1
|
Bunke LE, Larsen CIS, Pita-Aquino JN, Jones IK, Majumder K. The DNA Damage Sensor MRE11 Regulates Efficient Replication of the Autonomous Parvovirus Minute Virus of Mice. J Virol 2023; 97:e0046123. [PMID: 37098896 PMCID: PMC10231137 DOI: 10.1128/jvi.00461-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/27/2023] Open
Abstract
Parvoviruses are single-stranded DNA viruses that utilize host proteins to vigorously replicate in the nuclei of host cells, leading to cell cycle arrest. The autonomous parvovirus, minute virus of mice (MVM), forms viral replication centers in the nucleus which are adjacent to cellular DNA damage response (DDR) sites, many of which are fragile genomic regions prone to undergoing DDR during the S phase. Since the cellular DDR machinery has evolved to transcriptionally suppress the host epigenome to maintain genomic fidelity, the successful expression and replication of MVM genomes at these cellular sites suggest that MVM interacts with DDR machinery distinctly. Here, we show that efficient replication of MVM requires binding of the host DNA repair protein MRE11 in a manner that is independent of the MRE11-RAD50-NBS1 (MRN) complex. MRE11 binds to the replicating MVM genome at the P4 promoter, remaining distinct from RAD50 and NBS1, which associate with cellular DNA break sites to generate DDR signals in the host genome. Ectopic expression of wild-type MRE11 in CRISPR knockout cells rescues virus replication, revealing a dependence on MRE11 for efficient MVM replication. Our findings suggest a new model utilized by autonomous parvoviruses to usurp local DDR proteins that are crucial for viral pathogenesis and distinct from those of dependoparvoviruses, like adeno-associated virus (AAV), which require a coinfected helper virus to inactivate the local host DDR. IMPORTANCE The cellular DNA damage response (DDR) machinery protects the host genome from the deleterious consequences of DNA breaks and recognizes invading viral pathogens. DNA viruses that replicate in the nucleus have evolved distinct strategies to evade or usurp these DDR proteins. We have discovered that the autonomous parvovirus, MVM, which is used to target cancer cells as an oncolytic agent, depends on the initial DDR sensor protein MRE11 to express and replicate efficiently in host cells. Our studies reveal that the host DDR interacts with replicating MVM molecules in ways that are distinct from viral genomes being recognized as simple broken DNA molecules. These findings suggest that autonomous parvoviruses have evolved distinct mechanisms to usurp DDR proteins, which can be used to design potent DDR-dependent oncolytic agents.
Collapse
Affiliation(s)
| | - Clairine I. S. Larsen
- Institute for Molecular Virology, Madison, Wisconsin, USA
- Cell and Molecular Biology Graduate Program, Madison, Wisconsin, USA
| | - Jessica N. Pita-Aquino
- Institute for Molecular Virology, Madison, Wisconsin, USA
- Cell and Molecular Biology Graduate Program, Madison, Wisconsin, USA
| | | | - Kinjal Majumder
- Institute for Molecular Virology, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, Madison, Wisconsin, USA
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Neulinger-Muñoz M, Schaack D, Grekova SP, Bauer AS, Giese T, Salg GA, Espinet E, Leuchs B, Heller A, Nüesch JPF, Schenk M, Volkmar M, Giese NA. Human Retrotransposons and the Global Shutdown of Homeostatic Innate Immunity by Oncolytic Parvovirus H-1PV in Pancreatic Cancer. Viruses 2021; 13:v13061019. [PMID: 34071585 PMCID: PMC8228339 DOI: 10.3390/v13061019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Although the oncolytic parvovirus H-1PV has entered clinical trials, predicting therapeutic success remains challenging. We investigated whether the antiviral state in tumor cells determines the parvoviral oncolytic efficacy. The interferon/interferon-stimulated genes (IFN/ISG)-circuit and its major configurator, human endogenous retroviruses (HERVs), were evaluated using qRT-PCR, ELISA, Western blot, and RNA-Seq techniques. In pancreatic cancer cell lines, H-1PV caused a late global shutdown of innate immunity, whereby the concomitant inhibition of HERVs and IFN/ISGs was co-regulatory rather than causative. The growth-inhibitory IC50 doses correlated with the power of suppression but not with absolute ISG levels. Moreover, H-1PV was not sensitive to exogenous IFN despite upregulated antiviral ISGs. Such resistance questioned the biological necessity of the oncotropic ISG-shutdown, which instead might represent a surrogate marker for personalized oncolytic efficacy. The disabled antiviral homeostasis may modify the activity of other viruses, as demonstrated by the reemergence of endogenous AluY-retrotransposons. This way of suppression may compromise the interferogenicity of drugs having gemcitabine-like mechanisms of action. This shortcoming in immunogenic cell death induction is however amendable by immune cells which release IFN in response to H-1PV.
Collapse
Affiliation(s)
- Matthias Neulinger-Muñoz
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Dominik Schaack
- Department of Anesthesiology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Svetlana P. Grekova
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Andrea S. Bauer
- German Cancer Research Center (DKFZ), Division of Functional Genome Analysis, 69120 Heidelberg, Germany;
| | - Thomas Giese
- Institute of Immunology and German Center for Infection Research (DZIF), Partner Site Heidelberg, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Gabriel A. Salg
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Elisa Espinet
- German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, 69120 Heidelberg, Germany;
- HI-STEM—Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH, 69120 Heidelberg, Germany
| | - Barbara Leuchs
- German Cancer Research Center (DKFZ), Division of Tumor Virology, 69120 Heidelberg, Germany;
| | - Anette Heller
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Jürg P. F. Nüesch
- German Cancer Research Center (DKFZ), Division of Virus-Associated Carcinogenesis F170, 69120 Heidelberg, Germany;
| | - Miriam Schenk
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Michael Volkmar
- German Cancer Research Center (DKFZ), Division of Molecular Oncology of Gastrointestinal Tumors, 69120 Heidelberg, Germany;
| | - Nathalia A. Giese
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
- Correspondence:
| |
Collapse
|
3
|
Majumder K, Boftsi M, Whittle FB, Wang J, Fuller MS, Joshi T, Pintel DJ. The NS1 protein of the parvovirus MVM Aids in the localization of the viral genome to cellular sites of DNA damage. PLoS Pathog 2020; 16:e1009002. [PMID: 33064772 PMCID: PMC7592911 DOI: 10.1371/journal.ppat.1009002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/28/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
The autonomous parvovirus Minute Virus of Mice (MVM) localizes to cellular DNA damage sites to establish and sustain viral replication centers, which can be visualized by focal deposition of the essential MVM non-structural phosphoprotein NS1. How such foci are established remains unknown. Here, we show that NS1 localized to cellular sites of DNA damage independently of its ability to covalently bind the 5’ end of the viral genome, or its consensus DNA binding sequence. Many of these sites were identical to those occupied by virus during infection. However, localization of the MVM genome to DNA damage sites occurred only when wild-type NS1, but not its DNA-binding mutant was expressed. Additionally, wild-type NS1, but not its DNA binding mutant, could localize a heterologous DNA molecule containing the NS1 binding sequence to DNA damage sites. These findings suggest that NS1 may function as a bridging molecule, helping the MVM genome localize to cellular DNA damage sites to facilitate ongoing virus replication. Parvoviruses are among the simplest of viruses, depending almost exclusively on host cell factors to successfully replicate. We have previously shown that the parvovirus Minute Virus of Mice (MVM) establishes replication centers at sites that are associated with cellular regions of DNA damage. These sites are primed to contain factors necessary to efficiently initiate vigorous virus lytic infection. The process by which viral proteins and viral DNA specifically localize to these sites has previously remained unknown. In this study we show that the essential viral protein NS1 possesses the intrinsic ability to localize to cellular sites of DNA damage. Additionally, wild-type NS1, but not its DNA binding mutant, could localize to sites of DNA damage both the MVM genome, or a heterologous DNA molecule engineered to contain NS1 binding sites. This work provides the first evidence that NS1 may function as a bridging molecule to localize the MVM genome to cellular sites of DNA damage to facilitate ongoing replication.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (KM); (DJP)
| | - Maria Boftsi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Pathobiology Area Graduate Program, University of Missouri, Columbia, Missouri, United States of America
| | - Fawn B. Whittle
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Juexin Wang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, United States of America
| | - Matthew S. Fuller
- Ultragenyx Gene Therapy, Cambridge, Massachusetts, United States of America
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Department of Health Management and Informatics, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri, United States of America
| | - David J. Pintel
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (KM); (DJP)
| |
Collapse
|
4
|
Cancer Treatment Goes Viral: Using Viral Proteins to Induce Tumour-Specific Cell Death. Cancers (Basel) 2019; 11:cancers11121975. [PMID: 31817939 PMCID: PMC6966515 DOI: 10.3390/cancers11121975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022] Open
Abstract
Cell death is a tightly regulated process which can be exploited in cancer treatment to drive the killing of the tumour. Several conventional cancer therapies including chemotherapeutic agents target pathways involved in cell death, yet they often fail due to the lack of selectivity they have for tumour cells over healthy cells. Over the past decade, research has demonstrated the existence of numerous proteins which have an intrinsic tumour-specific toxicity, several of which originate from viruses. These tumour-selective viral proteins, although from distinct backgrounds, have several similar and interesting properties. Though the mechanism(s) of action of these proteins are not fully understood, it is possible that they can manipulate several cell death modes in cancer exemplifying the intricate interplay between these pathways. This review will discuss our current knowledge on the topic and outstanding questions, as well as deliberate the potential for viral proteins to progress into the clinic as successful cancer therapeutics.
Collapse
|
5
|
Sanchez JL, Romero Z, Quinones A, Torgeson KR, Horton NC. DNA Binding and Cleavage by the Human Parvovirus B19 NS1 Nuclease Domain. Biochemistry 2016; 55:6577-6593. [PMID: 27809499 DOI: 10.1021/acs.biochem.6b00534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Infection with human parvovirus B19 (B19V) has been associated with a myriad of illnesses, including erythema infectiosum (Fifth disease), hydrops fetalis, arthropathy, hepatitis, and cardiomyopathy, and also possibly the triggering of any number of different autoimmune diseases. B19V NS1 is a multidomain protein that plays a critical role in viral replication, with predicted nuclease, helicase, and gene transactivation activities. Herein, we investigate the biochemical activities of the nuclease domain (residues 2-176) of B19V NS1 (NS1-nuc) in sequence-specific DNA binding of the viral origin of replication sequences, as well as those of promoter sequences, including the viral p6 and the human p21, TNFα, and IL-6 promoters previously identified in NS1-dependent transcriptional transactivation. NS1-nuc was found to bind with high cooperativity and with multiple (five to seven) copies to the NS1 binding elements (NSBE) found in the viral origin of replication and the overlapping viral p6 promoter DNA sequence. NS1-nuc was also found to bind cooperatively with at least three copies to the GC-rich Sp1 binding sites of the human p21 gene promoter. Only weak or nonspecific binding of NS1-nuc to the segments of the TNFα and IL-6 promoters was found. Cleavage of DNA by NS1-nuc occurred at the expected viral sequence (the terminal resolution site), but only in single-stranded DNA, and NS1-nuc was found to covalently attach to the 5' end of the DNA at the cleavage site. Off-target cleavage by NS1-nuc was also identified.
Collapse
Affiliation(s)
- Jonathan L Sanchez
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Zachary Romero
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.,Undergraduate Research Opportunities Consortium-Minorities Health Disparity Program (UROC-MHD), University of Arizona Graduate College, University of Arizona , Tucson, Arizona 85721, United States
| | - Angelica Quinones
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.,Undergraduate Research Opportunities Consortium-Minorities Health Disparity Program (UROC-MHD), University of Arizona Graduate College, University of Arizona , Tucson, Arizona 85721, United States.,BUILDing SCHOLARS Program, University of Texas at El Paso , El Paso, Texas 79968, United States
| | - Kristiane R Torgeson
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Li G, Li M, Xu W, Zhou Q, Hu Z, Tang Q, Chen K, Yao Q. Regulation of BmBDV NS1 by phosphorylation: Impact of mutagenesis at consensus phosphorylation sites on ATPase activity and cytopathic effects. J Invertebr Pathol 2015; 133:66-72. [PMID: 26686834 DOI: 10.1016/j.jip.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
Bombyx mori bidensovirus (BmBDV) is a single-stranded DNA virus belonging to the Bidensovirus genus, Bidnaviridae family. Previous studies showed that parvovirus nonstructural protein 1 (NS1) contains endonuclease, helicase, and ATPase activities and that these activities are regulated by serine/threonine phosphorylation. We have reported that residue Thr-184 site of BmBDV NS1 is phosphorylated, and that residues of Thr-181 and Thr-191 are potentially phosphorylated. However, whether phosphorylation affects BmBDV NS1 activities remains unclear. In this study, the substitution of threonine with Glycine at positions 181, 184 and 191 of BmBDV NS1 reduced its ATPase activity. After wild-type NS1 was treated with calf intestinal alkaline phosphatase (CIP), ATPase activity decreased significantly. Moreover, silkworms that were injected with recombinant viruses carrying these NS1 mutations exhibited significant increases in the median lethal time to death compared with silkworms that were injected with a virus that expressed wild-type NS1. In conclusion, these results showed that the ATPase activity and virulence of BmBDV NS1 are regulated via phosphorylation.
Collapse
Affiliation(s)
- Guohui Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China.
| | - Mangmang Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Wu Xu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Qian Zhou
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
7
|
Angelova AL, Geletneky K, Nüesch JPF, Rommelaere J. Tumor Selectivity of Oncolytic Parvoviruses: From in vitro and Animal Models to Cancer Patients. Front Bioeng Biotechnol 2015; 3:55. [PMID: 25954743 PMCID: PMC4406089 DOI: 10.3389/fbioe.2015.00055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/05/2015] [Indexed: 11/23/2022] Open
Abstract
Oncolytic virotherapy of cancer is among the innovative modalities being under development and especially promising for targeting tumors, which are resistant to conventional treatments. Presently, at least a dozen of viruses, belonging to nine different virus families, are being tested within the frames of various clinical studies in cancer patients. Continuously growing preclinical evidence showing that the autonomous rat parvovirus H-1 (H-1PV) is able to kill tumor cells that resist conventional treatments and to achieve a complete cure of various human tumors in animal models argues for its inclusion in the arsenal of oncolytic viruses with an especially promising bench to bedside translation potential. Oncolytic parvovirus safe administration to humans relies on the intrinsic preference of these agents for quickly proliferating, metabolically, and biochemically disturbed tumor versus normal cells (tumor selectivity or oncotropism). The present review summarizes and discusses (i) preclinical evidence of H-1PV innocuousness for normal cells and healthy tissues in vitro and in animals, respectively, (ii) toxicological assessments of H-1PV mono- or combined therapy in tumor-bearing virus-permissive animal models, as well as (iii) historical results of experimental infection of human cancer patients with H-1PV. Altogether, these data argue against a risk of H-1PV inducing significant toxic effects in human patients. This highly favorable safety profile allowed the translation of H-1PV preclinical research into a Phase I/IIa clinical trial being currently in progress.
Collapse
Affiliation(s)
- Assia L Angelova
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Karsten Geletneky
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany ; Department of Neurosurgery, University of Heidelberg , Heidelberg , Germany
| | - Jürg P F Nüesch
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jean Rommelaere
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
8
|
Geletneky K, Nüesch JP, Angelova A, Kiprianova I, Rommelaere J. Double-faceted mechanism of parvoviral oncosuppression. Curr Opin Virol 2015; 13:17-24. [PMID: 25841215 DOI: 10.1016/j.coviro.2015.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 11/17/2022]
Abstract
The H-1 parvovirus (H-1PV) exerts oncosuppressive action that has two components: oncotoxicity and immunostimulation. While many human tumor cells, including conventional drug-resistant ones, can be killed by H-1PV, some fail to support progeny virus production, necessary for infection propagation in neoplastic tissues. This limitation can be overcome through forced selection of H-1PV variants capable of enhanced multiplication and spreading in human tumor cells. In the context of further developing H-1PV for use in cancer therapy, arming it with immunostimulatory CpG motifs under conditions preserving replication and oncolysis enhances its action as an anticancer vaccine adjuvant. A first clinical study of H-1PV treatment in glioma patients has yielded evidence of intratumoral synthesis of the viral oncotoxic protein NS1 and immune cell infiltration.
Collapse
Affiliation(s)
- Karsten Geletneky
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany; Department of Neurosurgery, University Hospital, 69120 Heidelberg, Germany
| | - Jürg Pf Nüesch
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Assia Angelova
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Irina Kiprianova
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Jean Rommelaere
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Nüesch JPF, Rommelaere J. Tumor suppressing properties of rodent parvovirus NS1 proteins and their derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:99-124. [PMID: 25001533 DOI: 10.1007/978-1-4471-6458-6_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer chemotherapy with monospecific agents is often hampered by the rapid development of tumor resistance to the drug used. Therefore, combination treatments aiming at several different targets are sought. Viral regulatory proteins, modified or not, appear ideal for this purpose because of their multimodal killing action against neoplastically transformed cells. The large nonstructural protein NS1 of rodent parvoviruses is an excellent candidate for an anticancer agent, shown to interfere specifically with cancer cell growth and survival. The present review describes the structure, functions, and regulation of the multifunctional protein NS1, its specific interference with cell processes and cell protein activities, and what is known so far about the mechanisms underlying NS1 interference with cancer growth. It further outlines prospects for the development of new, multimodal cancer toxins and their potential applications.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program "Infection and Cancer", Division Tumor Virology (F010), Deutsches Krebsforschungszentrum/German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, D-69120, Heidelberg, Germany,
| | | |
Collapse
|
10
|
Han Y, Wang Q, Qiu Y, Wu W, He H, Zhang J, Hu Y, Zhou X. Periplaneta fuliginosa densovirus nonstructural protein NS1 contains an endonuclease activity that is regulated by its phosphorylation. Virology 2013; 437:1-11. [PMID: 23290078 DOI: 10.1016/j.virol.2012.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 10/26/2012] [Accepted: 12/10/2012] [Indexed: 01/26/2023]
Abstract
Periplaneta fuliginosa densovirus (PfDNV) is a single-stranded DNA virus, belonging to Densovirinae subfamily, Parvoviridae family. Parvovirus nonstructural protein 1 (NS1) contains various activities required for parvoviral DNA replication, like endonuclease, helicase and ATPase, which are regulated by serine/threonine phosphorylation. However, for PfDNV, NS1 endonuclease activity has not been determined. Moreover, for densoviruses, whether NS1 is phosphorylated, and if so, phosphorylation pattern and impact on NS1 activities have not been investigated. Here, we demonstrated that PfDNV NS1 possesses endonuclease activity, covalently attaches to 5'-end of nicking site, and includes an active-site tyrosine (Y178). Moreover, using different phosphatases, we uncovered that both serine/threonine and tyrosine phosphorylations are critical for NS1 endonuclease and helicase activities. Further mass-spec and mutational analyses revealed that Y345 is phosphorylated and functions as a critical regulatory site for NS1 activities. This study should foster our understanding of NS1 activities and regulations in PfDNV and other densoviruses.
Collapse
Affiliation(s)
- Yajuan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
An in-frame deletion in the NS protein-coding sequence of parvovirus H-1PV efficiently stimulates export and infectivity of progeny virions. J Virol 2012; 86:7554-64. [PMID: 22553326 DOI: 10.1128/jvi.00212-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An in-frame, 114-nucleotide-long deletion that affects the NS-coding sequence was created in the infectious molecular clone of the standard parvovirus H-1PV, thereby generating Del H-1PV. The plasmid was transfected and further propagated in permissive human cell lines in order to analyze the effects of the deletion on virus fitness. Our results show key benefits of this deletion, as Del H-1PV proved to exhibit (i) higher infectivity (lower particle-to-infectivity ratio) in vitro and (ii) enhanced tumor growth suppression in vivo compared to wild-type H-1PV. This increased infectivity correlated with an accelerated egress of Del H-1PV progeny virions in producer cells and with an overall stimulation of the viral life cycle in subsequently infected cells. Indeed, virus adsorption and internalization were significantly improved with Del H-1PV, which may account for the earlier appearance of viral DNA replicative forms that was observed with Del H-1PV than wild-type H-1PV. We hypothesize that the internal deletion within the NS2 and/or NS1 protein expressed by Del H-1PV results in the stimulation of some step(s) of the viral life cycle, in particular, a maturation step(s), leading to more efficient nuclear export of infectious viral particles and increased fitness of the virus produced.
Collapse
|
12
|
Ezrin-radixin-moesin family proteins are involved in parvovirus replication and spreading. J Virol 2009; 83:5854-63. [PMID: 19321616 DOI: 10.1128/jvi.00039-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The propagation of autonomous parvoviruses is strongly dependent on the phosphorylation of the major nonstructural protein NS1 by members of the protein kinase C (PKC) family. Minute virus of mice (MVM) replication is accompanied by changes in the overall phosphorylation pattern of NS1, which is newly modified at consensus PKC sites. These changes result, at least in part, from the ability of MVM to modulate the PDK-1/PKC pathway, leading to activation and redistribution of both PDK-1 and PKCeta. We show that proteins of the ezrin-radixin-moesin (ERM) family are essential for virus propagation and spreading through their functions as adaptors for PKCeta. MVM infection led to redistribution of radixin and moesin in the cell, resulting in increased colocalization of these proteins with PKCeta. Radixin was found to control the PKCeta-driven phosphorylation of NS1 and newly synthesized capsids in vivo. Conversely, radixin phosphorylation and activation were driven by the NS1/CKIIalpha complex. Altogether, these data argue for ERM proteins being both targets and modulators of parvovirus infection.
Collapse
|
13
|
Lachmann S, Bär S, Rommelaere J, Nüesch JPF. Parvovirus interference with intracellular signalling: mechanism of PKCeta activation in MVM-infected A9 fibroblasts. Cell Microbiol 2007; 10:755-69. [PMID: 18042254 DOI: 10.1111/j.1462-5822.2007.01082.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autonomous parvoviruses are strongly dependent on the phosphorylation of the major non-structural protein NS1 by members of the protein kinase C (PKC) family. Besides being accompanied with changes in the overall phosphorylation pattern of NS1 and acquiring new modifications at consensus PKC sites, ongoing minute virus of mice (MVM) infections lead to the appearance of new phosphorylated cellular protein species. This prompted us to investigate whether MVM actively interferes with phosphoinositol-dependent kinase (PDK)/PKC signalling. The activity, subcellular localization and phosphorylation status of the protein kinases PDK1, PKCeta and PKClambda were measured in A9 cells in the presence or absence of MVM infection. Parvovirus infection was found to result in activation of both PDK1 and PKCeta, as evidenced by changes in their subcellular distribution and overall (auto)phosphorylation. We show evidence that activation of PKCeta by PDK1 is driven by atypical PKClambda. By modifying the hydrophobic motif of PKCeta, PKClambda appeared to control docking and consecutive phosphorylation of PKCeta's activation-loop by PDK1, a process that was inhibited in vivo in the presence of a dominant-negative PKClambda mutant.
Collapse
Affiliation(s)
- Sylvie Lachmann
- Program 'Infection and Cancer', Abteilung F010 and Institut National de la Santé et de la Recherche Médicale U701, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | |
Collapse
|
14
|
Link MA, Silva LA, Schaffer PA. Cathepsin B mediates cleavage of herpes simplex virus type 1 origin binding protein (OBP) to yield OBPC-1, and cleavage is dependent upon viral DNA replication. J Virol 2007; 81:9175-82. [PMID: 17553869 PMCID: PMC1951438 DOI: 10.1128/jvi.00676-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the seven viral proteins required for herpes simplex virus type 1 (HSV-1) DNA replication have been identified, the mechanism by which viral DNA synthesis is regulated is unclear. HSV-1 DNA replication is thought to occur in two stages: origin-dependent DNA replication (stage I) mediated by the origin binding protein (OBP), followed by origin- and OBP-independent DNA replication (stage II). The mechanism that facilitates the switch from stage I to stage II is unknown; however, it must involve the loss of OBP function or OBP itself from the replication initiation complex. Previous studies from this laboratory identified a transcript (UL8.5) and protein (OBPC) that are in frame with and comprise the C terminus of the gene specifying OBP. Because of its DNA binding ability, OBPC has been hypothesized to mediate the switch from stage I to stage II. Here, we identify a second protein (OBPC-2) that is also in frame with the C terminus of OBP but comprises a smaller portion of the protein. We demonstrate that the protein originally identified (OBPC-1) is a cathepsin B-mediated cleavage product of OBP, while OBPC-2 may be the product of the UL8.5 transcript. We further demonstrate that the cleavage of OBP to yield OBPC-1 is dependent upon viral DNA replication. These results suggest that cleavage may be a mechanism by which OBP levels and/or activity are regulated during infection.
Collapse
Affiliation(s)
- Malen A Link
- Department of Medicine, Harvard Medical School at the Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN 123, Boston, MA 02215, USA
| | | | | |
Collapse
|
15
|
Nüesch JPF, Rommelaere J. NS1 interaction with CKII alpha: novel protein complex mediating parvovirus-induced cytotoxicity. J Virol 2006; 80:4729-39. [PMID: 16641266 PMCID: PMC1472057 DOI: 10.1128/jvi.80.10.4729-4739.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During a productive infection, the prototype strain of the parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations in permissive A9 fibroblasts, culminating in cell lysis at the end of infection. These cytopathic effects (CPE) result from rearrangements and destruction of the cytoskeletal micro- and intermediate filaments, while other structures such as the nuclear lamina and particularly the microtubule network remain protected throughout the infection (J. P. F. Nüesch et al., Virology 331:159-174, 2005). In order to unravel the mechanism(s) by which parvoviruses trigger CPE, we searched for NS1 interaction partners by differential affinity chromatography, using distinct NS1 mutants debilitated specifically for this function. Thereby, we isolated an NS1 partner polypeptide, whose interaction with NS1 correlated with the competence of the viral product for CPE induction, and further identified it by tandem mass spectrometry and Western blotting analyses to consist of the catalytic subunit of casein kinase II, CKIIalpha. This interaction of NS1 with CKIIalpha suggested interference by the viral protein with intracellular signaling. Using permanent cell lines expressing dominant-negative CKIIalpha mutants, we were able to show that this kinase activity was indeed specifically involved in parvoviral CPE and progeny particle release. Furthermore, the NS1/CKIIalpha complex proved to be able to specifically phosphorylate viral capsids, indicating a mediator function of NS1 for CKII activity and specificity, at least in vitro. Altogether our data suggest that parvovirus-induced CPE is mediated by NS1 interference with intracellular CKII signaling.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program Infection and Cancer, Abt. F010 and INSERM U701, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | |
Collapse
|
16
|
Nüesch JPF, Lachmann S, Rommelaere J. Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice. Virology 2005; 331:159-74. [PMID: 15582663 DOI: 10.1016/j.virol.2004.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/10/2004] [Accepted: 10/08/2004] [Indexed: 11/19/2022]
Abstract
During a productive infection, the prototype strain of parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations to the fibroblast host cell A9, resulting in cell lysis and progeny virus release. In order to understand the mechanisms underlying these changes, we characterized the fate of various cytoskeletal filaments and investigated the nuclear/cytoplasmic compartmentalization of infected cells. While most pronounced effects could be seen on micro- and intermediate filaments, manifest in dramatic rearrangements and degradation of filamentous (F-)actin and vimentin structures, only little impact could be seen on microtubules or the nuclear envelope during the entire monitored time of infection. To further analyze the disruption of the cytoskeletal structures, we investigated the viral impact on selective regulatory pathways. Thereby, we found a correlation between microtubule stability and MVM-induced phosphorylation of alpha/beta tubulin. In contrast, disassembly of actin filaments late in infection could be traced back to the disregulation of two F-actin associated proteins gelsolin and Wiscott-Aldrich Syndrome Protein (WASP). Thereby, an increase in the amount of gelsolin, an F-actin severing protein was observed during infection, accounting for the disruption of stress fibers upon infection. Concomitantly, the actin polymerization activity also diminished due to a loss of WASP, the activator protein of the actin polymerization machinery the Arp2/3 complex. No effects could be seen in amount and distribution of other F-actin regulatory factors such as cortactin, cofilin, and profilin. In summary, the selective attack of MVM towards distinct host cell cytoskeletal structures argues for a regulatory feature during infection, rather than a collapse of the host cell as a mere side effect of virus production.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program of Applied Tumor Virology, Abteilung F010 and Institut National de la Santé et de la Recherche Médicale U375, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
17
|
Dobransky T, Doherty-Kirby A, Kim AR, Brewer D, Lajoie G, Rylett RJ. Protein Kinase C Isoforms Differentially Phosphorylate Human Choline Acetyltransferase Regulating Its Catalytic Activity. J Biol Chem 2004; 279:52059-68. [PMID: 15381704 DOI: 10.1074/jbc.m407085200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Choline acetyltransferase (ChAT) synthesizes acetylcholine in cholinergic neurons; regulation of its activity or response to physiological stimuli is poorly understood. We show that ChAT is differentially phosphorylated by protein kinase C (PKC) isoforms on four serines (Ser-440, Ser-346, Ser-347, and Ser-476) and one threonine (Thr-255). This phosphorylation is hierarchical, with phosphorylation at Ser-476 required for phosphorylation at other serines. Phosphorylation at some, but not all, sites regulates basal catalysis and activation. Ser-476 with Ser-440 and Ser-346/347 maintains basal ChAT activity. Ser-440 is targeted by Arg-442 for phosphorylation by PKC. Arg-442 is mutated spontaneously (R442H) in congenital myasthenic syndrome, rendering ChAT inactive and causing neuromuscular failure. This mutation eliminates phosphorylation of Ser-440, and Arg-442, not phosphorylation of Ser-440, appears primarily responsible for ChAT activity, with Ser-440 phosphorylation modulating catalysis. Finally, basal ChAT phosphorylation in neurons is mediated predominantly by PKC at Ser-476, with PKC activation increasing phosphorylation at Ser-440 and enhancing ChAT activity.
Collapse
Affiliation(s)
- Tomas Dobransky
- Department of Physiology, University of Western Ontario and Cell Biology Research Group, and Robarts Research Institute, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Daeffler L, Hörlein R, Rommelaere J, Nüesch JPF. Modulation of minute virus of mice cytotoxic activities through site-directed mutagenesis within the NS coding region. J Virol 2004; 77:12466-78. [PMID: 14610171 PMCID: PMC262581 DOI: 10.1128/jvi.77.23.12466-12478.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Late in infection, parvovirus minute virus of mice (MVMp) induces the lysis of mouse A9 fibroblasts. This effect depends on the large nonstructural phosphoprotein NS1, which plays in addition a major role in viral DNA replication and progeny particle production. Since the NS1 C-terminal region is subjected to late phosphorylation events and protein kinase C (PKC) family members regulate NS1 replicative activities, the present study was conducted to determine the impact of PKCs on NS1 cytotoxic functions. To this end, we performed site-directed mutagenesis, substituting alanine residues for two consensus PKC-phosphorylation sites located within the NS1 C-terminal region, T585 and S588. Although these substitutions had no detectable effect on virus multiplication in a single-round infection, the NS1-585A mutant virus was significantly less toxic to A9 cells than wild-type MVMp, whereas the NS1-588A mutant virus was endowed with a higher killing potential. These alterations correlated with specific changes in the late phosphorylation pattern of the mutant NS1 proteins compared to the wild-type polypeptide. Since the mutations introduced in this region of the viral genome also made changes in the minor nonstructural protein NS2, a contribution of this polypeptide to the above-mentioned phenotypes of mutant viruses cannot be excluded at present. However, the involvement of NS1 in these phenotypes was directly supported by the respective reduced and enhanced capacity of NS1-585A and NS1-588A recombinant proteins for inducing morphological alterations and cell detachment in transfected A9 cultures. Altogether, these data suggest that late-occurring phosphorylation of NS1 specifically regulates the cytotoxic functions of the viral product and that residues T585 and S588 contribute to this control in an antagonistic way.
Collapse
Affiliation(s)
- Laurent Daeffler
- Division F010, Applied Tumour Virology Program, and Institut National de la Santé et de la Recherche Médicale U375, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | |
Collapse
|
19
|
Lachmann S, Rommeleare J, Nüesch JPF. Novel PKCeta is required to activate replicative functions of the major nonstructural protein NS1 of minute virus of mice. J Virol 2003; 77:8048-60. [PMID: 12829844 PMCID: PMC161934 DOI: 10.1128/jvi.77.14.8048-8060.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multifunctional protein NS1 of minute virus of mice (MVMp) is posttranslationally modified and at least in part regulated by phosphorylation. The atypical lambda isoform of protein kinase C (PKClambda) phosphorylates residues T435 and S473 in vitro and in vivo, leading directly to an activation of NS1 helicase function, but it is insufficient to activate NS1 for rolling circle replication. The present study identifies an additional cellular protein kinase phosphorylating and regulating NS1 activities. We show in vitro that the recombinant novel PKCeta phosphorylates NS1 and in consequence is able to activate the viral polypeptide in concert with PKClambda for rolling circle replication. Moreover, this role of PKCeta was confirmed in vivo. We thereby created stably transfected A9 mouse fibroblasts, a typical MVMp-permissive host cell line with Flag-tagged constitutively active or inactive PKCeta mutants, in order to alter the activity of the NS1 regulating kinase. Indeed, tryptic phosphopeptide analyses of metabolically (32)P-labeled NS1 expressed in the presence of a dominant-negative mutant, PKCetaDN, showed a lack of distinct NS1 phosphorylation events. This correlates with impaired synthesis of viral DNA replication intermediates, as detected by Southern blotting at the level of the whole cell population and by BrdU incorporation at the single-cell level. Remarkably, MVM infection triggers an accumulation of endogenous PKCeta in the nuclear periphery, suggesting that besides being a target for PKCeta, parvovirus infections may also affect the regulation of this NS1 regulating kinase. Altogether, our results underline the tight interconnection between PKC-mediated signaling and the parvoviral life cycle.
Collapse
Affiliation(s)
- Sylvie Lachmann
- Applied Tumour Virology Program, Department F010 and Institut National de la Santé et de la Recherche Médicale U375, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
20
|
Nüesch JPF, Lachmann S, Corbau R, Rommelaere J. Regulation of minute virus of mice NS1 replicative functions by atypical PKClambda in vivo. J Virol 2003; 77:433-42. [PMID: 12477848 PMCID: PMC140590 DOI: 10.1128/jvi.77.1.433-442.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minute virus of mice NS1 protein is a multifunctional phosphoprotein endowed with a variety of enzymatic and regulatory activities necessary for progeny virus particle production. To regulate all of its different functions in the course of a viral infection, NS1 has been proposed to be modulated by posttranslational modifications, in particular, phosphorylation. Indeed, it was shown that the NS1 phosphorylation pattern is altered during the infectious cycle and that the biochemical profile of the protein is dependent on the phosphorylation state of the polypeptide. Moreover, in vitro approaches have identified members of the protein kinase C (PKC) family, in particular, atypical PKC, as regulators of viral DNA replication through the phosphorylation of NS1 residues T435 and S473, thereby activating the protein for DNA unwinding activities. In order to substantiate these findings in vivo, we produced NS1 in the presence of a dominant-negative PKClambda mutant and characterized the purified protein in vitro. The NS1 protein produced under these conditions was found to be only partially phosphorylated and as a consequence to be deficient for viral DNA replication. However, it could be rescued for this viral function by treatment with recombinant activated PKClambda. Our data clearly demonstrate that NS1 is a target for PKClambda phosphorylation in vivo and that this modification is essential for the helicase activity of the viral polypeptide. In addition, the phosphorylation of NS1 at residues T435 and S473 appeared to occur mainly in the nucleus, providing further evidence for the involvement of PKClambda which, unlike PKCzeta, accumulates in the nuclear compartment of infected cells.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program of Applied Tumor Virology, Abteilung F0100, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | | | |
Collapse
|
21
|
Narasimhan D, Collaco R, Kalman-Maltese V, Trempe JP. Hyper-phosphorylation of the adeno-associated virus Rep78 protein inhibits terminal repeat binding and helicase activity. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:298-305. [PMID: 12084576 DOI: 10.1016/s0167-4781(02)00394-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The replication (Rep) proteins of adeno-associated virus (AAV) play prominent roles in regulation of viral DNA replication, RNA transcription, assembly of an infectious virion and establishment of the provirus. We have previously demonstrated that all four Rep proteins are phosphorylated on serine residues [Virology 23 (1997) 332-336]. Reversible phosphorylation may provide a mechanism for regulating Rep protein function. To test this hypothesis, we used the phosphatase inhibitor okadaic acid (OA) to obtain hyper-phosphorylated Rep proteins. OA treatment of AAV- and adenovirus (Ad)-infected cells and baculovirus-infected insect cells at a concentration of 100 nM resulted in a significant increase in Rep protein phosphorylation. This concentration suggests that protein phosphatase 2A (PP2A) is one of the enzymes involved in regulation of Rep phosphorylation. The increased phosphorylation occurred primarily on serine residues with a detectable amount of phosphate on threonine. Hyper-phosphorylation of Rep78 resulted in reduced binding to the AAV origin of DNA replication. Hyper-phosphorylated Rep78 also had diminished helicase activity. These results suggest that regulated phosphorylation of Rep78 plays a role in controlling Rep functions in the virus replication cycle.
Collapse
Affiliation(s)
- Diwahar Narasimhan
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, OH 43614-5804, USA
| | | | | | | |
Collapse
|
22
|
Rubio MP, Guerra S, Almendral JM. Genome replication and postencapsidation functions mapping to the nonstructural gene restrict the host range of a murine parvovirus in human cells. J Virol 2001; 75:11573-82. [PMID: 11689639 PMCID: PMC114744 DOI: 10.1128/jvi.75.23.11573-11582.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The infection outcome of the Parvoviridae largely relies on poorly characterized intracellular factors modulated by proliferation, differentiation, and transformation of host cells. We have studied the interactions displayed by the highly homologous p and i strains of the murine parvovirus minute virus of mice (MVM), with a series of transformed cells of rat (C6) and human (U373, U87, SW1088, SK-N-SH) nervous system origin, seeking for molecular mechanisms governing parvovirus host range. The MVMp infection of C6 and U373 cells was cytotoxic and productive, whereas the other nervous cells behaved essentially as resistant to this virus. In contrast, MVMi did not complete its life cycle in any of the human nervous cells, though it efficiently killed the astrocytic tumor cells by two types of nonproductive infections: (i) normal synthesis of all viral macromolecules with a late defect in infectious virion maturation and release to the medium in U373; and (ii) high levels of accumulation of the full set of viral messenger RNAs and of both nonstructural (NS-1) and structural (VP-1 and VP-2) proteins, under a very low viral DNA amplification, in U87 and SW1088 cells. Further analyses showed that U87 was permissive for nuclear transport of MVMi proteins, leading to efficient assembly of empty viral capsids with a normal phosphorylation and VP1-to-VP2 ratio. The DNA amplification blockade in U87 occurred after conversion of the incoming MVMi genome to the monomeric replicative form, and it operated independently of the delivery pathway used by the viral particle, since it could not be overcome by transfection with cloned infectious viral DNA. Significantly, a chimeric MVMi virus harboring the coding region of the nonstructural (NS) gene replaced with that of MVMp showed a similar pattern of restriction in U87 cells as the parental MVMi virus, and it attained in U373 cultures an infectious titer above 100-fold higher under equal levels of DNA amplification and genome encapsidation. The results suggest that the activity of complexes formed by the NS polypeptides and recruited cellular factors restrict parvovirus DNA amplification in a cell type-dependent manner and that NS functions may in addition determine MVM host range acting at postencapsidation steps of viral maturation. These data are relevant for understanding the increased multiplication of autonomous parvovirus in some transformed cells and the transduction efficacy of nonreplicative parvoviral vectors, as well as a general remark on the mechanisms by which NS genes may regulate viral tropism and pathogenesis.
Collapse
Affiliation(s)
- M P Rubio
- Centro de Biología Molecular "Severo Ochoa" (Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas), 28049 Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
23
|
Nüesch JP, Christensen J, Rommelaere J. Initiation of minute virus of mice DNA replication is regulated at the level of origin unwinding by atypical protein kinase C phosphorylation of NS1. J Virol 2001; 75:5730-9. [PMID: 11390575 PMCID: PMC114289 DOI: 10.1128/jvi.75.13.5730-5739.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minute virus of mice nonstructural protein NS1 is a multifunctional protein that is involved in many processes necessary for virus propagation. To perform its distinct activities in timely coordinated manner, NS1 was suggested to be regulated by posttranslational modifications, in particular phosphorylation. In fact, NS1 replicative functions are dependent on protein kinase C (PKC) phosphorylation, most likely due to alteration of the biochemical profile of the viral product as determined by comparing native NS1 with its dephosphorylated counterpart. Through the characterization of NS1 mutants at individual PKC consensus phosphorylation sites for their biochemical activities and nickase function, we were able to identify two target atypical PKC phosphorylation sites, T435 and S473, serving as regulatory elements for the initiation of viral DNA replication. Furthermore, by dissociating the energy-dependent helicase activity from the ATPase-independent trans esterification reaction using partially single-stranded substrates, we could demonstrate that atypical PKC regulation of NS1 nickase activity occurs at the level of origin unwinding prior to trans esterification.
Collapse
Affiliation(s)
- J P Nüesch
- Program of Applied Tumor Virology, Abteilung F0100, INSERM U375, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
24
|
Abstract
The herpes simplex virus type 1 (HSV-1) origin binding protein (OBP), the product of the UL9 gene, is one of seven HSV-encoded proteins required for viral DNA replication. OBP performs multiple functions characteristic of a DNA replication initiator protein, including origin-specific DNA binding and ATPase and helicase activities, as well as the ability to interact with viral and cellular proteins involved in DNA replication. Replication initiator proteins in other systems, including those of other DNA viruses, are known to be regulated by phosphorylation; however, the role of phosphorylation in OBP function has been difficult to assess due to the low level of OBP expression in HSV-infected cells. Using a metabolic labeling and immunoprecipitation approach, we obtained evidence that OBP is phosphorylated during HSV-1 infection. Kinetic analysis of metabolically labeled cells indicated that the levels of OBP expression and phosphorylation increased at approximately 4 h postinfection. Notably, when expressed from a transfected plasmid, a recombinant baculovirus, or a recombinant adenovirus (AdOBP), OBP was phosphorylated minimally, if at all. In contrast, superinfection of AdOBP-infected cells with an OBP-null mutant virus increased the level of OBP phosphorylation approximately threefold, suggesting that HSV-encoded viral or HSV-induced cellular factors enhance the level of OBP phosphorylation. Using HSV mutants inhibited at sequential stages of the viral life cycle, we demonstrated that this increase in OBP phosphorylation is dependent on early protein synthesis and is independent of viral DNA replication. Based on gel mobility shift assays, phosphorylation does not appear to affect the ability of OBP to bind to the HSV origins.
Collapse
Affiliation(s)
- J A Isler
- Department of Microbiology and Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
25
|
Corbau R, Duverger V, Rommelaere J, Nüesch JP. Regulation of MVM NS1 by protein kinase C: impact of mutagenesis at consensus phosphorylation sites on replicative functions and cytopathic effects. Virology 2000; 278:151-67. [PMID: 11112491 DOI: 10.1006/viro.2000.0600] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Minute virus of mice NS1, an 83-kDa mainly nuclear phosphoprotein, is the only viral nonstructural protein required in all cell types and it is involved in multiple processes necessary for virus propagation. The diversity of functions assigned to NS1, together with the variation of its complex phosphorylation pattern during infection, suggested that the various activities of NS1 could be regulated by distinct phosphorylation events. So far, it has been demonstrated that NS1 replicative functions, in particular, DNA-unwinding activities, are regulated by protein kinase C (PKC), as exemplified by the modulation of NS1 helicase activity by PKClambda phosphorylation. In order to determine further impact of phosphorylation on NS1 functions, including the induction of cytopathic effects, a mutational approach was pursued in order to produce NS1 variants harboring amino acid substitutions at candidate PKC target residues. Besides the determination of two additional in vivo phosphorylation sites in NS1, this mutagenesis allowed the segregation of distinct NS1 functions from one another, generating NS1 variants with a distinct activity profile. Thus, we obtained NS1 mutants that were fully proficient for trans activation of the viral P38 promoter, while being impaired in their replicative functions. Moreover, the alterations of specific PKC phosphorylation sites gave rise to NS1 polypeptides that exerted reduced cytotoxicity, leading to sustained gene expression, while keeping functions necessary for progeny virus production, i.e., viral DNA replication and activation of the capsid gene promoter. These data suggested that in the course of a viral infection, NS1 may undergo a shift from productive to cytotoxic functions as a result of a phosphorylation-dependent regulation.
Collapse
Affiliation(s)
- R Corbau
- Program of Applied Tumor Virology, Institut National de la Santé et de la Recherche Médicale U375, Heidelberg, Germany
| | | | | | | |
Collapse
|