1
|
Kulsuptrakul J, Emerman M, Mitchell PS. CARD8 inflammasome activation during HIV-1 cell-to-cell transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.21.608981. [PMID: 39229127 PMCID: PMC11370340 DOI: 10.1101/2024.08.21.608981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Our previous work demonstrated that CARD8 detects HIV-1 infection by sensing the enzymatic activity of the HIV protease, resulting in CARD8-dependent inflammasome activation (Kulsuptrakul et al., 2023). CARD8 harbors a motif in its N-terminus that functions as a HIV protease substrate mimic, permitting innate immune recognition of HIV-1 protease activity, which when cleaved by HIV protease triggers CARD8 inflammasome activation. Here, we sought to understand CARD8 responses in the context of HIV-1 cell-to-cell transmission via a viral synapse. We observed that cell-to-cell transmission of HIV-1 between infected T cells and primary human monocyte-derived macrophages induces CARD8 inflammasome activation in a manner that is dependent on viral protease activity and largely independent of the NLRP3 inflammasome. Additionally, to further evaluate the viral determinants of CARD8 sensing, we tested a panel of HIV protease inhibitor resistant clones to establish how variation in HIV protease affects CARD8 activation. We identified mutant HIV-1 proteases that differentially cleave and activate CARD8 compared to wildtype HIV-1, thus indicating that natural variation in HIV protease affects not only the cleavage of the viral Gag-Pol polyprotein but also likely impacts innate sensing and inflammation.
Collapse
Affiliation(s)
- Jessie Kulsuptrakul
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Patrick S. Mitchell
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
2
|
Bihani SC, Gupta GD, Hosur MV. Molecular basis for reduced cleavage activity and drug resistance in D30N HIV-1 protease. J Biomol Struct Dyn 2022; 40:13127-13135. [PMID: 34609269 DOI: 10.1080/07391102.2021.1982007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nelfinavir is one of the FDA-approved HIV-1 protease inhibitors and a part of highly active anti-retroviral therapy (HAART) for the treatment of HIV-AIDS. Nelfinavir was the first HIV-1 protease inhibitor to be approved as a paediatric formulation. The application of HAART had resulted in significant improvement in the lives of AIDS patients. However, the emergence of drug resistance in HIV-1 protease has limited the use of many of these drugs including nelfinavir. A unique mutation observed frequently in patients treated with nelfinavir is D30N as it is selected exclusively by nelfinavir. The D30N mutation imparts very high resistance to nelfinavir but unlike other primary mutations does not give cross-resistance to the majority of other drugs. D30N mutation also significantly reduces cleavage activity of HIV-1 protease and affects viral fitness. Here, we have determined crystal structures of D30N HIV-1 protease in unliganded form and in complex with nelfinavir. These structures provide the rationale for reduced cleavage activity and the molecular basis of drug resistance induced by D30N mutation. The loss of coulombic interaction part of a crucial hydrogen bond between the drug and the protease is likely to play a major role in reduced affinity and resistance towards nelfinavir. The decreased catalytic activity of D30N HIV-1 protease due to altered interaction with the substrates and reduced stability of folding core may be the reason for the reduced replicative capacity of the virus harboring mutant HIV-1 protease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhash C Bihani
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai,India.,Homi Bhabha National Institute, Mumbai, India
| | - Gagan Deep Gupta
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai,India.,Homi Bhabha National Institute, Mumbai, India
| | - Madhusoodan V Hosur
- School of Natural Sciences and Engineering, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, India
| |
Collapse
|
3
|
Drug resistance mutations in protease gene of HIV-1 subtype C infected patient population. Virusdisease 2021; 32:480-491. [PMID: 34631975 DOI: 10.1007/s13337-021-00725-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/29/2021] [Indexed: 10/20/2022] Open
Abstract
Failure of antiretroviral therapy (ART) in HIV-1 infection is a critical issue for the physicians treating HIV patients. The major cause of drug failure is the development of resistance mutations in reverse transcriptase (RT) and/or protease (PR) genes. Mutations associated with drug resistance decrease drug effectiveness. This study was conducted to assess drug resistance profile of the entire PR gene in 90 HIV-1 patients consisting of 23 ART non-responsive, 32 ART responsive and 35 drug naive patients. It was observed that the majority of the sequences (94.4%) belonged to subtype C and (5.5%) to subtype A1. The ART non-responsive and responsive patients were treated with either first line of ART regimen (two NRTI and one NNRTI) or second line of ART regimen that included additional one protease inhibitor (PI). All the patients in each group except one responsive patient had various minor resistance mutations. Thus, drug failures in ART non-responsive patients may not always be due to drug resistance mutations instead other factors may also be responsible for drug failures such as non-compliance, suboptimal dose or drug interaction. The presence of minor drug resistance mutations in drug naive patients is suggestive of transmitted resistance mutations.
Collapse
|
4
|
Zhang TH, Dai L, Barton JP, Du Y, Tan Y, Pang W, Chakraborty AK, Lloyd-Smith JO, Sun R. Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease. PLoS Genet 2020; 16:e1009009. [PMID: 33085662 PMCID: PMC7605711 DOI: 10.1371/journal.pgen.1009009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/02/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Drug-resistant mutations often have deleterious impacts on replication fitness, posing a fitness cost that can only be overcome by compensatory mutations. However, the role of fitness cost in the evolution of drug resistance has often been overlooked in clinical studies or in vitro selection experiments, as these observations only capture the outcome of drug selection. In this study, we systematically profile the fitness landscape of resistance-associated sites in HIV-1 protease using deep mutational scanning. We construct a mutant library covering combinations of mutations at 11 sites in HIV-1 protease, all of which are associated with resistance to protease inhibitors in clinic. Using deep sequencing, we quantify the fitness of thousands of HIV-1 protease mutants after multiple cycles of replication in human T cells. Although the majority of resistance-associated mutations have deleterious effects on viral replication, we find that epistasis among resistance-associated mutations is predominantly positive. Furthermore, our fitness data are consistent with genetic interactions inferred directly from HIV sequence data of patients. Fitness valleys formed by strong positive epistasis reduce the likelihood of reversal of drug resistance mutations. Overall, our results support the view that strong compensatory effects are involved in the emergence of clinically observed resistance mutations and provide insights to understanding fitness barriers in the evolution and reversion of drug resistance.
Collapse
Affiliation(s)
- Tian-hao Zhang
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - John P. Barton
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| | - Yushen Du
- School of Medicine, ZheJiang University, Hangzhou, 210000, China
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yuxiang Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenwen Pang
- Department of Public Health Laboratory Science, West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Arup K. Chakraborty
- Institute for Medical Engineering and Science, Departments of Chemical Engineering, Physics, & Chemistry, Massachusetts Institute of Technology, MA 21309, USA
- Ragon Institute of MGH, MIT, & Harvard, Cambridge, MA 21309, USA
| | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Ren Sun
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Blanch-Lombarte O, Santos JR, Peña R, Jiménez-Moyano E, Clotet B, Paredes R, Prado JG. HIV-1 Gag mutations alone are sufficient to reduce darunavir susceptibility during virological failure to boosted PI therapy. J Antimicrob Chemother 2020; 75:2535-2546. [PMID: 32556165 PMCID: PMC7443716 DOI: 10.1093/jac/dkaa228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Virological failure (VF) to boosted PIs with a high genetic barrier is not usually linked to the development of resistance-associated mutations in the protease gene. METHODS From a cohort of 520 HIV-infected subjects treated with lopinavir/ritonavir or darunavir/ritonavir monotherapy, we retrospectively identified nine patients with VF. We sequenced the HIV-1 Gag-protease region and generated clonal virus from plasma samples. We characterized phenotypically clonal variants in terms of replicative capacity and susceptibility to PIs. Also, we used VESPA to identify signature mutations and 3D molecular modelling information to detect conformational changes in the Gag region. RESULTS All subjects analysed harboured Gag-associated polymorphisms in the absence of resistance mutations in the protease gene. Most Gag changes occurred outside Gag cleavage sites. VESPA analyses identified K95R and R286K (P < 0.01) as signature mutations in Gag present at VF. In one out of four patients with clonal analysis available, we identified clonal variants with high replicative capacity and 8- to 13-fold reduction in darunavir susceptibility. These clonal variants harboured K95R, R286K and additional mutations in Gag. Low susceptibility to darunavir was dependent on the Gag sequence context. All other clonal variants analysed preserved drug susceptibility and virus replicative capacity. CONCLUSIONS Gag mutations may reduce darunavir susceptibility in the absence of protease mutations while preserving viral fitness. This effect is Gag-sequence context dependent and may occur during boosted PI failure.
Collapse
Affiliation(s)
- Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain and Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José R Santos
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Ruth Peña
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | | | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain and Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Fine-Tuning of Sequence Specificity by Near Attack Conformations in Enzyme-Catalyzed Peptide Hydrolysis. Catalysts 2020. [DOI: 10.3390/catal10060684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic role of near attack conformations (NACs), molecular states that lie on the pathway between the ground state (GS) and transition state (TS) of a chemical reaction, is not understood completely. Using a computational approach that combines Bürgi–Dunitz theory with all-atom molecular dynamics simulations, the role of NACs in catalyzing the first stages of HIV-1 protease peptide hydrolysis was previously investigated using a substrate that represents the recognized SP1-NC cleavage site of the HIV-1 Gag polyprotein. NACs were found to confer no catalytic effect over the uncatalyzed reaction there ( Δ Δ G N ‡ ∼ 0 kcal/mol). Here, using the same approach, the role of NACs across multiple substrates that each represent a further recognized cleavage site is investigated. Overall rate enhancement varies by | Δ Δ G ‡ | ∼ 12–15 kcal/mol across this set, and although NACs contribute a small and approximately constant barrier to the uncatalyzed reaction (< Δ G N ‡ u > = 4.3 ± 0.3 kcal/mol), they are found to contribute little significant catalytic effect ( | Δ Δ G N ‡ | ∼ 0–2 kcal/mol). Furthermore, no correlation is exhibited between NAC contributions and the overall energy barrier ( R 2 = 0.01). However, these small differences in catalyzed NAC contributions enable rates to match those required for the kinetic order of processing. Therefore, NACs may offer an alternative and subtle mode compared to non-NAC contributions for fine-tuning reaction rates during complex evolutionary sequence selection processes—in this case across cleavable polyproteins whose constituents exhibit multiple functions during the virus life-cycle.
Collapse
|
7
|
Marie V, Gordon M. Gag-protease coevolution shapes the outcome of lopinavir-inclusive treatment regimens in chronically infected HIV-1 subtype C patients. Bioinformatics 2020; 35:3219-3223. [PMID: 30753326 DOI: 10.1093/bioinformatics/btz076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/03/2019] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Commonly, protease inhibitor failure is characterized by the development of multiple protease resistance mutations (PRMs). While the impact of PRMs on therapy failure are understood, the introduction of Gag mutations with protease remains largely unclear. RESULTS Here, we utilized phylogenetic analyses and Bayesian network learning as tools to understand Gag-protease coevolution and elucidate the pathways leading to Lopinavir failure in HIV-1 subtype C infected patients. Our analyses indicate that while PRMs coevolve in response to drug selection pressure within protease, the Gag mutations added to the existing network while specifically interacting with known Lopinavir failure PRMs. Additionally, the selection of mutations at specific positions in Gag-protease suggests that these coevolving mutational changes occurs to maintain structural integrity during Gag cleavage. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- V Marie
- KwaZulu-Natal Research Innovation and Sequencing Platform, University of KwaZulu-Natal, Durban, South Africa
| | - M Gordon
- KwaZulu-Natal Research Innovation and Sequencing Platform, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Yuan D, Du Z, Zhou J, Ye L, Su L, Yang H, Yuan F, Li Y, Liu H, Zhai W, Liang S, Yang S. HIV-1 subtype diversity, drug resistance, and genetic transmission networks in men who have sex with men with virologic failure in antiretroviral therapy in Sichuan, China, 2011 to 2017. Medicine (Baltimore) 2019; 98:e17585. [PMID: 31651864 PMCID: PMC6824707 DOI: 10.1097/md.0000000000017585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study sought to examine the human immunodeficiency virus type 1 (HIV-1) genetic diversity on drug resistance among men who have sex with men (MSM) with virologic failure in antiretroviral therapy (ART), and investigate linking-associated factors for genetic transmission networks.Seven hundred and thirty-four HIV-positive MSM with virologic failure in ART were recruited into our study from 2011 to 2017. HIV-1 pol gene sequences were used for phylogenetic and genotypic drug resistance analyses. The drug resistance mutations were determined using the Stanford University HIV Drug Resistance Database. The genetic transmission networks were analyzed for CRF01_AE and CRF07_BC sequences by the genetic distance-based method.Of 734 subjects, 372 (50.68%) showed drug resistance, in which CRF01_AE and CRF07_BC were the predominating subtypes. Drug resistance more frequently occurred in non-nucleoside reverse transcriptase inhibitors (NNRTIs) treatment (48.64%), and followed by nucleoside reverse transcriptase inhibitors (NRTIs) (36.51%) and PIs (4.03%). The most common drug resistance-associated mutations in protease inhibitors (PIs), NRTIs and NNRTIs were K20I/R, M184V/I and K103N/KN, respectively. For 283CRF01_AE sequences, 64 (22.61%) fell into clusters at a genetic distance of 0.011, resulting in 17 clusters ranging in size from 2 to 16 individuals. For 230 CRF07_BC sequences, 66 (28.69%) were connected to at least one other sequence with 0.005 genetic distances, resulting in 8 clusters ranging in size from 2 to 52 individuals. Individuals who showed drug resistance to ART were less likely to fall into clusters than those who did not. The genetic linkage was robust by the exclusion of sites associated with drug resistance.CRF01_AE and CRF07_BC were the main strains among MSM with virologic failure in ART, and the drug resistance more frequently occurred in NNRTIs, followed by NRTIs and PIs. Genetic transmission networks revealed a complexity of transmission pattern, suggesting early-diagnosis and in-time intervention among MSM.
Collapse
Affiliation(s)
- Dan Yuan
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention,
| | - Zonglun Du
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China,
| | - Junmin Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Li Ye
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention,
| | - Ling Su
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention,
| | - Hong Yang
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention,
| | - Fengshun Yuan
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention,
| | - Yiping Li
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention,
| | - Honglu Liu
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention,
| | - Wenwen Zhai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shu Liang
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention,
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Su CTT, Koh DWS, Gan SKE. Reviewing HIV-1 Gag Mutations in Protease Inhibitors Resistance: Insights for Possible Novel Gag Inhibitor Designs. Molecules 2019; 24:molecules24183243. [PMID: 31489889 PMCID: PMC6767625 DOI: 10.3390/molecules24183243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
HIV protease inhibitors against the viral protease are often hampered by drug resistance mutations in protease and in the viral substrate Gag. To overcome this drug resistance and inhibit viral maturation, targeting Gag alongside protease rather than targeting protease alone may be more efficient. In order to successfully inhibit Gag, understanding of its drug resistance mutations and the elicited structural changes on protease binding needs to be investigated. While mutations on Gag have already been mapped to protease inhibitor resistance, there remain many mutations, particularly the non-cleavage mutations, that are not characterized. Through structural studies to unravel how Gag mutations contributes to protease drug resistance synergistically, it is thus possible to glean insights to design novel Gag inhibitors. In this review, we discuss the structural role of both novel and previously reported Gag mutations in PI resistance, and how new Gag inhibitors can be designed.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Darius Wen-Shuo Koh
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore.
- p53 Laboratory, A*STAR, Singapore 138648, Singapore.
| |
Collapse
|
10
|
Hattori SI, Hayashi H, Bulut H, Rao KV, Nyalapatla PR, Hasegawa K, Aoki M, Ghosh AK, Mitsuya H. Halogen Bond Interactions of Novel HIV-1 Protease Inhibitors (PI) (GRL-001-15 and GRL-003-15) with the Flap of Protease Are Critical for Their Potent Activity against Wild-Type HIV-1 and Multi-PI-Resistant Variants. Antimicrob Agents Chemother 2019; 63:e02635-18. [PMID: 30962341 PMCID: PMC6535520 DOI: 10.1128/aac.02635-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/03/2019] [Indexed: 01/29/2023] Open
Abstract
We generated two novel nonpeptidic HIV-1 protease inhibitors (PIs), GRL-001-15 and GRL-003-15, which contain unique crown-like tetrahydropyranofuran (Crn-THF) and P2'-cyclopropyl-aminobenzothiazole (Cp-Abt) moieties as P2 and P2' ligands, respectively. GRL-001-15 and GRL-003-15 have meta-monofluorophenyl and para-monofluorophenyl at the P1 site, respectively, exert highly potent activity against wild-type HIV-1 with 50% effective concentrations (EC50s) of 57 and 50 pM, respectively, and have favorable cytotoxicity profiles with 50% cytotoxic concentrations (CC50s) of 38 and 11 μM, respectively. The activity of GRL-001-15 against multi-PI-resistant HIV-1 variants was generally greater than that of GRL-003-15. The EC50 of GRL-001-15 against an HIV-1 variant that was highly resistant to multiple PIs, including darunavir (DRV) (HIV-1DRVRP30), was 0.17 nM, and that of GRL-003-15 was 3.3 nM, while DRV was much less active, with an EC50 of 216 nM. The emergence of HIV-1 variants resistant to GRL-001-15 and GRL-003-15 was significantly delayed compared to that of variants resistant to selected PIs, including DRV. Structural analyses of wild-type protease (PRWT) complexed with the novel PIs revealed that GRL-001-15's meta-fluorine atom forms halogen bond interactions (2.9 and 3.0 Å) with Gly49 and Ile50, respectively, of the protease flap region and with Pro81' (2.7 and 3.2 Å), which is located close to the protease active site, and that two fluorine atoms of GRL-142-13 form multiple halogen bond interactions with Gly49, Ile50, Pro81', Ile82', and Arg8'. In contrast, GRL-003-15 forms halogen bond interactions with Pro81' alone, suggesting that the reduced antiviral activity of GRL-003-15 is due to the loss of the interactions with the flap region.
Collapse
Affiliation(s)
- Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Hironori Hayashi
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kalapala Venkateswara Rao
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Prasanth R Nyalapatla
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Kazuya Hasegawa
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Manabu Aoki
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto, Japan
| |
Collapse
|
11
|
Machnowska P, Meixenberger K, Schmidt D, Jessen H, Hillenbrand H, Gunsenheimer-Bartmeyer B, Hamouda O, Kücherer C, Bannert N, the German HIV-1 Seroconverter Study Group. Prevalence and persistence of transmitted drug resistance mutations in the German HIV-1 Seroconverter Study Cohort. PLoS One 2019; 14:e0209605. [PMID: 30650082 PMCID: PMC6334938 DOI: 10.1371/journal.pone.0209605] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/07/2018] [Indexed: 02/03/2023] Open
Abstract
The prevalence of transmitted drug resistance (TDR) in antiretroviral therapy (ART)-naïve individuals remains stable in most developed countries despite a decrease in the prevalence of acquired drug resistance. This suggests that persistence and further transmission of HIV-1 that encodes transmitted drug resistance mutations (TDRMs) is occurring in ART-naïve individuals. In this study, we analysed the prevalence and persistence of TDRMs in the protease and reverse transcriptase-sequences of ART-naïve patients within the German HIV-1 Seroconverter Study Cohort who were infected between 1996 and 2017. The prevalence of TDRMs and baseline susceptibility to antiretroviral drugs were assessed using the Stanford HIVdb list and algorithm. Mean survival times of TDRMs were calculated by Kaplan-Meier analysis. The overall prevalence of TDR was 17.2% (95% CI 15.7–18.6, N = 466/2715). Transmitted NNRTI resistance was observed most frequently with 7.8% (95% CI 6.8–8.8), followed by NRTI resistance (5.0%, 95% CI 4.2–5.9) and PI resistance (2.8%, 95% CI 2.2–3.4). Total TDR (OR = 0.89, p = 0.034) and transmitted NRTI resistance (OR = 0.65, p = 0.000) decreased between 1996 and 2017 but has remained stable during the last decade. Viral susceptibility to NNRTIs (6.5%-6.9% for individual drugs) was mainly reduced, while <3% of the recommended NRTIs and PIs were affected. The longest mean survival times were calculated for the NNRTI mutations K103N (5.3 years, 95% CI 4.2–5.6) and E138A/G/K (8.0 years, 95% CI 5.8–10.2 / 7.9 years, 95% CI 5.4–10.3 / 6.7 years, 95% CI 6.7–6.7) and for the NRTI mutation M41L (6.4 years, 95% CI 6.0–6.7).The long persistence of single TDRMs indicates that onward transmission from ART-naïve individuals is the main cause for TDR in Germany. Transmitted NNRTI resistance was the most frequent TDR, showing simultaneously the highest impact on baseline ART susceptibility and on TDRMs with prolonged persistence. These results give cause for concern regarding the use of NNRTI in first-line regimens.
Collapse
Affiliation(s)
- Patrycja Machnowska
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
- * E-mail: (NB); (PM)
| | | | - Daniel Schmidt
- Division of HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany
| | | | | | | | - Osamah Hamouda
- Division of HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany
| | - Claudia Kücherer
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Norbert Bannert
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (NB); (PM)
| | | |
Collapse
|
12
|
Knops E, Sierra S, Kalaghatgi P, Heger E, Kaiser R, Kalinina OV. Epistatic Interactions in NS5A of Hepatitis C Virus Suggest Drug Resistance Mechanisms. Genes (Basel) 2018; 9:E343. [PMID: 29986475 PMCID: PMC6071292 DOI: 10.3390/genes9070343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes a major health burden and can be effectively treated by direct-acting antivirals (DAAs). The non-structural protein 5A (NS5A), which plays a role in the viral genome replication, is one of the DAAs’ targets. Resistance-associated viruses (RAVs) harbouring NS5A resistance-associated mutations (RAMs) have been described at baseline and after therapy failure. A mutation from glutamine to arginine at position 30 (Q30R) is a characteristic RAM for the HCV sub/genotype (GT) 1a, but arginine corresponds to the wild type in the GT-1b; still, GT-1b strains are susceptible to NS5A-inhibitors. In this study, we show that GT-1b strains with R30Q often display other specific NS5A substitutions, particularly in positions 24 and 34. We demonstrate that in GT-1b secondary substitutions usually happen after initial R30Q development in the phylogeny, and that the chemical properties of the corresponding amino acids serve to restore the positive charge in this region, acting as compensatory mutations. These findings may have implications for RAVs treatment.
Collapse
Affiliation(s)
- Elena Knops
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
| | - Saleta Sierra
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
- German Center for Infection Research (DZIF)-Cologne-Bonn Partner Site, 50935 Cologne, Germany.
| | - Prabhav Kalaghatgi
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF)-Saarbrücken Partner Site, 66123 Saarbrücken, Germany.
| | - Eva Heger
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
- German Center for Infection Research (DZIF)-Cologne-Bonn Partner Site, 50935 Cologne, Germany.
| | - Olga V Kalinina
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123 Saarbrücken, Germany.
| |
Collapse
|
13
|
López P, De Jesús O, Yamamura Y, Rodríguez N, Arias A, Sánchez R, Rodríguez Y, Tamayo-Agrait V, Cuevas W, Rivera-Amill V. Molecular Epidemiology of HIV-1 Virus in Puerto Rico: Novel Cases of HIV-1 Subtype C, D, and CRF-24BG. AIDS Res Hum Retroviruses 2018; 34:507-516. [PMID: 29658302 DOI: 10.1089/aid.2017.0305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV-1 subtype B virus is the most prevalent subtype in Puerto Rico (PR), accounting for about 90% of infection in the island. Recently, other subtypes and circulating recombinant forms (CRFs), including F(12_BF), A (01_BF), and CRF-39 BF-like, have been identified. The purpose of this study is to assess the distribution of drug resistance mutations and subtypes in PR. A total of 846 nucleotide sequences from the period comprising 2013 through 2017 were obtained from our "HIV Genotyping" test file. Phylogenetic and molecular epidemiology analyses were performed to evaluate the evolutionary dynamics and prevalence of drug resistance mutations. According to our results, we detected a decrease in the prevalence of protease inhibitor, nucleoside reverse transcriptase inhibitor (NRTI), and non-NRTI (NNRTI) resistance mutations over time. In addition, we also detected recombinant forms and, for the first time, identified subtypes C, D, and CRF-24BG in PR. Recent studies suggest that non-subtypes B are associated with a high risk of treatment failure and disease progression. The constant monitoring of viral evolution and drug resistance mutation dynamics is important to establish appropriate efforts for controlling viral expansion.
Collapse
Affiliation(s)
- Pablo López
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Omayra De Jesús
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Yasuhiro Yamamura
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Nayra Rodríguez
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Andrea Arias
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Raphael Sánchez
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Yadira Rodríguez
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Vivian Tamayo-Agrait
- Puerto Rico Community Network for Clinical Research on AIDS, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Wilfredo Cuevas
- HIV Clinic Outpatient Department, Ryder Memorial Hospital, Humacao, Puerto Rico
| | - Vanessa Rivera-Amill
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
14
|
Abstract
The evolution of viral pathogens is shaped by strong selective forces that are exerted during jumps to new hosts, confrontations with host immune responses and antiviral drugs, and numerous other processes. However, while undeniably strong and frequent, adaptive evolution is largely confined to small parts of information-packed viral genomes, and the majority of observed variation is effectively neutral. The predictions and implications of the neutral theory have proven immensely useful in this context, with applications spanning understanding within-host population structure, tracing the origins and spread of viral pathogens, predicting evolutionary dynamics, and modeling the emergence of drug resistance. We highlight the multiple ways in which the neutral theory has had an impact, which has been accelerated in the age of high-throughput, high-resolution genomics.
Collapse
Affiliation(s)
- Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge,
United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - Brittany Rife Magalis
- Institute for Genomics and Evolutionary Medicine, Temple University,
Philadelphia, PA
| | | |
Collapse
|
15
|
Flynn WF, Haldane A, Torbett BE, Levy RM. Inference of Epistatic Effects Leading to Entrenchment and Drug Resistance in HIV-1 Protease. Mol Biol Evol 2017; 34:1291-1306. [PMID: 28369521 PMCID: PMC5435099 DOI: 10.1093/molbev/msx095] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Understanding the complex mutation patterns that give rise to drug resistant viral strains provides a foundation for developing more effective treatment strategies for HIV/AIDS. Multiple sequence alignments of drug-experienced HIV-1 protease sequences contain networks of many pair correlations which can be used to build a (Potts) Hamiltonian model of these mutation patterns. Using this Hamiltonian model, we translate HIV-1 protease sequence covariation data into quantitative predictions for the probability of observing specific mutation patterns which are in agreement with the observed sequence statistics. We find that the statistical energies of the Potts model are correlated with the fitness of individual proteins containing therapy-associated mutations as estimated by in vitro measurements of protein stability and viral infectivity. We show that the penalty for acquiring primary resistance mutations depends on the epistatic interactions with the sequence background. Primary mutations which lead to drug resistance can become highly advantageous (or entrenched) by the complex mutation patterns which arise in response to drug therapy despite being destabilizing in the wildtype background. Anticipating epistatic effects is important for the design of future protease inhibitor therapies.
Collapse
Affiliation(s)
- William F. Flynn
- Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA
| | - Allan Haldane
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA
- Department of Chemistry, Temple University, Philadelphia, PA
| | - Bruce E. Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA
- Department of Chemistry, Temple University, Philadelphia, PA
| |
Collapse
|
16
|
Characterization of the Drug Resistance Profiles of Patients Infected with CRF07_BC Using Phenotypic Assay and Ultra-Deep Pyrosequencing. PLoS One 2017; 12:e0170420. [PMID: 28107423 PMCID: PMC5249062 DOI: 10.1371/journal.pone.0170420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
The usefulness of ultra-deep pyrosequencing (UDPS) for the diagnosis of HIV-1 drug resistance (DR) remains to be determined. Previously, we reported an explosive outbreak of HIV-1 circulating recombinant form (CRF) 07_BC among injection drug users (IDUs) in Taiwan in 2004. The goal of this study was to characterize the DR of CRF07_BC strains using different assays including UDPS. Seven CRF07_BC isolates including 4 from early epidemic (collected in 2004–2005) and 3 from late epidemic (collected in 2008) were obtained from treatment-naïve patient’s peripheral blood mononuclear cells. Viral RNA was extracted directly from patient’s plasma or from cultural supernatant and the pol sequences were determined using RT-PCR sequencing or UDPS. For comparison, phenotypic drug susceptibility assay using MAGIC-5 cells (in-house phenotypic assay) and Antivirogram were performed. In-house phenotypic assay showed that all the early epidemic and none of the late epidemic CRF07_BC isolates were resistant to most protease inhibitors (PIs) (4.4–47.3 fold). Neither genotypic assay nor Antivirogram detected any DR mutations. UDPS showed that early epidemic isolates contained 0.01–0.08% of PI DR major mutations. Furthermore, the combinations of major and accessory PI DR mutations significantly correlated with the phenotypic DR. The in-house phenotypic assay is superior to other conventional phenotypic assays in the detection of DR variants with a frequency as low as 0.01%.
Collapse
|
17
|
Su CTT, Ling WL, Lua WH, Haw YX, Gan SKE. Structural analyses of 2015-updated drug-resistant mutations in HIV-1 protease: an implication of protease inhibitor cross-resistance. BMC Bioinformatics 2016; 17:500. [PMID: 28155724 PMCID: PMC5259968 DOI: 10.1186/s12859-016-1372-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Strategies to control HIV for improving the quality of patient lives have been aided by the Highly Active Anti-Retroviral Therapy (HAART), which consists of a cocktail of inhibitors targeting key viral enzymes. Numerous new drugs have been developed over the past few decades but viral resistances to these drugs in the targeted viral enzymes are increasingly reported. Nonetheless the acquired mutations often reduce viral fitness and infectivity. Viral compensatory secondary-line mutations mitigate this loss of fitness, equipping the virus with a broad spectrum of resistance against these drugs. While structural understanding of the viral protease and its drug resistance mutations have been well established, the interconnectivity and development of structural cross-resistance remain unclear. This paper reports the structural analyses of recent clinical mutations on the drug cross-resistance effects from various protease and protease inhibitors (PIs) complexes. Methods Using the 2015 updated clinical HIV protease mutations, we constructed a structure-based correlation network and a minimum-spanning tree (MST) based on the following features: (i) topology of the PI-binding pocket, (ii) allosteric effects of the mutations, and (iii) protease structural stability. Results and conclusion Analyis of the network and the MST of dominant mutations conferring resistance to the seven PIs (Atazanavir-ATV, Darunavir-DRV, Indinavir-IDV, Lopinavir-LPV, Nelfinavir-NFV, Saquinavir-SQV, and Tipranavir-TPV) showed that cross-resistance can develop easily across NFV, SQV, LPV, IDV, and DRV, but not for ATV or TPV. Through estimation of the changes in vibrational entropies caused by each reported mutation, some secondary mutations were found to destabilize protease structure. Our findings provide an insight into the mechanism of PI cross-resistance and may also be useful in guiding the selection of PI in clinical treatment to delay the onset of cross drug resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1372-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore.
| | - Wei-Li Ling
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Wai-Heng Lua
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Yu-Xuan Haw
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Samuel Ken-En Gan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore. .,p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore.
| |
Collapse
|
18
|
Kitayimbwa JM, Mugisha JYT, Saenz RA. Estimation of the HIV-1 backward mutation rate from transmitted drug-resistant strains. Theor Popul Biol 2016; 112:33-42. [PMID: 27553875 PMCID: PMC5126109 DOI: 10.1016/j.tpb.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022]
Abstract
One of the serious threats facing the administration of antiretroviral therapy to human immunodeficiency virus (HIV-1) infected patients is the reported increasing prevalence of transmitted drug resistance. However, given that HIV-1 drug-resistant strains are often less fit than the wild-type strains, it is expected that drug-resistant strains that are present during the primary phase of the HIV-1 infection are replaced by the fitter wild-type strains. This replacement of HIV-1 resistant mutations involves the emergence of wild-type strains by a process of backward mutation. How quickly the replacement happens is dependent on the class of HIV-1 mutation group. We estimate the backward mutation rates and relative fitness of various mutational groups known to confer HIV-1 drug resistance. We do this by fitting a stochastic model to data for individuals who were originally infected by an HIV-1 strain carrying any one of the known drug resistance-conferring mutations and observed over a period of time to see whether the resistant strain is replaced. To do this, we seek a distribution, generated from simulations of the stochastic model, that best describes the observed (clinical data) replacement times of a given mutation. We found that Lamivudine/Emtricitabine-associated mutations have a distinctly higher, backward mutation rate and low relative fitness compared to the other classes (as has been reported before) while protease inhibitors-associated mutations have a slower backward mutation rate and high relative fitness. For the other mutation classes, we found more uncertainty in their estimates.
Collapse
Affiliation(s)
- J M Kitayimbwa
- Department of Mathematics, Makerere University, P.O. Box 7062, Kampala, Uganda; Department of Computing and Technology, Uganda Christian University, P.O. Box 4, Mukono, Uganda.
| | - J Y T Mugisha
- Department of Mathematics, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - R A Saenz
- Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, COL, C.P. 28045, Mexico.
| |
Collapse
|
19
|
Hillung J, Cuevas JM, Elena SF. Evaluating the within-host fitness effects of mutations fixed during virus adaptation to different ecotypes of a new host. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0292. [PMID: 26150658 DOI: 10.1098/rstb.2014.0292] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The existence of genetic variation for resistance in host populations is assumed to be essential to the spread of an emerging virus. Models predict that the rate of spread slows down with the increasing frequency and higher diversity of resistance alleles in the host population. We have been using the experimental pathosystem Arabidopsis thaliana-tobacco etch potyvirus (TEV) to explore the interplay between genetic variation in host's susceptibility and virus diversity. We have recently shown that TEV populations evolving in A. thaliana ecotypes that differ in susceptibility to infection gained within-host fitness, virulence and infectivity in a manner compatible with a gene-for-gene model of host-parasite interactions: hard-to-infect ecotypes were infected by generalist viruses, whereas easy-to-infect ecotypes were infected by every virus. We characterized the genomes of the evolved viruses and found cases of host-driven convergent mutations. To gain further insights in the mechanistic basis of this gene-for-gene model, we have generated all viral mutations individually as well as in specific combinations and tested their within-host fitness effects across ecotypes. Most of these mutations were deleterious or neutral in their local ecotype and only a very reduced number had a host-specific beneficial effect. We conclude that most of the mutations fixed during the evolution experiment were so by drift or by selective sweeps along with the selected driver mutation. In addition, we evaluated the ruggedness of the underlying adaptive fitness landscape and found that mutational effects were mostly multiplicative, with few cases of significant epistasis.
Collapse
Affiliation(s)
- Julia Hillung
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València 46022, Spain
| | - José M Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València 46022, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València 46022, Spain The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
20
|
Gupta A, Adami C. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein. PLoS Genet 2016; 12:e1005960. [PMID: 27028897 PMCID: PMC4814079 DOI: 10.1371/journal.pgen.1005960] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/06/2016] [Indexed: 11/18/2022] Open
Abstract
Epistatic interactions between residues determine a protein’s adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1) using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient) condition that detects epistasis in most cases. We analyze the “fossils” of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing environment. Evolution is often viewed as a process that occurs “mutation by mutation”, suggesting that the effect of each mutation is independent of that of others. However, in reality the effect of a mutation often depends on the context of other mutations, a dependence known as “epistasis”. Even though epistasis can constrain protein evolution, it is actually very common. Such interactions are particularly pervasive in proteins that evolve resistance to a drug via mutations that create defects, and that must be repaired with compensatory mutations. We study how epistasis between protein residues evolves over time in a new and changing environment, and compare these findings to protein evolution in a constant environment. We analyze the sequences of the human immunodeficiency virus type 1 (HIV-1) protease enzyme collected over a period of 9 years from patients treated with anti-viral drugs (as well as from patients that went untreated), and find that epistasis between residues continues to increase as more potent anti-viral drugs enter the market, while epistasis is unchanging in the proteins exposed to a constant environment. Yet, the proteins adapting to the changing landscape do not appear to be constrained by the epistatic interactions and continue to manage to evade new drugs.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Christoph Adami
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
21
|
Appadurai R, Senapati S. Dynamical Network of HIV-1 Protease Mutants Reveals the Mechanism of Drug Resistance and Unhindered Activity. Biochemistry 2016; 55:1529-40. [PMID: 26892689 DOI: 10.1021/acs.biochem.5b00946] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 protease variants resist drugs by active and non-active-site mutations. The active-site mutations, which are the primary or first set of mutations, hamper the stability of the enzyme and resist the drugs minimally. As a result, secondary mutations that not only increase protein stability for unhindered catalytic activity but also resist drugs very effectively arise. While the mechanism of drug resistance of the active-site mutations is through modulating the active-site pocket volume, the mechanism of drug resistance of the non-active-site mutations is unclear. Moreover, how these allosteric mutations, which are 8-21 Å distant, communicate to the active site for drug efflux is completely unexplored. Results from molecular dynamics simulations suggest that the primary mechanism of drug resistance of the secondary mutations involves opening of the flexible protease flaps. Results from both residue- and community-based network analyses reveal that this precise action of protease is accomplished by the presence of robust communication paths between the mutational sites and the functionally relevant regions: active site and flaps. While the communication is more direct in the wild type, it traverses across multiple intermediate residues in mutants, leading to weak signaling and unregulated motions of flaps. The global integrity of the protease network is, however, maintained through the neighboring residues, which exhibit high degrees of conservation, consistent with clinical data and mutagenesis studies.
Collapse
Affiliation(s)
- Rajeswari Appadurai
- BJM School of Biosciences and Department of Biotechnology, Indian Institution of Technology Madras , Chennai 600 036, India
| | - Sanjib Senapati
- BJM School of Biosciences and Department of Biotechnology, Indian Institution of Technology Madras , Chennai 600 036, India
| |
Collapse
|
22
|
Elucidation of the Molecular Mechanism Driving Duplication of the HIV-1 PTAP Late Domain. J Virol 2015; 90:768-79. [PMID: 26512081 DOI: 10.1128/jvi.01640-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-Ala-Pro (PTAP), located in the p6 region of Gag (p6(Gag)), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6(Gag) significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6(Gag) confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. IMPORTANCE Resistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of Gag are frequently observed in viruses derived from patients on protease inhibitor (PI) therapy. However, the reason that these duplications arise and their consequences for virus replication remain to be established. In this study, we examined the effect of PTAP duplication on PI resistance in the context of wild-type protease or protease bearing PI resistance mutations. We observe that PTAP duplication markedly enhances resistance to a panel of PIs. Biochemical analysis reveals that the PTAP duplication reverses a Gag processing defect imposed by the PI resistance mutations in the context of PI treatment. The results provide a long-sought explanation for why PTAP duplications arise in PI-treated patients.
Collapse
|
23
|
A phylotype-based analysis highlights the role of drug-naive HIV-positive individuals in the transmission of antiretroviral resistance in the UK. AIDS 2015; 29:1917-25. [PMID: 26355570 DOI: 10.1097/qad.0000000000000768] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Antiretroviral-naive HIV-positive individuals contribute to the transmission of drug-resistant viruses, compromising first-line therapy. Using phylogenetic inference, we quantified the proportion of transmitted drug-resistance originating from a treatment-naive source. METHODS Using a novel phylotype-based approach, 24 550 HIV-1 subtype B partial pol gene sequences from the UK HIV Drug Resistance database were analysed. Ongoing transmission of drug resistance amongst HIV-positive individuals was identified as phylotypes of at least three sequences with at least one shared drug resistance mutation, a maximum intra-clade genetic distance of 4.0% and a basal branch support at least 90%. The time of persistence of the transmission chains was estimated using a fast least-squares molecular clock inference approach. RESULTS Around 70% of transmitted drug-resistance had a treatment-naive source. The most commonly transmitted mutations were L90M in the protease gene and K103N, T215D and T215S in reverse transcriptase. Reversion to wild type occurred at a low frequency and drug-independent reservoirs of resistance have persisted for up to 13 years. CONCLUSION These results illustrate the impact of viral fitness on the establishment of resistance reservoirs and support the notion that earlier diagnoses and treatment of HIV infections are warranted for counteracting the spread of antiretroviral resistance. Phylotype-based phylogenetic inference is an attractive approach for the routine surveillance of transmitted drug resistance in HIV as well as in other pathogens for which genotypic resistance data are available.
Collapse
|
24
|
Laco GS. HIV-1 protease substrate-groove: Role in substrate recognition and inhibitor resistance. Biochimie 2015; 118:90-103. [PMID: 26300060 DOI: 10.1016/j.biochi.2015.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022]
Abstract
A key target in the treatment of HIV-1/AIDS has been the viral protease. Here we first studied in silico the evolution of protease resistance. Primary active site resistance mutations were found to weaken interactions between protease and both inhibitor and substrate P4-P4' residues. We next studied the effects of secondary resistance mutations, often distant from the active site, on protease binding to inhibitors and substrates. Those secondary mutations contributed to the rise of multi-drug resistance while also enhancing viral replicative capacity. Here many secondary resistance mutations were found in the HIV-1 protease substrate-grooves, one on each face of the symmetrical protease dimer. The protease active site binds substrate P4-P4' residues, while the substrate-groove allows the protease to bind residues P12-P5/P5'-P12', for a total of twenty-four residues. The substrate-groove secondary resistance mutations were found to compensate for the loss of interactions between the inhibitor resistant protease active site and substrate P4-P4' residues, due to primary resistance mutations, by increasing interactions with substrate P12-P5/P5'-P12' residues. In vitro experiments demonstrated that a multi-drug resistant protease with substrate-groove resistance mutations was slower than wild-type protease in cleaving a peptide substrate, which did not allow for substrate-groove interactions, while it had similar activity as wild-type protease when using a Gag polyprotein in which cleavage-site P12-P5/P5'-P12' residues could be bound by the protease substrate-grooves. When the Gag MA/CA cleavage site P12-P5/P5'-P12' residues were mutated the multi-drug resistant protease cleaved the mutant Gag significantly slower, indicating the importance of the protease S-grooves in binding to substrate.
Collapse
Affiliation(s)
- Gary S Laco
- Laboratory of Computational and Molecular Biochemistry, The Roskamp Institute, Sarasota, FL, USA.
| |
Collapse
|
25
|
Viral envelope is a major determinant of enhanced fitness of a multidrug-resistant HIV-1 variant. J Acquir Immune Defic Syndr 2015; 68:487-94. [PMID: 25622054 DOI: 10.1097/qai.0000000000000524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multidrug-resistant (MDR) HIV-1 viruses are thought to be less pathogenic than wild-type viruses because of the fitness costs of drug-resistance mutations. However, we identified an individual infected with MDR virus associated with rapid disease progression referred to as MDR-1. To study the contribution of virologic factors to rapid disease progression, we constructed molecular clones that demonstrated high replication fitness and cytopathicity. To dissect determinants of enhanced fitness of a cytopathic clone, pMDR-1c, we divided its genome into 2 parts: the envelope (gp160) and the remaining backbone genome, and constructed mutual chimeric viruses with a reference, wild-type virus clone, pNL4-3. The growth competition assay indicated that pMDR-1c has high fitness (1.62), although its envelope confers remarkably enhanced fitness (2.29) and its backbone confers reduced fitness (0.56) as compared with pNL4-3. We also performed a similar study with a less cytopathic pMDR-5a, a molecular clone derived from another subject MDR-5, infected with MDR HIV-1, and associated with slower clinical progression. The results indicated that pMDR-5a has reduced fitness (0.82), although its envelope confers enhanced fitness (1.64) and its backbone confers reduced fitness (0.49), a fitness pattern compatible with envelope-mediated fitness compensation. These results suggest that the viral envelope may be a major determinant of the enhanced fitness of the MDR HIV-1 variant isolated from a patient with rapid disease progression. Furthermore, we speculate that compensation conferred by envelope may be a mechanism by which MDR HIV-1 maintains overall fitness despite the presence of changes in pol, which reduce replication capacity.
Collapse
|
26
|
Manocheewa S, Lanxon-Cookson EC, Liu Y, Swain JV, McClure J, Rao U, Maust B, Deng W, Sunshine JE, Kim M, Rolland M, Mullins JI. Pairwise growth competition assay for determining the replication fitness of human immunodeficiency viruses. J Vis Exp 2015:e52610. [PMID: 25993602 PMCID: PMC4542137 DOI: 10.3791/52610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vitro fitness assays are essential tools for determining viral replication fitness for viruses such as HIV-1. Various measurements have been used to extrapolate viral replication fitness, ranging from the number of viral particles per infectious unit, growth rate in cell culture, and relative fitness derived from multiple-cycle growth competition assays. Growth competition assays provide a particularly sensitive measurement of fitness since the viruses are competing for cellular targets under identical growth conditions. There are several experimental factors to consider when conducting growth competition assays, including the multiplicity of infection (MOI), sampling times, and viral detection and fitness calculation methods. Each factor can affect the end result and hence must be considered carefully during the experimental design. The protocol presented here includes steps from constructing a new recombinant HIV-1 clone to performing growth competition assays and analyzing the experimental results. This protocol utilizes experimental parameter values previously shown to yield consistent and robust results. Alternatives are discussed, as some parameters need to be adjusted according to the cell type and viruses being studied. The protocol contains two alternative viral detection methods to provide flexibility as the availability of instruments, reagents and expertise varies between laboratories.
Collapse
Affiliation(s)
| | | | - Yi Liu
- Department of Microbiology, University of Washington
| | | | - Jan McClure
- Department of Microbiology, University of Washington
| | - Ushnal Rao
- Department of Microbiology, University of Washington
| | - Brandon Maust
- Department of Microbiology, University of Washington
| | - Wenjie Deng
- Department of Microbiology, University of Washington
| | | | - Moon Kim
- Department of Microbiology, University of Washington
| | - Morgane Rolland
- U.S Military HIV Research Program, Walter Reed Army Institute of Research; Henry M. Jackson Foundation
| | - James I Mullins
- Department of Microbiology, University of Washington; Departments of Medicine and Laboratory Medicine, University of Washington;
| |
Collapse
|
27
|
De Conto V, Braz ASK, Perahia D, Scott LPB. Recovery of the wild type atomic flexibility in the HIV-1 protease double mutants. J Mol Graph Model 2015; 59:107-16. [PMID: 25948548 DOI: 10.1016/j.jmgm.2015.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 02/04/2023]
Abstract
The emergence of drug resistant mutations due to the selective pressure exerted by antiretrovirals, including protease inhibitors (PIs), remains a major problem in the treatment of AIDS. During PIs therapy, the occurrence of primary mutations in the wild type HIV-1 protease reduces both the affinity for the inhibitors and the viral replicative capacity compared to the wild type (WT) protein, but additional mutations compensate for this reduced viral fitness. To investigate this phenomenon from the structural point of view, we combined Molecular Dynamics and Normal Mode Analysis to analyze and compare the variations of the flexibility of C-alpha atoms and the differences in hydrogen bond (h-bond) network between the WT and double mutants. In most cases, the flexibility profile of the double mutants was more often similar to that of the WT than to that of the related single base mutants. All single mutants showed a significant alteration in h-bond formation compared to WT. Most of the significant changes occur in the border between the flap and cantilever regions. We found that all the considered double mutants have their h-bond pattern significantly altered in comparison to the respective single base mutants affecting their flexibility profile that becomes more similar to that of WT. This WT flexibility restoration in the double mutants appears as an important factor for the HIV-1 fitness recovery observed in patients.
Collapse
Affiliation(s)
- Valderes De Conto
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Antônio S K Braz
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Luis P B Scott
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil; Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), Ecole Normale Supérieure de Cachan, Cachan, France.
| |
Collapse
|
28
|
Telwatte S, Hearps AC, Johnson A, Latham CF, Moore K, Agius P, Tachedjian M, Sonza S, Sluis-Cremer N, Harrigan PR, Tachedjian G. Silent mutations at codons 65 and 66 in reverse transcriptase alleviate indel formation and restore fitness in subtype B HIV-1 containing D67N and K70R drug resistance mutations. Nucleic Acids Res 2015; 43:3256-71. [PMID: 25765644 PMCID: PMC4381058 DOI: 10.1093/nar/gkv128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/06/2015] [Indexed: 01/03/2023] Open
Abstract
Resistance to combined antiretroviral therapy (cART) in HIV-1-infected individuals is typically due to nonsynonymous mutations that change the protein sequence; however, the selection of synonymous or ‘silent’ mutations in the HIV-1 genome with cART has been reported. These silent K65K and K66K mutations in the HIV-1 reverse transcriptase (RT) occur in over 35% of drug-experienced individuals and are highly associated with the thymidine analog mutations D67N and K70R, which confer decreased susceptibility to most nucleoside and nucleotide RT inhibitors. However, the basis for selection of these silent mutations under selective drug pressure is unknown. Using Illumina next-generation sequencing, we demonstrate that the D67N/K70R substitutions in HIV-1 RT increase indel frequency by 100-fold at RT codons 65–67, consequently impairing viral fitness. Introduction of either K65K or K66K into HIV-1 containing D67N/K70R reversed the error-prone DNA synthesis at codons 65–67 in RT and improved viral replication fitness, but did not impact RT inhibitor drug susceptibility. These data provide new mechanistic insights into the role of silent mutations selected during antiretroviral therapy and have broader implications for the relevance of silent mutations in the evolution and fitness of RNA viruses.
Collapse
Affiliation(s)
- Sushama Telwatte
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Anna C Hearps
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Adam Johnson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Catherine F Latham
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Katie Moore
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Paul Agius
- Centre for Population Health, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Mary Tachedjian
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicolas Sluis-Cremer
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - P Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z1Y6, Canada
| | - Gilda Tachedjian
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
29
|
Diminished transmission of drug resistant HIV-1 variants with reduced replication capacity in a human transmission model. Retrovirology 2014; 11:113. [PMID: 25499671 PMCID: PMC4272521 DOI: 10.1186/s12977-014-0113-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022] Open
Abstract
Background Different patterns of drug resistance are observed in treated and therapy naïve HIV-1 infected populations. Especially the NRTI-related M184I/V variants, which are among the most frequently encountered mutations in treated patients, are underrepresented in the antiretroviral naïve population. M184I/V mutations are known to have a profound effect on viral replication and tend to revert over time in the new host. However it is debated whether a diminished transmission efficacy of HIV variants with a reduced replication capacity can also contribute to the observed discrepancy in genotypic patterns. As dendritic cells (DCs) play a pivotal role in HIV-1 transmission, we used a model containing primary human Langerhans cells (LCs) and DCs to compare the transmission efficacy M184 variants (HIV-M184V/I/T) to HIV wild type (HIV-WT). As control, we used HIV harboring the NNRTI mutation K103N (HIV-K103N) which has a minor effect on replication and is found at a similar prevalence in treated and untreated individuals. Results In comparison to HIV-WT, the HIV-M184 variants were less efficiently transmitted to CCR5+ Jurkat T cells by both LCs and DCs. The transmission rate of HIV-K103N was slightly reduced to HIV-WT in LCs and even higher than HIV-WT in DCs. Replication experiments in CCR5+ Jurkat T cells revealed no apparent differences in replication capacity between the mutant viruses and HIV-WT. However, viral replication in LCs and DCs was in concordance with the transmission results; replication by the HIV-M184 variants was lower than replication by HIV-WT, and the level of replication of HIV-K103N was intermediate for LCs and higher than HIV-WT for DCs. Conclusions Our data demonstrate that drug resistant M184-variants display a reduced replication capacity in LCs and DCs which directly impairs their transmission efficacy. As such, diminished transmission efficacy may contribute to the lower prevalence of drug resistant variants in therapy naive individuals.
Collapse
|
30
|
Gopalakrishnan S, Montazeri H, Menz S, Beerenwinkel N, Huisinga W. Estimating HIV-1 fitness characteristics from cross-sectional genotype data. PLoS Comput Biol 2014; 10:e1003886. [PMID: 25375675 PMCID: PMC4222584 DOI: 10.1371/journal.pcbi.1003886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/26/2014] [Indexed: 12/31/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART) in the management of human immunodeficiency virus (HIV)-1 infection, virological failure due to drug resistance development remains a major challenge. Resistant mutants display reduced drug susceptibilities, but in the absence of drug, they generally have a lower fitness than the wild type, owing to a mutation-incurred cost. The interaction between these fitness costs and drug resistance dictates the appearance of mutants and influences viral suppression and therapeutic success. Assessing in vivo viral fitness is a challenging task and yet one that has significant clinical relevance. Here, we present a new computational modelling approach for estimating viral fitness that relies on common sparse cross-sectional clinical data by combining statistical approaches to learn drug-specific mutational pathways and resistance factors with viral dynamics models to represent the host-virus interaction and actions of drug mechanistically. We estimate in vivo fitness characteristics of mutant genotypes for two antiretroviral drugs, the reverse transcriptase inhibitor zidovudine (ZDV) and the protease inhibitor indinavir (IDV). Well-known features of HIV-1 fitness landscapes are recovered, both in the absence and presence of drugs. We quantify the complex interplay between fitness costs and resistance by computing selective advantages for different mutants. Our approach extends naturally to multiple drugs and we illustrate this by simulating a dual therapy with ZDV and IDV to assess therapy failure. The combined statistical and dynamical modelling approach may help in dissecting the effects of fitness costs and resistance with the ultimate aim of assisting the choice of salvage therapies after treatment failure. Mutations conferring drug resistance represent major threats to the therapeutic success of highly active antiretroviral therapy (HAART) against human immunodeficiency virus (HIV)-1 infection. Viral mutants differ in their fitness and assessing viral fitness is a challenging task. In this article, we estimate drug-specific mutational pathways by learning from clinical data using statistical techniques and incorporate these into mathematical models of in vivo viral infection dynamics. This approach enables us to estimate mutant fitness characteristics. We illustrate our method by predicting fitness characteristics of mutant genotypes for two different antiretroviral therapies with the drugs zidovudine and indinavir. We recover several established features of mutant fitnesses and quantify fitness characteristics both in the absence and presence of drugs. Our model extends naturally to multiple drugs and we illustrate this by simulating a dual therapy with ZDV and IDV to assess therapy failure. Additionally, our modelling approach relies only on cross-sectional clinical data. We believe that such an approach is a highly valuable tool in assisting the choice of salvage therapies after treatment failure.
Collapse
Affiliation(s)
- Sathej Gopalakrishnan
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Graduate Research Training Program PharMetrX: Pharmacometrics & Computational Disease Modelling, Free University of Berlin and University of Potsdam, Berlin/Potsdam, Germany
| | - Hesam Montazeri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Stephan Menz
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail: (NB); (WH)
| | - Wilhelm Huisinga
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
- * E-mail: (NB); (WH)
| |
Collapse
|
31
|
Palella FJ, Armon C, Buchacz K, Chmiel JS, Novak RM, D'Aquila RT, Brooks JT. Factors associated with mortality among persistently viraemic triple-antiretroviral-class-experienced patients receiving antiretroviral therapy in the HIV Outpatient Study (HOPS). J Antimicrob Chemother 2014; 69:2826-34. [PMID: 24942257 DOI: 10.1093/jac/dku190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Identifying factors associated with mortality for HIV-infected patients with persistent viraemia despite antiretroviral (ARV) therapy may inform diagnostic and treatment strategies. METHODS We analysed data from viraemic triple-ARV-class-experienced HIV Outpatient Study patients seen during 1 January 1999 to 31 December 2012 who, despite treatment that included ARVs from three major drug classes [nucleoside analogue reverse transcriptase inhibitors, non-nucleoside analogue reverse transcriptase inhibitors and protease inhibitors (PIs)], had plasma HIV RNA levels [viral load (VL)] >1000 copies/mL ['triple ARV class failure' (TCF)]. The baseline was defined as the date of meeting the TCF criteria during 1999-2008. We identified factors associated with mortality using Cox regression. RESULTS Of 597 patients who met the TCF criteria (median follow-up after baseline 4.9 years), 115 (19.3%) died. Baseline factors associated with mortality were age per 10 years [hazard ratio (HR) 1.61, 95% CI 1.28-2.02], risk of HIV from use of injection drugs (HR 1.81, 95% CI 1.10-2.98), CD4+ T cell count <200 cells/mm(3) (HR 3.68, 95% CI 2.41-5.62), VL ≥5.0 log10 copies/mL (HR 2.91, 95% CI 1.88-4.49) and receiving a first combination ARV therapy regimen that was PI-based (HR 2.44, 95% CI 1.47-4.06); receiving a novel ARV agent during follow-up (HR 0.45, 95% CI 0.22-0.93) was protective. Genotypic resistance testing results were available for 274 (45.9%) of the TCF patients, of whom 47 (17.2%) died. In this group, factors associated with death were increasing age (HR 1.94, 95% CI 1.36-2.78, per 10 year increment), risk of HIV from use of injection drugs (HR 2.71, 95% CI 1.37-5.39), baseline VL ≥5.0 log10 copies/mL (HR 5.35, 95% CI 2.82-10.1) and receiving PI-based first combination ARV therapy regimen (HR 3.20, 95% CI 1.25-8.17). No HIV mutations or combinations of mutations were significantly associated with survival. CONCLUSIONS Factors significantly associated with mortality risk among TCF patients who received ongoing ARV therapy included traditional clinical predictors but not the presence, type or number of HIV genetic mutations. The use of novel ARV drugs by these ARV therapy-experienced patients was associated with an improved survival.
Collapse
Affiliation(s)
| | | | - Kate Buchacz
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | - John T Brooks
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
32
|
Phenotypic Susceptibility Assays for Human Immunodeficiency Virus Type 1. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Inhibitors of the Human Immunodeficiency Virus Protease. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
A conserved hydrogen-bonding network of P2 bis-tetrahydrofuran-containing HIV-1 protease inhibitors (PIs) with a protease active-site amino acid backbone aids in their activity against PI-resistant HIV. Antimicrob Agents Chemother 2014; 58:3679-88. [PMID: 24752271 DOI: 10.1128/aac.00107-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, GRL008, a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), and darunavir (DRV), both of which contain a P2-bis-tetrahydrofuranyl urethane (bis-THF) moiety, were found to exert potent antiviral activity (50% effective concentrations [EC50s], 0.029 and 0.002 μM, respectively) against a multidrug-resistant clinical isolate of HIV-1 (HIVA02) compared to ritonavir (RTV; EC50, >1.0 μM) and tipranavir (TPV; EC50, 0.364 μM). Additionally, GRL008 showed potent antiviral activity against an HIV-1 variant selected in the presence of DRV over 20 passages (HIVDRV(R)P20), with a 2.6-fold increase in its EC50 (0.097 μM) compared to its corresponding EC50 (0.038 μM) against wild-type HIV-1NL4-3 (HIVWT). Based on X-ray crystallographic analysis, both GRL008 and DRV showed strong hydrogen bonds (H-bonds) with the backbone-amide nitrogen/carbonyl oxygen atoms of conserved active-site amino acids G27, D29, D30, and D30' of HIVA02 protease (PRA02) and wild-type PR in their corresponding crystal structures, while TPV lacked H-bonds with G27 and D30' due to an absence of polar groups. The P2' thiazolyl moiety of RTV showed two conformations in the crystal structure of the PRA02-RTV complex, one of which showed loss of contacts in the S2' binding pocket of PRA02, supporting RTV's compromised antiviral activity (EC50, >1 μM). Thus, the conserved H-bonding network of P2-bis-THF-containing GRL008 with the backbone of G27, D29, D30, and D30' most likely contributes to its persistently greater antiviral activity against HIVWT, HIVA02, and HIVDRV(R)P20.
Collapse
|
35
|
Nishizawa M, Hattori J, Shiino T, Matano T, Heneine W, Johnson JA, Sugiura W. Highly-sensitive allele-specific PCR testing identifies a greater prevalence of transmitted HIV drug resistance in Japan. PLoS One 2013; 8:e83150. [PMID: 24358257 PMCID: PMC3865156 DOI: 10.1371/journal.pone.0083150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The transmission of drug-resistant HIV in newly identified infected populations has become an underlying epidemic which can be better assessed with sensitive resistance testing. Since minority drug resistant variants cannot be detected by bulk sequencing, methods with improved sensitivity are required. Thus, the goal of this study was to evaluate if transmitted drug resistance mutations at minority levels in Japanese patients could be identified using highly sensitive allele-specific PCR (AS-PCR). MATERIALS AND METHODS Samples were taken from newly diagnosed HIV/AIDS cases at the National Nagoya Hospital from January 2008 to December 2009. All samples were bulk sequenced for HIV protease and reverse transcriptase. To detect minority populations with drug resistance, we used AS-PCR with mutation-specific primers designed for seven reverse transcriptase inhibitor resistance mutations, M41L, K65R, K70R, K103N, Y181C, M184V, and T215F/Y, and for three protease inhibitor resistance mutations, M46I/L and L90M. RESULTS We studied 149 newly identified HIV cases. Bulk sequencing detected 8 cases with NRTI resistance mutations (one with A62V, one D67E, one T215D, one T215E, two with T215L and two T215S) and 15 with PI resistance mutations (one with N88D and 14 with M46I). Results obtained by AS-PCR and bulk sequencing demonstrated good concordance but the AS-PCR enabled the detection of seven additional drug-resistant cases (one M41L, two with K65R, two with K70R, and one M184V) in the RT region. Additionally, AS-PCR assays identified 15 additional cases with M46I, five with M46L and four cases with L90M in the protease region. CONCLUSIONS Using AS-PCR substantially increased the detection of transmitted drug resistance in this population from 15.4% to 26.8%, further supporting the benefit of sensitive testing among drug-naïve populations. Since the clinical impact of minority drug-resistant populations is not fully comprehended for all mutations, follow-up studies are needed to understand their significance for treatment.
Collapse
Affiliation(s)
- Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Junko Hattori
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Walid Heneine
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jeffrey A. Johnson
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Wataru Sugiura
- AIDS Research Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of AIDS Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| |
Collapse
|
36
|
Ibe S, Fujisaki S, Fujisaki S, Morishita T, Kaneda T. Quantitative SNP-Detection Method for Estimating HIV-1 Replicative Fitness: Application to Protease Inhibitor-Resistant Viruses. Microbiol Immunol 2013; 50:765-72. [PMID: 17053312 DOI: 10.1111/j.1348-0421.2006.tb03852.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have improved the methods for the standard competitive growth assay of human immunodeficiency virus type 1 (HIV-1). The cloning step for the mixed viral population and subsequent genotype analysis for arbitrary numbers of clones were excluded from procedures. Instead, a single nucleotide polymorphism (SNP)-detection step was devised for the determination of viral populations. The quantitative SNP-detection method can rapidly estimate the proportion of wild-type and mutant populations with high reproducibility. Consequently, this method allows manipulation of many samples within a short period. Using this new competitive growth assay, replicative fitness of drug-resistant HIV-1 containing an M46I amino acid mutation in the protease was assessed in the presence or absence of indinavir. Without indinavir, replicative fitness of wild-type HIV-1 surpassed that of M46I-mutated HIV-1, and the fraction of mutated virus was reduced to about 10% at passage #9. In contrast, the fraction of M46I-mutated virus increased to >90% at passage #5 in the presence of 26.4 nM indinavir. Almost identical results were obtained for L90M-mutated HIV-1 with or without saquinavir. HIV-1 can survive under indinavir pressure by acquiring M46I mutation, as with acquisition of the L90M mutation under saquinavir pressure. However, these mutations damage viral replicative fitness under natural conditions without any drugs. Subtle differences between wild-type and mutant viruses are thus easily detected using the improved method.
Collapse
Affiliation(s)
- Shiro Ibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center (Tokai Area Central Hospital for AIDS Treatment and Research), Sannomaru 4-1-1, Naka-ku, Nagoya, Aichi 460-0001, Japan
| | | | | | | | | |
Collapse
|
37
|
Capel E, Parera M, Clotet B, Martínez MA. Significant changes in integrase-associated HIV-1 replication capacity between early and late isolates. Virology 2013; 444:274-81. [DOI: 10.1016/j.virol.2013.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 11/29/2022]
|
38
|
Kono K, Takeda E, Tsutsui H, Kuroishi A, Hulme AE, Hope TJ, Nakayama EE, Shioda T. Slower uncoating is associated with impaired replicative capability of simian-tropic HIV-1. PLoS One 2013; 8:e72531. [PMID: 23967315 PMCID: PMC3742594 DOI: 10.1371/journal.pone.0072531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) productively infects only humans and chimpanzees, but not Old World monkeys, such as rhesus and cynomolgus (CM) monkeys. To establish a monkey model of HIV-1/AIDS, several HIV-1 derivatives have been constructed. We previously generated a simian-tropic HIV-1 that replicates efficiently in CM cells. This virus encodes a capsid protein (CA) with SIVmac239-derived loops between α-helices 4 and 5 (L4/5) and between α-helices 6 and 7 (L6/7), along with the entire vif from SIVmac239 (NL-4/5S6/7SvifS). These SIVmac239-derived sequences were expected to protect the virus from HIV-1 restriction factors in monkey cells. However, the replicative capability of NL-4/5S6/7SvifS in human cells was severely impaired. By long-term cultivation of human CEM-SS cells infected with NL-4/5S6/7SvifS, we succeeded in partially rescuing the impaired replicative capability of the virus in human cells. This adapted virus encoded a G-to-E substitution at the 116th position of the CA (NL-4/5SG116E6/7SvifS). In the work described here, we explored the mechanism by which the replicative capability of NL-4/5S6/7SvifS was impaired in human cells. Quantitative analysis (by real-time PCR) of viral DNA synthesis from infected cells revealed that NL-4/5S6/7SvifS had a major defect in nuclear entry. Mutations in CA are known to affect viral core stability and result in deleterious effects in HIV-1 infection; therefore, we measured the kinetics of uncoating of these viruses. The uncoating of NL-4/5S6/7SvifS was significantly slower than that of wild type HIV-1 (WT), whereas the uncoating of NL-4/5SG116E6/7SvifS was similar to that of WT. Our results suggested that the lower replicative capability of NL-4/5S6/7SvifS in human cells was, at least in part, due to the slower uncoating of this virus.
Collapse
Affiliation(s)
- Ken Kono
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Eri Takeda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiromi Tsutsui
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ayumu Kuroishi
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Amy E. Hulme
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
39
|
Nasr A, Allam G, Al-Zahrani A, Alsulaimani A. Neonatal infections in Saudi Arabia: association with C-reactive protein, CRP -286 (C>T>A) gene polymorphism and IgG antibodies. BMC Immunol 2013; 14:38. [PMID: 23941472 PMCID: PMC3751442 DOI: 10.1186/1471-2172-14-38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/12/2013] [Indexed: 11/29/2022] Open
Abstract
Background C-reactive protein (CRP) is a nonspecific, acute-phase protein that rises in response to infectious and non-infectious inflammatory processes. Infections are the single largest cause of neonatal deaths globally. The primary aim of this study is to examine the association between CRP gene polymorphism and serum levels of CRP in correlation with early onset sepsis (EOS) infection in newborns living in Taif city, Saudi Arabia. The second aim is to examine the relationship between specific IgG/IgG subclasses and early onset sepsis (EOS) infection among these newborns. Methods Staphylococcus aureus (S. aureus) is one of the most common organisms related to sepsis infection in the newborn at King Abdel Aziz Specialist Hospital (KAASH). This study was conducted in Taif city, at KAASH’s neonatal intensive care unit between March and August 2012. Neonates were consecutively enrolled onto the study having met our inclusion criteria (as per our research protocol). The CRP concentration level was analysed using NycoCard® CRP Single Test. CRP -286 (C>T>A) A polymorphisms were analyzed using Pyrosequencing technology for CRP genotyping. IgG subclasses were analysed in the study population using ELISA. Result Logistic regression analyses showed that the AA and AC genotypes were negatively associated amongst EOS neonates compared to suspected neonates. The frequency of CC and CT were significantly associated with the EOS neonates compared to the suspected group. The levels of specific IgG1, IgG2 and IgG3 antibodies were significantly lower amongst EOS compared to the suspected group. Conclusions Taken together, the CRP-286 (C>T>A) A genotype polymorphism and specific IgG antibodies isotype levels can contribute to a reduced risk of EOS. Furthermore, CRP has a potential use in detecting EOS in neonates, which may mean earlier detection and management of EOS and subsequently better clinical outcome.
Collapse
Affiliation(s)
- Amre Nasr
- Department of Microbiology, College of Medicine, Taif University, Taif, SaudiArabia
| | | | | | | |
Collapse
|
40
|
Castro H, Pillay D, Cane P, Asboe D, Cambiano V, Phillips A, Dunn DT. Persistence of HIV-1 transmitted drug resistance mutations. J Infect Dis 2013; 208:1459-63. [PMID: 23904291 PMCID: PMC3789571 DOI: 10.1093/infdis/jit345] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are few data on the persistence of individual human immunodeficiency virus type 1 (HIV-1) transmitted drug resistance (TDR) mutations in the absence of selective drug pressure. We studied 313 patients in whom TDR mutations were detected at their first resistance test and who had a subsequent test performed while ART-naive. The rate at which mutations became undetectable was estimated using exponential regression accounting for interval censoring. Most thymidine analogue mutations (TAMs) and T215 revertants (but not T215F/Y) were found to be highly stable, with NNRTI and PI mutations being relatively less persistent. Our estimates are important for informing HIV transmission models.
Collapse
Affiliation(s)
- Hannah Castro
- Medical Research Council Clinical Trials Unit, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Temereanca A, Ene L, Mehta S, Manolescu L, Duiculescu D, Ruta S. Transmitted HIV drug resistance in treatment-naive Romanian patients. J Med Virol 2013; 85:1139-1147. [PMID: 23592112 PMCID: PMC3896237 DOI: 10.1002/jmv.23572,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 10/13/2024]
Abstract
Transmitted HIV drug resistance (TDR) remains an important concern for individuals unexposed to antiretroviral treatment. Data on the prevalence of TDR, available mainly for HIV-1 subtype B, are now also emerging for other subtypes. In Romania, a steady predominance of subtype F was reported among both long-term survivor children and newly infected adults. The pol gene of 61 drug-naïve patients infected with HIV, diagnosed between 1997 and 2011 was sequenced in order to analyze the prevalence of primary resistance mutations and to correlate these with the infecting genotype. Only 5/61 specimens were classified as infected recently using the BED-Capture Enzyme Immunoassay. Subtype F1 was prevalent (80.3%), however, other HIV-1 clades are increasingly identified, especially in the group of subjects infected recently. An HIV transmission cluster, associated to injecting drug use was identified by phylogenetic analysis. The overall prevalence of TDR was 14.75%, mainly associated with NRTI resistance (13.11%), TAMs and M184V being the most common mutations. A declining trend of TDR was recorded from 26.08% in 1997-2004 to 7.89% in 2005-2011. No primary resistance was identified among recent seroconvertors. All HIV-1 strains had minor mutations in the protease and RT genes, often detected at polymorphic positions. The declining rates of TDR might be related to the high efficacy of HAART and to the increasing number of treated patients with virological success who have a low risk of transmission. The recent increase of HIV-1 infections which involve other subtypes impose a continuous surveillance of the genetic composition of the epidemic.
Collapse
Affiliation(s)
- Aura Temereanca
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- “Stefan S. Nicolau” Institute of Virology, Bucharest, Romania
| | - Luminita Ene
- “Dr. Victor Babes” Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | | | - Loredana Manolescu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- “Stefan S. Nicolau” Institute of Virology, Bucharest, Romania
| | - Dan Duiculescu
- “Dr. Victor Babes” Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Simona Ruta
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- “Stefan S. Nicolau” Institute of Virology, Bucharest, Romania
| |
Collapse
|
42
|
Temereanca A, Ene L, Mehta S, Manolescu L, Duiculescu D, Ruta S. Transmitted HIV drug resistance in treatment-naive Romanian patients. J Med Virol 2013; 85:1139-1147. [PMID: 23592112 PMCID: PMC3896237 DOI: 10.1002/jmv.23572] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 01/27/2023]
Abstract
Transmitted HIV drug resistance (TDR) remains an important concern for individuals unexposed to antiretroviral treatment. Data on the prevalence of TDR, available mainly for HIV-1 subtype B, are now also emerging for other subtypes. In Romania, a steady predominance of subtype F was reported among both long-term survivor children and newly infected adults. The pol gene of 61 drug-naïve patients infected with HIV, diagnosed between 1997 and 2011 was sequenced in order to analyze the prevalence of primary resistance mutations and to correlate these with the infecting genotype. Only 5/61 specimens were classified as infected recently using the BED-Capture Enzyme Immunoassay. Subtype F1 was prevalent (80.3%), however, other HIV-1 clades are increasingly identified, especially in the group of subjects infected recently. An HIV transmission cluster, associated to injecting drug use was identified by phylogenetic analysis. The overall prevalence of TDR was 14.75%, mainly associated with NRTI resistance (13.11%), TAMs and M184V being the most common mutations. A declining trend of TDR was recorded from 26.08% in 1997-2004 to 7.89% in 2005-2011. No primary resistance was identified among recent seroconvertors. All HIV-1 strains had minor mutations in the protease and RT genes, often detected at polymorphic positions. The declining rates of TDR might be related to the high efficacy of HAART and to the increasing number of treated patients with virological success who have a low risk of transmission. The recent increase of HIV-1 infections which involve other subtypes impose a continuous surveillance of the genetic composition of the epidemic.
Collapse
Affiliation(s)
- Aura Temereanca
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- “Stefan S. Nicolau” Institute of Virology, Bucharest, Romania
| | - Luminita Ene
- “Dr. Victor Babes” Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | | | - Loredana Manolescu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- “Stefan S. Nicolau” Institute of Virology, Bucharest, Romania
| | - Dan Duiculescu
- “Dr. Victor Babes” Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Simona Ruta
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- “Stefan S. Nicolau” Institute of Virology, Bucharest, Romania
| |
Collapse
|
43
|
|
44
|
Chatziandreou N, Arauz AB, Freitas I, Nyein PH, Fenton G, Mehta SH, Kirk GD, Sagar M. Sensitivity changes over the course of infection increases the likelihood of resistance against fusion but not CCR5 receptor blockers. AIDS Res Hum Retroviruses 2012; 28:1584-93. [PMID: 22650962 DOI: 10.1089/aid.2011.0319] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As HIV-1 evolves over the course of infection, resistance against antiretrovirals may arise in the absence of drug pressure, especially against receptor and fusion blockers because of the extensive changes observed in the envelope glycoprotein. Here we show that viruses from the chronic phase of disease are significantly less sensitive to CCR5 receptor and fusion blockers compared to early infection variants. Differences in susceptibility to CCR5 antagonists were observed in spite of no demonstrable CXCR4 receptor utilization. No significant sensitivity differences were observed to another entry blocker, soluble CD4, or to reverse transcriptase, protease, or integrase inhibitors. Chronic as compared to early phase variants demonstrated greater replication when passaged in the presence of subinhibitory concentrations of fusion but not CCR5 receptor inhibitors. Fusion antagonist resistance, however, emerged from only one chronic phase virus culture. Because sensitivity to receptor and fusion antagonists is correlated with receptor affinity and fusion capacity, respectively, changes that occur in the envelope glycoprotein over the course of infection confer greater ability to use the CCR5 receptor and increased fusion ability. Our in vitro passage studies suggest that these evolving phenotypes increase the likelihood of resistance against fusion but not CCR5 receptor blockers.
Collapse
Affiliation(s)
| | | | - Ines Freitas
- Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | - Shruti H. Mehta
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Gregory D. Kirk
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Manish Sagar
- Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
45
|
Liu Y, Holte S, Rao U, McClure J, Konopa P, Swain JV, Lanxon-Cookson E, Kim M, Chen L, Mullins JI. A sensitive real-time PCR based assay to estimate the impact of amino acid substitutions on the competitive replication fitness of human immunodeficiency virus type 1 in cell culture. J Virol Methods 2012. [PMID: 23201292 DOI: 10.1016/j.jviromet.2012.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fixation of mutations in human immunodeficiency virus type 1 (HIV-1), such as those conferring drug resistance and immune escape, can result in a change in replication fitness. To assess these changes, a real-time TaqMan PCR detection assay and statistical methods for data analysis were developed to estimate sensitively relative viral fitness in competitive viral replication experiments in cell culture. Chimeric viruses with the gene of interest in an HIV-1NL4-3 backbone were constructed in two forms, vifA (native vif gene in NL4-3) and vifB (vif gene with six synonymous nucleotide differences from vifA). Subsequently, mutations of interest were introduced into the chimeric viruses in NL4-3VifA backbones, and the mutants were competed against the chimera with the isogenic viral sequence in the NL4-3VifB backbone in cell culture. In order to assess subtle fitness differences, culture supernatants were sampled longitudinally, and the viruses differentially quantified using vifA- and vifB-specific primers in real-time PCR assays. Based on an exponential net growth model, the growth rate of each virus was determined and the fitness cost of the mutation(s) distinguishing the two viruses represented as the net growth rate difference between the mutant and the native variants. Using this assay, the fitness impact of eight amino acid substitutions was quantitated at highly conserved sites in HIV-1 Gag and Env.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Significant reductions in Gag-protease-mediated HIV-1 replication capacity during the course of the epidemic in Japan. J Virol 2012; 87:1465-76. [PMID: 23152532 DOI: 10.1128/jvi.02122-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) evolves rapidly in response to host immune selection pressures. As a result, the functional properties of HIV-1 isolates from earlier in the epidemic may differ from those of isolates from later stages. However, few studies have investigated alterations in viral replication capacity (RC) over the epidemic. In the present study, we compare Gag-Protease-associated RC between early and late isolates in Japan (1994 to 2009). HIV-1 subtype B sequences from 156 antiretroviral-naïve Japanese with chronic asymptomatic infection were used to construct a chimeric NL4-3 strain encoding plasma-derived gag-protease. Viral replication capacity was examined by infecting a long terminal repeat-driven green fluorescent protein-reporter T cell line. We observed a reduction in the RC of chimeric NL4-3 over the epidemic, which remained significant after adjusting for the CD4(+) T cell count and plasma virus load. The same outcome was seen when limiting the analysis to a single large cluster of related sequences, indicating that our results are not due to shifts in the molecular epidemiology of the epidemic in Japan. Moreover, the change in RC was independent of genetic distance between patient-derived sequences and wild-type NL4-3, thus ruling out potential temporal bias due to genetic similarity between patient and historic viral backbone sequences. Collectively, these data indicate that Gag-Protease-associated HIV-1 replication capacity has decreased over the epidemic in Japan. Larger studies from multiple geographical regions will be required to confirm this phenomenon.
Collapse
|
47
|
Lee SK, Potempa M, Swanstrom R. The choreography of HIV-1 proteolytic processing and virion assembly. J Biol Chem 2012; 287:40867-74. [PMID: 23043111 DOI: 10.1074/jbc.r112.399444] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 has been the target of intensive research at the molecular and biochemical levels for >25 years. Collectively, this work has led to a detailed understanding of viral replication and the development of 24 approved drugs that have five different targets on various viral proteins and one cellular target (CCR5). Although most drugs target viral enzymatic activities, our detailed knowledge of so much of the viral life cycle is leading us into other types of inhibitors that can block or disrupt protein-protein interactions. Viruses have compact genomes and employ a strategy of using a small number of proteins that can form repeating structures to enclose space (i.e. condensing the viral genome inside of a protein shell), thus minimizing the need for a large protein coding capacity. This creates a relatively small number of critical protein-protein interactions that are essential for viral replication. For HIV-1, the Gag protein has the role of a polyprotein precursor that contains all of the structural proteins of the virion: matrix, capsid, spacer peptide 1, nucleocapsid, spacer peptide 2, and p6 (which contains protein-binding domains that interact with host proteins during budding). Similarly, the Gag-Pro-Pol precursor encodes most of the Gag protein but now includes the viral enzymes: protease, reverse transcriptase (with its associated RNase H activity), and integrase. Gag and Gag-Pro-Pol are the substrates of the viral protease, which is responsible for cleaving these precursors into their mature and fully active forms (see Fig. 1A).
Collapse
Affiliation(s)
- Sook-Kyung Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
48
|
Novel two-round phenotypic assay for protease inhibitor susceptibility testing of recombinant and primary HIV-1 isolates. J Clin Microbiol 2012; 50:3909-16. [PMID: 23015664 DOI: 10.1128/jcm.01636-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antiretroviral drug susceptibility tests facilitate therapeutic management of HIV-1-infected patients. Although genotyping systems are affordable, inaccuracy in the interpretation of complex mutational patterns may limit their usefulness. Currently available HIV-1 phenotypic assays are based on the generation of recombinant viruses in which the specific viral gene of interest, derived from a patient plasma sample, is cloned into a susceptible genetic viral backbone prior to in vitro drug susceptibility evaluation. Nevertheless, in the case of protease inhibitors, not only are mutations in the HIV-1 protease-coding region involved in resistance, but the role of Gag in drug susceptibility has also recently been reported. In order to avoid the inherent limitations resulting from partial cloning of the viral genome, we designed and evaluated a new experimental strategy to test the in vitro susceptibility of primary viral isolates to protease inhibitors. Our protocol, which is based on a two-round infection protocol using the reporter TZM-bl cell line, showed a good correlation with genotypic resistance prediction and with the Antivirogram phenotypic assay, in both protease-recombinant viruses and primary viral isolates. The protocol is suitable for any HIV-1 subtype and enables rapid in-house measurement of protease inhibitor susceptibility, thus making it possible to evaluate the concomitant effects of both patient-derived gag and protease-coding regions.
Collapse
|
49
|
Capel E, Martrus G, Parera M, Clotet B, Martínez MA. Evolution of the human immunodeficiency virus type 1 protease: effects on viral replication capacity and protease robustness. J Gen Virol 2012; 93:2625-2634. [PMID: 22933665 DOI: 10.1099/vir.0.045492-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rapid spread of human immunodeficiency virus type 1 (HIV-1) in humans has been accompanied by continuous extensive genetic diversification of the virus. The aim of this study was to investigate the impact of HIV-1 diversification on HIV-1 replication capacity (RC) and mutational robustness. Thirty-three HIV-1 protease sequences were amplified from three groups of viruses: two naïve sample groups isolated 15 years apart plus a third group of protease inhibitor-(PI) resistant samples. The amplified proteases were recombined with an HXB2 infectious clone and RC was determined in MT-4 cells. RC was also measured in these three groups after random mutagenesis in vitro using error-prone PCR. No significant RC differences were observed between recombinant viruses from either early or recent naïve isolates (P = 0.5729), even though the proteases from the recent isolates had significantly lower sequence conservation scores compared with a subtype B ancestral sequence (P<0.0001). Randomly mutated recombinant viruses from the three groups exhibited significantly lower RC values than the corresponding wild-type viruses (P<0.0001). There was no significant difference regarding viral infectivity reduction between viruses carrying randomly mutated naïve proteases from early or recent sample isolates (P = 0.8035). Interestingly, a significantly greater loss of RC was observed in the PI-resistant protease group (P = 0.0400). These results demonstrate that protease sequence diversification has not affected HIV-1 RC or protease robustness and indicate that proteases carrying PI resistance substitutions are less robust than naïve proteases.
Collapse
Affiliation(s)
- Elena Capel
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| | - Glòria Martrus
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| | - Mariona Parera
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| | - Bonaventura Clotet
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| | - Miguel Angel Martínez
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
50
|
Protease-Mediated Maturation of HIV: Inhibitors of Protease and the Maturation Process. Mol Biol Int 2012; 2012:604261. [PMID: 22888428 PMCID: PMC3410323 DOI: 10.1155/2012/604261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/30/2012] [Indexed: 12/04/2022] Open
Abstract
Protease-mediated maturation of HIV-1 virus particles is essential for virus infectivity. Maturation occurs concomitant with immature virus particle release and is mediated by the viral protease (PR), which sequentially cleaves the Gag and Gag-Pol polyproteins into mature protein domains. Maturation triggers a second assembly event that generates a condensed conical capsid core. The capsid core organizes the viral RNA genome and viral proteins to facilitate viral replication in the next round of infection. The fundamental role of proteolytic maturation in the generation of mature infectious particles has made it an attractive target for therapeutic intervention. Development of small molecules that target the PR active site has been highly successful and nine protease inhibitors (PIs) have been approved for clinical use. This paper provides an overview of their development and clinical use together with a discussion of problems associated with drug resistance. The second-half of the paper discusses a novel class of antiretroviral drug termed maturation inhibitors, which target cleavage sites in Gag not PR itself. The paper focuses on bevirimat (BVM) the first-in-class maturation inhibitor: its mechanism of action and the implications of naturally occurring polymorphisms that confer reduced susceptibility to BVM in phase II clinical trials.
Collapse
|