1
|
Yokoyama M, Doan YH, Motomura K, Sato H, Oka T. Strong evolutionary constraints against amino acid changes in the P2 subdomain of sapovirus GI.1 capsid protein VP1. Biochem Biophys Res Commun 2024; 710:149878. [PMID: 38608492 DOI: 10.1016/j.bbrc.2024.149878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Sapovirus (SaV) is a nonenveloped RNA virus that causes acute gastroenteritis in humans. Although SaV is a clinically important pathogen in children, an effective vaccine is currently unavailable. The capsid protein VP1 of SaVs forms the outer shell of the virion and is highly diverse, as often seen in the virion-surface proteins of RNA viruses, creating an obstacle for vaccine development. We here report a unique phenomenon pertaining to the variation of SaV VP1. Phylogenetic and information entropy analyses using full-length VP1 sequences from a public database consistently showed that the amino acid sequences of the VP1 protein have been highly conserved over more than 40 years in the major epidemic genotype GI.1 but not in GI.2. Structural modeling showed that even the VP1 P2 subdomain, which is arranged on the outermost shell of the virion and presumably exposed to anti-SaV antibodies, remained highly homogeneous in GI.1 but not in GI.2. These results suggest strong evolutionary constraints against amino acid changes in the P2 subdomain of the SaV GI.1 capsid and illustrate a hitherto unappreciated mechanism, i.e., preservation of the VP1 P2 subdomain, involved in SaV survival. Our findings could have important implications for the development of an anti-SaV vaccine.
Collapse
Affiliation(s)
- Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazushi Motomura
- Osaka Institute of Public Health, Osaka, Japan; Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Thailand; Research Institute of Microbial Diseases, Osaka University, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan.
| |
Collapse
|
2
|
Yokoyama M, Nomaguchi M, Doi N, Kanda T, Adachi A, Sato H. In silico Analysis of HIV-1 Env-gp120 Reveals Structural Bases for Viral Adaptation in Growth-Restrictive Cells. Front Microbiol 2016; 7:110. [PMID: 26903989 PMCID: PMC4746247 DOI: 10.3389/fmicb.2016.00110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1) envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness.
Collapse
Affiliation(s)
- Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Naoya Doi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Tadahito Kanda
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious DiseasesTokyo, Japan; Department of Research Promotion, Division of Infectious Disease Research, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases Tokyo, Japan
| |
Collapse
|
3
|
Megens S, Vaira D, De Baets G, Dekeersmaeker N, Schrooten Y, Li G, Schymkowitz J, Rousseau F, Vandamme AM, Moutschen M, Van Laethem K. Horizontal gene transfer from human host to HIV-1 reverse transcriptase confers drug resistance and partly compensates for replication deficits. Virology 2014; 456-457:310-8. [DOI: 10.1016/j.virol.2014.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/24/2014] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
|
4
|
Ehrnst A. Challenges in Virological Diagnosis of HIV -1 Transmission from Sexual Abuse - HIV-1 Genetic Links are Mandatory. Am J Reprod Immunol 2013; 69 Suppl 1:116-21. [DOI: 10.1111/aji.12057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 11/06/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Anneka Ehrnst
- Department of Microbiology; Tumor and Cell biology; Karolinska Institutet; Stockholm; SE; Sweden
| |
Collapse
|
5
|
[Structural mechanism of immune evasion of HIV-1 gp120 by genomic, computational, and experimental science]. Uirusu 2011; 61:49-57. [PMID: 21972555 DOI: 10.2222/jsv.61.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The third variable region (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope gp120 subunit participates in determination of viral infection co-receptor tropism and host humoral immune responses. Positive charge of the V3 plays a key role in determining viral co-receptor tropism. In our previous papers, we showed a key role of the V3's net positive charge in the immunological escape and co-receptor tropism evolution in vivo. On the other hand, the several papers suggested that trimeric gp120s are protected from immune system by occlusion on the oligomer, by mutational variation, by carbohydrate masking and by conformational masking. If we can reveal the mechanism of neutralization escape, we expect that we will regulate the neutralization of HIV-1. In this review, we will overview the structural mechanism of neutralization escape of HIV-1 gp120 examined by computational science. The computational sciences for virology can provide more valuable information in combination with genomic and experimental science.
Collapse
|
6
|
Ahmad N. THE VERTICAL TRANSMISSION OF HUMAN IMMUNODEFICIENCY VIRUS TYPE 1: Molecular and Biological Properties of the Virus. Crit Rev Clin Lab Sci 2008; 42:1-34. [PMID: 15697169 DOI: 10.1080/10408360490512520] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The vertical (mother-to-infant) transmission of human immunodeficiency virus type 1 (HIV-1 ) occurs at an estimated rate of more than 30% and is the major cause of AIDS in children. Numerous maternal parameters, including advanced dinical stages, low CD4+ lymphocte counts, high viral load, immune response, and disease progression have been implicated in an increased risk of vertical transmission. While the use of antiretroviral therapy (ART) during pregnancy has been shown to reduce the risk of vertical transmission, selective transmission of ART-resistant mutants has also been documented. Elucidation of the molecular mechanisms of vertical transmission might provide relevant information for the development of effective strategies for prevention and treatment. By using HIV-1 infected mother-infant pairs as a transmitter-recipient model, the minor genotypes of HIV-1 with macrophage-tropic and non-syncytium-inducing phenotypes (R5 viruses) in infected mothers were found to be transmitted to their infants and were initially maintained in the infants with the same properties. In addition, the transmission of major and multiple genotypes has been suggested. Furthermore, HIV-1 sequences found in non-transmitting mothers (mothers who failed to transmit HIV-1 to their infants in the absence of ART) were less heterogeneous than those from transmitting mothers, suggesting that viral heterogeneity may play an important role in vertical transmission. In the analysis of other regions of the HIV-1 genome, we have shown a high conservation of intact and functional gag p17, vif, vpr, vpu, tat, and nef open reading frames following mother-to-infant transmission. Moreover the accessory genes, vif and vpr, were less functionally conserved in the isolates of non-transmitting mothers than transmitting mothers and their infants. We, therefore, should target the properties of transmitted viruses to develop new and more effective strategies for the prevention and treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Nafees Ahmad
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, AZ 85724, USA.
| |
Collapse
|
7
|
Naganawa S, Yokoyama M, Shiino T, Suzuki T, Ishigatsubo Y, Ueda A, Shirai A, Takeno M, Hayakawa S, Sato S, Tochikubo O, Kiyoura S, Sawada K, Ikegami T, Kanda T, Kitamura K, Sato H. Net positive charge of HIV-1 CRF01_AE V3 sequence regulates viral sensitivity to humoral immunity. PLoS One 2008; 3:e3206. [PMID: 18787705 PMCID: PMC2527523 DOI: 10.1371/journal.pone.0003206] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 08/21/2008] [Indexed: 12/22/2022] Open
Abstract
The third variable region (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope gp120 subunit participates in determination of viral infection coreceptor tropism and host humoral immune responses. Positive charge of the V3 plays a key role in determining viral coreceptor tropism. Here, we examined by bioinformatics, experimental, and protein modelling approaches whether the net positive charge of V3 sequence regulates viral sensitivity to humoral immunity. We chose HIV-1 CRF01_AE strain as a model virus to address the question. Diversity analyses using CRF01_AE V3 sequences from 37 countries during 1984 and 2005 (n = 1361) revealed that reduction in the V3's net positive charge makes V3 less variable due to limited positive selection. Consistently, neutralization assay using CRF01_AE V3 recombinant viruses (n = 30) showed that the reduction in the V3's net positive charge rendered HIV-1 less sensitive to neutralization by the blood anti-V3 antibodies. The especially neutralization resistant V3 sequences were the particular subset of the CCR5-tropic V3 sequences with net positive charges of +2 to +4. Molecular dynamics simulation of the gp120 monomers showed that the V3's net positive charge regulates the V3 configuration. This and reported gp120 structural data predict a less-exposed V3 with a reduced net positive charge in the native gp120 trimer context. Taken together, these data suggest a key role of the V3's net positive charge in the immunological escape and coreceptor tropism evolution of HIV-1 CRF01_AE in vivo. The findings have molecular implications for the adaptive evolution and vaccine design of HIV-1.
Collapse
Affiliation(s)
- Satoshi Naganawa
- Department of Public Health, Yokohama City University School of Medicine, Kanagawa, Japan
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Masaru Yokoyama
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeyuki Suzuki
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Yoshiaki Ishigatsubo
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Atsuhisa Ueda
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Akira Shirai
- College of Nursing, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Mitsuhiro Takeno
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Satoshi Hayakawa
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shigehiro Sato
- Department of Bacteriology, Iwate Medical University, Iwate, Japan
| | - Osamu Tochikubo
- Department of Public Health, Yokohama City University School of Medicine, Kanagawa, Japan
| | | | | | | | - Tadahito Kanda
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan
| | - Katsuhiko Kitamura
- Department of Public Health, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Hironori Sato
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Ahmad N. Molecular Mechanisms of HIV-1 Vertical Transmission and Pathogenesis in Infants. HIV-1: MOLECULAR BIOLOGY AND PATHOGENESIS 2008; 56:453-508. [DOI: 10.1016/s1054-3589(07)56015-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Ode H, Matsuyama S, Hata M, Hoshino T, Kakizawa J, Sugiura W. Mechanism of drug resistance due to N88S in CRF01_AE HIV-1 protease, analyzed by molecular dynamics simulations. J Med Chem 2007; 50:1768-77. [PMID: 17367119 DOI: 10.1021/jm061158i] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nelfinavir (NFV) is a currently available HIV-1 protease (PR) inhibitor. Patients in whom NFV treatment has failed predominantly carry D30N mutants of HIV-1 PRs if they have been infected with the subtype B virus. In contrast, N88S mutants of HIV-1 PRs predominantly emerge in patients in whom NFV treatment has failed and who carry the CRF01_AE virus. Both D30N and N88S confer resistance against NFV. However, it remains unclear why the nonactive site mutation N88S confers resistance against NFV. In this study, we examined the resistance mechanism through computational simulations. The simulations suggested that despite the nonactive site mutation, N88S causes NFV resistance by reducing interactions between PR and NFV. We also investigated why the emergence rates of D30N and N88S differ between subtype B and CRF01_AE HIV-1. The simulations suggested that polymorphisms of CRF01_AE PR are involved in the emergence rate of the drug-resistant mutants.
Collapse
Affiliation(s)
- Hirotaka Ode
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Montano M, Rarick M, Sebastiani P, Brinkmann P, Russell M, Navis A, Wester C, Thior I, Essex M. Gene-expression profiling of HIV-1 infection and perinatal transmission in Botswana. Genes Immun 2006; 7:298-309. [PMID: 16691187 PMCID: PMC7091840 DOI: 10.1038/sj.gene.6364297] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perinatal transmission of human immunodeficiency virus (HIV)-1 represents a major problem in many regions of the world, especially Southern Africa. With the exception of viral and proviral load, the role for maternal cofactors in perinatal transmission outcome is largely unknown. In this study, an assessment was made of peripheral blood mononuclear cells (PBMC) gene-expression profiles to better understand transcriptional changes associated with HIV-1 infection and perinatal transmission among young adult mothers with infants in Botswana. Peripheral blood mononuclear cells specimens were used from 25 HIV+ drug naive and 20 HIV- healthy mothers, similar in age and location, collected in 1999-2000 and 2003, and processed with the exact same methods, as previously described. Expression profiling of 22 277 microarray gene probes implicated a broad initiation of innate response gene-sets, including toll-like receptor, interferon-stimulated and antiviral RNA response pathways in association with maternal HIV-1 infection. Maternal transmission status was further associated with host genes that influence RNA processing and splicing patterns. In addition to real-time polymerase chain reaction validation of specific genes, enriched category validation of PBMC profiles was conducted using two independent data sets for either HIV-1 infection or an unrelated RNA virus, severe acute respiratory virus infection. HIV-1 pathogen-specific host profiles should prove a useful tool in infection and transmission intervention efforts worldwide.
Collapse
Affiliation(s)
- M Montano
- Center for HIV-1/AIDS Care and Research, Boston University School of Medicine, MA 2446, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sato H, Yokoyama M. [RNA viruses and mutations]. Uirusu 2006; 55:221-9. [PMID: 16557007 DOI: 10.2222/jsv.55.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Actively replicating RNA viruses in nature are continually changing their genetic information by spontaneous mutations. These changes often result in alterations in immune-sensitivity, drug-sensitivity, cell-tropism, and host-range, causing uncontrollability of the pathogen and emerging/re-emerging infections. To better understand the virus changes and develop effective methods to control the moving targets, it is essential to obtain information on changes in viral genomes and proteins. Although information on genetic changes is being accumulated very rapidly, assessment of changes in protein structure and function still requires time-consuming works. In this review, we will overview mutation studies of human immunodeficiency virus and other RNA viruses. In addition, we will introduce recent advances in the computational science and its application on mutation studies and drug development.
Collapse
Affiliation(s)
- Hironori Sato
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan.
| | | |
Collapse
|
12
|
Clevestig P, Maljkovic I, Casper C, Carlenor E, Lindgren S, Navér L, Bohlin AB, Fenyö EM, Leitner T, Ehrnst A. The X4 phenotype of HIV type 1 evolves from R5 in two children of mothers, carrying X4, and is not linked to transmission. AIDS Res Hum Retroviruses 2005; 21:371-8. [PMID: 15929699 DOI: 10.1089/aid.2005.21.371] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previously, we found that emergence of the X4 viral phenotype in HIV-1-infected children was related to the presence of X4 in their mothers (C.H. Casper et al., J Infect Dis 2002; 186:914-921). Here, we investigated the origin of the X4 phenotype in the child, analyzing two mother-child pairs (Ma-Ca, Mb-Cb) where the mothers carried X4 and their children developed X4 after an initial presence of R5. We used nested polymerase chain reaction of the env V3 region to generate 203 HIV-1 clones for sequencing (Ma, n = 44; Ca, n = 73; Mb, n = 61; Cb, n = 25) from DNA of peripheral blood mononuclear cell (PBMC) lysates, altogether 167 clones, or from cDNA of plasma RNA, 36 clones. PBMC and plasma isolate sequences from each time point enabled us to assign the probable phenotype to clone sequences in a phylogenetic tree. The transmission and evolution were reconstructed using the maximum likelihood method. In mother-child pair Ma-Ca, one maternal R5 isolate clustered with the child's R5 sequences, at the earliest time when R5 was isolated in the child, confirming this as a likely source of the transmitted R5 phenotype. At age 3, an X4 population was present in the child that had evolved from the child's own R5-associated population, clearly distinct from the maternal X4 sequences. The second mother-child pair (Mb-Cb) displayed a similar pattern. Amino acid substitution patterns corroborated the conclusions from the phylogenetic tree. Thus, in both children, the X4 virus developed from their own R5 population, and was not caused by transmission of X4.
Collapse
MESH Headings
- Amino Acid Sequence
- Child
- Child, Preschool
- Evolution, Molecular
- Female
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/genetics
- HIV Infections/transmission
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- Infant
- Infant, Newborn
- Infectious Disease Transmission, Vertical
- Leukocytes, Mononuclear/virology
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Phenotype
- Phylogeny
- Pregnancy
- Pregnancy Complications, Infectious/virology
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- P Clevestig
- Microbiology and Tumor Biology Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sanjuán R, Codoñer FM, Moya A, Elena SF. Natural selection and the organ-specific differentiation of HIV-1 V3 hypervariable region. Evolution 2004; 58:1185-1194. [PMID: 15266969 DOI: 10.1111/j.0014-3820.2004.tb01699.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The existence of organ-specific HIV-1 populations within infected hosts has been studied for many years; nonetheless results reported by different authors are somewhat discrepant. To tackle this problem, we used a population genetics approach to analyze previously published data from the V3 hypervariable region of the envelope env gene. Our results are compatible with a population subdivision by organs in 95% of individuals analyzed at autopsy. In addition, populations infecting the nervous system and testicles clearly appear as differentiated subsets of the so-called macrophage-tropic variants. Liver and kidney may harbor differentiated populations as well. Although it is widely accepted that organ compartmentalization arises as a consequence of different selective pressures imposed by different organs, a definitive demonstration has not yet been provided. Our analysis of the pattern of synonymous and nonsynonymous nucleotide substitutions provides evidence supporting this hypothesis, without discarding the role of other evolutionary processes. In contrast, positive selection does not seem to be the mechanism responsible for the evolution of patient-specific sequences.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva and Departament de Genètica, Universitat de València, 46071 València, Spain
| | | | | | | |
Collapse
|
14
|
Sanjuán R, Codoñer FM, Moya A, Elena SF. NATURAL SELECTION AND THE ORGAN-SPECIFIC DIFFERENTIATION OF HIV-1 V3 HYPERVARIABLE REGION. Evolution 2004. [DOI: 10.1554/03-577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Bagnarelli P, Fiorelli L, Vecchi M, Monachetti A, Menzo S, Clementi M. Analysis of the functional relationship between V3 loop and gp120 context with regard to human immunodeficiency virus coreceptor usage using naturally selected sequences and different viral backbones. Virology 2003; 307:328-40. [PMID: 12667802 DOI: 10.1016/s0042-6822(02)00077-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) gp120 V3 loop plays a predominant role in chemokine receptor usage; however, other linear and nonlinear gp120 domains are involved in this step of the HIV-1 replication cycle. At present, the functional relationship between V3 and these domains with regard to coreceptor usage is unclear. To gain insights into the nature of this relationship in naturally selected viral variants, we developed a recombinant strategy based on two different gp120 backbones derived from CXCR4 (X4)- and CCR5 (R5)-tropic viral strains, respectively. Using this recombinant model system, we evaluated the phenotype patterns conferred to chimeric viruses by exogenous V3 loops from reference molecular clones and samples from infected subjects. In 13 of 17 recombinants (76%), a comparable phenotype was observed independently of the gp120 backbone, whereas in a minority of the recombinant viruses (4/17, 24%) viral infectivity depended on the gp120 context. No case of differential tropism using identical V3 sequence in the two gp120 contexts was observed. Site-directed mutagenesis experiments were performed to evaluate the phenotypic impact of specific V3 motifs. The data indicate that while the interaction of HIV-1 with chemokine receptors is driven by V3 loop and influenced by its evolutionary potential, the gp120 context plays a role in influencing the replication competence of the variants, suggesting that compensatory mutations occurring at sites other than V3 are necessary in some cases.
Collapse
|
16
|
Matsuoka-Aizawa S, Sato H, Hachiya A, Tsuchiya K, Takebe Y, Gatanaga H, Kimura S, Oka S. Isolation and molecular characterization of a nelfinavir (NFV)-resistant human immunodeficiency virus type 1 that exhibits NFV-dependent enhancement of replication. J Virol 2003; 77:318-27. [PMID: 12477837 PMCID: PMC140576 DOI: 10.1128/jvi.77.1.318-327.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the use of a phenotypic anti-human immunodeficiency virus type 1 (HIV-1) drug resistance assay in a large set of clinical virus isolates, we found a unique variant (CL-4) that exhibited a high level of nelfinavir (NFV) resistance and rather enhanced replication under subinhibitory concentrations of NFV (0.001 to 0.1 micro M). Comparison of gag-pol sequences of the CL-4 variant and its predecessor virus isolates showed a stepwise accumulation of a total of 19 amino acid substitutions in protease (PR) and Gag p17 during 32-month NFV-containing antiretroviral therapy, while other Gag regions including the cleavage sites of the p55 precursor remained highly conserved. To understand the relationship between the genetic and phenotypic changes in CL-4, we constructed chimeric viruses using pNL4-3, replacing the PR, p24PR, or p17PR gene segment of CL-4 or its predecessor. A series of tissue culture infections with the chimeras in the absence or presence of increasing concentrations of NFV demonstrated that only the p17PR segment of CL-4 could confer the NFV-dependent replication enhancement phenotype on NL4-3. Our data suggest a novel adaptation mechanism of HIV-1 to NFV, in which coevolution of Gag and PR genes generates a variant that replicates more efficiently in the cellular environment in the presence of NFV than without the drug.
Collapse
|
17
|
Kalish ML, Korber BT, Pillai S, Robbins KE, Leo YS, Saekhou A, Verghese I, Gerrish P, Goh CL, Lupo D, Tan BH, Brown TM, Chan R. The sequential introduction of HIV-1 subtype B and CRF01AE in Singapore by sexual transmission: accelerated V3 region evolution in a subpopulation of Asian CRF01 viruses. Virology 2002; 304:311-29. [PMID: 12504572 DOI: 10.1006/viro.2002.1691] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rapid spread of the human immunodeficiency virus type 1 (HIV-1) circulating recombinant form (CRF) 01AE throughout Asia demonstrates the dynamic nature of emerging epidemics. To further characterize the dissemination of these strains regionally, we sequenced 58 strains from Singapore and found that subtype B and CRF01 were introduced separately, by homosexual and heterosexual transmission, respectively. Protein similarity scores of the Singapore CRF01, as well as all Asian strains, demonstrated a complex distribution of scores in the V3 loop--some strains had very similar V3 loop sequences, while others were highly divergent. Furthermore, we found a strong correlation between the loss of a V3 glycosylation site and the divergent strains. This suggests that loss of this glycosylation site may make the V3 loop more susceptible to immune surveillance. The identification of a rapidly evolving population of CRF01AE variants should be considered when designing new candidate vaccines and when evaluating breakthrough strains from current vaccine trials.
Collapse
Affiliation(s)
- Marcia L Kalish
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Komoto S, Kinomoto M, Horikoshi H, Shiraga M, Kurosu T, Mukai T, Auwanit W, Otake T, Oishi I, Ikuta K. Ability to induce p53 and caspase-mediated apoptosis in primary CD4+ T cells is variable among primary isolates of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 2002; 18:435-46. [PMID: 11958687 DOI: 10.1089/088922202753614209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infection with human immunodeficiency virus type 1 (HIV-1) is associated with dramatic depletion of CD4(+) T cells, the major HIV-1-induced pathogenesis. Apoptosis has been suggested to play an important role for the T cell depletion and a number of mechanisms have been proposed for the apoptosis in T cells. Here, we compared the levels for apoptosis induction in primary peripheral blood mononuclear cells (PBMCs) among several laboratory strains and primary isolates of the HIV-1 subtypes B and E. The results showed that apoptosis in infected PBMCs, preferentially in CD4+ T cell population, became detectable around the time for virus production by flow cytometric terminal transferase dUTP nick end labeling (TUNEL) technique and staining with the nuclear dye Hoechst 33342. The abilities to induce apoptosis in PBMCs were highly variable in individual isolates. The increase of p53 protein in infected PBMCs, which was initiated before virus production, was observed in infected PBMCs and the levels of p53 protein were almost proportional to the rates of the isolates to induced apoptosis. The cells infected and cultured in the presence of Z-VAD-FMK had significantly decreased cell mortalities, indicating that activated caspases also played a significant role in the apoptosis. Thus, HIV-1-induced apoptosis in primary T cells was accompanied by the p53 protein and caspase activation at varied levels in primary isolates.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kusagawa S, Sato H, Tomita Y, Tatsumi M, Kato K, Motomura K, Yang R, Takebe Y. Isolation and characterization of replication-competent molecular DNA clones of HIV type 1 CRF01_AE with different coreceptor usages. AIDS Res Hum Retroviruses 2002; 18:115-22. [PMID: 11839144 DOI: 10.1089/08892220252779656] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have isolated replication-competent molecular clones of HIV-1 circulating recombinant form CRF01_AE with different coreceptor usages. After lambda phage cloning of unintegrated circular proviral DNAs derived from a CRF01_AE strain (HIV-1NH1), isolated in Japan, the infectious molecular clone, designated p93JP-NH1, was reconstituted. 93JP-NH1 showed an X4 and R5 phenotype in NP2 cell-based coreceptor utilization assays and exerted robust replication in human T cell lines, including MT2, M8166, and PM1 cells, whereas it propagated modestly in peripheral blood mononuclear cells. The CRF01_AE molecular clone with R5 phenotype (p93JP-NH2env) was then constructed by replacing the env gene of p93JP-NH1 with that of a nearly isogenic CRF01_AE R5 strain isolated from an epidemiologically linked case. The phylogeny and recombination break-point analysis confirmed that these clones shared an A/E recombinant structure similar to that of the prototype CRF01_AE strain, CM240. These replication-competent CRF01_AE molecular clones with different coreceptor usages would be useful tools for the study of CRF01_AE, one of the most prevalent strains in Asia.
Collapse
Affiliation(s)
- Shigeru Kusagawa
- Laboratory of Molecular Virology and Epidemiology, AIDS Research Center, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
McGrath KM, Hoffman NG, Resch W, Nelson JA, Swanstrom R. Using HIV-1 sequence variability to explore virus biology. Virus Res 2001; 76:137-60. [PMID: 11410314 DOI: 10.1016/s0168-1702(01)00271-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) only recently established an epidemic world-wide infection in the human population. The virus persists in the human host through active replication and is able to avoid clearance by the immune system. Active replication is an important component of the rapid evolutionary potential of HIV-1, a potential which manifests itself in the evolution of immune escape variants, drug resistant variants, and variants with the ability to use different cell surface coreceptors in conjunction with CD4. Multiple zoonotic introductions, compartmentalization of virus replication in the body, and genetic bottlenecks associated with sampling during transmission, antiretroviral therapy, and geographic and/or host population isolation further contribute to the range of sequences present in extant viruses. The sum of the history of all of these phenomena is reflected in HIV-1 sequence variability, and most of these phenomena are ongoing today. Here we review the use of HIV-1 sequence variability to explore its underlying biology.
Collapse
Affiliation(s)
- K M McGrath
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, 22-062 Lineberger Cancer Center, CB# 7295, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | |
Collapse
|
21
|
Sato H, Tomita Y, Ebisawa K, Hachiya A, Shibamura K, Shiino T, Yang R, Tatsumi M, Gushi K, Umeyama H, Oka S, Takebe Y, Nagai Y. Augmentation of human immunodeficiency virus type 1 subtype E (CRF01_AE) multiple-drug resistance by insertion of a foreign 11-amino-acid fragment into the reverse transcriptase. J Virol 2001; 75:5604-13. [PMID: 11356968 PMCID: PMC114273 DOI: 10.1128/jvi.75.12.5604-5613.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A human immunodeficiency virus type 1 (HIV-1) subtype E (CRF01_AE) variant (99JP-NH3-II) possessing an in-frame 33-nucleotide insertion mutation in the beta3-beta4 loop coding region of the reverse transcriptase (RT) gene was isolated from a patient who had not responded to nucleoside analogue RT inhibitors. This virus exhibited an extremely high level of multiple nucleoside analog resistance (MNR). Neighbor-joining tree analysis of the pol sequences indicated that the 99JP-NH3-II variant had originated from the swarm of drug-sensitive predecessors in the patient. Population-based sequence analyses of 82 independently cloned RT segments from the patient suggested that the variants with the insertion, three or four 3'-azido-3'-deoxythymidine resistance mutations, and a T69I mutation in combination had strong selective advantages during chemotherapy. Consistently, in vitro mutagenesis of a drug-sensitive predecessor virus clone demonstrated that this mutation set functions cooperatively to confer a high level of MNR without deleterious effects on viral replication capability. Homology modeling of the parental RT and its MNR mutant showed that extension of the beta3-beta4 loop by an insertion caused reductions in the distances between the loop and the other subdomains, narrowing the template-primer binding cleft and deoxynucleoside triphosphate-binding pocket in a highly flexible manner. The origin of the insert is elusive, as every effort to find a homologue has been unsuccessful. Taken together, these data suggest that (i) HIV-1 tolerates in vivo insertions as long as 33 nucleotides into the highly conserved enzyme gene to survive multiple anti-HIV-1 inhibitors and (ii) the insertion mutation augments multiple-drug resistance, possibly by reducing the biochemical inaccuracy of substrate-enzyme interactions in the active center.
Collapse
Affiliation(s)
- H Sato
- AIDS Research Center, National Institute of Infectious Diseases, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ahmad N. Molecular mechanisms of human immunodeficiency virus type 1 mother-infant transmission. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:387-416. [PMID: 11013769 DOI: 10.1016/s1054-3589(00)49032-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- N Ahmad
- Department of Microbiology and Immunology, College of Medicine, University of Arizona Health Sciences Center, Tucson 85724, USA
| |
Collapse
|
23
|
Sato H, Tomita Y, Shibamura K, Shiino T, Miyakuni T, Takebe Y. Convergent evolution of reverse transcriptase (RT) genes of human immunodeficiency virus type 1 subtypes E and B following nucleoside analogue RT inhibitor therapies. J Virol 2000; 74:5357-62. [PMID: 10799614 PMCID: PMC110892 DOI: 10.1128/jvi.74.11.5357-5362.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Changes in the drug susceptibility, gene lineage, and deduced amino acid sequences of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) subtype E following 3'-azido-3'-deoxythymidine (AZT) monotherapy or AZT-2', 3'-dideoxyinosine combination therapy were examined with sequential virus isolates from a single family. The changes were compared to those reported for HIV-1 subtype B, revealing striking similarities in selected phenotype and amino acids independent of differences in the RT backbone sequences that constantly distinguish the two subtypes. Particularly, identical amino acid substitutions were present simultaneously at four different positions (D67N, K70R, T215F, and K219Q) for high-level AZT resistance. These data suggest that HIV-1 subtypes E and B evolve convergently at the phenotypic and amino acid levels when the nucleoside analogue RT inhibitors act as selective forces.
Collapse
Affiliation(s)
- H Sato
- Laboratory of Molecular Virology and Epidemiology, AIDS Research Center, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Yamaguchi-Kabata Y, Gojobori T. Reevaluation of amino acid variability of the human immunodeficiency virus type 1 gp120 envelope glycoprotein and prediction of new discontinuous epitopes. J Virol 2000; 74:4335-50. [PMID: 10756049 PMCID: PMC111951 DOI: 10.1128/jvi.74.9.4335-4350.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To elucidate the evolutionary mechanisms of the human immunodeficiency virus type 1 gp120 envelope glycoprotein at the single-site level, the degree of amino acid variation and the numbers of synonymous and nonsynonymous substitutions were examined in 186 nucleotide sequences for gp120 (subtype B). Analyses of amino acid variabilities showed that the level of variability was very different from site to site in both conserved (C1 to C5) and variable (V1 to V5) regions previously assigned. To examine the relative importance of positive and negative selection for each amino acid position, the numbers of synonymous and nonsynonymous substitutions that occurred at each codon position were estimated by taking phylogenetic relationships into account. Among the 414 codon positions examined, we identified 33 positions where nonsynonymous substitutions were significantly predominant. These positions where positive selection may be operating, which we call putative positive selection (PS) sites, were found not only in the variable loops but also in the conserved regions (C1 to C4). In particular, we found seven PS sites at the surface positions of the alpha-helix (positions 335 to 347 in the C3 region) in the opposite face for CD4 binding. Furthermore, two PS sites in the C2 region and four PS sites in the C4 region were detected in the same face of the protein. The PS sites found in the C2, C3, and C4 regions were separated in the amino acid sequence but close together in the three-dimensional structure. This observation suggests the existence of discontinuous epitopes in the protein's surface including this alpha-helix, although the antigenicity of this area has not been reported yet.
Collapse
Affiliation(s)
- Y Yamaguchi-Kabata
- Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | | |
Collapse
|
25
|
Shiino T, Kato K, Kodaka N, Miyakuni T, Takebe Y, Sato H. A group of V3 sequences from human immunodeficiency virus type 1 subtype E non-syncytium-inducing, CCR5-using variants are resistant to positive selection pressure. J Virol 2000; 74:1069-78. [PMID: 10627516 PMCID: PMC111440 DOI: 10.1128/jvi.74.3.1069-1078.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In a human immunodeficiency virus type 1 (HIV-1)-infected individual, immune-pressure-mediated positive selection operates to maintain the antigenic polymorphism on the gp120 third variable (V3) loop. Recently, we suggested on the basis of sequencing C2/V3 segments from an HIV-1 subtype E-infected family that a V3 sequence lineage group of the non-syncytium-inducing (NSI) variants (group 1) was relatively resistant to positive selection pressure (35). To better understand the relationship between the intensity of positive selection pressure and cell tropism of the virus, we determined the linkage between each V3 genotype and its function of directing coreceptor preference and MT2 cell tropism. The biological characterization of a panel of V3 recombinant viruses showed that all of the group 1 V3 sequences could confer an NSI/CCR5-using (NSI/R5) phenotype on HIV-1(LAI), whereas the group 2 V3 sequence, which was more positively charged than the group 1 sequence, dictated mainly a syncytium-inducing, CXCR4-using (SI/X4) phenotype. Phylogenetic analysis of C2/V3 sequences encoding group 1 or 2 V3 suggested that the variants carrying group 1 V3 are the ancestors of the intrafamilial infection and persisted in the family, while the variants carrying group 2 V3 evolved convergently from the group 1 V3 variants during disease progression in the individuals. Finally, a statistical test showed that the V3 sequence that could dictate an NSI/R5 phenotype had a synonymous substitution rate significantly higher than the nonsynonymous substitution rate. These data suggest that V3 sequences of the subtype E NSI/R5 variants are more resistant to positive selection pressure than those of the SI/X4 variants.
Collapse
Affiliation(s)
- T Shiino
- Laboratory of Molecular Virology and Epidemiology, AIDS Research Center, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Kato K, Sato H, Takebe Y. Role of naturally occurring basic amino acid substitutions in the human immunodeficiency virus type 1 subtype E envelope V3 loop on viral coreceptor usage and cell tropism. J Virol 1999; 73:5520-6. [PMID: 10364300 PMCID: PMC112609 DOI: 10.1128/jvi.73.7.5520-5526.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess the role of naturally occurring basic amino acid substitutions in the V3 loop of human immunodeficiency virus type 1 (HIV-1) subtype E on viral coreceptor usage and cell tropism, we have constructed a panel of chimeric viruses with mutant V3 loops of HIV-1 subtype E in the genetic background of HIV-1LAI. The arginine substitutions naturally occurring at positions 8, 11, and 18 of the V3 loop in an HIV-1 subtype E X4 strain were systematically introduced into that of an R5 strain to generate a series of V3 loop mutant chimera. These chimeric viruses were employed in virus infectivity assays using HOS-CD4 cells expressing either CCR5 or CXCR4, peripheral blood mononuclear cells, T-cell lines, or macrophages. The arginine substitution at position 11 of the V3 loop uniformly caused the loss of infectivity in HOS-CD4-CCR5 cells, indicating that position 11 is critical for utilization of CCR5. CXCR4 usage was conferred by a minimum of two arginine substitutions, regardless of combination, whereas arginine substitutions at position 8 and 11 were required for T-cell line tropism. Nonetheless, macrophage tropism was not conferred by the V3 loop of subtype E R5 strain per se. We found that the specific combinations of amino acid changes in HIV-1 subtype E env V3 loop are critical for determining viral coreceptor usage and cell tropism. However, the ability to infect HOS-CD4 cells through either CXCR4 or CCR5 is not necessarily correlated with T-cell or macrophage tropism, suggesting that cellular tropism is not dictated solely by viral coreceptor utilization.
Collapse
Affiliation(s)
- K Kato
- Laboratory of Molecular Virology and Epidemiology, AIDS Research Center, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | | | | |
Collapse
|
27
|
Sato H, Kato K, Takebe Y. Functional complementation of the envelope hypervariable V3 loop of human immunodeficiency virus type 1 subtype B by the subtype E V3 loop. Virology 1999; 257:491-501. [PMID: 10329559 DOI: 10.1006/viro.1999.9670] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypervariable V3 loop within gp120 of human immunodeficiency virus type 1 (HIV-1) is the major determinant of cell tropism and the entry coreceptor usage of the virus. However, the information obtained thus far has been from only subtype B from North America and Europe, and little is known about other subtypes whose V3 amino acids differ by as much as 50% from subtype B V3. In this study, we examined the functional potential of the V3 element of the HIV-1 subtype E, the most crucial variant causing the AIDS epidemic throughout southeast Asia. A panel of HIV-1LAI recombinants was constructed by the overlap extension method, by which the LAI V3 loop was precisely replaced by that of the subtype E nonsyncytium-inducing (NSI) or syncytium-inducing (SI) variant. All of the recombinant viruses infected peripheral blood mononuclear cells, whereas only those with SI V3 infected MT2 cells, a CD4(+) T cell line. Consistently, the SI V3 recombinants used CXCR4, while the NSI V3 recombinants used CCR5 for infection of HOS-CD4(+) cells. Finally, only the NSI V3 sequence conferred CC-chemokine sensitivity on the parental virus. The data support the notion that the HIV-1 V3 loop consists of a relatively independent domain in gp120 and suggest that the subtype E V3 loop indeed contains the functional element to dictate the cell tropism, coreceptor preference, and chemokine sensitivity of the virus. These findings are of immediate importance in understanding V3 structure-function relationship and for examining phenotypic evolution of HIV-1 subtype E.
Collapse
Affiliation(s)
- H Sato
- Laboratory of Molecular Virology and Epidemiology, AIDS Research Center, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan.
| | | | | |
Collapse
|