in recombinant hepadnavirus stocks results from recombination and can be eliminated by the use of a packaging cell line. J Virol 2003; 77:2873-81. [PMID: 12584311 PMCID: PMC149740 DOI: 10.1128/jvi.77.5.2873-2881.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutant hepatitis B viruses are useful tools to study the viral life cycle and viral pathogenesis. Furthermore, recombinant hepatitis B viruses are candidate vectors for liver-directed gene therapy. Because wild-type viruses present in recombinant or mutant virus stocks may falsify experimental results and are detrimental for a viral vector, we investigated whether and to what extent wild-type virus is present in recombinant virus stocks and where it originates from. We took advantage of the duck model of hepatitis B virus infection which allows very sensitive detection of replication-competent viruses by infection of primary duck hepatocytes or of ducklings in vivo. Recombinant hepatitis B virus stocks contained significant amounts of wild-type viruses, which were most probably generated by homologous recombination between plasmids containing homologous viral sequences. In addition, replication-competent viral genomes were reconstituted from plasmids which contained replication-deficient but redundant viral sequences. Using a stable cell line for packaging of deficient viral genomes, no wild-type virus was detected, neither by infection of primary hepatocytes nor in vivo.
Collapse
Affiliation(s)
- Uta Klöcker
- Department of Virology,University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
30
|
Dandri M, Burda MR, Bürkle A, Zuckerman DM, Will H, Rogler CE, Greten H, Petersen J. Increase in de novo HBV DNA integrations in response to oxidative DNA damage or inhibition of poly(ADP-ribosyl)ation. Hepatology 2002; 35:217-23. [PMID: 11786979 DOI: 10.1053/jhep.2002.30203] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic infection with hepatitis B virus (HBV) is associated with an increased risk for the development of cirrhosis and hepatocellular carcinoma (HCC). Although clonal HBV DNA integrations are detected in nearly all HCCs the role of these integrations in hepatocarcinogenesis is poorly understood. We have used a cloning protocol that allows studying the frequency and the natural history of HBV DNA integrations in cell culture. Southern blot analysis of the genomic DNA of HepG2 2.2.15 subclones, which replicate HBV, enabled us to detect new HBV DNA integrations in approximately 10% of the HepG 2.2.15 subclones over 4 rounds of sequential subcloning, whereas no loss of any preexisting HBV DNA integrations was observed. Treatments of HepG2 cells with H(2)O(2), designed to increase DNA damage, increased the frequency of HBV integrations to approximately 50% of the subclones and treatments designed to inhibit DNA repair, by inhibiting Poly(ADP-ribosyl)ation, also increased the frequency of HBV integration to 50%. These findings suggest that DNA strand breaks induced by oxidative stress during persistent HBV infection in humans may increase HBV DNA integration events, whereas PARP-1 activity may function to limit the occurrence of de novo HBV DNA integrations.
Collapse
Affiliation(s)
- Maura Dandri
- Heinrich Pette Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang PC, Hui EK, Chiu JH, Lo SJ. Analysis of integrated hepatitis B virus DNA and flanking cellular sequence by inverse polymerase chain reaction. J Virol Methods 2001; 92:83-90. [PMID: 11164921 DOI: 10.1016/s0166-0934(00)00278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although hepatitis B virus (HBV) DNA has been detected in the human hepatoma cell line, HAGS 2.1, viral and cellular junction sequences have not been investigated fully. To facilitate the analysis of HBV DNA integration sites in HAGS 2.1 cells, a combination of conventional polymerase chain reaction (PCR) and inverse PCR (IPCR) was carried out to identify the junction between the viral and the cellular gene. The HBV integrant and its cellular counterpart sequence were cloned and analyzed. The sequencing data indicated that the breakpoints on the HBV integrant are at nucleotide 2111 of the C gene and nucleotide 1558 of the X gene. The length of the integrated HBV DNA in HAGS 2.1 was approximately 2.6 kb, which includes partial C, P, and X genes and an intact S gene. The cellular sequence flanking the integrated HBV gene was very similar to a human satellite III repetitive sequence with 43 and 56 of GGAAT repeats on the left- and right-hand side, respectively. Although the findings on the viral-cellular junction in HAGS 2.1 cells cannot explain the liver tumorigenesis, the current study shows that by choosing the nearest restriction site, which can be determined by conventional PCR rather than using a unique site within the integrated viral sequence to do IPCR, gives a higher successful rate for cloning and the subsequent analysis of the viral-cellular junctions.
Collapse
Affiliation(s)
- P C Wang
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | | | | | | |
Collapse
|
32
|
Abstract
DNA of the avian hepadnavirus, duck hepatitis B virus, was found to be integrated at low abundance into the cellular DNA extracted from the livers of infected ducklings. The frequency of integration was estimated to be at least one viral genome per 10(3) to 10(4) cells by 6 days postinfection. The structures of virus-cell junctions determined by sequencing were compared with those of virus-virus junctions formed by nonhomologous recombination between the ends of linear viral DNA forms. This comparison allowed us to conclude that linear viral DNA was the preferential form used as an integration substrate. Potential factors promoting viral DNA integration during chronic infection are discussed.
Collapse
Affiliation(s)
- W Yang
- Department of Molecular Genetics, The University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | |
Collapse
|
33
|
Zoulim F. Therapy of chronic hepatitis B virus infection: inhibition of the viral polymerase and other antiviral strategies. Antiviral Res 1999; 44:1-30. [PMID: 10588330 DOI: 10.1016/s0166-3542(99)00056-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B infection remains a major public health problem worldwide. The hepatitis B virus belongs to the family of hepadnaviruses that replicate their DNA genome via a reverse transcription pathway. The chronicity of infection in infected hepatocytes is maintained by the persistence of the viral covalently closed circular DNA. The main strategies to combat chronic HBV infection rely on the stimulation of the specific antiviral immune response and on the inhibition of viral replication. While the prolonged administration of reverse transcriptase inhibitors is most often associated with a control of viral replication rather than eradication, it may select for resistant mutants. The search for new viral targets is therefore mandatory to design combination strategies to prevent the emergence of resistant mutants and eventually clear viral infection.
Collapse
|
34
|
Pourquier P, Jensen AD, Gong SS, Pommier Y, Rogler CE. Human DNA topoisomerase I-mediated cleavage and recombination of duck hepatitis B virus DNA in vitro. Nucleic Acids Res 1999; 27:1919-25. [PMID: 10101202 PMCID: PMC148402 DOI: 10.1093/nar/27.8.1919] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we report that eukaryotic topoisomerase I (top1) can linearize the open circular DNA of duck hepatitis B virus (DHBV). Using synthetic oligonucleotides mimicking the three-strand flap DR1 region of the DHBV genome, we found that top1 cleaves the DNA plus strand in a suicidal manner, which mimics the linearization of the virion DNA. We also report that top1 can cleave the DNA minus strand at specific sites and can linearize the minus strand via a non-homologous recombination reaction. These results are consistent with the possibility that top1 can act as a DNA endo-nuclease and strand transferase and play a role in the circularization, linearization and possibly integration of viral replication intermediates.
Collapse
Affiliation(s)
- P Pourquier
- Laboratory of Molecular Pharmacology, Building 37, Room 5D02, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|