1
|
Paronetto O, Allioux C, Diméglio C, Lobjois L, Jeanne N, Ranger N, Boineau J, Pucelle M, Demmou S, Abravanel F, Chapuy-Regaud S, Izopet J, Lhomme S. Characterization of virus‒host recombinant variants of the hepatitis E virus. J Virol 2024; 98:e0029524. [PMID: 38712945 PMCID: PMC11237545 DOI: 10.1128/jvi.00295-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Hepatitis E virus is a single-strand, positive-sense RNA virus that can lead to chronic infection in immunocompromised patients. Virus-host recombinant variants (VHRVs) have been described in such patients. These variants integrate part of human genes into the polyproline-rich region that could introduce new post-translational modifications (PTMs), such as ubiquitination. The aim of this study was to characterize the replication capacity of different VHRVs, namely, RNF19A, ZNF787, KIF1B, EEF1A1, RNA18, RPS17, and RPL6. We used a plasmid encoding the Kernow strain, in which the fragment encoding the S17 insertion was deleted (Kernow p6 delS17) or replaced by fragments encoding the different insertions. The HEV RNA concentrations in the supernatants and the HepG2/C3A cell lysates were determined via RT-qPCR. The capsid protein ORF2 was immunostained. The effect of ribavirin was also assessed. The HEV RNA concentrations in the supernatants and the cell lysates were higher for the variants harboring the RNF19A, ZNF787, KIF1B, RPS17, and EEF1A1 insertions than for the Kernow p6 del S17, while it was not with RNA18 or RPL6 fragments. The number of ORF2 foci was higher for RNF19A, ZNF787, KIF1B, and RPS17 than for Kernow p6 del S17. VHRVs with replicative advantages were less sensitive to the antiviral effect of ribavirin. No difference in PTMs was found between VHRVs with a replicative advantage and those without. In conclusion, our study showed that insertions did not systematically confer a replicative advantage in vitro. Further studies are needed to determine the mechanisms underlying the differences in replicative capacity. IMPORTANCE Hepatitis E virus (HEV) is a major cause of viral hepatitis. HEV can lead to chronic infection in immunocompromised patients. Ribavirin treatment is currently used to treat such chronic infections. Recently, seven virus-host recombinant viruses were characterized in immunocompromised patients. These viruses have incorporated a portion of a human gene fragment into their genome. We studied the consequences of these insertions on the replication capacity. We found that these inserted fragments could enhance virus replication for five of the seven recombinant variants. We also showed that the recombinant variants with replicative advantages were less sensitive to ribavirin in vitro. Finally, we found that the mechanisms leading to such a replicative advantage do not seem to rely on the post-translational modifications introduced by the human gene fragment that could have modified the function of the viral protein. The mechanisms involved in improving the replication of such recombinant viruses remain to be explored.
Collapse
Affiliation(s)
- Olivia Paronetto
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Claire Allioux
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Chloé Diméglio
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Lhorane Lobjois
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Nicolas Jeanne
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Noémie Ranger
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Jérôme Boineau
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Mélanie Pucelle
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Sofia Demmou
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Florence Abravanel
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Sabine Chapuy-Regaud
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Jacques Izopet
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Sébastien Lhomme
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR 5051 (CNRS), UMR 1291 (INSERM), Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| |
Collapse
|
2
|
Meyers G, Tews BA. Self-Replicating RNA Derived from the Genomes of Positive-Strand RNA Viruses. Methods Mol Biol 2024; 2786:25-49. [PMID: 38814389 DOI: 10.1007/978-1-0716-3770-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Self-replicating RNA derived from the genomes of positive-strand RNA viruses represents a powerful tool for both molecular studies on virus biology and approaches to novel safe and effective vaccines. The following chapter summarizes the principles how such RNAs can be established and used for design of vaccines. Due to the large variety of strategies needed to circumvent specific pitfalls in the design of such constructs the technical details of the experiments are not described here but can be found in the cited literature.
Collapse
Affiliation(s)
- Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Birke Andrea Tews
- Institut für Infektionsmedizin, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
3
|
King J, Pohlmann A, Dziadek K, Beer M, Wernike K. Cattle connection: molecular epidemiology of BVDV outbreaks via rapid nanopore whole-genome sequencing of clinical samples. BMC Vet Res 2021; 17:242. [PMID: 34247601 PMCID: PMC8272987 DOI: 10.1186/s12917-021-02945-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a global ruminant pathogen, bovine viral diarrhea virus (BVDV) is responsible for the disease Bovine Viral Diarrhea with a variety of clinical presentations and severe economic losses worldwide. Classified within the Pestivirus genus, the species Pestivirus A and B (syn. BVDV-1, BVDV-2) are genetically differentiated into 21 BVDV-1 and four BVDV-2 subtypes. Commonly, the 5' untranslated region and the Npro protein are utilized for subtyping. However, the genetic variability of BVDV leads to limitations in former studies analyzing genome fragments in comparison to a full-genome evaluation. RESULTS To enable rapid and accessible whole-genome sequencing of both BVDV-1 and BVDV-2 strains, nanopore sequencing of twelve representative BVDV samples was performed on amplicons derived through a tiling PCR procedure. Covering a multitude of subtypes (1b, 1d, 1f, 2a, 2c), sample matrices (plasma, EDTA blood and ear notch), viral loads (Cq-values 19-32) and species (cattle and sheep), ten of the twelve samples produced whole genomes, with two low titre samples presenting 96 % genome coverage. CONCLUSIONS Further phylogenetic analysis of the novel sequences emphasizes the necessity of whole-genome sequencing to identify novel strains and supplement lacking sequence information in public repositories. The proposed amplicon-based sequencing protocol allows rapid, inexpensive and accessible obtainment of complete BVDV genomes.
Collapse
Affiliation(s)
- Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kamila Dziadek
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
4
|
Reuscher CM, Schmidt L, Netsch A, Lamp B. Characterization of a Cytopathogenic Reporter CSFV. Viruses 2021; 13:1209. [PMID: 34201706 PMCID: PMC8310069 DOI: 10.3390/v13071209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Cytopathogenic (cp) pestiviruses frequently emerge in cattle that are persistently infected with the bovine viral diarrhea virus (BVDV) as a consequence of RNA recombination and mutation. They induce apoptosis in infected tissue cultures, are highly attenuated in the immunocompetent host, and unable to establish persistent infections after diaplacental infections. Cp strains of BVDV have been used as naturally attenuated live vaccines and for species-specific plaque reduction tests for the indirect serological detection of BVDV. Here, we present a genetically engineered cp strain of the classical swine fever virus (CSFV). Cytopathogenicity of the strain was induced by the insertion of ubiquitin embedded in a large NS3 to NS4B duplication. The CSFV RNA genome was stabilized by the inactivation of the NS2 autoprotease, hindering the deletion of the insertion and the reversion to a wild-type genome. Additional insertion of a mCherry gene at the 5'-end of the E2 gene allowed fluorescence-verified plaque reduction assays for CSFV, thus providing a novel, cost-efficient diagnostic tool. This genetically stabilized cp CSFV strain could be further used as a basis for potential new modified live vaccines. Taken together, we applied reverse genetics to rationally fixate a typical cp NS3 duplication in a CSFV genome.
Collapse
Affiliation(s)
- Carina Maria Reuscher
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Lisa Schmidt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Anette Netsch
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
5
|
Yeşilbağ K, Alpay G, Becher P. Variability and Global Distribution of Subgenotypes of Bovine Viral Diarrhea Virus. Viruses 2017; 9:v9060128. [PMID: 28587150 PMCID: PMC5490805 DOI: 10.3390/v9060128] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/03/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a globally-distributed agent responsible for numerous clinical syndromes that lead to major economic losses. Two species, BVDV-1 and BVDV-2, discriminated on the basis of genetic and antigenic differences, are classified in the genus Pestivirus within the Flaviviridae family and distributed on all of the continents. BVDV-1 can be segregated into at least twenty-one subgenotypes (1a–1u), while four subgenotypes have been described for BVDV-2 (2a–2d). With respect to published sequences, the number of virus isolates described for BVDV-1 (88.2%) is considerably higher than for BVDV-2 (11.8%). The most frequently-reported BVDV-1 subgenotype are 1b, followed by 1a and 1c. The highest number of various BVDV subgenotypes has been documented in European countries, indicating greater genetic diversity of the virus on this continent. Current segregation of BVDV field isolates and the designation of subgenotypes are not harmonized. While the species BVDV-1 and BVDV-2 can be clearly differentiated independently from the portion of the genome being compared, analysis of different genomic regions can result in inconsistent assignment of some BVDV isolates to defined subgenotypes. To avoid non-conformities the authors recommend the development of a harmonized system for subdivision of BVDV isolates into defined subgenotypes.
Collapse
Affiliation(s)
- Kadir Yeşilbağ
- Department of Virology, Faculty of Veterinary Medicine, Uludag University, TR-16059 Bursa, Turkey.
| | - Gizem Alpay
- Department of Virology, Faculty of Veterinary Medicine, Uludag University, TR-16059 Bursa, Turkey.
| | - Paul Becher
- Institute for Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany.
| |
Collapse
|
6
|
Abstract
Self-replicating RNA derived from the genomes of positive strand RNA viruses represents a powerful tool for both molecular studies on virus biology and approaches to novel safe and effective vaccines. The following chapter summarizes the principles how such RNAs can be established and used for design of vaccines. Due to the large variety of strategies needed to circumvent specific pitfalls in the design of such constructs the technical details of the experiments are not described here but can be found in the cited literature.
Collapse
|
7
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
8
|
Darweesh MF, Rajput MKS, Braun LJ, Ridpath JF, Neill JD, Chase CCL. Characterization of the cytopathic BVDV strains isolated from 13 mucosal disease cases arising in a cattle herd. Virus Res 2014; 195:141-7. [PMID: 25300803 DOI: 10.1016/j.virusres.2014.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 11/25/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a positive single stranded RNA virus belonging to the Pestivirus genus of the Flaviviridae family. BVDV has a wide host range that includes most ruminants. Noncytopathic (ncp) BVDV may establish lifelong persistent infections in calves following infection of the fetus between 40 and 120 days of gestation. Cytopathic (cp) BVDV strains arise from ncp strains via mutations. The most common cp mutations are insertions of RNA derived from either host or a duplication of viral sequences into the region of the genome coding for the NS2/3 protein. Superinfection of a persistently infected animal with a cp virus can give rise to mucosal disease, a condition that is invariably fatal. A herd of 136 bred 3-year old cows was studied. These cows gave birth to 41 PI animals of which 23 succumbed to mucosal disease. In this study, we characterized the ncp and cp viruses isolated from 13 of these animals. All viruses belonged to the BVDV type 2a genotype and were highly similar. All the cp viruses contained an insertion in the NS2/3 coding region consisting of the sequences derived from the transcript encoding a DnaJ protein named Jiv90. Comparison of the inserted DnaJ regions along with the flanking viral sequences in the insertion 3' end of the 13 cp isolates revealed sequence identities ranging from 96% to 99% with common borders. This suggested that one animal likely developed a cp virus that then progressively spread to the other 12 animals. Interestingly, when the inserted mammalian gene replicated within viral genome, it showed conservation of the same conserved motifs between the different species, which may indicate a role for these motifs in the insertion function within the virus genome. This is the first characterization of multiple cp bovine viral diarrhea virus isolates that spread in a herd under natural conditions.
Collapse
Affiliation(s)
- Mahmoud F Darweesh
- Department of Veterinary and Biomedical Sciences, SDSU, Brookings, SD 570076, USA.
| | - Mrigendra K S Rajput
- Department of Veterinary and Biomedical Sciences, SDSU, Brookings, SD 570076, USA.
| | - Lyle J Braun
- Department of Veterinary and Biomedical Sciences, SDSU, Brookings, SD 570076, USA.
| | - Julia F Ridpath
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | - John D Neill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | | |
Collapse
|
9
|
Giangaspero M, Harasawa R. Characterization of genotypes among bovine viral diarrhea virus type 1 strains according to palindromic nucleotide substitutions in the genomic 5′-untranslated region. J Virol Methods 2014; 195:34-53. [DOI: 10.1016/j.jviromet.2013.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 08/30/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
|
10
|
Bovine viral diarrhea virus fetal persistent infection after immunization with a contaminated modified-live virus vaccine. Theriogenology 2013; 79:1184-95. [DOI: 10.1016/j.theriogenology.2013.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/16/2013] [Accepted: 02/17/2013] [Indexed: 11/20/2022]
|
11
|
Decaro N, Mari V, Pinto P, Lucente MS, Sciarretta R, Cirone F, Colaianni ML, Elia G, Thiel HJ, Buonavoglia C. Hobi-like pestivirus: both biotypes isolated from a diseased animal. J Gen Virol 2012; 93:1976-1983. [PMID: 22764319 DOI: 10.1099/vir.0.044552-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Hobi-like pestivirus pair consisting of cytopathogenic (cp) and non-cytopathogenic (noncp) strains, Italy 83/10cp and Italy 83/10ncp, was isolated from the lung of a heifer that died of respiratory disease. The noncp and cp viruses were isolated on Madin-Darby bovine kidney cells and separated by plaque purification and end point dilution. Analysis of the nearly full-length genomes revealed that the two viruses were very closely related to each other and to the noncp Hobi-like strain Italy 1/10-1, which had been isolated a few weeks earlier from the same herd. One major difference between noncp and cp viruses concerned the presence of a cellular Jiv sequence in the 3' domain of the NS2-encoding region of the cp strain. This is the first study, to our knowledge, reporting the isolation and molecular characterization of a Hobi-like virus pair.
Collapse
Affiliation(s)
- Nicola Decaro
- Department of Veterinary Public Health, University of Bari, Valenzano (Bari), Italy
| | - Viviana Mari
- Department of Veterinary Public Health, University of Bari, Valenzano (Bari), Italy
| | - Pierfrancesco Pinto
- Department of Veterinary Public Health, University of Bari, Valenzano (Bari), Italy
| | - Maria Stella Lucente
- Department of Veterinary Public Health, University of Bari, Valenzano (Bari), Italy
| | - Rossana Sciarretta
- Department of Veterinary Public Health, University of Bari, Valenzano (Bari), Italy
| | - Francesco Cirone
- Department of Veterinary Public Health, University of Bari, Valenzano (Bari), Italy
| | | | - Gabriella Elia
- Department of Veterinary Public Health, University of Bari, Valenzano (Bari), Italy
| | - Heinz-Jürgen Thiel
- Institut für Virologie, Justus Liebig Universität Giessen, Giessen, Germany
| | - Canio Buonavoglia
- Department of Veterinary Public Health, University of Bari, Valenzano (Bari), Italy
| |
Collapse
|
12
|
RNA structural elements determine frequency and sites of nonhomologous recombination in an animal plus-strand RNA virus. J Virol 2012; 86:7393-402. [PMID: 22532677 DOI: 10.1128/jvi.00864-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For highly variable RNA viruses, RNA recombination significantly contributes to genetic variations which may lead to changes of virulence, adaptation to new hosts, escape from the host immune response, and emergence of new infectious agents. Using a system based on transfection of cells with synthetic nonreplicable subgenomic transcripts derived from bovine viral diarrhea virus (family Flaviviridae), the existence of a replication-independent mechanism of RNA recombination, in addition to the commonly accepted replicative copy-choice recombination, has been previously proven (A. Gallei et al., J. Virol. 78:6271-6281, 2004). To identify RNA signals involved in efficient joining of RNA molecules, RNA recombination in living cells was targeted to the 3' nontranslated region. Molecular characterization of 40 independently emerged recombinant viruses revealed that the majority of recombination sites are located in single-stranded regions of the RNA molecules. Furthermore, the results of this study showed that the frequency of RNA recombination directly correlated with the RNA amounts of both recombination partners. The frequency can be strongly increased by modification of the 5' triphosphates and 3' hydroxyls of the recombining RNA molecules to 5' hydroxyl and 3' monophosphoryl ends, respectively. Analysis of recombinants that emerged after transfection with such modified RNA molecules revealed a complete integration and efficient end-to-end joining of the recombination partner(s) in at least 80% of recombinants, while unmodified RNA molecules recombined exclusively at internal positions. These results are in line with the hypothesis that endoribonucleolytic cleavage and a subsequent ligation reaction can cause RNA recombination.
Collapse
|
13
|
Decaro N, Sciarretta R, Lucente MS, Mari V, Amorisco F, Colaianni ML, Cordioli P, Parisi A, Lelli R, Buonavoglia C. A nested PCR approach for unambiguous typing of pestiviruses infecting cattle. Mol Cell Probes 2011; 26:42-6. [PMID: 22119481 PMCID: PMC7127541 DOI: 10.1016/j.mcp.2011.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/04/2011] [Accepted: 11/11/2011] [Indexed: 11/04/2022]
Abstract
An atypical pestivirus (‘Hobi’-like pestivirus, putative bovine viral diarrhoea 3, BVDV-3) was identified firstly in contaminated foetal calf serum batches and isolated subsequently from an outbreak of respiratory disease in a cattle herd in Italy. The isolation of the novel pestivirus from animals affected clinically posed concerns about the validity of BVDV eradication programs, considering that ‘Hobi’-like pestivirus (BVDV-3) is undetected or mistyped by the molecular diagnostic tools currently employed. In this paper, the development of a nested PCR (nPCR) assay for unambiguous typing of all bovine pestiviruses is reported. The assay consisted of a first-round amplification using an oligonucleotide pair which binds to conserved sequences located in the 5′ untranslated region and capsid gene, followed by a heminested PCR using virus-specific forward primers. The assay performances were evaluated analytically, showing good sensitivity and specificity. By analysis of 100 BVDV-positive samples typed using a nPCR assay discriminating ruminant pestiviruses, five samples recognised previously as BVDV-2 were not typed when submitted to the new assay (n = 2) or reacted as ‘Hobi’-like pestivirus BVDV-3 (n = 3). Sequence analysis of the first-round amplification products showed that the untyped strains were border disease viruses, whereas the other three strains were true ‘Hobi’-like viruses. The development of a molecular assay able to identify simultaneously all bovine pestiviruses known currently will help warrant biosafety of live vaccines and other biological products and assess the molecular epidemiology of ‘Hobi’-like pestivirus, thus leading to the improvement of the eradication programs through unambiguous typing of pestiviruses infecting cattle.
Collapse
Affiliation(s)
- Nicola Decaro
- Department of Veterinary Public Health, Faculty of Veterinary Medicine of Bari, Strada per Casamassima Km 3, 70010 Valenzano, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Investigation of a dual fetal infection model with bovine viral diarrhoea viruses (BVDV)-1 and BVDV-2. Arch Virol 2011; 156:1831-3. [DOI: 10.1007/s00705-011-1023-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
|
15
|
Abstract
Proteolytic processing of polyproteins is considered a crucial step in the life cycle of most positive-strand RNA viruses. An enhancement of NS2-3 processing has been described as a major difference between the noncytopathogenic (non-CP) and the cytopathogenic (CP) biotypes of pestiviruses. The effects of accelerated versus delayed NS2-3 processing on the maturation of the other nonstructural proteins (NSP) have never been compared. In this study, we analyzed the proteolytic processing of NSP in Classical swine fever virus (CSFV). Key to the investigation was a panel of newly developed monoclonal antibodies (MAbs) that facilitated monitoring of all nonstructural proteins involved in virus replication (NS2, NS3, NS4A, NS5A, and NS5B). Applying these MAbs in Western blotting and radioimmunoprecipitation allowed an unambiguous identification of the mature proteins and precursors in non-CP CSFV-infected cells. Furthermore, the kinetics of processing were determined by pulse-chase analyses for non-CP CSFV, CP CSFV, and a CP CSFV replicon. A slow but constant processing of NS4A/B-5A/B occurred in non-CP CSFV-infected cells, leading to balanced low-level concentrations of mature NSP. In contrast, the turnover of the polyprotein precursors was three times faster in CP CSFV-infected cells and in cells transfected with a CP CSFV replicon, causing a substantial increase of mature NSP concentrations. We conclude that a delayed processing not only of NS3 but further of all NSP represents a hallmark of regulation in non-CP pestiviruses.
Collapse
|
16
|
Peterhans E, Bachofen C, Stalder H, Schweizer M. Cytopathic bovine viral diarrhea viruses (BVDV): emerging pestiviruses doomed to extinction. Vet Res 2010; 41:44. [PMID: 20197026 PMCID: PMC2850149 DOI: 10.1051/vetres/2010016] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/02/2010] [Indexed: 12/30/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV), a Flaviviridae pestivirus, is arguably one of the most widespread cattle pathogens worldwide. Each of its two genotypes has two biotypes, non-cytopathic (ncp) and cytopathic (cp). Only the ncp biotype of BVDV may establish persistent infection in the fetus when infecting a dam early in gestation, a time point which predates maturity of the adaptive immune system. Such fetuses may develop and be born healthy but remain infected for life. Due to this early initiation of fetal infection and to the expression of interferon antagonistic proteins, persistently infected (PI) animals remain immunotolerant to the infecting viral strain. Although only accounting for some 1% of all animals in regions where BVDV is endemic, PI animals ensure the viral persistence in the host population. These animals may, however, develop the fatal mucosal disease, which is characterized by widespread lesions in the gastrointestinal tract. Cp BVD virus, in addition to the persisting ncp biotype, can be isolated from such animals. The cp viruses are characterized by unrestrained genome replication, and their emergence from the persisting ncp ones is due to mutations that are unique in each virus analyzed. They include recombinations with host cell mRNA, gene translocations and duplications, and point mutations. Cytopathic BVD viruses fail to establish chains of infection and are unable to cause persistent infection. Hence, these viruses illustrate a case of "viral emergence to extinction" - irrelevant for BVDV evolution, but fatal for the PI host.
Collapse
Affiliation(s)
- Ernst Peterhans
-
Institute of Veterinary Virology, University of Bern Länggass-Strasse 122 PO Box 8466 CH-3001 Bern Switzerland
| | | | | | - Matthias Schweizer
-
Institute of Veterinary Virology, University of Bern Länggass-Strasse 122 PO Box 8466 CH-3001 Bern Switzerland
| |
Collapse
|
17
|
A trans-complementing recombination trap demonstrates a low propensity of flaviviruses for intermolecular recombination. J Virol 2010; 84:599-611. [PMID: 19864381 DOI: 10.1128/jvi.01063-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Intermolecular recombination between the genomes of closely related RNA viruses can result in the emergence of novel strains with altered pathogenic potential and antigenicity. Although recombination between flavivirus genomes has never been demonstrated experimentally, the potential risk of generating undesirable recombinants has nevertheless been a matter of concern and controversy with respect to the development of live flavivirus vaccines. As an experimental system for investigating the ability of flavivirus genomes to recombine, we developed a "recombination trap," which was designed to allow the products of rare recombination events to be selected and amplified. To do this, we established reciprocal packaging systems consisting of pairs of self-replicating subgenomic RNAs (replicons) derived from tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) that could complement each other in trans and thus be propagated together in cell culture over multiple passages. Any infectious viruses with intact, full-length genomes that were generated by recombination of the two replicons would be selected and enriched by end point dilution passage, as was demonstrated in a spiking experiment in which a small amount of wild-type virus was mixed with the packaged replicons. Using the recombination trap and the JEV system, we detected two aberrant recombination events, both of which yielded unnatural genomes containing duplications. Infectious clones of both of these genomes yielded viruses with impaired growth properties. Despite the fact that the replicon pairs shared approximately 600 nucleotides of identical sequence where a precise homologous crossover event would have yielded a wild-type genome, this was not observed in any of these systems, and the TBEV and WNV systems did not yield any viable recombinant genomes at all. Our results show that intergenomic recombination can occur in the structural region of flaviviruses but that its frequency appears to be very low and that therefore it probably does not represent a major risk in the use of live, attenuated flavivirus vaccines.
Collapse
|
18
|
Pankraz A, Preis S, Thiel HJ, Gallei A, Becher P. A single point mutation in nonstructural protein NS2 of bovine viral diarrhea virus results in temperature-sensitive attenuation of viral cytopathogenicity. J Virol 2009; 83:12415-23. [PMID: 19776121 PMCID: PMC2786742 DOI: 10.1128/jvi.01487-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/15/2009] [Indexed: 11/20/2022] Open
Abstract
For Bovine viral diarrhea virus (BVDV), the type species of the genus Pestivirus in the family Flaviviridae, cytopathogenic (cp) and noncytopathogenic (ncp) viruses are distinguished according to their effect on cultured cells. It has been established that cytopathogenicity of BVDV correlates with efficient production of viral nonstructural protein NS3 and with enhanced viral RNA synthesis. Here, we describe generation and characterization of a temperature-sensitive (ts) mutant of cp BVDV strain CP7, termed TS2.7. Infection of bovine cells with TS2.7 and the parent CP7 at 33 degrees C resulted in efficient viral replication and a cytopathic effect. In contrast, the ability of TS2.7 to cause cytopathogenicity at 39.5 degrees C was drastically reduced despite production of high titers of infectious virus. Further experiments, including nucleotide sequencing of the TS2.7 genome and reverse genetics, showed that a Y1338H substitution at residue 193 of NS2 resulted in the temperature-dependent attenuation of cytopathogenicity despite high levels of infectious virus production. Interestingly, TS2.7 and the reconstructed mutant CP7-Y1338H produced NS3 in addition to NS2-3 throughout infection. Compared to the parent CP7, NS2-3 processing was slightly decreased at both temperatures. Quantification of viral RNAs that were accumulated at 10 h postinfection demonstrated that attenuation of the cytopathogenicity of the ts mutants at 39.5 degrees C correlated with reduced amounts of viral RNA, while the efficiency of viral RNA synthesis at 33 degrees C was not affected. Taken together, the results of this study show that a mutation in BVDV NS2 attenuates viral RNA replication and suppresses viral cytopathogenicity at high temperature without altering NS3 expression and infectious virus production in a temperature-dependent manner.
Collapse
Affiliation(s)
- Alexander Pankraz
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Simone Preis
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Heinz-Jürgen Thiel
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Andreas Gallei
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Paul Becher
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| |
Collapse
|
19
|
Zemke J, König P, Mischkale K, Reimann I, Beer M. Novel BVDV-2 mutants as new candidates for modified-live vaccines. Vet Microbiol 2009; 142:69-80. [PMID: 19875253 DOI: 10.1016/j.vetmic.2009.09.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Protection against Bovine viral diarrhea virus (BVDV) type 2 infection of commercially available vaccines is often limited due to marked genetic and antigenic differences between BVDV types 1 (BVDV-1) and 2 (BVDV-2). Therefore, the immunogenicity of selected BVDV-1 and BVDV-2 mutants derived from infectious full-length cDNA clones and their use as modified-live vaccine candidates against challenge infection with a virulent heterologous BVDV-2 field isolate were investigated. Deletion mutants of BVDV-1 and BVDV-2 lacking a part of the N(pro) gene (BVDV-1DeltaN(pro)/BVDV-2DeltaN(pro)) were used as well as a packaged replicon with a deletion in the structural core protein encoding region (BVDV-2DeltaC-pseudovirions). The 25 calves used in this vaccination/challenge trial were allocated in five groups (n=5/group). One group received BVDV-1DeltaN(pro) (1 shot), one group BVDV-2DeltaN(pro) (1 shot), one group received both, BVDV-1DeltaN(pro) and BVDV-2DeltaN(pro) (1 shot), and one group was immunised with the BVDV-2DeltaC-pseudovirions (2 shots). The fifth group served as non-vaccinated control group. All groups were challenged intranasally with the BVDV-2 strain HI916 and monitored for signs of clinical disease, virus shedding and viremia. All tested BVDV vaccine candidates markedly reduced the outcome of the heterologous virulent BVDV-2 challenge infection showing graduated protective effects. The BVDV-2DeltaN(pro) mutant was able to induce complete protection and a "sterile immunity" upon challenge. Thus it represents a promising candidate for an efficacious future live vaccine.
Collapse
Affiliation(s)
- Johanna Zemke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald - Insel Riems, Germany
| | | | | | | | | |
Collapse
|
20
|
Giangaspero M, Harasawa R, Weber L, Belloli A. Genoepidemiological evaluation of Bovine viral diarrhea virus 2 species based on secondary structures in the 5' untranslated region. J Vet Med Sci 2008; 70:571-80. [PMID: 18628597 DOI: 10.1292/jvms.70.571] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine viral diarrhea virus 2 (BVDV-2) strains demonstrated in cattle, sheep, and adventitious contaminants of biological products have been evaluated by the palindromic nucleotide substitutions (PNS) method at the three variable loci (V1, V2 and V3) in the 5' untranslated region (UTR), to determine their taxonomical status. Variation in conserved genomic sequences was used as parameter for epidemiological evaluation of the species in relation with geographical distribution, animal host and virulence. Four genotypes, BVDV-2a, BVDV-2b, BVDV-2c, and BVDV-2d have been identified within the species. Taxonomical segregation corresponded to geographical distribution of genotype variants. Genotype 2a was present worldwide, and was the only circulating also in sheep, in addition to cattle. Genotypes 2b, 2c and 2d were restricted to South America. Contamination of biological products was related to genotypes 2a and 2d. Genetic variation could be related with chronological diffusion of the BVDV-2 species variants in different geographic areas. Chronologically, the species emerged in North America in 1978, spreading in UK and Japan, continental Europe, South America and New Zealand. Correlation between clinical features related with isolation of BVDV-2 strains and genetic variation indicated that subgenotype 1, variant 4 of genotype 2a was related with hemorrhagic syndrome. These observations suggest that evaluation of genomic secondary structure, by identifying markers for expression of virus biological activities and species evolutionary history, may be applied as useful tool for epidemiological evaluation of the BVDV-2 species, and possibly for other species of the genus Pestivirus.
Collapse
Affiliation(s)
- Massimo Giangaspero
- Department of Veterinary Microbiology, Faculty of Agriculture, Iwate University, Morioka, Japan.
| | | | | | | |
Collapse
|
21
|
Cytopathogenicity of classical Swine Fever virus correlates with attenuation in the natural host. J Virol 2008; 82:9717-29. [PMID: 18653456 DOI: 10.1128/jvi.00782-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the important livestock pathogens classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV), cytopathogenic (cp) and non-cp viruses are distinguished according to the induction of apoptosis in infected tissue culture cells. However, it is currently unknown whether cp CSFV differs from non-cp CSFV with regard to virulence in the acutely infected host. In this study, we generated helper virus-independent CSFV Alfort-Jiv, which encompasses sequences encoding domain Jiv-90 of cellular J-domain protein interacting with viral protein (Jiv). Expanding the knowledge of BVDV, our results suggest that Jiv acts as a regulating cofactor for the nonstructural (NS) protein NS2 autoprotease of CSFV and initiates NS2-3 cleavage in trans. For Alfort-Jiv, the resulting expression of large amounts of NS3 correlated with increased viral RNA synthesis and viral cytopathogenicity. Moreover, both cp Alfort-Jiv and the parental non-cp CSFV strain Alfort-p447 efficiently replicate in cell culture. Animal experiments demonstrated that in contrast to parental non-cp Alfort-p447, infection with cp Alfort-Jiv did not cause disease in pigs but induced high levels of neutralizing antibodies, thus elucidating that cp CSFV is highly attenuated in its natural host. In contrast to virulent Alfort-p447, the attenuated CSFV strain Alfort-Jiv induces the expression of cellular Mx protein in porcine PK-15 cells. Accordingly, the remarkable difference between cp and non-cp CSFV with regard to the ability to cause classical swine fever in pigs correlates with different effects of cp and non-cp CSFV on cellular antiviral defense mechanisms.
Collapse
|
22
|
Moes L, Wirth M. The internal initiation of translation in bovine viral diarrhea virus RNA depends on the presence of an RNA pseudoknot upstream of the initiation codon. Virol J 2007; 4:124. [PMID: 18034871 PMCID: PMC2212637 DOI: 10.1186/1743-422x-4-124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 11/22/2007] [Indexed: 01/14/2023] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) is the prototype representative of the pestivirus genus in the Flaviviridae family. It has been shown that the initiation of translation of BVDV RNA occurs by an internal ribosome entry mechanism mediated by the 5' untranslated region of the viral RNA [1]. The 5' and 3' boundaries of the IRES of the cytopathic BVDV NADL have been mapped and it has been suggested that the IRES extends into the coding of the BVDV polyprotein [2]. A putative pseudoknot structure has been recognized in the BVDV 5'UTR in close proximity to the AUG start codon. A pseudoknot structure is characteristic for flavivirus IRESes and in the case of the closely related classical swine fever virus (CSFV) and the more distantly related Hepatitis C virus (HCV) pseudoknot function in translation has been demonstrated. Results To characterize the BVDV IRESes in detail, we studied the BVDV translational initiation by transfection of dicistronic expression plasmids into mammalian cells. A region coding for the amino terminus of the BVDV SD-1 polyprotein contributes considerably to efficient initiation of translation. The translation efficiency mediated by the IRES of BVDV strains NADL and SD-1 approximates the poliovirus type I IRES directed translation in BHK cells. Compared to the poliovirus IRES increased expression levels are mediated by the BVDV IRES of strain SD-1 in murine cell lines, while lower levels are observed in human cell lines. Site directed mutagenesis revealed that a RNA pseudoknot upstream of the initiator AUG is an important structural element for IRES function. Mutants with impaired ability to base pair in stem I or II lost their translational activity. In mutants with repaired base pairing either in stem 1 or in stem 2 full translational activity was restored. Thus, the BVDV IRES translation is dependent on the pseudoknot integrity. These features of the pestivirus IRES are reminiscent of those of the classical swine fever virus, a pestivirus, and the hepatitis C viruses, another genus of the Flaviviridae. Conclusion The IRES of the non-cytopathic BVDV SD-1 strain displays features known from other pestivirus IRESes. The predicted pseudoknot in the 5'UTR of BVDV SD-1 virus represents an important structural element in BVDV translation.
Collapse
|
23
|
Iwai A, Marusawa H, Takada Y, Egawa H, Ikeda K, Nabeshima M, Uemoto S, Chiba T. Identification of novel defective HCV clones in liver transplant recipients with recurrent HCV infection. J Viral Hepat 2006; 13:523-31. [PMID: 16901282 DOI: 10.1111/j.1365-2893.2006.00760.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Patients with recurrent hepatitis C after liver transplantation usually have a high viral load and are generally resistant to interferon (IFN)-alpha2b plus ribavirin (RBV) therapy. However, it remains unclear whether pretreatment viral titre determines the effectiveness of combination therapy, especially in patients with a high viral load. The aim of this study was to identify the viral factors associated with a sustained virological response (SVR) to antiviral therapy in patients with recurrent hepatitis C after living-donor liver transplantation. Twenty-three patients with recurrent hepatitis C received combination therapy of IFN-alpha2b plus RBV. SVR was achieved in 7 of the 23 patients (30.4%). Predictive factors for SVR included a 2 log10 decline in Hepatitis C virus (HCV) RNA at 2 weeks after the start of therapy and disappearance of HCV RNA at 4 or 24 weeks after the start of therapy. As the pretreatment high viral load showed no association with SVR, we asked whether other viral factor was associated with the response to the combination therapy in transplant recipients. We found the several novel defective HCV clones in 4 of 12 recipients' sera. All defective HCV clones had deletions in the envelope region. Interestingly, no patients with defective clones showed a prompt decrease in HCV RNA after the start of IFN-alpha2b plus RBV therapy. Thus, early decline in serum HCV RNA after treatment was closely associated with SVR. The circulating defective HCV clones are present and might be associated with the response to the combination therapy in patients with recurrent hepatitis after liver transplantation.
Collapse
Affiliation(s)
- A Iwai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yagi S, Mori K, Shiota K. Implications of the HCV subgenome discovery for viral pathogenesis, persistence and proliferation. Future Virol 2006. [DOI: 10.2217/17460794.1.4.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hepatitis C virus (HCV) subgenome with an in-frame deletion for envelope proteins has been identified in active chronic hepatitis C patients. The revealed features of the HCV subgenome share structural and biological similarities with the defective interfering particles of the RNA viruses, thus suggesting that the HCV subgenome is probably an HCV-defective interfering genome. The HCV subgenome provides an insight into the life cycle of HCV, the mechanisms of RNA replication and virus packaging, and the etiology of the progressive worsening of HCV-induced liver disease.
Collapse
Affiliation(s)
- Shintaro Yagi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agricultural & Life Sciences, The Universit of Tokyo 1–1-1 Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Kenichi Mori
- Advanced Life Science Institute, Inc., 2–10–23 Maruyamadi, Wako, Saitama, 351–0112, Japan
| | - Kunio Shiota
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agricultural & Life Sciences, The Universit of Tokyo 1–1-1 Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| |
Collapse
|
25
|
Gallei A, Orlich M, Thiel HJ, Becher P. Noncytopathogenic pestivirus strains generated by nonhomologous RNA recombination: alterations in the NS4A/NS4B coding region. J Virol 2006; 79:14261-70. [PMID: 16254361 PMCID: PMC1280241 DOI: 10.1128/jvi.79.22.14261-14270.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several studies have demonstrated that cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In addition, two recent reports showed the rapid emergence of noncp Bovine viral diarrhea virus (BVDV) after a few cell culture passages of cp BVDV strains by homologous recombination between identical duplicated viral sequences. To allow the identification of recombination sites from noncp BVDV strains that evolve from cp viruses, we constructed the cp BVDV strains CP442 and CP552. Both harbor duplicated viral sequences of different origin flanking the cellular insertion Nedd8*; the latter is a prerequisite for their cytopathogenicity. In contrast to the previous studies, isolation of noncp strains was possible only after extensive cell culture passages of CP442 and CP552. Sequence analysis of 15 isolated noncp BVDVs confirmed that all recombinant strains lack at least most of Nedd8*. Interestingly, only one strain resulted from homologous recombination while the other 14 strains were generated by nonhomologous recombination. Accordingly, our data suggest that the extent of sequence identity between participating sequences influences both frequency and mode (homologous versus nonhomologous) of RNA recombination in pestiviruses. Further analyses of the noncp recombinant strains revealed that a duplication of 14 codons in the BVDV nonstructural protein 4B (NS4B) gene does not interfere with efficient viral replication. Moreover, an insertion of viral sequences between the NS4A and NS4B genes was well tolerated. These findings thus led to the identification of two genomic loci which appear to be suited for the insertion of heterologous sequences into the genomes of pestiviruses and related viruses.
Collapse
Affiliation(s)
- Andreas Gallei
- Institut für Virologie, Justus-Liebig-Universität, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
26
|
Ridpath JF. Practical significance of heterogeneity among BVDV strains: Impact of biotype and genotype on U.S. control programs. Prev Vet Med 2005; 72:17-30; discussion 215-9. [PMID: 16183156 DOI: 10.1016/j.prevetmed.2005.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the early 1990s research groups in North America noted that a newly recognized severe acute form of bovine viral diarrhea virus infection, referred to as hemorrhagic syndrome or severe acute BVDV (SA BVDV), was associated with a genetically distinct subgroup of BVDV strains. This new subgroup was named BVDV genotype 2 or BVDV2. All BVDV strains previously characterized in the literature belonged to a separate genotype, BVDV1. However, not all strains identified as BVDV2 were associated with severe acute infections. If I did this deletion, I did not mean to do it. I think it was already here, though. I see there are some other big edits that I did not do; fine. Hollis subsequent surveys of BVDV strains isolated from clinical submissions to diagnostic laboratories and contaminated fetal calf serum suggested that the ratio of BVDV2 to BVDV1 strains in the U.S. approached 50%. Further, while antigenic cross reactivity is seen between BVDV1 and BVDV2 strains, a log or more difference is typically observed in titers against viruses from different genotypes. These observations prompted vaccine manufacturers in North America to produce vaccines against BVDV that contained antigens from both BVDV1 and BVDV2 strains. Under experimental conditions, these new vaccines offered improved protection against type 2 strains, however field data are still insufficient to assess their efficacy in practice. The BVDV genotypes may also be segregated into subgenotypes. Two subgenotypes of both BVDV1 (BVDV1a and BVDV1b) and BVDV2 (BVDV2a and BVDV2b) have been reported in North American. BVDV2a predominates with BVDV2b isolation a rare event. In contrast, BVDV1a and BVDV1b are both commonly isolated. Antigenic differences observed between strains from the BVDV1a and BVDV1b subgenotypes have led to the suggestion that protection may be improved by inclusion of strains from both BVDV1a and BVDV1b in vaccines in addition to BVDV2. The cost to benefit ratio of this proposal is currently a matter of debate.
Collapse
Affiliation(s)
- Julia F Ridpath
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 2300 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| |
Collapse
|
27
|
Kameyama K, Sakoda Y, Tamai K, Nagai M, Akashi H, Kida H. Genetic recombination at different points in the Npro-coding region of bovine viral diarrhea viruses and the potentials to change their antigenicities and pathogenicities. Virus Res 2005; 116:78-84. [PMID: 16216377 DOI: 10.1016/j.virusres.2005.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 08/05/2005] [Accepted: 08/12/2005] [Indexed: 11/19/2022]
Abstract
Cytopathogenic (cp) bovine viral diarrhea virus (BVDV) strain KS86-1 cp was isolated from a cow persistently infected with non-cytopathogenic (ncp) BVDV strain KS86-ncp after development of mucosal disease by superinfection with cp BVDV strain Nose. cp BVDV strains 799cp and 839cp were also isolated from independent cattle that developed mucosal disease by superinfection with cp BVDV KS86-1cp. In the present study, genetic analysis revealed that the genes of cp BVDV strains 799cp and 839cp were chimeras between the genes of the persisting ncp BVDVs and that of superinfecting KS86-1cp. The genetic recombination that generates 799cp occurred between the identical points in the N(pro) gene region, whereas genetic recombination that generates 839cp occurred between different points in the N(pro) gene region. Both 799cp and 839cp were inherited Jiv gene of KS86-1cp strain and envelope protein genes of the persisting viruses. In addition, neutralization test disclosed that antigenicities of 799cp, 839cp, and KS86-1cp were also similar to each persisting virus. These findings indicate that exogenous cp BVDV containing insertion of Jiv gene in the 5 terminal region can induce genetic recombination with the original ncp BVDV at different points in the N(pro) gene region, and those viruses have high potential to change those antigenicities and pathogenicities by RNA recombination.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/physiology
- Cattle
- Cells, Cultured
- Cross Reactions
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/immunology
- Diarrhea Viruses, Bovine Viral/isolation & purification
- Diarrhea Viruses, Bovine Viral/pathogenicity
- Genome, Viral
- Molecular Sequence Data
- Neutralization Tests
- Nucleic Acid Amplification Techniques
- RNA, Viral/genetics
- Recombination, Genetic
- Sequence Analysis, DNA
- Viral Envelope Proteins/genetics
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/physiology
Collapse
Affiliation(s)
- K Kameyama
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Gallei A, Rümenapf T, Thiel HJ, Becher P. Characterization of helper virus-independent cytopathogenic classical swine fever virus generated by an in vivo RNA recombination system. J Virol 2005; 79:2440-8. [PMID: 15681445 PMCID: PMC546568 DOI: 10.1128/jvi.79.4.2440-2448.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Molecular analyses revealed that most cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In contrast to bovine viral diarrhea virus (BVDV), cp classical swine fever virus (CSFV) field isolates were rarely detected and always represented helper virus-dependent subgenomes. To investigate RNA recombination in more detail, we recently established an in vivo system allowing the efficient generation of recombinant cp BVDV strains in cell culture after transfecting a synthetic subgenomic and nonreplicatable transcript into cells being infected with noncp BVDV (A. Gallei, A. Pankraz, H.-J. Thiel, and P. Becher, J. Virol. 78:6271-6281, 2004). Using an analogous approach, the first helper virus-independent cp CSFV strain (CP G1) has now been generated by RNA recombination. Accordingly, this study demonstrates the applicability of RNA recombination for designing new viral RNA genomes. The genomic RNA of CP G1 has a calculated size of 18.139 kb, almost 6 kb larger than all previously described CSFV genomes. It contains cellular sequences encoding a polyubiquitin fragment directly upstream of the nonstructural protein NS3 coding gene together with a duplication of viral sequences. CP G1 induces a cytopathic effect on different tissue culture cell lines from pigs and cattle. Subsequent analyses addressed growth kinetics, expression of NS3, and genetic stability of CP G1.
Collapse
Affiliation(s)
- Andreas Gallei
- Institut für Virologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | |
Collapse
|
29
|
Abstract
Recombination is widespread among RNA viruses, but many molecular mechanisms of this phenomenon are still poorly understood. It was believed until recently that the only possible mechanism of RNA recombination is replicative template switching, with synthesis of a complementary strand starting on one viral RNA molecule and being completed on another. The newly synthesized RNA is a primary recombinant molecule in this case. Recent studies have revealed other mechanisms of replicative RNA recombination. In addition, recombination between the genomes of RNA viruses can be nonreplicative, resulting from a joining of preexisting parental molecules. Recombination is a potent tool providing for both the variation and conservation of the genome in RNA viruses. Replicative and nonreplicative mechanisms may contribute differently to each of these evolutionary processes. In the form of trans splicing, nonreplicative recombination of cell RNAs plays an important role in at least some organisms. It is conceivable that RNA recombination continues to contribute to the evolution of DNA genomes.
Collapse
Affiliation(s)
- A P Gmyl
- 1Chumakov Institute of Poliomyelitis and Viral Encephalites, Russian Academy of Medical Sciences, Moscow Region, 142782 Russia
| | - V I Agol
- 1Chumakov Institute of Poliomyelitis and Viral Encephalites, Russian Academy of Medical Sciences, Moscow Region, 142782 Russia.,2Moscow State University, Moscow, 119992 Russia
| |
Collapse
|
30
|
Maurer R, Stettler P, Ruggli N, Hofmann MA, Tratschin JD. Oronasal vaccination with classical swine fever virus (CSFV) replicon particles with either partial or complete deletion of the E2 gene induces partial protection against lethal challenge with highly virulent CSFV. Vaccine 2005; 23:3318-28. [PMID: 15837238 DOI: 10.1016/j.vaccine.2005.01.076] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 12/07/2004] [Accepted: 01/05/2005] [Indexed: 11/17/2022]
Abstract
A cDNA clone of the classical swine fever virus (CSFV) strain Alfort/187 [Ruggli N, Tratschin JD, Mittelholzer C, Hofmann MA. Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol 1996;70(6):3478-87] was used to construct two E2 deletion mutants lacking either the complete E2 gene or, alternatively, a stretch of 204 nucleotides encoding 68 amino acids located in the C-terminal region of the E2 glycoprotein. The respective in vitro synthesized mutant RNAs replicated in SK-6 cells but no infectious virus was generated. Both replicons could be packaged into virus particles in SK-6 cells constitutively expressing E2 of CSFV. For the resulting CSF virus replicon particles (CSF-VRP) A187-E2del373 and A187-E2del68 titers of 10(6) and 10(7) TCID(50)/ml, respectively, were obtained. Oronasal vaccination with 10(7) TCID(50) of either of the two CSF-VRP protected pigs against a challenge with a lethal dose of CSFV strain Eystrup. In contrast, after intradermal vaccination VRP A187-E2del68 but not VRP A187-E2del373 lacking the complete E2 gene induced a protective immune response. We conclude that E2-complemented CSF-VRP have the potential to be used as live-attenuated non-transmissible oral vaccines for pigs. In addition, our data suggest that E2 of CSFV is dispensable for the induction of mucosal but not of parenteral immunity.
Collapse
Affiliation(s)
- Roland Maurer
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland.
| | | | | | | | | |
Collapse
|
31
|
Patel JR, Didlick S, Quinton J. Variation in immunogenicity of ruminant pestiviruses as determined by the neutralisation assay. Vet J 2005; 169:468-72. [PMID: 15848792 DOI: 10.1016/j.tvjl.2004.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2004] [Indexed: 10/25/2022]
Abstract
Immunogenicity in naive three-month-old Friesian bull calves of nine ruminant pestiviruses, three each of type 1 bovine virus diarrhoea virus (BVDV), type 2 BVDV and border disease virus (BDV) was directly compared in reciprocal cross-neutralisation tests using sera obtained eight weeks after intranasal and intravenous inoculation with live virus. Cytopathic (CP) type 1 BVDV strain C86, non-cytopathic (NCP) type 2 BVDV strain 890 and NCP BDV strain V2536/2 were found to elicit significantly broad cross-neutralising antibodies against viruses in other species whereas other virus strains in all three species produced a much more pronounced homologous and/or species specific response. Results are clearly relevant in the selection of strains for vaccines against diseases caused by these successful, economically important ubiquitous viruses.
Collapse
Affiliation(s)
- J R Patel
- Intervet UK Ltd., Walton, Milton Keynes, Buckinghomshire MK7 7AJ, UK
| | | | | |
Collapse
|
32
|
Appel N, Herian U, Bartenschlager R. Efficient rescue of hepatitis C virus RNA replication by trans-complementation with nonstructural protein 5A. J Virol 2005; 79:896-909. [PMID: 15613318 PMCID: PMC538567 DOI: 10.1128/jvi.79.2.896-909.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Studies of Hepatitis C virus (HCV) RNA replication have become possible with the development of subgenomic replicons. This system allows the functional analysis of the essential components of the viral replication complex, which so far are poorly defined. In the present study we wanted to investigate whether lethal mutations in HCV nonstructural genes can be rescued by trans-complementation. Therefore, a series of replicon RNAs carrying mutations in NS3, NS4B, NS5A, and NS5B that abolish replication were transfected into Huh-7 hepatoma cells harboring autonomously replicating helper RNAs. Similar to data described for the Bovine viral diarrhea virus (C. W. Grassmann, O. Isken, N. Tautz, and S. E. Behrens, J. Virol. 75:7791-7802, 2001), we found that only NS5A mutants could be efficiently rescued. There was no evidence for RNA recombination between helper and mutant RNAs, and we did not observe reversions in the transfected mutants. Furthermore, we established a transient complementation assay based on the cotransfection of helper and mutant RNAs. Using this assay, we extended our results and demonstrated that (i) inactivating NS5A mutations affecting the amino-terminal amphipathic helix cannot be complemented in trans; (ii) replication of the helper RNA is not necessary to allow efficient trans-complementation; and (iii) the minimal sequence required for trans-complementation of lethal NS5A mutations is NS3 to -5A, whereas NS5A expressed alone does not restore RNA replication. In summary, our results provide the first insight into the functional organization of the HCV replication complex.
Collapse
Affiliation(s)
- Nicole Appel
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
33
|
Jones LR, Weber EL. Homologous recombination in bovine pestiviruses. Phylogenetic and statistic evidence. INFECTION GENETICS AND EVOLUTION 2004; 4:335-43. [PMID: 15374531 DOI: 10.1016/j.meegid.2004.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 04/26/2004] [Accepted: 04/26/2004] [Indexed: 11/28/2022]
Abstract
Bovine pestiviruses (Bovine Viral Diarrea Virus 1 (BVDV 1) and Bovine Viral Diarrea Virus 2 (BVDV 2)) belong to the genus Pestivirus (Flaviviridae), which is composed of positive stranded RNA viruses causing significant economic losses world-wide. We used phylogenetic and bootstrap analyses to systematically scan alignments of previously sequenced genomes in order to explore further the evolutionary mechanisms responsible for variation in the virus. Previously published data suggested that homologous crossover might be one of the mechanisms responsible for the genomic rearrangements observed in cytopathic (cp) strains of bovine pestiviruses. Nevertheless, homologous recombination involves not just homologous crossovers, but also replacement of a homologous region of the acceptor RNA. Furthermore, cytopathic strains represent dead paths in evolution, since they are isolated exclusively from the fatal cases of mucosal disease. Herein, we report evidence of homologous inter-genotype recombination in the genome of a non-cytopathic (ncp) strain of Bovine Viral Diarrea Virus 1, the type species of the genus Pestivirus. We also show that intra-genotype homologous recombination might be a common phenomenon in both species of Pestivirus. This evidence demonstrates that homologous recombination contribute to the diversification of bovine pestiviruses in nature. Implications for virus evolution, taxonomy and phylogenetics are discussed.
Collapse
Affiliation(s)
- Leandro Roberto Jones
- Instituto de Virología, CICVyA, Inta-Castelar, CC77 (1708) Morón, Buenos Aires, Argentina.
| | | |
Collapse
|
34
|
Bolin SR, Grooms DL. Origination and consequences of bovine viral diarrhea virus diversity. Vet Clin North Am Food Anim Pract 2004; 20:51-68. [PMID: 15062474 PMCID: PMC7119071 DOI: 10.1016/j.cvfa.2003.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The potential consequences of BVDV genetic and antigenic diversity are far ranging. The complexity of clinical presentations associated with BVDV likely arises from factors encoded by the virus genome. More importantly,prevention and control of BVDV may be complicated by diagnostic and immunization failure resulting from virus diversity. Evolutionary pressures will continue to drive further diversity, making control of BVDV challenging. Current and the potential for future BVDV strain diversity should be considered when designing BVDV control programs both at the individual farm and national herd level.
Collapse
Affiliation(s)
- Steven R. Bolin
- Department of Veterinary Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel L. Grooms
- Department of Large Animal Clinical Sciences, Michigan State University, A100 VTH, East Lansing, MI 48824, USA
- Corresponding author.
| |
Collapse
|
35
|
Abstract
To study fundamental aspects of RNA recombination, an in vivo RNA recombination system was established. This system allowed the efficient generation of recombinant cytopathogenic pestiviruses after transfection of synthetic, nonreplicatable, subgenomic transcripts in cells infected with a replicating noncytopathogenic virus. Studies addressing the interplay between RNA recombination and replication revealed that cotransfection of noninfected cells with various pairs of nonreplicatable RNA derivatives also led to the emergence of recombinant viral genomes. Remarkably, homologous and nonhomologous recombination occurred between two overlapping transcripts, each lacking different essential parts of the viral RNA-dependent RNA polymerase (RdRp) gene. Apart from the generally accepted viral replicative copy choice recombination, our results prove the existence of a viral RdRp-independent mechanism of RNA recombination that occurs in vivo. It appears likely that such a mechanism not only contributes to the evolution of RNA viruses but also leads to the generation of recombinant cellular RNAs.
Collapse
Affiliation(s)
- Andreas Gallei
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
36
|
Panaviene Z, Nagy PD. Mutations in the RNA-binding domains of tombusvirus replicase proteins affect RNA recombination in vivo. Virology 2004; 317:359-72. [PMID: 14698673 DOI: 10.1016/j.virol.2003.08.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RNA recombination, which is thought to occur due to replicase errors during viral replication, is one of the major driving forces of virus evolution. In this article, we show evidence that the replicase proteins of Cucumber necrosis virus, a tombusvirus, are directly involved in RNA recombination in vivo. Mutations within the RNA-binding domains of the replicase proteins affected the frequency of recombination observed with a prototypical defective-interfering (DI) RNA, a model template for recombination studies. Five of the 17 replicase mutants tested showed delay in the formation of recombinants when compared to the wild-type helper virus. Interestingly, two replicase mutants accelerated recombinant formation and, in addition, these mutants also increased the level of subgenomic RNA synthesis (Virology 308 (2003), 191-205). A trans-complementation system was used to demonstrate that mutation in the p33 replicase protein resulted in altered recombination rate. Isolated recombinants were mostly imprecise (nonhomologous), with the recombination sites clustered around a replication enhancer region and a putative cis-acting element, respectively. These RNA elements might facilitate the proposed template switching events by the tombusvirus replicase. Together with data in the article cited above, results presented here firmly establish that the conserved RNA-binding motif of the replicase proteins is involved in RNA replication, subgenomic RNA synthesis, and RNA recombination.
Collapse
Affiliation(s)
- Zivile Panaviene
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | |
Collapse
|
37
|
Stangl JR, Carroll KL, Illichmann M, Striker R. EFFECT OF ANTIMETABOLITE IMMUNOSUPPRESSANTS ON FLAVIVIRIDAE, INCLUDING HEPATITIS C VIRUS. Transplantation 2004; 77:562-7. [PMID: 15084936 DOI: 10.1097/01.tp.0000114610.40412.c6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recurrence of hepatitis C virus (HCV) after liver transplantation is almost universal and decreases both graft and patient survival. Medications that alter nucleic acid metabolism, including some common immunosuppressants used in HCV-infected patients, may affect viral replication. METHODS Bovine viral diarrhea virus (BVDV) is in the Flaviviridae family and is closely related to HCV. We measured the effect of two immunosuppressants, azathioprine (AZA) and mycophenolate acid (MPA), on both BVDV replication by plaque assay and host-cell replication by flow cytometry. We also compared the effect of ribavirin and AZA on the level of HCV replicon RNA by real-time reverse-transcriptase polymerase chain reaction. RESULTS At doses that achieved similar cytotoxicity, AZA decreased BVDV replication 10 times more than MPA. The inhibition of BVDV by AZA occurred at lower doses than the cellular cytotoxicity and did not depend on cytotoxicity. A two-log reduction in viral titers occurred despite blocking the cytotoxicity of AZA by inhibiting ribonucleotide reductase with high concentrations of thymidine. A metabolite of AZA, 6-mercaptopurine, still possessed this antiviral effect, but a metabolite further downstream, 6-thioguanine, did not, even though 6-thioguanine is the metabolite responsible for cellular toxicity. The effect of AZA on a HCV replicon was at least as large as that of ribavirin. CONCLUSIONS This report suggests that AZA is a more potent antiviral than MPA for Flaviviridae and may exert a specific antiviral effect on HCV. Additional clinical studies to investigate this previously unanticipated antiviral effect of AZA on HCV in the posttransplant setting are indicated.
Collapse
Affiliation(s)
- Jason R Stangl
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
38
|
Reimann I, Meyers G, Beer M. Trans-complementation of autonomously replicating Bovine viral diarrhea virus replicons with deletions in the E2 coding region. Virology 2003; 307:213-27. [PMID: 12667792 DOI: 10.1016/s0042-6822(02)00129-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Autonomously replicating Bovine viral diarrhea virus (BVDV) genomes (replicons) were constructed from the full-length BVDV cDNA clone pA/BVDV/Ins- (G. Meyers et al., J. Virol. 70, 8606-8613, 1996). The sequences coding for envelope protein E2, for E2 without the C-terminal transmembrane region, or for E2 and nonstructural protein p7 were deleted, and the resulting mutants were tested for their ability to replicate after transfection. All deletion mutants were able to replicate and to express the inserted green fluorescent protein but did not produce infectious progeny virus in bovine kidney PT cells. The replicons were also tested for their ability to be trans-complemented in the bovine cell line PT_805, which constitutively expresses BVDV structural proteins. E2-negative BVDV mutants were complemented and >10(6) infectious units were obtained at 24 h after transfection. Complementing PT_805 cells could only inefficiently be infected using trans-complemented virions, however, and low levels of virus production were observed when complemented BVDV was passaged using PT_805 cells. Similarly, infection of PT_805 cells with BVDV was highly inefficient, but transfection of full-length BVDV NCP7 RNA into PT_805 resulted in 10,000-fold higher virus titers when compared to those obtained 24 h after transfection of parental PT cells. We concluded that self-replicating E2-deleted BVDV RNAs can be efficiently trans-complemented by constitutively expressed E2, and that expression of BVDV structural proteins markedly influences susceptibility of cells to BVDV infection as well as BVDV titers after transfection of full-length BVDV RNA.
Collapse
Affiliation(s)
- Ilona Reimann
- Institute of Infectology, Federal Research Center for Virus Diseases of Animals, Boddenblick 5a, 17498 Insel Riems, Germany
| | | | | |
Collapse
|
39
|
Nagai M, Sakoda Y, Mori M, Hayashi M, Kida H, Akashi H. Insertion of cellular sequence and RNA recombination in the structural protein coding region of cytopathogenic bovine viral diarrhoea virus. J Gen Virol 2003; 84:447-452. [PMID: 12560578 DOI: 10.1099/vir.0.18773-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytopathogenic bovine viral diarrhoea virus (cp BVDV) strain KS86-1cp was isolated from a calf persistently infected with the noncytopathogenic (ncp) strain KS86-1ncp after it was exposed to cp BVDV strain Nose and developed mucosal disease (MD). Molecular analysis revealed that an insertion of a cellular gene and a duplication of the viral RNA encoding the nucleocapsid protein C and part of N(pro) had occurred in the C coding region of the Nose and KS86-1cp genomes. The inserted cellular gene was closely related to the cINS sequence. Remarkably, the 5' upstream region from the insertion of KS86-1cp had high sequence identity to that of Nose, but differed from that of KS86-1ncp. In contrast, the region downstream from the insertion of KS86-1cp showed high identity to KS86-1ncp, but not to Nose. These data reveal that KS86-1cp is a chimeric virus generated by homologous RNA recombination in a calf with MD.
Collapse
Affiliation(s)
- Makoto Nagai
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masashi Mori
- Laboratory of Plant Molecular Genetics Research Institute of Agricultural Resources, Ishikawa Agricultural College, Ishikawa 921-8836, Japan
| | - Michiko Hayashi
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Hiroshi Kida
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hiroomi Akashi
- National Institute of Animal Health, Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
40
|
Cheng CP, Pogany J, Nagy PD. Mechanism of DI RNA formation in tombusviruses: dissecting the requirement for primer extension by the tombusvirus RNA dependent RNA polymerase in vitro. Virology 2002; 304:460-73. [PMID: 12504585 DOI: 10.1006/viro.2002.1713] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tombusviruses, which are positive-strand RNA viruses of plants, frequently generate defective interfering (DI) RNAs that consist of three to four noncontiguous segments of the parental RNA. Replicase jumping was postulated to cause multiple deletions leading to the de novo formation of DI RNAs in planta. This model was tested using a partially purified RNA-dependent RNA polymerase (RdRp) preparation from tombusvirus-infected plants in vitro. The tombusvirus RdRp was capable of primer extension without the need for sequence complementarity between the primer and the acceptor template in vitro, although the most efficient primer extension was obtained with primers forming a 5-bp duplex with the acceptor region. Primers forming 14- to 20-bp duplexes with the acceptor region were used less efficiently by the tombusvirus RdRp in vitro. In addition, primers with 3' noncomplementary nucleotides were also extended by the tombusvirus RdRp, albeit with a reduced efficiency. The preference of the tombusvirus RdRp for short base-paired primers in vitro is consistent with the lack of extended sequence similarities at the junction sites in the de novo generated tombusvirus-associated DI RNAs. The in vitro experiments also revealed that the acceptor region plays a significant role in primer extension. Comparison of tombusvirus-derived, heterologous and artificial acceptor regions revealed that the conserved regions present in DI RNAs are the best acceptor regions when they are available in the minus-strand orientation. These data suggest that recombination/deletion events may be more frequent at some regions, rather than occurring randomly throughout the parental genome. In addition, these findings support a model that predicts a higher frequency of replicase jumping, i.e., recombination/deletion events, during plus-strand synthesis than during minus-strand synthesis.
Collapse
Affiliation(s)
- C-P Cheng
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA
| | | | | |
Collapse
|
41
|
Fletcher SP, Ali IK, Kaminski A, Digard P, Jackson RJ. The influence of viral coding sequences on pestivirus IRES activity reveals further parallels with translation initiation in prokaryotes. RNA (NEW YORK, N.Y.) 2002; 8:1558-1571. [PMID: 12515388 PMCID: PMC1370361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Classical swine fever virus (CSFV) is a member of the pestivirus family, which shares many features in common with hepatitis C virus (HCV). It is shown here that CSFV has an exceptionally efficient cis-acting internal ribosome entry segment (IRES), which, like that of HCV, is strongly influenced by the sequences immediately downstream of the initiation codon, and is optimal with viral coding sequences in this position. Constructs that retained 17 or more codons of viral coding sequence exhibited full IRES activity, but with only 12 codons, activity was approximately 66% of maximum in vitro (though close to maximum in transfected BHK cells), whereas with just 3 codons or fewer, the activity was only approximately 15% of maximum. The minimal coding region elements required for high activity were exchanged between HCV and CSFV. Although maximum activity was observed in each case with the homologous combination of coding region and 5' UTR, the heterologous combinations were sufficiently active to rule out a highly specific functional interplay between the 5' UTR and coding sequences. On the other hand, inversion of the coding sequences resulted in low IRES activity, particularly with the HCV coding sequences. RNA structure probing showed that the efficiency of internal initiation of these chimeric constructs correlated most closely with the degree of single-strandedness of the region around and immediately downstream of the initiation codon. The low activity IRESs could not be rescued by addition of supplementary eIF4A (the initiation factor with ATP-dependent RNA helicase activity). The extreme sensitivity to secondary structure around the initiation codon is likely to be due to the fact that the eIF4F complex (which has eIF4A as one of its subunits) is not required for and does not participate in initiation on these IRESs.
Collapse
Affiliation(s)
- Simon P Fletcher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Becher P, Thiel HJ, Collins M, Brownlie J, Orlich M. Cellular sequences in pestivirus genomes encoding gamma-aminobutyric acid (A) receptor-associated protein and Golgi-associated ATPase enhancer of 16 kilodaltons. J Virol 2002; 76:13069-76. [PMID: 12438634 PMCID: PMC136705 DOI: 10.1128/jvi.76.24.13069-13076.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The presence of cellular protein coding sequences within viral RNA genomes is a unique and particularly interesting feature of cytopathogenic (cp) pestiviruses. Here we report the identification and characterization of two novel cellular sequences in the genomes of cp bovine viral diarrhea virus (BVDV) strains. In BVDV strain CP X604, we detected a duplication of the genomic region encoding NS3, NS4A, and part of NS4B, together with an insertion of sequences that code for cellular gamma-aminobutyric acid (A) receptor-associated protein [GABA(A)-RAP]. Transient-expression studies showed that the GABA(A)-RAP sequence leads to additional processing of the viral polyprotein and thereby to the expression of nonstructural protein NS3. Transfection of bovine cells with RNA transcribed from an infectious cDNA clone revealed that the GABA(A)-RAP-encoding insertion together with the duplicated viral sequences constitutes the genetic basis for the cytopathogenicity of strain CP X604. Surprisingly, molecular analysis of another cp BVDV strain (CP 721) resulted in the identification of a cellular Golgi-associated ATPase enhancer of 16 kDa (GATE-16)-encoding insertion together with duplicated viral sequences. To our knowledge, the genomes of CP X604 and CP 721 are the first viral RNAs found with cellular sequences encoding GABA(A)-RAP and GATE-16, respectively. Interestingly, the two cellular proteins belong to a family of eukaryotic proteins involved in various intracellular trafficking processes. Processing after the C-terminal glycine residue of GABA(A)-RAP and GATE-16 by cellular proteases is essential for covalent attachment to target molecules. Accordingly, it can be assumed that these cellular proteases also recognize the cleavage sites in the context of the respective viral polyproteins and thereby lead to the generation of NS3, the marker protein of cp BVDV.
Collapse
Affiliation(s)
- Paul Becher
- Institut für Virologie (Fachbereich Veterinärmedizin), Justus-Liebig-Universität, Frankfurter Strasse 107, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
43
|
Goens SD. The evolution of bovine viral diarrhea: a review. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2002; 43:946-54. [PMID: 12561689 PMCID: PMC339916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The economic importance of bovine viral diarrhea is increasing with the emergence of seemingly more virulent viruses, as evidenced by outbreaks of hemorrhagic syndrome and severe acute bovine viral diarrhea beginning in the 1980s and 1990s. It appears that evolutionary changes in bovine viral diarrhea virus were responsible for these outbreaks. The genetic properties of the classical bovine viral diarrhea virus that contribute to the basis of current diagnostic tests, vaccines, and our understanding of pathogenic mechanisms are now being reevaluated because of these "new" virus strains. This shift in virulence has confounded both nomenclature and the significance of current bovine viral diarrhea virus categorization. The purpose of this review is to summarize our current understanding of bovine viral diarrhea virus with a chronological review of prevailing scientific tenets and practices as described in clinical and scientific North American veterinary journals and textbooks. The first part of this review describes how we have arrived at our current understanding of the viruses, the diseases, and their nomenclature. The second part of the review deals with current concepts in virology and how these concepts may both explain and predict bovine viral diarrhea virus pathogenesis. By reviewing how knowledge of bovine viral diarrhea has evolved and the theories of how the virus itself is able to evolve, the interpretation of diagnostic tests are more effectively utilized in the control and treatment of bovine viral diarrhea virus associated disease.
Collapse
Affiliation(s)
- S Denise Goens
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1.
| |
Collapse
|
44
|
Luzzago C, Bandi C, Bronzo V, Ruffo G, Zecconi A. Distribution pattern of bovine viral diarrhoea virus strains in intensive cattle herds in Italy. Vet Microbiol 2001; 83:265-74. [PMID: 11574174 DOI: 10.1016/s0378-1135(01)00429-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The genetic variation of bovine viral diarrhoea virus (BVDV) was studied by comparative nucleotide sequence analysis of 26 Italian field strains collected during the period 1995-2000 in 18 cattle herds. A fragment within the 5'-untranslated region (UTR) was sequenced directly from gel-purified products obtained by reverse transcription polymerase chain reaction. BVDV-1b (n=14), -1c (n=1), -1d (n=1) and BVDV-2 (n=2) strains have been isolated. Most herds were infected by BVDV-1b. Pairwise similarity and cluster analysis of the remaining BVDV-1 isolates (n=8) did not provide a clear-cut assignation to defined BVDV-1 groups. This is the first time that a BVDV-2 isolation was reported in Italy. Among BVDV-2 reference strains, Italian BVDV-2 isolates showed the highest sequence similarity with the CD87 strain. Both BVDV-2 strains were isolated in two healthy animals from different herds. The 5'-UTR sequence of one of the two BVDV-2 strains was identical to a German BVDV field strain. Complete nucleotide homology was found only among BVDV strains isolated from the same herd, showing a herd-specific clustering. Moreover, 99.6% homology was observed between strains from herds linked by livestock trade. Despite the small number of BVDV isolates analysed, it revealed a high level of genetic diversity among Italian field BVDV strains.
Collapse
Affiliation(s)
- C Luzzago
- Department of Animal Pathology, Hygiene and Public Health, Faculty of Veterinary Medicine, University of Milan, Via Celoria 10, 20133, Milano, Italy.
| | | | | | | | | |
Collapse
|
45
|
Avalos-Ramirez R, Orlich M, Thiel HJ, Becher P. Evidence for the presence of two novel pestivirus species. Virology 2001; 286:456-65. [PMID: 11485413 DOI: 10.1006/viro.2001.1001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genus Pestivirus of the family Flaviviridae comprises four species, namely Bovine viral diarrhea virus-1 (BVDV-1), BVDV-2, Border disease virus (BDV), and Classical swine fever virus (CSFV). Comparative analyses of partial sequences have suggested that pestivirus isolates from giraffe (Giraffe-1) and reindeer (Reindeer-1) are distinct from the established species (Becher et al., Virology 262, 64--71, 1999). In this study, we report the complete genomic sequences of pestivirus strains Giraffe-1 and Reindeer-1. Comparative sequence analyses revealed considerable differences among Giraffe-1, Reindeer-1, and the currently recognized pestivirus species. Phylogenetic analysis of the complete coding sequences of these two strains, along with 13 other sequences representing the four established species, indicated that CSFV, BDV, and Reindeer-1 have bifurcated from one common branch and BVDV-1 and BVDV-2 from another. In the former branch BDV and the pestivirus from reindeer are more similar to each other than to CSFV. The giraffe pestivirus is equally distinct from both major branches. In addition, the antigenic relatedness of pestivirus isolates covering the observed major genetic groups was studied by cross-neutralization assays. A clustering procedure on the basis of antigenic differences indicated the presence of six major groups corresponding to the genetically defined groups. Taken together, the results of our analyses addressing both nucleotide sequence relatedness and serological relatedness argue for the inclusion of Giraffe-1 and Reindeer-1 as the first members of two separate novel species within the genus Pestivirus.
Collapse
Affiliation(s)
- R Avalos-Ramirez
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität, Giessen, D-35392, Germany
| | | | | | | |
Collapse
|
46
|
Becher P, Orlich M, Thiel HJ. RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease. J Virol 2001; 75:6256-64. [PMID: 11413291 PMCID: PMC114347 DOI: 10.1128/jvi.75.14.6256-6264.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Molecular analysis of a cytopathogenic (cp) bovine viral diarrhea virus (BVDV) isolate (1741) obtained from a case of mucosal disease (MD) led to the identification of five different viral subgenomic RNAs in addition to a noncytopathogenic (noncp) strain (NCP 1741). For each of the subgenomes, a large internal deletion was found together with an inserted sequence encoding part of ribosomal protein S27a fused to an N-terminally truncated ubiquitin monomer. Surprisingly, the two cellular insertions together with flanking viral sequences encoding parts of NS3 and NS4B are >99% identical to the previously described sequence of BVDV vaccine strain RIT (P. Becher, M. Orlich, and H.-J. Thiel, J. Virol. 72:8697-8704, 1998), while the remainder of the subgenomes is derived from the genome of NCP 1741. Further analyses including molecular cloning and nucleotide sequencing of the recombination partners revealed that both homologous and nonhomologous RNA recombination contributed to the generation of the viral subgenomes. Interestingly, for another cp BVDV isolate (CP 4584) from an independent case of MD, again an insertion of a RIT-derived sequence element was detected. In contrast to CP 1741, for CP 4584 a duplication of the genomic region encoding NS3 and parts of NS4A and NS4B was found. Transfection of bovine cells with RNA transcribed from a chimeric cDNA construct showed that the RIT-derived insertion together with the CP 4584-specific duplication of viral sequences represents the genetic basis of cytopathogenicity of CP 4584. Remarkably, passages of the recovered cp virus in cell culture led to emergence of noncp BVDV and a number of viral subgenomes whose genome organization was similar to that in BVDV 1741.
Collapse
Affiliation(s)
- P Becher
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität Giessen, Frankfurter Str. 107, D-35392 Giessen, Germany.
| | | | | |
Collapse
|
47
|
Myers TM, Kolupaeva VG, Mendez E, Baginski SG, Frolov I, Hellen CU, Rice CM. Efficient translation initiation is required for replication of bovine viral diarrhea virus subgenomic replicons. J Virol 2001; 75:4226-38. [PMID: 11287572 PMCID: PMC114168 DOI: 10.1128/jvi.75.9.4226-4238.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An internal ribosome entry site (IRES) mediates translation initiation of bovine viral diarrhea virus (BVDV) RNA. Studies have suggested that a portion of the N(pro) open reading frame (ORF) is required, although its exact function has not been defined. Here we show that a subgenomic (sg) BVDV RNA in which the NS3 ORF is preceded only by the 5' nontranslated region did not replicate to detectable levels following transfection. However, RNA synthesis and cytopathic effects were observed following serial passage in the presence of a noncytopathic helper virus. Five sg clones derived from the passaged virus contained an identical, silent substitution near the beginning of the NS3 coding sequence (G400U), as well as additional mutations. Four of the reconstructed mutant RNAs replicated in transfected cells, and in vitro translation showed increased levels of NS3 for the mutant RNAs compared to that of wild-type (wt) MetNS3. To more precisely dissect the role of these mutations, we constructed two sg derivatives: ad3.10, which contains only the G400U mutation, and ad3.7, with silent substitutions designed to minimize RNA secondary structure downstream of the initiator AUG. Both RNAs replicated and were translated in vitro to similar levels. Moreover, ad3.7 and ad3.10, but not wt MetNS3, formed toeprints downstream of the initiator AUG codon in an assay for detecting the binding of 40S ribosomal subunits and 43S ribosomal complexes to the IRES. These results suggest that a lack of stable RNA secondary structure(s), rather than a specific RNA sequence, immediately downstream of the initiator AUG is important for optimal translation initiation of pestivirus RNAs.
Collapse
Affiliation(s)
- T M Myers
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Makoschey B, Janssen MG, Vrijenhoek MP, Korsten JH, Marel P. An inactivated bovine virus diarrhoea virus (BVDV) type 1 vaccine affords clinical protection against BVDV type 2. Vaccine 2001; 19:3261-8. [PMID: 11312023 DOI: 10.1016/s0264-410x(01)00003-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was designed to answer to two distinct questions. Firstly, is it possible to reproduce clinical signs of acute bovine virus diarrhoea virus (BVDV) type 2 infection including signs of haemorrhagic disease under experimental conditions in cattle at 20 weeks of age? Secondly, what is the extent of the protection afforded by vaccination with an inactivated BVDV type 1 vaccine against BVDV type 2 infection? Calves were vaccinated at 12 and 16 weeks of age with a commercially available inactivated BVDV type 1 vaccine (Bovilis BVD). At 20 weeks they were challenge infected with BVDV type 2 virus together with unvaccinated control calves. The unvaccinated animals developed typical signs of respiratory disease, diarrhoea with erosions and haemorrhages along the whole length gastro-intestinal tract, and depletion of lymphocytes in lymphatic organs. These signs were either absent or markedly less severe in the vaccinated animals. The beneficial effects of vaccination were most striking in the haematological parameters thrombocytopenia and leukopenia. It can be concluded that vaccination with Bovilis BVD affords cross-protection against clinical effects of a challenge-infection with heterologous type 2 BVDV.
Collapse
Affiliation(s)
- B Makoschey
- Department of Virological R&D, Intervet International B.V., P.O. Box 31, 5830 AA, Boxmeer, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Hamers C, Dehan P, Couvreur B, Letellier C, Kerkhofs P, Pastoret PP. Diversity among bovine pestiviruses. Vet J 2001; 161:112-22. [PMID: 11243683 DOI: 10.1053/tvjl.2000.0504] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine viral diarrhoea virus (BVDV) isolates are characterized by an important genetic, antigenic and pathogenic diversity. The emergence of new hypervirulent BVDV strains in North America has provided clear evidence of pathogenic differences between BVDV strains. The origin of BVDV diversity is related to high mutation rate occurring in RNA viruses but the consequences of mutations obviously depend on the genes which are involved. Mutations in genes encoding for structural proteins of immunological importance may have practical implications. Knowledge of BVDV diversity is important for understanding the wide variety of pathogenesis of diseases caused by the virus, for monitoring the epidemiology of the different types and for the design of optimum laboratory tests and vaccines. This review focuses on the origin and consequences of BVDV diversity with regard to pathogenesis, biotypes, and antigenic and genetic variations.
Collapse
Affiliation(s)
- C Hamers
- Department of Infectious Diseases, Unit of Immunology and Vaccinology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster, 20 Bat B 43 bis, 4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
50
|
Baroth M, Orlich M, Thiel HJ, Becher P. Insertion of cellular NEDD8 coding sequences in a pestivirus. Virology 2000; 278:456-66. [PMID: 11118368 DOI: 10.1006/viro.2000.0644] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For the cytopathogenic (cp) bovine viral diarrhea virus (BVDV) strain CP 821, a duplication of the genomic region encoding part of NS2, NS3, NS4A, and part of NS4B together with a nonviral insertion was detected. Further analyses including molecular cloning and sequencing of the putative cellular recombination partner showed that the insertion in CP 821 originated from a bovine mRNA encoding the cellular protein NEDD8, which is 58% identical to ubiquitin. To our knowledge the genome of CP 821 represents the first viral RNA with a NEDD8 coding insertion. Remarkably, the insertion site differs from that described for insertions of ubiquitin. The NEDD8 sequence allows an additional cleavage of the viral polyprotein, whereby an NS3 with an unusual N-terminus is generated. Furthermore, the CP 821-specific genomic alterations were introduced into an infectious noncytopathogenic (noncp) BVDV cDNA clone. After transfection of bovine cells with the respective RNA, a cp virus was recovered. This showed that the NEDD8 coding insertion together with the duplicated viral sequences represents the genetic basis for cytopathogenicity of CP 821. In addition to the recovered cp virus, noncp BVDV rapidly evolved after transfection. This is the first time that a change from the cp to the noncp phenotype was demonstrated in the course of replication in tissue culture cells.
Collapse
Affiliation(s)
- M Baroth
- Institut für Virologie (FB Veterinärmedizin), Giessen, D-35392, Germany
| | | | | | | |
Collapse
|