1
|
Konevtsova OV, Golushko IY, Podgornik R, Rochal SB. Integration of Cypoviruses into polyhedrin matrix. NANOSCALE ADVANCES 2023; 5:4140-4148. [PMID: 37560430 PMCID: PMC10408579 DOI: 10.1039/d3na00393k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
Unlike in other viruses, in Cypoviruses the genome is doubly protected since their icosahedral capsids are embedded into a perfect polyhedrin crystal. Current experimental methods cannot resolve the resulting interface structure and we propose a symmetry-based approach to predict it. We reveal a remarkable match between the surfaces of Cypovirus and the outer polyhedrin matrix. The match arises due to the preservation of the common tetragonal symmetry, allowing perfect contacts of polyhedrin trimers with VP1 and VP5 capsid proteins. We highlight a crucial role of the VP5 proteins in embedding the Cypovirus into the polyhedrin matrix and discuss the relationship between the nucleoside triphosphatase activity of the proteins and their role in the superstructure formation. Additionally, we propose an electrostatic mechanism that drives the viral superstructure disassembly occurring in the alkaline environment of the insect intestines. Our study may underpin novel strategies for engineering proteinaceous nanocontainers in diverse biotechnological and chemical applications.
Collapse
Affiliation(s)
| | - Ivan Yu Golushko
- Physics Faculty, Southern Federal University Rostov-on-Don Russia
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190 China
- Wenzhou Institute of the University of Chinese Academy of Sciences Wenzhou Zhejiang 325000 China
| | - Sergei B Rochal
- Physics Faculty, Southern Federal University Rostov-on-Don Russia
| |
Collapse
|
2
|
Stevens A, Cui Y, Shivakoti S, Zhou ZH. Asymmetric reconstruction of the aquareovirus core at near-atomic resolution and mechanism of transcription initiation. Protein Cell 2023; 14:544-548. [PMID: 36856784 PMCID: PMC10305738 DOI: 10.1093/procel/pwad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Alexander Stevens
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), 609 Charles E Young Dr E, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Building 114 | Mail Code: 722710, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East | Box 951569, Los Angeles, CA 90095-1569, USA
| | - Yanxiang Cui
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Building 114 | Mail Code: 722710, Los Angeles, CA 90095, USA
| | - Sakar Shivakoti
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), 609 Charles E Young Dr E, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), 609 Charles E Young Dr E, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Building 114 | Mail Code: 722710, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Zhang Y, Cui Y, Sun J, Zhou ZH. Multiple conformations of trimeric spikes visualized on a non-enveloped virus. Nat Commun 2022; 13:550. [PMID: 35087065 PMCID: PMC8795420 DOI: 10.1038/s41467-022-28114-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Many viruses utilize trimeric spikes to gain entry into host cells. However, without in situ structures of these trimeric spikes, a full understanding of this dynamic and essential process of viral infections is not possible. Here we present four in situ and one isolated cryoEM structures of the trimeric spike of the cytoplasmic polyhedrosis virus, a member of the non-enveloped Reoviridae family and a virus historically used as a model in the discoveries of RNA transcription and capping. These structures adopt two drastically different conformations, closed spike and opened spike, which respectively represent the penetration-inactive and penetration-active states. Each spike monomer has four domains: N-terminal, body, claw, and C-terminal. From closed to opened state, the RGD motif-containing C-terminal domain is freed to bind integrins, and the claw domain rotates to expose and project its membrane insertion loops into the cellular membrane. Comparison between turret vertices before and after detachment of the trimeric spike shows that the trimeric spike anchors its N-terminal domain in the iris of the pentameric RNA-capping turret. Sensing of cytosolic S-adenosylmethionine (SAM) and adenosine triphosphate (ATP) by the turret triggers a cascade of events: opening of the iris, detachment of the spike, and initiation of endogenous transcription. Zhang and Cui et al. present in situ cryoEM structures of the trimeric spike of cytoplasmic polyhedrosis virus in both open and close conformations, and demonstrate that spike detachment from the capsid is triggered by the presence of SAM and ATP.
Collapse
Affiliation(s)
- Yinong Zhang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.,California Nanosystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Yanxiang Cui
- California Nanosystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China. .,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| | - Z Hong Zhou
- California Nanosystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Tight junction protein claudin-2 promotes cell entry of Bombyx mori cypovirus. Appl Microbiol Biotechnol 2021; 105:6019-6031. [PMID: 34324010 DOI: 10.1007/s00253-021-11456-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
Claudin-2 is a major component of tight junctions (TJs), which play an important role in reovirus entry into host cells. The Bombyx mori cytoplasmic polyhedosis virus (BmCPV) relates to the cypovirus strain of the reovirus family. So far, the role of claudin-2 in the process of BmCPV infection is not known. In the present study, it was observed that increasing expression of the claudin-2 gene (CLDN2) may concomitantly elevate BmCPV infection. Contrarily, knockdown of CLDN2 expression by siRNAs can reduce BmCPV infection. Similarly, antibody-based blockage of claudin-2 could also decrease BmCPV cell entry. These results suggest that claudin-2 can promote BmCPV infection in vitro. Moreover, immunofluorescence (IF) assays showed that claudin-2 can interact with BmCPV during viral infection. Specifically, co-immunoprecipitation experiments indicated that claudin-2 binds the BmCPV VP7 (instead of VP3 proteins). The interaction between VP7 and claudin-2 was further confirmed by bimolecular fluorescence complementation (BIFC). Altogether, our results suggest that BmCPV cell entry can be promoted upon interaction of VP7 with claudin-2. These findings provide new mechanistic insights related to BmCPV infection. KEY POINTS: •Claudin-2 could promote BmCPV infection of cells. •Claudin-2 interacted with BmCPV during BmCPV infection. •Claudin-2 could interact with BmCPV VP7 protein, but not with VP3 proteins.
Collapse
|
5
|
Pan M, Alvarez-Cabrera AL, Kang JS, Wang L, Fan C, Zhou ZH. Asymmetric reconstruction of mammalian reovirus reveals interactions among RNA, transcriptional factor µ2 and capsid proteins. Nat Commun 2021; 12:4176. [PMID: 34234134 PMCID: PMC8263624 DOI: 10.1038/s41467-021-24455-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
Mammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor μ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase μ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively. Mammalian reovirus (MRV) is a double-stranded RNA (dsRNA) virus that affects the gastrointestinal and respiratory tracts. Here, the authors present the 3.3 Å cryo-EM asymmetric reconstruction of transcribing MRV that reveals the organization of the dsRNA genome, RNA interaction with the polymerase complex, and how the polymerase interacts extensively with its co-factor, µ2, to form a transcription enzyme complex, which engages and regulates RNA transcription.
Collapse
Affiliation(s)
- Muchen Pan
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA, USA.,University of Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ana L Alvarez-Cabrera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Joon S Kang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Lihua Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA. .,California NanoSystems Institute, UCLA, Los Angeles, CA, USA. .,Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Kaelber JT, Jiang W, Weaver SC, Auguste AJ, Chiu W. Arrangement of the Polymerase Complexes inside a Nine-Segmented dsRNA Virus. Structure 2020; 28:604-612.e3. [PMID: 32049031 PMCID: PMC7289189 DOI: 10.1016/j.str.2020.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022]
Abstract
Members of the family Reoviridae package several copies of the viral polymerase complex into their capsid to carry out replication and transcription within viral particles. Classical single-particle reconstruction encounters difficulties resolving structures such as the intraparticle polymerase complex because refinement can converge to an incorrect map and because the map could depict a nonrepresentative subset of particles or an average of heterogeneous particles. Using the nine-segmented Fako virus, we tested hypotheses for the arrangement and number of polymerase complexes within the virion by measuring how well each hypothesis describes the set of cryoelectron microscopy images of individual viral particles. We find that the polymerase complex in Fako virus binds at ten possible sites despite having only nine genome segments. A single asymmetric configuration describes the arrangement of these complexes in both virions and genome-free capsids. Similarities between the arrangements of Reoviridae with 9, 10, and 11 segments indicate the generalizability of this architecture.
Collapse
Affiliation(s)
- Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Wen Jiang
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Albert J Auguste
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Wah Chiu
- Department of Bioengineering, Department of Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
A Reverse Genetics System for Cypovirus Based on a Bacmid Expressing T7 RNA Polymerase. Viruses 2019; 11:v11040314. [PMID: 30939777 PMCID: PMC6521135 DOI: 10.3390/v11040314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Dendrolimus punctatus cypovirus (DpCPV), belonging to the genus Cypovirus within the family Reoviridae, is considered the most destructive pest of pine forests worldwide. DpCPV has a genome consisting of 10 linear double-stranded RNA segments. To establish a reverse genetics system, we cloned cDNAs encoding the 10 genomic segments of DpCPV into three reverse genetics vectors in which each segment was transcribed under the control of a T7 RNA polymerase promoter and terminator tagged with a hepatitis delta virus ribozyme sequence. We also constructed a vp80-knockout Autographa californica multiple nucleopolyhedrovirus bacmid to express a T7 RNA polymerase codon-optimized for Sf9 cells. Following transfection of Sf9 cells with the three vectors and the bacmid, occlusion bodies (OBs) with the typical morphology of cypovirus polyhedra were observed by optical microscopy. The rescue system was verified by incorporation of a HindIII restriction enzyme site null mutant of the 9th genomic segment. Furthermore, when we co-transfected Sf9 cells with the reverse genetics vectors, the bacmid, and an additional vector bearing an egfp gene flanked with the 5′ and 3′ untranslated regions of the 10th genomic segment, aggregated green fluorescence co-localizing with the OBs was observed. The rescued OBs were able to infect Spodopetra exigua larvae, although their infectivity was significantly lower than that of wild-type DpCPV. This reverse genetics system for DpCPV could be used to explore viral replication and pathogenesis and to facilitate the development of novel bio-insecticides and expression systems for exogenous proteins.
Collapse
|
8
|
In Situ Structures of the Polymerase Complex and RNA Genome Show How Aquareovirus Transcription Machineries Respond to Uncoating. J Virol 2018; 92:JVI.00774-18. [PMID: 30068643 DOI: 10.1128/jvi.00774-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022] Open
Abstract
Reoviruses carry out genomic RNA transcription within intact viruses to synthesize plus-sense RNA strands, which are capped prior to their release as mRNA. The in situ structures of the transcriptional enzyme complex (TEC) containing the RNA-dependent RNA polymerase (RdRp) and NTPase are known for the single-layered reovirus cytoplasmic polyhedrosis virus (CPV), but not for multilayered reoviruses, such as aquareoviruses (ARV), which possess a primed stage that CPV lacks. Consequently, how the RNA genome and TEC respond to priming in reoviruses is unknown. Here, we determined the near-atomic-resolution asymmetric structure of ARV in the primed state by cryo-electron microscopy (cryo-EM), revealing the in situ structures of 11 TECs inside each capsid and their interactions with the 11 surrounding double-stranded RNA (dsRNA) genome segments and with the 120 enclosing capsid shell protein (CSP) VP3 subunits. The RdRp VP2 and the NTPase VP4 associate with each other and with capsid vertices; both bind RNA in multiple locations, including a novel C-terminal domain of VP4. Structural comparison between the primed and quiescent states showed translocation of the dsRNA end from the NTPase to the RdRp during priming. The RNA template channel was open in both states, suggesting that channel blocking is not a regulating mechanism between these states in ARV. Instead, the NTPase C-terminal domain appears to regulate RNA translocation between the quiescent and primed states. Taking the data together, dsRNA viruses appear to have adapted divergent mechanisms to regulate genome transcription while retaining similar mechanisms to coassemble their genome segments, TEC, and capsid proteins into infectious virions.IMPORTANCE Viruses in the family Reoviridae are characterized by the ability to endogenously synthesize nascent RNA within the virus. However, the mechanisms for assembling their RNA genomes with transcriptional enzymes into a multilayered virion and for priming such a virion for transcription are poorly understood. By cryo-EM and novel asymmetric reconstruction, we determined the atomic structure of the transcription complex inside aquareoviruses (ARV) that are primed for infection. The transcription complex is anchored by the N-terminal segments of enclosing capsid proteins and contains an NTPase and a polymerase. The NTPase has a newly discovered domain that translocates the 5' end of plus-sense RNA in segmented dsRNA genomes from the NTPase to polymerase VP2 when the virus changes from the inactive (quiescent) to the primed state. Conformation changes in capsid proteins and transcriptional complexes suggest a mechanism for relaying information from the outside to the inside of the virus during priming.
Collapse
|
9
|
Kundu A, Bose M, Roy M, Dutta S, Biswas P, Gautam P, Das AK, Ghosh AK. Molecular insights into RNA-binding properties of Escherichia coli-expressed RNA-dependent RNA polymerase of Antheraea mylitta cytoplasmic polyhedrosis virus. Arch Virol 2017; 162:2727-2736. [PMID: 28589512 DOI: 10.1007/s00705-017-3412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/15/2017] [Indexed: 11/30/2022]
Abstract
Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) is responsible for morbidity of the Indian non-mulberry silkworm, A. mylitta. AmCPV belongs to the family Reoviridae and has 11 double-stranded (ds) RNA genome segments (S1-S11). Segment 2 (S2) encodes a 123-kDa polypeptide with RNA-dependent RNA polymerase (RdRp) activity. To examine the RNA-binding properties of the viral polymerase, the full-length RdRp and its three domains (N-terminal, polymerase and C-terminal domains) were expressed in Escherichia coli BL21 (DE3) cells with hexahistidine and trigger factor tag fused consecutively at its amino terminus, and the soluble fusion proteins were purified. The purified full-length polymerase specifically bound to the 3' untranslated region (3'-UTR) of a viral plus-sense (+) strand RNA with strong affinity regardless of the salt concentrations, but the isolated polymerase domain of the enzyme exhibited poor RNA-binding ability. Further, the RdRp recognition signals were found to be different from the cis-acting signals that promote minus-sense (-) strand RNA synthesis, because different internal regions of the 3'-UTR of the (+) strand RNA did not effectively compete out the binding of RdRp to the intact 3'-UTR of the (+) strand RNA, but all of these RNA molecules could serve as templates for (-) strand RNA synthesis by the polymerase.
Collapse
Affiliation(s)
- Anirban Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Madhuparna Bose
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Madhurima Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Soumita Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Poulomi Biswas
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Pradeep Gautam
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ananta Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
10
|
Liu Z, Zhang J. Exploring the inside details of virions by electron microscopy. BIOPHYSICS REPORTS 2016; 2:21-24. [PMID: 27819027 PMCID: PMC5071365 DOI: 10.1007/s41048-016-0022-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/24/2016] [Indexed: 11/03/2022] Open
Affiliation(s)
- Zheng Liu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
| | - Jingqiang Zhang
- College of Life Science, SunYat-sen University, Guangzhou, 510275 China
| |
Collapse
|
11
|
Functional insights from molecular modeling, docking, and dynamics study of a cypoviral RNA dependent RNA polymerase. J Mol Graph Model 2015; 61:160-74. [PMID: 26264734 DOI: 10.1016/j.jmgm.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/27/2015] [Accepted: 07/18/2015] [Indexed: 11/20/2022]
Abstract
Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) contains 11 double stranded RNA genome segments and infects tasar silkworm A. mylitta. RNA-dependent RNA polymerase (RdRp) is reported as a key enzyme responsible for propagation of the virus in the host cell but its structure function relationship still remains elusive. Here a computational approach has been taken to compare sequence and secondary structure of AmCPV RdRp with other viral RdRps to identify consensus motifs. Then a reliable pairwise sequence alignment of AmCPV RdRp with its closest sequence structure homologue λ3 RdRp is done to predict three dimensional structure of AmCPV RdRp. After comparing with other structurally known viral RdRps, important sequence and/or structural features involved in substrate entry or binding, polymerase reaction and the product release events have been identified. A conserved RNA pentanucleotide (5'-AGAGC-3') at the 3'-end of virus genome is predicted as cis-acting signal for RNA synthesis and its docking and simulation study along with the model of AmCPV RdRp has allowed to predict mode of template binding by the viral polymerase. It is found that template RNA enters into the catalytic center through nine sequence-independent and two sequence-dependent interactions with the specific amino acid residues. However, number of sequence dependent interactions remains almost same during 10 nano-second simulation time while total number of interactions decreases. Further, docking of N(7)-methyl-GpppG (mRNA cap) on the model as well as prediction of RNA secondary structure has shown the template entry process in the active site. These findings have led to postulate the mechanism of RNA-dependent RNA polymerization process by AmCPV RdRp. To our knowledge, this is the first report to evaluate structure function relationship of a cypoviral RdRp.
Collapse
|
12
|
A newly isolated reovirus has the simplest genomic and structural organization of any reovirus. J Virol 2014; 89:676-87. [PMID: 25355879 DOI: 10.1128/jvi.02264-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A total of 2,691 mosquitoes representing 17 species was collected from eight locations in southwest Cameroon and screened for pathogenic viruses. Ten isolates of a novel reovirus (genus Dinovernavirus) were detected by culturing mosquito pools on Aedes albopictus (C6/36) cell cultures. A virus that caused overt cytopathic effects was isolated, but it did not infect vertebrate cells or produce detectable disease in infant mice after intracerebral inoculation. The virus, tentatively designated Fako virus (FAKV), represents the first 9-segment, double-stranded RNA (dsRNA) virus to be isolated in nature. FAKV appears to have a broad mosquito host range, and its detection in male specimens suggests mosquito-to-mosquito transmission in nature. The structure of the T=1 FAKV virion, determined to subnanometer resolution by cryoelectron microscopy (cryo-EM), showed only four proteins per icosahedral asymmetric unit: a dimer of the major capsid protein, one turret protein, and one clamp protein. While all other turreted reoviruses of known structures have at least two copies of the clamp protein per asymmetric unit, FAKV's clamp protein bound at only one conformer of the major capsid protein. The FAKV capsid architecture and genome organization represent the most simplified reovirus described to date, and phylogenetic analysis suggests that it arose from a more complex ancestor by serial loss-of-function events. IMPORTANCE We describe the detection, genetic, phenotypic, and structural characteristics of a novel Dinovernavirus species isolated from mosquitoes collected in Cameroon. The virus, tentatively designated Fako virus (FAKV), is related to both single-shelled and partially double-shelled viruses. The only other described virus in this genus was isolated from cultured mosquito cells. It was previously unclear whether the phenotypic characteristics of that virus were reflective of this genus in nature or were altered during serial passaging in the chronically infected cell line. FAKV is a naturally occurring single-shelled reovirus with a unique virion architecture that lacks several key structural elements thought to stabilize a single-shelled reovirus virion, suggesting what may be the minimal number of proteins needed to form a viable reovirus particle. FAKV evolved from more complex ancestors by losing a genome segment and several virion proteins.
Collapse
|
13
|
Cheng C, Shao Y, Su L, Zhou Y, Sun X. Interactions among Dendrolimus punctatus cypovirus proteins and identification of the genomic segment encoding its A-spike. J Gen Virol 2014; 95:1532-1538. [PMID: 24700101 DOI: 10.1099/vir.0.064022-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Revealing the interactions among cypovirus proteins would facilitate our understanding of the replication and assembly of this virus. In the present study, interactions among proteins encoded by the 10 segments of Dendrolimus punctatus cypovirus (DpCPV) were identified using yeast two-hybrid (Y2H) and far-Western blotting assays. In total, 24 pairs of interactions were detected. Twelve pairs of one-direction interactions, four pairs of binary interactions and four pairs of self-associations were identified in the Y2H assays. Another four pairs of interactions were identified by far-Western blotting. The interactions between the methyltransferase domain of the turret protein (VP3) and VP4 as well as between polyhedrin and VP4 were further confirmed by far-Western blotting and pull-down assays, respectively. In addition, immunogold labelling showed that the A-spike of DpCPV is formed by VP4. In conclusion, we obtained a protein-protein interaction network of DpCPV and showed that its A-spike is formed by VP4 encoded by genomic segment 6.
Collapse
Affiliation(s)
- Chuangang Cheng
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yunpeng Shao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Lan Su
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yin Zhou
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Xiulian Sun
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
14
|
Marzban R, He Q, Zhang Q, Liu XX. Histopathology of cotton bollworm midgut infected with Helicoverpa armigera cytoplasmic polyhedrosis virus. Braz J Microbiol 2014; 44:1231-6. [PMID: 24688516 PMCID: PMC3958192 DOI: 10.1590/s1517-83822013000400029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 04/04/2013] [Indexed: 11/22/2022] Open
Abstract
This research was carried out to examine cytopathological effects of Helicoverpa armigera Cytoplasmic polyhedrosis virus (HaCPV) on infected midgut cotton bollworm (Helicoverpa armigera) using transmission and scanning electron microscope. The symptoms on infected host larvae of the host, compared with healthy ones, were getting swollen with milky-white and fragile Histopathological examinations showed infection with HaCPV small polyhedral inclusion bodies (PIB) after 1 or 2 days which were observed in columnar cells of midgut. Virions were partially or completely occupied in a polyhedral matrix to form polyhedral inclusion bodies (PIB) at periphery of virogenic stroma. PIBs were measured 0.5 to 3.5 μm and virions about 46 nm in diameter. Microvilli of infected columnar cells were affected and degenerated immediately prior to rupture of the cell. Some infected columnar cells ruptured to release PIB into the gut lumen 3 days after infection. In addition, PIB were found in goblet cells, 5 or 6 days after infection. Infected goblet cells degenerate to such an extent that only a few of the original microvillus-like cytoplasmic projections and cell organells were left. These cytopathic effects caused in the midgut by HaCPV on cotton bollworm larvae are essentially similar to those have been reported for lepidoperan and dipteran infection by CPV.
Collapse
Affiliation(s)
- Rasoul Marzban
- Department of Biological Control, Iranian Research Institute of Plant Protection, Tehran, Iran. ; Department of Entomology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian He
- Department of Entomology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qingwen Zhang
- Department of Entomology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiao Xia Liu
- Department of Entomology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Yang J, Cheng Z, Zhang S, Xiong W, Xia H, Qiu Y, Wang Z, Wu F, Qin CF, Yin L, Hu Y, Zhou X. A cypovirus VP5 displays the RNA chaperone-like activity that destabilizes RNA helices and accelerates strand annealing. Nucleic Acids Res 2013; 42:2538-54. [PMID: 24319147 PMCID: PMC3936753 DOI: 10.1093/nar/gkt1256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For double-stranded RNA (dsRNA) viruses in the family Reoviridae, their inner capsids function as the machinery for viral RNA (vRNA) replication. Unlike other multishelled reoviruses, cypovirus has a single-layered capsid, thereby representing a simplified model for studying vRNA replication of reoviruses. VP5 is one of the three major cypovirus capsid proteins and functions as a clamp protein to stabilize cypovirus capsid. Here, we expressed VP5 from type 5 Helicoverpa armigera cypovirus (HaCPV-5) in a eukaryotic system and determined that this VP5 possesses RNA chaperone-like activity, which destabilizes RNA helices and accelerates strand annealing independent of ATP. Our further characterization of VP5 revealed that its helix-destabilizing activity is RNA specific, lacks directionality and could be inhibited by divalent ions, such as Mg(2+), Mn(2+), Ca(2+) or Zn(2+), to varying degrees. Furthermore, we found that HaCPV-5 VP5 facilitates the replication initiation of an alternative polymerase (i.e. reverse transcriptase) through a panhandle-structured RNA template, which mimics the 5'-3' cyclization of cypoviral positive-stranded RNA. Given that the replication of negative-stranded vRNA on the positive-stranded vRNA template necessitates the dissociation of the 5'-3' panhandle, the RNA chaperone activity of VP5 may play a direct role in the initiation of reoviral dsRNA synthesis.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China and Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dunn SE, Li H, Cardone G, Nibert ML, Ghabrial SA, Baker TS. Three-dimensional structure of victorivirus HvV190S suggests coat proteins in most totiviruses share a conserved core. PLoS Pathog 2013; 9:e1003225. [PMID: 23516364 PMCID: PMC3597494 DOI: 10.1371/journal.ppat.1003225] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/19/2013] [Indexed: 11/18/2022] Open
Abstract
Double-stranded (ds)RNA fungal viruses are currently assigned to six different families. Those from the family Totiviridae are characterized by nonsegmented genomes and single-layer capsids, 300–450 Å in diameter. Helminthosporium victoriae virus 190S (HvV190S), prototype of recently recognized genus Victorivirus, infects the filamentous fungus Helminthosporium victoriae (telomorph: Cochliobolus victoriae), which is the causal agent of Victoria blight of oats. The HvV190S genome is 5179 bp long and encompasses two large, slightly overlapping open reading frames that encode the coat protein (CP, 772 aa) and the RNA-dependent RNA polymerase (RdRp, 835 aa). To our present knowledge, victoriviruses uniquely express their RdRps via a coupled termination–reinitiation mechanism that differs from the well-characterized Saccharomyces cerevisiae virus L-A (ScV-L-A, prototype of genus Totivirus), in which the RdRp is expressed as a CP/RdRp fusion protein due to ribosomal frameshifting. Here, we used transmission electron cryomicroscopy and three-dimensional image reconstruction to determine the structures of HvV190S virions and two types of virus-like particles (capsids lacking dsRNA and capsids lacking both dsRNA and RdRp) at estimated resolutions of 7.1, 7.5, and 7.6 Å, respectively. The HvV190S capsid is thin and smooth, and contains 120 copies of CP arranged in a “T = 2” icosahedral lattice characteristic of ScV-L-A and other dsRNA viruses. For aid in our interpretations, we developed and used an iterative segmentation procedure to define the boundaries of the two, chemically identical CP subunits in each asymmetric unit. Both subunits have a similar fold, but one that differs from ScV-L-A in many details except for a core α-helical region that is further predicted to be conserved among many other totiviruses. In particular, we predict the structures of other victoriviruses to be highly similar to HvV190S and the structures of most if not all totiviruses including, Leishmania RNA virus 1, to be similar as well. Of the known dsRNA fungal viruses, the best characterized is Saccharomyces cerevisiae virus L-A (ScV-L-A), prototype of the genus Totivirus, family Totiviridae. Until the current study, there have been no subnanometer structures of dsRNA fungal viruses from the genus Victorivirus, which is the largest in family Totiviridae. The 3D cryo-reconstruction presented here of prototype victorivirus Helminthosporium victoriae virus 190S (HvV190S) approaches 7-Å resolution and shows the asymmetric unit of the capsid is a dimer comprising two, chemically identical coat-protein subunits organized in a so called “T = 2” lattice. These HvV190S subunits have a similar fold, but one that differs from ScV-L-A in many details except for a core α-helical region that is further predicted to be conserved among many other totiviruses. In particular, we predict the structures of other victoriviruses to be highly similar to HvV190S and the structures of most if not all totiviruses, including Leishmania RNA virus 1, to be similar as well.
Collapse
Affiliation(s)
- Sarah E. Dunn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Hua Li
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Giovanni Cardone
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Max L. Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Said A. Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (SAG); (TSB)
| | - Timothy S. Baker
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (SAG); (TSB)
| |
Collapse
|
17
|
Jin L, Dai C, Qin T, Sun X. Molecular characterization of protein p50 of Dendrolimus punctatus cytoplasmic polyhedrosis virus. J Basic Microbiol 2012; 53:37-44. [PMID: 22581499 DOI: 10.1002/jobm.201100488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/26/2011] [Indexed: 11/11/2022]
Abstract
Genome segment 7 of the 10-segmented RNA genomes of Dendrolimus punctatus cytoplasmic polyhedrosis virus (DpCPV) comprises 1502 nucleotides with one ORF of 1347 bp. This ORF was predicted to encode a protein of 448 amino acids with a molecular mass of 49,756 Da (p50). Antisera against both p50 and an antigen domain (AD) near the N-terminus of p50 specifically bound to a viral structural protein of ca. 33 kDa (V5), indicating that V5 was an N-terminal product of p50. Immunoblotting analysis with anti-p50 antibodies detected p50 and V5 molecules in the host midguts three days and five days post infection, respectively. The intracellular localization of p50 protein was examined by expressing truncations of p50 fused with GFP in recombinant baculovirus-infected Sf9 cells. The p50 protein was present in the cytoplasm of the cells, and the N-terminal portion (67-135 aa) of the protein played a key role in this localization.
Collapse
Affiliation(s)
- Liang Jin
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | |
Collapse
|
18
|
Abstract
Double-stranded RNA viruses in the family Reoviridae are capable of transcribing and capping nascent mRNA within an icosahedral viral capsid that remains intact throughout repeated transcription cycles. However, how the highly coordinated mRNA transcription and capping process is facilitated by viral capsid proteins is still unknown. Cypovirus provides a good model system for studying the mRNA transcription and capping mechanism of viruses in the family Reoviridae. Here, we report a full backbone model of a transcribing cypovirus built from a near-atomic-resolution density map by cryoelectron microscopy. Compared with the structure of a nontranscribing cypovirus, the major capsid proteins of transcribing cypovirus undergo a series of conformational changes, giving rise to structural changes in the capsid shell: (i) an enlarged capsid chamber, which provides genomic RNA with more flexibility to move within the densely packed capsid, and (ii) a widened peripentonal channel in the capsid shell, which we confirmed to be a pathway for nascent mRNA. A rod-like structure attributable to a partially resolved nascent mRNA was observed in this channel. In addition, conformational change in the turret protein results in a relatively open turret at each fivefold axis. A GMP moiety, which is transferred to 5'-diphosphorylated mRNA during the mRNA capping reaction, was identified in the pocket-like guanylyltransferase domain of the turret protein.
Collapse
|
19
|
Yu X, Ge P, Jiang J, Atanasov I, Zhou ZH. Atomic model of CPV reveals the mechanism used by this single-shelled virus to economically carry out functions conserved in multishelled reoviruses. Structure 2011; 19:652-61. [PMID: 21565700 DOI: 10.1016/j.str.2011.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 03/05/2011] [Indexed: 10/18/2022]
Abstract
Unlike the multishelled viruses in the Reoviridae, cytoplasmic polyhedrosis virus (CPV) is single shelled, yet stable and fully capable of carrying out functions conserved within Reoviridae. Here, we report a 3.1 Å resolution cryo electron microscopy structure of CPV and derive its atomic model, consisting of 60 turret proteins (TPs), 120 each of capsid shell proteins (CSPs) and large protrusion proteins (LPPs). Two unique segments of CSP contribute to CPV's stability: an inserted protrusion domain interacting with neighboring proteins, and an N-anchor tying up CSPs together through strong interactions such as β sheet augmentation. Without the need to interact with outer shell proteins, LPP retains only the N-terminal two-third region containing a conserved helix-barrel core and interacts exclusively with CSP. TP is also simplified, containing only domains involved in RNA capping. Our results illustrate how CPV proteins have evolved in a coordinative manner to economically carry out their conserved functions.
Collapse
Affiliation(s)
- Xuekui Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-7364, USA
| | | | | | | | | |
Collapse
|
20
|
Electron tomography reveals polyhedrin binding and existence of both empty and full cytoplasmic polyhedrosis virus particles inside infectious polyhedra. J Virol 2011; 85:6077-81. [PMID: 21471233 DOI: 10.1128/jvi.00103-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have described the structure of purified cytoplasmic polyhedrosis virus (CPV) and that of polyhedrin protein. However, how polyhedrin molecules embed CPV particles inside infectious polyhedra is not known. By using electron tomography, we show that CPV particles are occluded within the polyhedrin crystalline lattice with a random spatial distribution and interact with the polyhedrin protein through the A-spike rather than as previously thought through the B-spike. Furthermore, both full (with RNA) and empty (no RNA) capsids were found inside polyhedra, suggesting a spontaneous RNA encapsidating process for CPV assembly in vivo.
Collapse
|
21
|
Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping. Proc Natl Acad Sci U S A 2011; 108:1373-8. [PMID: 21220303 DOI: 10.1073/pnas.1014995108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytoplasmic polyhedrosis virus (CPV) from the family Reoviridae belongs to a subgroup of "turreted" reoviruses, in which the mRNA capping activity occurs in a pentameric turret. We report a full atomic model of CPV built from a 3D density map obtained using cryoelectron microscopy. The image data for the 3D reconstruction were acquired exclusively from a CCD camera. Our structure shows that the enzymatic domains of the pentameric turret of CPV are topologically conserved and that there are five unique channels connecting the guanylyltransferase and methyltransferase regions. This structural organization reveals how the channels guide nascent mRNA sequentially to guanylyltransferase, 7-N-methyltransferase, and 2'-O-methyltransferase in the turret, undergoing the highly coordinated mRNA capping activity. Furthermore, by fitting the deduced amino acid sequence of the protein VP5 to 120 large protrusion proteins on the CPV capsid shell, we confirmed that this protrusion protein is encoded by CPV RNA segment 7.
Collapse
|
22
|
Chakrabarti M, Ghorai S, Mani SKK, Ghosh AK. Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus. Virol J 2010; 7:181. [PMID: 20684765 PMCID: PMC2927528 DOI: 10.1186/1743-422x-7-181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 08/04/2010] [Indexed: 11/10/2022] Open
Abstract
Background Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV), a cypovirus of Reoviridae family, infects Indian non-mulberry silkworm, Antheraea mylitta, and contains 11 segmented double stranded RNA (S1-S11) in its genome. Some of its genome segments (S2 and S6-S11) have been previously characterized but genome segments encoding viral capsid have not been characterized. Results In this study genome segments 1 (S1) and 3 (S3) of AmCPV were converted to cDNA, cloned and sequenced. S1 consisted of 3852 nucleotides, with one long ORF of 3735 nucleotides and could encode a protein of 1245 amino acids with molecular mass of ~141 kDa. Similarly, S3 consisted of 3784 nucleotides having a long ORF of 3630 nucleotides and could encode a protein of 1210 amino acids with molecular mass of ~137 kDa. BLAST analysis showed 20-22% homology of S1 and S3 sequence with spike and capsid proteins, respectively, of other closely related cypoviruses like Bombyx mori CPV (BmCPV), Lymantria dispar CPV (LdCPV), and Dendrolimus punctatus CPV (DpCPV). The ORFs of S1 and S3 were expressed as 141 kDa and 137 kDa insoluble His-tagged fusion proteins, respectively, in Escherichia coli M15 cells via pQE-30 vector, purified through Ni-NTA chromatography and polyclonal antibodies were raised. Immunoblot analysis of purified polyhedra, virion particles and virus infected mid-gut cells with the raised anti-p137 and anti-p141 antibodies showed specific immunoreactive bands and suggest that S1 and S3 may code for viral structural proteins. Expression of S1 and S3 ORFs in insect cells via baculovirus recombinants showed to produce viral like particles (VLPs) by transmission electron microscopy. Immunogold staining showed that S3 encoded proteins self assembled to form viral outer capsid and VLPs maintained their stability at different pH in presence of S1 encoded protein. Conclusion Our results of cloning, sequencing and functional analysis of AmCPV S1 and S3 indicate that S3 encoded viral structural proteins can self assemble to form viral outer capsid and S1 encoded protein remains associated with it as inner capsid to maintain the stability. Further studies will help to understand the molecular mechanism of capsid formation during cypovirus replication.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | | | | | | |
Collapse
|
23
|
Zhou P, Zou J, Tian F, Shang Z. Geometric similarity between protein-RNA interfaces. J Comput Chem 2010; 30:2738-51. [PMID: 19399760 DOI: 10.1002/jcc.21300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new method is described to measure the geometric similarity between protein-RNA interfaces quantitatively. The method is based on a procedure that dissects the interface geometry in terms of the spatial relationships between individual amino acid nucleotide pairs. Using this technique, we performed an all-on-all comparison of 586 protein-RNA interfaces deposited in the current Protein Data Bank, as the result, an interface-interface similarity score matrix was obtained. Based upon this matrix, hierarchical clustering was carried out which yielded a complete clustering tree for the 586 protein-RNA interfaces. By investigating the organizing behavior of the clustering tree and the SCOP classification of protein partners in complexes, a geometrically nonredundant, diverse data set (representative data set) consisting of 45 distinct protein-RNA interfaces was extracted for the purpose of studying protein-RNA interactions, RNA regulations, and drug design. We classified protein-RNA interfaces into three types. In type I, the families and interface structural classes of the protein partners, as well as the interface geometries are all similar. In type II, the interface geometries and the interface structural classes are similar, whereas the protein families are different. In type III, only the interface geometries are similar but the protein families and the interface structural classes are distinct. Furthermore, we also show two new RNA recognition themes derived from the representative data set.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Molecular Design and Molecular Thermodynamics, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | | | | |
Collapse
|
24
|
Abstract
Infecting nearly every child by age five, rotaviruses are the major causative agents of severe gastroenteritis in young children. While much is known about the structure of these nonenveloped viruses and their components, the exact mechanism of viral cell entry is still poorly understood. A consensus opinion that appears to be emerging from recent studies is that rotavirus cell entry involves a series of complex and coordinated events following proteolytic priming of the virus. Rotaviruses attach to the cell through sialic acid containing receptors, with integrins and Hsc70 acting as postattachment receptors, all localized on lipid rafts. Unlike other endocytotic mechanisms, this internalization pathway appears to be independent of clathrin or caveola. Equally complex and coordinated is the fascinating structural gymnastics of the VP4 spikes that are implicated in facilitating optimal interface between viral and host components. While these studies only begin to capture the basic cellular, molecular, and structural mechanisms of cell entry, the unusual features they have uncovered and many intriguing questions they have raised undoubtedly will prompt further investigations.
Collapse
Affiliation(s)
- Matthew Baker
- National Center for Macromolecular Imaging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | |
Collapse
|
25
|
Cheng L, Fang Q, Shah S, Atanasov IC, Zhou ZH. Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol 2008; 382:213-22. [PMID: 18625243 PMCID: PMC2900196 DOI: 10.1016/j.jmb.2008.06.075] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/22/2008] [Accepted: 06/25/2008] [Indexed: 01/10/2023]
Abstract
Grass carp reovirus (GCRV) is a member of the Aquareovirus genus of the family Reoviridae, a large family of double-stranded RNA (dsRNA) viruses infecting plants, insects, fishes and mammals. We report the first subnanometer-resolution three-dimensional structures of both GCRV core and virion by cryoelectron microscopy. These structures have allowed the delineation of interactions among the over 1000 molecules in this enormous macromolecular machine and a detailed comparison with other dsRNA viruses at the secondary-structure level. The GCRV core structure shows that the inner proteins have strong structural similarities with those of orthoreoviruses even at the level of secondary-structure elements, indicating that the structures involved in viral dsRNA interaction and transcription are highly conserved. In contrast, the level of similarity in structures decreases in the proteins situated in the outer layers of the virion. The proteins involved in host recognition and attachment exhibit the least similarities to other members of Reoviridae. Furthermore, in GCRV, the RNA-translocating turrets are in an open state and lack a counterpart for the sigma1 protein situated on top of the close turrets observed in mammalian orthoreovirus. Interestingly, the distribution and the organization of GCRV core proteins resemble those of the cytoplasmic polyhedrosis virus, a cypovirus and the structurally simplest member of the Reoviridae family. Our results suggest that GCRV occupies a unique structure niche between the simpler cypoviruses and the considerably more complex mammalian orthoreovirus, thus providing an important model for understanding the structural and functional conservation and diversity of this enormous family of dsRNA viruses.
Collapse
Affiliation(s)
- Lingpeng Cheng
- Department of Microbiology, Immunology & Molecular Genetics and the California NanoSystems Institute, The University of California at Los Angeles, 237 BSRB, 615 Charles E. Young Dr. S., Los Angeles, CA 90095-7364, USA
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030
| | - Qin Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences; Wuhan, 430071, China
| | - Sanket Shah
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030
| | - Ivo C. Atanasov
- Department of Microbiology, Immunology & Molecular Genetics and the California NanoSystems Institute, The University of California at Los Angeles, 237 BSRB, 615 Charles E. Young Dr. S., Los Angeles, CA 90095-7364, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics and the California NanoSystems Institute, The University of California at Los Angeles, 237 BSRB, 615 Charles E. Young Dr. S., Los Angeles, CA 90095-7364, USA
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030
| |
Collapse
|
26
|
Yu X, Jin L, Zhou ZH. 3.88 A structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 2008; 453:415-9. [PMID: 18449192 PMCID: PMC2746981 DOI: 10.1038/nature06893] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 03/03/2008] [Indexed: 01/25/2023]
Abstract
Cytoplasmic polyhedrosis virus (CPV) is unique within the Reoviridae family in having a turreted single-layer capsid contained within polyhedrin inclusion bodies, yet being fully capable of cell entry and endogenous RNA transcription. Biochemical data have shown that the amino-terminal 79 residues of the CPV turret protein (TP) is sufficient to bring CPV or engineered proteins into the polyhedrin matrix for micro-encapsulation. Here we report the three-dimensional structure of CPV at 3.88 A resolution using single-particle cryo-electron microscopy. Our map clearly shows the turns and deep grooves of alpha-helices, the strand separation in beta-sheets, and densities for loops and many bulky side chains; thus permitting atomic model-building effort from cryo-electron microscopy maps. We observed a helix-to-beta-hairpin conformational change between the two conformational states of the capsid shell protein in the region directly interacting with genomic RNA. We have also discovered a messenger RNA release hole coupled with the mRNA capping machinery unique to CPV. Furthermore, we have identified the polyhedrin-binding domain, a structure that has potential in nanobiotechnology applications.
Collapse
Affiliation(s)
- Xuekui Yu
- Department of Pathology and Laboratory Medicine, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
27
|
Zhou ZH. Towards atomic resolution structural determination by single-particle cryo-electron microscopy. Curr Opin Struct Biol 2008; 18:218-28. [PMID: 18403197 PMCID: PMC2714865 DOI: 10.1016/j.sbi.2008.03.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/01/2008] [Accepted: 03/04/2008] [Indexed: 11/19/2022]
Abstract
Recent advances in cryo-electron microscopy and single-particle reconstruction (collectively referred to as 'cryoEM') have made it possible to determine the three-dimensional (3D) structures of several macromolecular complexes at near-atomic resolution ( approximately 3.8-4.5A). These achievements were accomplished by overcoming the challenges in sample handling, instrumentation, image processing, and model building. At near-atomic resolution, many detailed structural features can be resolved, such as the turns and deep grooves of helices, strand separation in beta sheets, and densities for loops and bulky amino acid side chains. Such structural data of the cytoplasmic polyhedrosis virus (CPV), the Epsilon 15 bacteriophage and the GroEL complex have provided valuable constraints for atomic model building using integrative tools, thus significantly enhancing the value of the cryoEM structures. The CPV structure revealed a drastic conformational change from a helix to a beta hairpin associated with RNA packaging and replication, coupling of RNA processing and release, and the long sought-after polyhedrin-binding domain. These latest advances in single-particle cryoEM provide exciting opportunities for the 3D structural determination of viruses and macromolecular complexes that are either too large or too heterogeneous to be investigated by conventional X-ray crystallography or nuclear magnetic resonance (NMR) methods.
Collapse
Affiliation(s)
- Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics and the California NanoSystems Institute, University of California at Los Angeles, 237 BSRB, 615 Charles E. Young Dr. S., Los Angeles, CA 90095-7364, USA.
| |
Collapse
|
28
|
Tan L, Zhang J, Li Y, Li Y, Jiang H, Cao X, Hu Y. The complete nucleotide sequence of the type 5 Helicoverpa armigera cytoplasmic polyhedrosis virus genome. Virus Genes 2008; 36:587-93. [PMID: 18368473 DOI: 10.1007/s11262-008-0222-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 03/11/2008] [Indexed: 12/01/2022]
Abstract
The S1-6, S8, and S9 segments of the type 5 Helicoverpa armigera cytoplasmic polyhedrosis virus (HaCPV-5, Chinese strain) were cloned and sequenced, completing the HaCPV-5 genome. We found that each HaCPV-5 segment exhibits the conserved terminal sequences AGUU and UUGC located at the 5' and 3' ends, respectively. We also analyzed the translation initiation codon of the HaCPV-5 genome and compared it with the available cypovirus sequences in GenBank. We postulated that the conserved purine at the -3 position in relation to the AUG codon is probably the most important nucleotide for efficient translation initiation in cypovirus. Although the nucleotide sequences of the HaCPV-5 segments S1-10 exhibit no significant similarity to other viruses, blast searches did reveal some similarities between predicted HaCPV-5 amino acid sequences and those of other viruses.
Collapse
Affiliation(s)
- Li Tan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen W, Hu Y, Li Y, Yu Z, Dong C, Cai D, Zhang J. Characterization of the RNA-binding regions in protein p36 of Heliothis armigera cypovirus 14. Virus Res 2007; 125:211-8. [PMID: 17350708 DOI: 10.1016/j.virusres.2007.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/10/2007] [Accepted: 01/12/2007] [Indexed: 10/23/2022]
Abstract
Some proteins of cypovirus (CPV) bind to RNA, probably contributing to the replication of viral genome. However, little is known about whether any protein from Heliothis armigera cypovirus (HaCPV) could bind to RNA. In this study, we cloned the ORF of segment 9 (S9) of HaCPV, serotype 14, into pMAL-c2X for the generation and purification of maltose binding protein (MBP) fused protein p36 (MBP-p36). The analysis of the RNA-binding properties of MBP-p36 revealed that p36, but not MBP alone, bound to ssRNA of CPV. Furthermore, the ssRNA-binding activities of p36 were significantly inhibited or completely eliminated by protein denaturants or unsuitable concentrations of NaCl. Importantly, the formation of ssRNA/p36 was only competitively inhibited by a heavy dose of competitive non-viral ssRNA or dsRNA, but not by ssDNA and dsDNA, suggesting that p36 bound to both ssRNA and dsRNA, but not DNA. Moreover, the characterization of different mutants of p36 revealed that the regions 1-26aa, 154-170aa, and 229-238aa, but not region 291-320aa, may be crucial for the ssRNA-binding ability of p36. Conceivably, the sensitivity of p36 to denaturants and the synergetic effect of different regions suggest that the RNA-binding ability of p36 may be conformation-dependent. Thus, our findings provide new insights into understanding the genomic function of HaCPV-14.
Collapse
Affiliation(s)
- Wuguo Chen
- State Key Laboratory of Virology and Department of Biotechnology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Coulibaly F, Chiu E, Ikeda K, Gutmann S, Haebel PW, Schulze-Briese C, Mori H, Metcalf P. The molecular organization of cypovirus polyhedra. Nature 2007; 446:97-101. [PMID: 17330045 DOI: 10.1038/nature05628] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 01/31/2007] [Indexed: 11/08/2022]
Abstract
Cypoviruses and baculoviruses are notoriously difficult to eradicate because the virus particles are embedded in micrometre-sized protein crystals called polyhedra. The remarkable stability of polyhedra means that, like bacterial spores, these insect viruses remain infectious for years in soil. The environmental persistence of polyhedra is the cause of significant losses in silkworm cocoon harvests but has also been exploited against pests in biological alternatives to chemical insecticides. Although polyhedra have been extensively characterized since the early 1900s, their atomic organization remains elusive. Here we describe the 2 A crystal structure of both recombinant and infectious silkworm cypovirus polyhedra determined using crystals 5-12 micrometres in diameter purified from insect cells. These are the smallest crystals yet used for de novo X-ray protein structure determination. We found that polyhedra are made of trimers of the viral polyhedrin protein and contain nucleotides. Although the shape of these building blocks is reminiscent of some capsid trimers, polyhedrin has a new fold and has evolved to assemble in vivo into three-dimensional cubic crystals rather than icosahedral shells. The polyhedrin trimers are extensively cross-linked in polyhedra by non-covalent interactions and pack with an exquisite molecular complementarity similar to that of antigen-antibody complexes. The resulting ultrastable and sealed crystals shield the virus particles from environmental damage. The structure suggests that polyhedra can serve as the basis for the development of robust and versatile nanoparticles for biotechnological applications such as microarrays and biopesticides.
Collapse
Affiliation(s)
- Fasséli Coulibaly
- School of Biological Sciences, University of Auckland, 1010, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pesavento JB, Crawford SE, Estes MK, Prasad BVV. Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol 2006; 309:189-219. [PMID: 16913048 DOI: 10.1007/3-540-30773-7_7] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major pathogen of infantile gastroenteritis. It is a large and complex virus with a multilayered capsid organization that integrates the determinants of host specificity, cell entry, and the enzymatic functions necessary for endogenous transcription of the genome that consists of 11 dsRNA segments. These segments encode six structural and six nonstructural proteins. In the last few years, there has been substantial progress in our understanding of both the structural and functional aspects of a variety of molecular processes involved in the replication of this virus. Studies leading to this progress using of a variety of structural and biochemical techniques including the recent application of RNA interference technology have uncovered several unique and intriguing features related to viral morphogenesis. This review focuses on our current understanding of the structural basis of the molecular processes that govern the replication of rotavirus.
Collapse
Affiliation(s)
- J B Pesavento
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
32
|
Li Y, Tan L, Li Y, Chen W, Zhang J, Hu Y. Identification and genome characterization of Heliothis armigera cypovirus types 5 and 14 and Heliothis assulta cypovirus type 14. J Gen Virol 2006; 87:387-394. [PMID: 16432026 DOI: 10.1099/vir.0.81435-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomic characterization of Heliothis armigera cypovirus (HaCPV) isolated from China showed that insects were co-infected with several cypoviruses (CPVs). One of the CPVs (HaCPV-5) could be separated from the others by changing the rearing conditions of the Heliothis armigera larvae. This finding was further confirmed by nucleotide sequencing analysis. Genomic sequences of segments S10-S7 from HaCPV-14, S10 and S7 from HaCPV-5, and S10 from Heliothis assulta CPV-14 were compared. Results from database searches showed that the nucleotide sequences and deduced amino acid sequences of the newly identified CPVs had high levels of identity with those of reported CPVs of the same type, but not with CPVs of different types. Putative amino acid sequences of HaCPV-5 S7 were similar to that of the protein from Rice ragged stunt virus (genus Oryzavirus, family Reoviridae), suggesting that CPVs and oryzaviruses are related more closely than other genera of the family Reoviridae. Conserved motifs were also identified at the ends of each RNA segment of the same virus type: type 14, 5'-AGAAUUU...CAGCU-3'; and type 5, 5'-AGUU...UUGC-3'. Our results are consistent with classification of CPV types based on the electrophoretic patterns of CPV double-stranded RNA.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Li Tan
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yanqiu Li
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wuguo Chen
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiamin Zhang
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuanyang Hu
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
33
|
Green TB, Shapiro A, White S, Rao S, Mertens PPC, Carner G, Becnel JJ. Molecular and biological characterization of a Cypovirus from the mosquito Culex restuans. J Invertebr Pathol 2006; 91:27-34. [PMID: 16376932 DOI: 10.1016/j.jip.2005.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/06/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
A cypovirus from the mosquito Culex restuans (named CrCPV) was isolated and its biology, morphology, and molecular characteristics were investigated. CrCPV is characterized by small (0.1-1.0 microm), irregularly shaped inclusion bodies that are multiply embedded. Laboratory studies demonstrated that divalent cations influenced transmission of CrCPV to Culex quinquefasciatus larvae; magnesium enhanced CrCPV transmission by approximately 30% while calcium inhibited transmission. CrCPV is the second cypovirus from a mosquito that has been confirmed by using molecular analysis. CrCPV has a genome composed of 10 dsRNA segments with an electropherotype similar to the recently discovered UsCPV-17 from the mosquito Uranotaenia sapphirina, but distinct from the lepidopteran cypoviruses BmCPV-1 (Bombyx mori) and TnCPV-15 (Trichoplusia ni). Nucleotide and deduced amino acid sequence analysis of CrCPV segment 10 (polyhedrin) suggests that CrCPV is closely related (83% nucleotide sequence identity and 87% amino acid sequence identity) to the newly characterized UsCPV-17 but is unrelated to the 16 remaining CPV species from lepidopteran hosts. A comparison of the terminal segment regions of CrCPV and UsCPV-17, an additional method for differentiating various Cypovirus species, revealed a high level of conservation. Therefore, we propose that CrCPV is a member of the Cypovirus-17 group and designate this species as CrCPV-17.
Collapse
|
34
|
Zhao SL, Liang CY, Zhang WJ, Tang XC, Peng HY. Characterization of the RNA-binding domain in the Dendrolimus punctatus cytoplasmic polyhedrosis virus nonstructural protein p44. Virus Res 2005; 114:80-8. [PMID: 16023751 DOI: 10.1016/j.virusres.2005.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 06/01/2005] [Accepted: 06/06/2005] [Indexed: 11/24/2022]
Abstract
Dendrolimus punctatus cytoplasmic polyhedrosis virus (DpCPV-1) belongs to the Cypovirus genus in the Reoviridae family. The ORF of genome segment 8 (S8) of DpCPV-1 was cloned into vector pMAL-c2X and used to express a 44kDa protein (p44) in E. coli, which was detected by Western blotting. The gel mobility shift assays showed that p44 had ssRNA-binding activity. Competitive assay indicated that this protein only bind to ssRNA and could not interact with DNA and dsRNA. The binding of p44 to ssRNA is sequence non-specific. To identify the domain(s) important for RNA binding of the protein, a number of deletions were made. These truncated proteins were expressed in E. coli and purified. The affinity of each truncated protein towards ssRNA was then assayed by electrophoretic mobility shift assays and northwestern blot. The results indicated that glutamic acid-rich domain in the central region of p44 from residues 104 to 201 was the ssRNA-binding domain.
Collapse
Affiliation(s)
- S L Zhao
- Laboratory for Biological Control, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | | | | | | | | |
Collapse
|
35
|
Zhao SL, Liang CY, Zhang WJ, Tang XC, Peng HY. Mapping the RNA-binding domain on the DpCPV VP4. Arch Virol 2005; 151:273-83. [PMID: 16195791 DOI: 10.1007/s00705-005-0634-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 08/04/2005] [Indexed: 10/25/2022]
Abstract
The RNA-binding properties of VP4 protein of Dendrolimus punctatus cytoplasmic polyhedrosis virus (DpCPV) VP4 were analyzed. VP4 was expressed in E. coli and assayed for RNA binding activity by gel mobility shift assay. VP4 was found to bind RNA (ssRNA and dsRNA) in a sequence-independent manner, but did not interact with DNA. To identify the domain(s) of the protein important for RNA binding, a number of deletions were made and tested by gel mobility shift assays and northwestern blot. The central region of VP4 from amino acid residues 77 to 155 was found to contain the RNA binding domain.
Collapse
Affiliation(s)
- S L Zhao
- Laboratory for Biological Control, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P.R. China
| | | | | | | | | |
Collapse
|
36
|
Li J, Liu Z, Li KP, Cui JM, Zhang QF, Li YY, Zhang JQ. Three-dimensional display and arbitrary region interactive segmentation of high-resolution virus capsids from cryo-electron microscopy single particle reconstruction. Microscopy (Oxf) 2005; 54:455-60. [PMID: 16186180 DOI: 10.1093/jmicro/dfi064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) instrumentation and single particle reconstruction have created opportunities for high-throughput and high-resolution three-dimensional (3-D) structure determination of virus. In order to visualize and effectively understand the 3-D structure, we present a display method based on surface rendering, which has the function of 3-D arbitrary region interactive segmentation and quantitative analysis, and integrate them into a software package called CEM-3DVDSS (cryo-EM 3-D virus display and arbitrary region segmentation system). CEM-3DVDSS consists of a complete set of modular programs for 3-D display and segmentation of icosahedral virus, which is organized under a graphical user interface and provides user-friendly options. First, we convert volume data in the MRC format obtained by cryo-EM single particle reconstruction to the format of our own software; in the preprocessing step, the original volume data are compressed and a better vector dimension is found for controlling the speed and detail of display. Then, the new volume data can be displayed and segmented using CEM-3DVDSS. We demonstrate the applicability of CEM-3DVDSS by displaying the 3-D structures of 2.5 nm (resolution) BmCPV (Bombyx mori cytoplasmic polyhedrosis virus), 2.5 nm CSBV (Chinese Sacbrood bee virus) and 1.4 nm C6/36DNV (Densonucleosis virus). As a result, both the 3-D display speed and signal-to-noise ratio of CEM-3DVDSS are improved compared with the original method, and the segmentation results become precise and more intact with additional function of quantitative analysis of 3-D structure.
Collapse
Affiliation(s)
- Jing Li
- Division of Structural Biology, State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Jaafar FM, Attoui H, Mertens PPC, de Micco P, de Lamballerie X. Structural organization of an encephalitic human isolate of Banna virus (genus Seadornavirus, family Reoviridae). J Gen Virol 2005; 86:1147-1157. [PMID: 15784909 DOI: 10.1099/vir.0.80578-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Banna virus (BAV) is the type species of the genus Seadornavirus within the family Reoviridae. The Chinese BAV isolate (BAV-Ch), which causes encephalitis in humans, was shown to have a structural organization and particle morphology reminiscent of that of rotaviruses, with fibre proteins projecting from the surface of the particle. Intact BAV-Ch virus particles contain seven structural proteins, two of which (VP4 and VP9) form the outer coat. The inner (core) particles contain five additional proteins (VP1, VP2, VP3, VP8 and VP10) and are ‘non-turreted’, with a relatively smooth surface appearance. VP2 is the ‘T=2’ protein that forms the innermost ‘subcore’ layer, whilst VP8 is the ‘T=13’ protein forming the core-surface layer. Sequence comparisons indicate that BAV VP9 and VP10 are equivalent to the VP8* and VP5* domains, respectively, of rotavirus outer-coat protein VP4 (GenBank accession no. P12976). VP9 has also been shown to be responsible for virus attachment to the host-cell surface and may be involved in internalization. These similarities reveal a previously unreported genetic link between the genera Rotavirus and Seadornavirus, although the expression of BAV VP9 and VP10 from two separate genome segments, rather than by the proteolytic cleavage of a single gene product (as seen in rotavirus VP4), suggests a significant evolutionary jump between the members of these two genera.
Collapse
Affiliation(s)
- Fauziah Mohd Jaafar
- Unité des Virus Emergents: EFS Alpes-Méditerranée and Faculté de Médecine de Marseille, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13005 Marseille cedex 5, France
| | - Houssam Attoui
- Unité des Virus Emergents: EFS Alpes-Méditerranée and Faculté de Médecine de Marseille, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13005 Marseille cedex 5, France
| | - Peter P C Mertens
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Philippe de Micco
- Unité des Virus Emergents: EFS Alpes-Méditerranée and Faculté de Médecine de Marseille, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13005 Marseille cedex 5, France
| | - Xavier de Lamballerie
- Maladies Virales Émergentes et Systèmes d'Information UR034, Institut de Recherche pour le Développement, Marseille, France
- Unité des Virus Emergents: EFS Alpes-Méditerranée and Faculté de Médecine de Marseille, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13005 Marseille cedex 5, France
| |
Collapse
|
38
|
Nibert ML, Kim J. Conserved sequence motifs for nucleoside triphosphate binding unique to turreted reoviridae members and coltiviruses. J Virol 2004; 78:5528-30. [PMID: 15113934 PMCID: PMC400372 DOI: 10.1128/jvi.78.10.5528-5530.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Zhang X, Walker SB, Chipman PR, Nibert ML, Baker TS. Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Nat Struct Mol Biol 2003; 10:1011-8. [PMID: 14608373 PMCID: PMC4152824 DOI: 10.1038/nsb1009] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Accepted: 09/18/2003] [Indexed: 01/13/2023]
Abstract
Reovirus is an icosahedral, double-stranded (ds) RNA virus that uses viral polymerases packaged within the viral core to transcribe its ten distinct plus-strand RNAs. To localize these polymerases, the structure of the reovirion was refined to a resolution of 7.6 A by cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image reconstruction. X-ray crystal models of reovirus proteins, including polymerase lambda 3, were then fitted into the density map. Each copy of lambda 3 was found anchored to the inner surface of the icosahedral core shell, making major contacts with three molecules of shell protein lambda 1 and overlapping, but not centering on, a five-fold axis. The overlap explains why only one copy of lambda 3 is bound per vertex. lambda 3 is furthermore oriented with its transcript exit channel facing a small channel through the lambda 1 shell, suggesting how the nascent RNA is passed into the large external cavity of the pentameric capping enzyme complex formed by protein lambda 2.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
40
|
Hagiwara K, Naitow H. Assembly into single-shelled virus-like particles by major capsid protein VP1 encoded by genome segment S1 of Bombyx mori cypovirus 1. J Gen Virol 2003; 84:2439-2441. [PMID: 12917465 DOI: 10.1099/vir.0.19216-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major capsid protein VP1 encoded by genome segment S1 of Bombyx mori cypovirus 1 was expressed in a baculovirus system. In the absence of any other capsid proteins, VP1 was found to assemble into single-shelled virus-like particles. The VP1 particles were more sensitive to acidic conditions than were intact particles.
Collapse
Affiliation(s)
- Kyoji Hagiwara
- Laboratory of Virology, National Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Japan
| | - Hisashi Naitow
- Division of Bio-Crystallography Technology, RIKEN Harima Institute, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
41
|
Castón JR, Ghabrial SA, Jiang D, Rivas G, Alfonso C, Roca R, Luque D, Carrascosa JL. Three-dimensional structure of penicillium chrysogenum virus: a double-stranded RNA virus with a genuine T=1 capsid. J Mol Biol 2003; 331:417-31. [PMID: 12888349 DOI: 10.1016/s0022-2836(03)00695-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although double-stranded (ds) RNA viruses are a rather diverse group, they share general architectural principles and numerous functional features. All dsRNA viruses, from the mammalian reoviruses to the bacteriophage phi6, including fungal viruses, share a specialized capsid involved in transcription and replication of the dsRNA genome, and release of the viral plus strand RNA. This ubiquitous capsid consists of 120 protein subunits in a so-called T=2 organization. The stringent requirements of dsRNA metabolism may explain the similarities observed in capsid architecture among a broad spectrum of dsRNA viruses. We have used cryo-electron microscopy combined with three-dimensional reconstruction techniques and complementary biophysical techniques, to determine the structure at 26A resolution of the Penicillium chrysogenum virus (PcV) capsid. In contrast to all previous studies of dsRNA viruses, PcV capsid is an authentic T=1 capsid with 60 equivalent protein subunits. This T=1 capsid is built with the largest structural protein (110 kDa). Structural comparison between viral particles and capsids devoid of RNA show changes along the inner surface of the capsid, mostly located around the icosahedral 5 and 3-fold axis. Considering that there may be numerous interactions between the inner surface of the protein shell and the underlying RNA, the genome could have an important role in the conformation of the structural subunits. The empty capsid structure suggests a mechanism for transcript release from actively transcribing particles. Furthermore, sequence analysis of the PcV coat protein revealed that both halves of the protein share numerous regions of similar amino acid residues. These results open new perspectives when considering the structural organization of dsRNA virus capsids.
Collapse
Affiliation(s)
- José R Castón
- Department of Estructura de Macromoléculas, Centro Nacional de Biotecnologi;a, CSIC, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gu Y, Zhou ZH, McCarthy DB, Reed LJ, Stoops JK. 3D electron microscopy reveals the variable deposition and protein dynamics of the peripheral pyruvate dehydrogenase component about the core. Proc Natl Acad Sci U S A 2003; 100:7015-20. [PMID: 12756305 PMCID: PMC165822 DOI: 10.1073/pnas.0732060100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryo-electron microscopy was exploited to reveal and study the influence of pyruvate dehydrogenase (E1) occupancy on the conformational states of the Saccharomyces cerevisiae pyruvate dehydrogenase complex (PDC). Structures representative of PDC preparations with approximately 40% and full E1 occupancy were determined after the electron microscopy images from each preparation were classified according to their sizes. The reconstructions derived from two size groups showed that the deposition of the E1 molecules associated with the larger complex is, unexpectedly, not icosahedrally arranged, whereas in the smaller complex the E1 molecules have an arrangement and architecture similar to their more ordered deposition in the WT bovine kidney PDC. This study also shows that the linker of dihydrolipamide acetyltransferase (E2) that tethers E1 to the E2 core increases in length from approximately 50 to 75 A, accounting largely for the size difference of the smaller and larger structures, respectively. Extensive E1 occupancy of its 60 E2 binding sites favors the extended conformation of the linker associated with the larger complex and appears to be related to the loss of icosahedral symmetry of the E1 molecules. However, the presence of a significant fraction of larger molecules also in the WT PDC preparation with low E1 occupancy indicates that the conformational variability of the linker contributes to the overall protein dynamics of the PDC and the variable deposition of E1. The flexibility of the complex may enhance the catalytic proficiency of this macromolecular machine by promoting the channeling of the intermediates of catalysis between the active sites.
Collapse
Affiliation(s)
- Yingqi Gu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
43
|
Zhou ZH, Zhang H, Jakana J, Lu XY, Zhang JQ. Cytoplasmic polyhedrosis virus structure at 8 A by electron cryomicroscopy: structural basis of capsid stability and mRNA processing regulation. Structure 2003; 11:651-63. [PMID: 12791254 DOI: 10.1016/s0969-2126(03)00091-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The single-shelled cytoplasmic polyhedrosis virus (CPV) is a unique member of the Reoviridae. Despite lacking protective outer shells, it exhibits striking capsid stability and is capable of endogenous RNA transcription and processing. The 8 A three-dimensional structure of CPV by electron cryomicroscopy reveals secondary structure elements present in the capsid proteins CSP, LPP, and TP, which have alpha+beta folds. The extensive nonequivalent interactions between CSP and LPP, the unique CSP protrusion domain, and the perfect inter-CSP surface complementarities may account for the enhanced capsid stability. The slanted disposition of TP functional domains and the stacking of channel constrictions suggest an iris diaphragm-like mechanism for opening/closing capsid pores and turret channels in regulating the highly coordinated steps of mRNA transcription, processing, and release.
Collapse
Affiliation(s)
- Z Hong Zhou
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The structure of cytoplasmic polyhedrosis virus (CPV), an insect pathogen from the Reoviridae family of double-strand RNA viruses, has been determined at 8 A by electron cryomicroscopy and image reconstruction. It provides new information about the functions of these viral particles as stable machines for mRNA synthesis.
Collapse
|
45
|
Xia Q, Jakana J, Zhang JQ, Zhou ZH. Structural comparisons of empty and full cytoplasmic polyhedrosis virus. Protein-RNA interactions and implications for endogenous RNA transcription mechanism. J Biol Chem 2003; 278:1094-100. [PMID: 12401805 DOI: 10.1074/jbc.m205964200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viruses in the family Reoviridae are capable of transcription within the intact capsids. As the only single-shelled and thus the simplest member of the Reoviridae, cytoplasmic polyhedrosis virus (CPV) provides an attractive system for studying endogenous transcription. We report the structures of the full and empty CPV determined at 13-A resolution by electron cryomicroscopy. The structure of the empty CPV reveals a density attributed to the transcription enzyme complex, which is attached to the internal surface of the capsid shell below each of the 12 turrets. The full capsid has an identical capsid shell but contains additional internal densities contributed by the genomic double-stranded (ds) RNA. The RNA densities proximal to the capsid shell are organized into layers with a dodecahedral appearance, suggesting a genome organization of dsRNA segments each having a cone shape spooling around a transcription enzyme complex. Our structures also suggest that the capsid shell serves as a scaffold for appropriate positioning of the RNA genome, whereas nascent mRNA release takes place through the constricted central channel of the turret. Based on these observations, a detailed moving template transcription mechanism is proposed that may provide insight into the well coordinated and highly efficient endogenous RNA transcription of dsRNA viruses.
Collapse
Affiliation(s)
- Qing Xia
- Department of Pathology and Laboratory Medicine, University of Texas, Houston Medical School, 77030, USA
| | | | | | | |
Collapse
|
46
|
Gilbert RJ, Grimes JM, Stuart DI. Hybrid vigor: hybrid methods in viral structure determination. ADVANCES IN PROTEIN CHEMISTRY 2003; 64:37-91. [PMID: 13677045 DOI: 10.1016/s0065-3233(03)01002-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Robert J Gilbert
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | |
Collapse
|
47
|
Affiliation(s)
- B V Prasad
- Department of Biochemistry and Molecular Biology, Keck Center for Computational Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
48
|
Zhang H, Yu XK, Lu XY, Zhang JQ, Zhou ZH. Molecular interactions and viral stability revealed by structural analyses of chemically treated cypovirus capsids. Virology 2002; 298:45-52. [PMID: 12093172 DOI: 10.1006/viro.2002.1473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoplasmic polyhedrosis virus (CPV, genus Cypovirus) is a unique member of the family Reoviridae which lacks the outer protective shells that exist in all other members, yet exhibits unusual stability. We have analyzed the effects of different acidic, basic, detergent, and urea treatments on CPV capsids. The integrity of the CPV capsids was unaffected under high-pH conditions that disrupted the orthoreovirus inner core, consistent with its ability to maintain structural integrity in extremely alkaline environments during infection. However, it was sensitive to low pH, detergents, and urea, similarly to other viruses in this family. The three-dimensional structure comparisons by electron cryomicroscopy of the intact empty CPV capsid with the "spikeless" capsid whose turrets were removed by chemical treatments revealed the interaction footprint of the turret on the capsid shell. The observed structural changes associated with the removal of the turret suggest critical structural roles of the turret in maintaining capsid integrity in addition to its enzymatic activities.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, 77030, USA
| | | | | | | | | |
Collapse
|
49
|
Castón JR, Martínez-Torrecuadrada JL, Maraver A, Lombardo E, Rodríguez JF, Casal JI, Carrascosa JL. C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol 2001; 75:10815-28. [PMID: 11602723 PMCID: PMC114663 DOI: 10.1128/jvi.75.22.10815-10828.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.
Collapse
Affiliation(s)
- J R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Shao C, Zhou ZH, Lu G. Three-dimensional structure of the inner core of rice dwarf virus. ACTA ACUST UNITED AC 2001; 44:192-8. [DOI: 10.1007/bf02879325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2000] [Indexed: 10/22/2022]
|