1
|
Motalab M, Paul R, Saha S, Mojumder S, Ahmed T, Suhling JC. Atomistic analysis of the thermomechanical properties of Sn-Ag-Cu solder materials at the nanoscale with the MEAM potential. J Mol Model 2019; 25:59. [PMID: 30741336 DOI: 10.1007/s00894-019-3939-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Sn-Ag-Cu, commonly known as SAC, is considered to be among the most promising of all lead-free solder alloys. Research aimed at making electronic components smaller has pointed to the possible use of nanosized solder joints in the future. In this study, for the first time, molecular dynamics simulations were used to analyze the thermomechanical properties of SAC solder materials at the nanoscale. The modified embedded-atom method (MEAM) potential was utilized in the simulations of the SAC solder materials. The dimensions of the structures considered were 55 × 55 × 59 Å. Four different SAC solders were studied, with Ag percentages ranging from 1% to 4% (SAC105, SAC205, SAC305, and SAC405). Thus, the effects of the Ag percentage on the thermomechanical properties of the solder at the nanoscale were identified. The impacts of the temperature on the uniaxial tensile properties and coefficient of thermal expansion (CTE) values of the SAC solder materials were investigated by performing simulations of the materials at different temperatures. Results suggest that as the Ag percentage increases, the uniaxial tensile strength and CTE of the solder increase whereas the failure strain and thermal conductivity decrease. The results presented should prove useful in the electronic packaging industry.
Collapse
Affiliation(s)
- M Motalab
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - R Paul
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - S Saha
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - S Mojumder
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - T Ahmed
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - J C Suhling
- Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
2
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
3
|
Han SS, Lee J, Jung Y, Kang MH, Hong JH, Cha MS, Park YJ, Lee E, Yoon CH, Bae YS. Development of oral CTL vaccine using a CTP-integrated Sabin 1 poliovirus-based vector system. Vaccine 2015; 33:4827-36. [PMID: 26241946 DOI: 10.1016/j.vaccine.2015.07.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/24/2015] [Accepted: 07/23/2015] [Indexed: 01/06/2023]
Abstract
We developed a CTL vaccine vector by modification of the RPS-Vax system, a mucosal vaccine vector derived from a poliovirus Sabin 1 strain, and generated an oral CTL vaccine against HIV-1. A DNA fragment encoding a cytoplasmic transduction peptide (CTP) was integrated into the RPS-Vax system to generate RPS-CTP, a CTL vaccine vector. An HIV-1 p24 cDNA fragment was introduced into the RPS-CTP vector system and a recombinant poliovirus (rec-PV) named vRPS-CTP/p24 was produced. vRPS-CTP/p24 was genetically stable and efficiently induced Th1 immunity and p24-specific CTLs in immunized poliovirus receptor-transgenic (PVR-Tg) mice. In challenge experiments, PVR-Tg mice that were pre-immunized orally with vRPS-CTP/p24 were resistant to challenge with a lethal dose of p24-expressing recombinant vaccinia virus (rMVA-p24). These results suggested that the RPS-CTP vector system had potential for developing oral CTL vaccines against infectious diseases.
Collapse
Affiliation(s)
- Seung-Soo Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Jinjoo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Yideul Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Myeong-Ho Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Jung-Hyub Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Min-Suk Cha
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Yu-Jin Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Ezra Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Cheol-Hee Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
4
|
Steil BP, Barton DJ. Cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Res 2009; 139:240-52. [PMID: 18773930 PMCID: PMC2692539 DOI: 10.1016/j.virusres.2008.07.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
Our understanding of picornavirus RNA replication has improved over the past 10 years, due in large part to the discovery of cis-active RNA elements (CREs) within picornavirus RNA genomes. CREs function as templates for the conversion of VPg, the Viral Protein of the genome, into VPgpUpU(OH). These so called CREs are different from the previously recognized cis-active RNA sequences and structures within the 5' and 3' NTRs of picornavirus genomes. Two adenosine residues in the loop of the CRE RNA structures allow the viral RNA-dependent RNA polymerase 3D(Pol) to add two uridine residues to the tyrosine residue of VPg. Because VPg and/or VPgpUpU(OH) prime the initiation of viral RNA replication, the asymmetric replication of viral RNA could not be explained without an understanding of the viral RNA template involved in the conversion of VPg into VPgpUpU(OH) primers. We review the growing body of knowledge regarding picornavirus CREs and discuss how CRE RNAs work coordinately with viral replication proteins and other cis-active RNAs in the 5' and 3' NTRs during RNA replication.
Collapse
Affiliation(s)
- Benjamin P Steil
- Department of Microbiology and Program in Molecular Biology, University of Colorado Denver, School of Medicine, United States
| | | |
Collapse
|
5
|
Kim CS, Seol SK, Song OK, Park JH, Jang SK. An RNA-binding protein, hnRNP A1, and a scaffold protein, septin 6, facilitate hepatitis C virus replication. J Virol 2007; 81:3852-65. [PMID: 17229681 PMCID: PMC1866118 DOI: 10.1128/jvi.01311-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-sense single-stranded RNA virus. NS5b is an RNA-dependent RNA polymerase that polymerizes the newly synthesized RNA. HCV likely uses host proteins for its replication, similar to other RNA viruses. To identify the cellular factors involved in HCV replication, we searched for cellular proteins that interact with the NS5b protein. HnRNP A1 and septin 6 proteins were identified by coimmunoprecipitation and yeast two-hybrid screening, respectively. Interestingly, septin 6 protein also interacts with hnRNP A1. Moreover, hnRNP A1 interacts with the 5'-nontranslated region (5' NTR) and the 3' NTR of HCV RNA containing the cis-acting elements required for replication. Knockdown of hnRNP A1 and overexpression of C-terminally truncated hnRNP A1 reduced HCV replication. In addition, knockdown of septin 6 and overexpression of N-terminally truncated septin 6 inhibited HCV replication. These results indicate that the host proteins hnRNP A1 and septin 6 play important roles in the replication of HCV through RNA-protein and protein-protein interactions.
Collapse
Affiliation(s)
- Chon Saeng Kim
- PBC, Department of Life Science, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
6
|
Teterina NL, Gorbalenya AE, Egger D, Bienz K, Rinaudo MS, Ehrenfeld E. Testing the modularity of the N-terminal amphipathic helix conserved in picornavirus 2C proteins and hepatitis C NS5A protein. Virology 2005; 344:453-67. [PMID: 16226781 PMCID: PMC7111807 DOI: 10.1016/j.virol.2005.08.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/04/2005] [Accepted: 08/24/2005] [Indexed: 01/06/2023]
Abstract
The N-terminal region of the picornaviral 2C protein is predicted to fold into an amphipathic α-helix that is responsible for the protein's association with membranes in the viral RNA replication complex. We have identified a similar sequence in the N-terminal region of NS5A of hepaciviruses that was recently shown to form an amphipathic α-helix. The conservation of the N-terminal region in two apparently unrelated proteins of two different RNA virus families suggested that this helix might represent an independent module. To test this hypothesis, we constructed chimeric poliovirus (PV) genomes in which the sequence encoding the N-terminal 2C amphipathic helix was replaced by orthologous sequences from other picornaviral genomes or a similar sequence from NS5A of HCV. Effects of the mutations were assessed by measuring the accumulation of viable virus and viral RNA in HeLa cells after transfection, examining membrane morphology in cells expressing chimeric proteins and by in vitro analysis of RNA translation, protein processing and negative strand RNA synthesis in HeLa cell extracts. The chimeras manifested a wide range of growth and RNA synthesis phenotypes. The results are compatible with our hypothesis, although they demonstrate that helix exchangeability may be restricted due to requirements for interactions with other viral components involved in virus replication.
Collapse
Affiliation(s)
- Natalya L Teterina
- Laboratory of Infectious Diseases, LID, NIAID, NIH, Bldg. 50, Room 6122, 50 South Drive, Bethesda, MD 20892-8011, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Arita M, Shimizu H, Nagata N, Ami Y, Suzaki Y, Sata T, Iwasaki T, Miyamura T. Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. J Gen Virol 2005; 86:1391-1401. [PMID: 15831951 DOI: 10.1099/vir.0.80784-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease and is sometimes associated with serious neurological disorders. In this study, an attempt was made to identify molecular determinants of EV71 attenuation of neurovirulence in a monkey infection model. An infectious cDNA clone of the virulent strain of EV71 prototype BrCr was constructed; temperature-sensitive (ts) mutations of an attenuated strain of EV71 or of poliovirus (PV) Sabin vaccine strains were then introduced into the infectious clone. In vitro and in vivo phenotypes of the parental and mutant viruses were analysed in cultured cells and in cynomolgus monkeys, respectively. Mutations in 3D polymerase (3D(pol)) and in the 3' non-translated region (NTR), corresponding to ts determinants of Sabin 1, conferred distinct temperature sensitivity to EV71. An EV71 mutant [EV71(S1-3')] carrying mutations in the 5' NTR, 3D(pol) and in the 3' NTR showed attenuated neurovirulence, resulting in limited spread of virus in the central nervous system of monkeys. These results indicate that EV71 and PV1 share common genetic determinants of neurovirulence in monkeys, despite the distinct properties in their original pathogenesis.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Yasushi Ami
- Division of Experimental Animals Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Yuriko Suzaki
- Division of Experimental Animals Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Takuya Iwasaki
- Division of Clinical Investigation, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
8
|
Boni S, Lavergne JP, Boulant S, Cahour A. Hepatitis C virus core protein acts as a trans-modulating factor on internal translation initiation of the viral RNA. J Biol Chem 2005; 280:17737-48. [PMID: 15760888 DOI: 10.1074/jbc.m501826200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Translation initiation of hepatitis C virus (HCV) RNA occurs through an internal ribosome entry site (IRES) located at its 5' end. As a positive-stranded virus, HCV uses the genomic RNA template for translation and replication, but the transition between these two processes remains poorly understood. HCV core protein (HCV-C) has been proposed as a good candidate to modulate such a regulation. However, current data are still the subject of controversy in attributing any potential role in HCV translation to the HCV core protein. Here we demonstrate that HCV-C displays binding activities toward both HCV IRES and the 40 S ribosomal subunit by using centrifugation on sucrose gradients. To gain further insight into these interactions, we investigated the effect of exogenous addition of purified HCV-C on HCV IRES activity by using an in vitro reporter assay. We found that HCV IRES-mediated translation was specifically modulated by HCV-C provided in trans, in a dose-dependent manner, with up to a 5-fold stimulation of the IRES efficiency upon addition of low amounts of HCV-C, followed by a decrease at high doses. Interestingly, mutations within some domains of the IRES as well as the presence of an upstream reporter gene both lead to changes in the expected effects, consistent with the high dependence of HCV IRES function on its overall structure. Collectively, these results indicate that the HCV core protein is involved in a tight modulation of HCV translation initiation, depending on its concentration, and they suggest an important biological role of this protein in viral gene expression.
Collapse
Affiliation(s)
- Sébastien Boni
- Laboratoire de Virologie, Centre Européen de Recherche en Virologie et Immunologie, Unité Propre de Recherche et d'Enseignement Supérier EA 2387, IFR 113 Immunité et Infection, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
9
|
Murray KE, Steil BP, Roberts AW, Barton DJ. Replication of poliovirus RNA with complete internal ribosome entry site deletions. J Virol 2004; 78:1393-402. [PMID: 14722294 PMCID: PMC321374 DOI: 10.1128/jvi.78.3.1393-1402.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
cis-acting RNA sequences and structures in the 5' and 3' nontranslated regions of poliovirus RNA interact with host translation machinery and viral replication proteins to coordinately regulate the sequential translation and replication of poliovirus RNA. The poliovirus internal ribosome entry site (IRES) in the 5' nontranslated region (NTR) has been implicated as a cis-active RNA required for both viral mRNA translation and viral RNA replication. To evaluate the role of the IRES in poliovirus RNA replication, we exploited the advantages of cell-free translation-replication reactions and preinitiation RNA replication complexes. Genetic complementation with helper mRNAs allowed us to create preinitiation RNA replication complexes containing RNA templates with defined deletions in the viral open reading frame and the IRES. A series of deletions revealed that no RNA elements of either the viral open reading frame or the IRES were required in cis for negative-strand RNA synthesis. The IRES was dispensable for both negative- and positive-strand RNA syntheses. Intriguingly, although small viral RNAs lacking the IRES replicated efficiently, the replication of genome length viral RNAs was stimulated by the presence of the IRES. These results suggest that RNA replication is not directly dependent on a template RNA first functioning as an mRNA. These results further suggest that poliovirus RNA replication is not absolutely dependent on any protein-RNA interactions involving the IRES.
Collapse
Affiliation(s)
- Kenneth E Murray
- Department of Microbiology. Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
10
|
McKnight KL, Sandefur S, Phipps KM, Heinz BA. An adenine-to-guanine nucleotide change in the IRES SL-IV domain of picornavirus/hepatitis C chimeric viruses leads to a nonviable phenotype. Virology 2003; 317:345-58. [PMID: 14698672 DOI: 10.1016/j.virol.2003.08.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The inability for the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) to be readily studied in the context of viral replication has been circumvented by constructing chimeras such as with poliovirus (PV), in which translation of the genome polyprotein is under control of the HCV IRES. During our attempts to configure the PV/HCV chimera for our drug discovery efforts, we discovered that an adenine- (A) to-guanine (G) change at nt 350 in domain IV of the HCV IRES resulted in a nonviable phenotype. Similarly, a mengovirus (MV)/HCV chimera using the same configuration with a G at nt 350 (G-350) was found to be nonviable. In contrast, a bovine viral diarrhea virus (BVDV)/HCV chimera remained viable with G-350 in the HCV IRES insert. Second-site, resuscitating mutations were identified from the G-350 PV/HCV and MV/HCV viruses after blind passaging. For both viruses, the resuscitating mutations involved destabilization of domain IV in the HCV IRES. The nonviability of G-350 in the picornavirus/HCV chimeric background might be linked to translation efficiency as indicated by analyses with dual reporter and PV/HCV replicon constructs.
Collapse
Affiliation(s)
- Kevin L McKnight
- Eli Lilly and Company, Lilly Research Laboratories, LCC, Indianapolis, IN 46225, USA.
| | | | | | | |
Collapse
|
11
|
Kim YK, Lee SH, Kim CS, Seol SK, Jang SK. Long-range RNA-RNA interaction between the 5' nontranslated region and the core-coding sequences of hepatitis C virus modulates the IRES-dependent translation. RNA (NEW YORK, N.Y.) 2003; 9:599-606. [PMID: 12702818 PMCID: PMC1370425 DOI: 10.1261/rna.2185603] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 02/04/2003] [Indexed: 05/18/2023]
Abstract
Hepatitis C virus (HCV) is a positive-sense RNA virus approximately 9600 bases long. An internal ribosomal entry site (IRES) spans the 5' nontranslated region, which is the most conserved and highly structured region of the HCV genome. In this study, we demonstrate that nucleotides 428-442 of the HCV core-coding sequence anneal to nucleotides 24-38 of the 5'NTR, and that this RNA-RNA interaction modulates IRES-dependent translation in rabbit reticulocyte lysate and in HepG2 cells. The inclusion of the core-coding sequence (nucleotides 428-442) significantly suppressed the translational efficiency directed by HCV IRES in dicistronic reporter systems, and this suppression was relieved by site-directed mutations that blocked the long-range interaction between nucleotides 24-38 and 428-442. These findings suggest that the long-range interaction between the HCV 5'NTR and the core-coding nucleotide sequence down-regulate cap-independent translation via HCV IRES. The modulation of protein synthesis by long-range RNA-RNA interaction may play a role in the regulation of viral gene expression.
Collapse
Affiliation(s)
- Yoon Ki Kim
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | | | | | | | | |
Collapse
|
12
|
Luo G, Xin S, Cai Z. Role of the 5'-proximal stem-loop structure of the 5' untranslated region in replication and translation of hepatitis C virus RNA. J Virol 2003; 77:3312-8. [PMID: 12584356 PMCID: PMC149781 DOI: 10.1128/jvi.77.5.3312-3318.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequences of the untranslated regions at the 5' and 3' ends (5'UTR and 3'UTR) of the hepatitis C virus (HCV) RNA genome are highly conserved and contain cis-acting RNA elements for HCV RNA replication. The HCV 5'UTR consists of two distinct RNA elements, a short 5'-proximal stem-loop RNA element (nucleotides 1 to 43) and a longer element of internal ribosome entry site. To determine the sequence and structural requirements of the 5'-proximal stem-loop RNA element in HCV RNA replication and translation, a mutagenesis analysis was preformed by nucleotide deletions and substitutions. Effects of mutations in the 5'-proximal stem-loop RNA element on HCV RNA replication were determined by using a cell-based HCV replicon replication system. Deletion of the first 20 nucleotides from the 5' end resulted in elimination of cell colony formation. Likewise, disruption of the 5'-proximal stem-loop by nucleotide substitutions abolished the ability of HCV RNA to induce cell colony formation. However, restoration of the 5'-proximal stem-loop by compensatory mutations with different nucleotides rescued the ability of the subgenomic HCV RNA to replicate in Huh7 cells. In addition, deletion and nucleotide substitutions of the 5'-proximal stem-loop structure, including the restored stem-loop by compensatory mutations, all resulted in reduction of translation by two- to fivefold, suggesting that the 5'-proximal stem-loop RNA element also modulates HCV RNA translation. These findings demonstrate that the 5'-proximal stem-loop of the HCV RNA is a cis-acting RNA element that regulates HCV RNA replication and translation.
Collapse
Affiliation(s)
- Guangxiang Luo
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA.
| | | | | |
Collapse
|
13
|
Lee SG, Kim DY, Hyun BH, Bae YS. Novel design architecture for genetic stability of recombinant poliovirus: the manipulation of G/C contents and their distribution patterns increases the genetic stability of inserts in a poliovirus-based RPS-Vax vector system. J Virol 2002; 76:1649-62. [PMID: 11799160 PMCID: PMC135903 DOI: 10.1128/jvi.76.4.1649-1662.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poliovirus has been studied as a live recombinant vaccine vector because of its attractive characteristics. The genetic instability, however, has hampered recombinant polioviruses (PVs) from being developed as an appropriate vaccine. A variety of different foreign inserts were cloned directly into our poliovirus Sabin 1-based RPS-Vax vector system, resulting in the production of recombinant PVs. The genetic stability of each recombinant PV was examined during 12 rounds of consecutive passage. It was found that the genetic stability of the recombinants was not well correlated with their insert size. Instead, elevated stability was frequently observed in recombinants with inserts of high G/C contents. Furthermore, a comparative study using different constructs of the human immunodeficiency virus env gene revealed that the internal deletion of the unstable insert was seemingly caused by the presence of the adjacent A/T-rich region. The instability of these inserts was completely remedied by (i) increasing the G/C contents and (ii) replacing the local A/T-rich region with the G/C-rich codon without a change of the amino acid. This means that stability is closely associated with the G/C content and the G/C distribution pattern. To see whether these findings can be applied to the design of genetically stable recombinant PV, we have reconstructed the heteromultimeric insert based on our design architecture, including the above-mentioned G/C rules and the template/ligation-free PCR protocol. The heteromultimeric insert was very unstable, as expected, but the manipulated insert with the same amino acid sequence showed complete genetic stability, not only in vitro, but also in vivo. Even though this guideline was established with our RPS-Vax vector system, to some extent, it can also be applied to other live viral vaccine vectors.
Collapse
Affiliation(s)
- Sang-Gu Lee
- Department of Microbiology, Hannam University, Daejeon. Creagene Research Institute, Department of Genetic Engineering, Youngdong University, Youngdong. Korea Research Institute of Bioscience and Bioengineering, Daejeon South Korea
| | | | | | | |
Collapse
|
14
|
Kim YK, Kim CS, Lee SH, Jang SK. Domains I and II in the 5' nontranslated region of the HCV genome are required for RNA replication. Biochem Biophys Res Commun 2002; 290:105-12. [PMID: 11779140 DOI: 10.1006/bbrc.2001.6167] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatitis C virus (HCV), a hepacivirus member of the Flaviviridae family, has a positive-stranded RNA genome, which consists of a single open reading frame (ORF) and nontranslated regions (NTRs) at the 5' and 3' ends. The 5'NTR was found to contain an internal ribosomal entry site (IRES), which is required for the translation of HCV mRNA. Moreover, the 5'NTR is likely to play a key role in the replication of viral RNA. To identify the cis-acting element required for viral RNA replication, chimeric subgenomic replicons of HCV were generated. Dissection of the replication element from the translation element was accomplished by inserting the polioviral IRES between the serially deleted 5'NTR of HCV and ORF encoding neomycin phosphotransferase. The deletions of the 5'NTR of HCV were performed according to the secondary structure of HCV. Replicons containing domains I and II supported RNA replication and further deletion toward the 5' end abolished replication. The addition of domain III and the pseudoknot structure of the 5'NTR to domains I and II augmented the colony-forming efficiency of replicons by 100-fold. This indicates that domains I and II are necessary and sufficient for replication of RNA and that almost all of the 5'NTR is required for efficient RNA replication.
Collapse
Affiliation(s)
- Yoon Ki Kim
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea
| | | | | | | |
Collapse
|
15
|
Friebe P, Lohmann V, Krieger N, Bartenschlager R. Sequences in the 5' nontranslated region of hepatitis C virus required for RNA replication. J Virol 2001; 75:12047-57. [PMID: 11711595 PMCID: PMC116100 DOI: 10.1128/jvi.75.24.12047-12057.2001] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sequences in the 5' and 3' termini of plus-strand RNA viruses harbor cis-acting elements important for efficient translation and replication. In case of the hepatitis C virus (HCV), a plus-strand RNA virus of the family Flaviviridae, a 341-nucleotide-long nontranslated region (NTR) is located at the 5' end of the genome. This sequence contains an internal ribosome entry site (IRES) that is located downstream of an about 40-nucleotide-long sequence of unknown function. By using our recently developed HCV replicon system, we mapped and characterized the sequences in the 5' NTR required for RNA replication. We show that deletions introduced into the 5' terminal 40 nucleotides abolished RNA replication but only moderately affected translation. By generating a series of replicons with HCV-poliovirus (PV) chimeric 5' NTRs, we could show that the first 125 nucleotides of the HCV genome are essential and sufficient for RNA replication. However, the efficiency could be tremendously increased upon the addition of the complete HCV 5' NTR. These data show that (i) sequences upstream of the HCV IRES are essential for RNA replication, (ii) the first 125 nucleotides of the HCV 5' NTR are sufficient for RNA replication, but such replicon molecules are severely impaired for multiplication, and (iii) high-level HCV replication requires sequences located within the IRES. These data provide the first identification of signals in the 5' NTR of HCV RNA essential for replication of this virus.
Collapse
Affiliation(s)
- P Friebe
- Institute for Virology, Johannes-Gutenberg University Mainz, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
16
|
Randall G, Rice CM. Hepatitis C virus cell culture replication systems: their potential use for the development of antiviral therapies. Curr Opin Infect Dis 2001; 14:743-7. [PMID: 11964894 DOI: 10.1097/00001432-200112000-00013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hepatitis C virus is a significant public health problem. Current drug regimens have low efficacy against some hepatitis C virus genotypes, while no vaccine is available. The absence of an efficient cell culture system and an accessible small animal model to study hepatitis C virus replication and pathogenesis are major obstacles to the development of effective antiviral therapies. Studies of surrogate model systems, either related viruses or chimeric viruses containing part of the hepatitis C virus genome, have given insight into hepatitis C virus replication, in addition to being a powerful tool for drug discovery. The recent development of an efficient system for the initiation of replication in cell culture provides a viable screen for inhibitors of hepatitis C virus replication. It also brings us much closer to the ultimate goal of an infectious cell culture system for hepatitis C virus.
Collapse
Affiliation(s)
- G Randall
- Center for the Study of Hepatitis C, Rockefeller University, New York 10021, USA
| | | |
Collapse
|
17
|
Lyons T, Murray KE, Roberts AW, Barton DJ. Poliovirus 5'-terminal cloverleaf RNA is required in cis for VPg uridylylation and the initiation of negative-strand RNA synthesis. J Virol 2001; 75:10696-708. [PMID: 11602711 PMCID: PMC114651 DOI: 10.1128/jvi.75.22.10696-10708.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chimeric poliovirus RNAs, possessing the 5' nontranslated region (NTR) of hepatitis C virus in place of the 5' NTR of poliovirus, were used to examine the role of the poliovirus 5' NTR in viral replication. The chimeric viral RNAs were incubated in cell-free reaction mixtures capable of supporting the sequential translation and replication of poliovirus RNA. Using preinitiation RNA replication complexes formed in these reactions, we demonstrated that the 3' NTR of poliovirus RNA was insufficient, by itself, to recruit the viral replication proteins required for negative-strand RNA synthesis. The 5'-terminal cloverleaf of poliovirus RNA was required in cis to form functional preinitiation RNA replication complexes capable of uridylylating VPg and initiating the synthesis of negative-strand RNA. These results are consistent with a model in which the 5'-terminal cloverleaf and 3' NTRs of poliovirus RNA interact via temporally dynamic ribonucleoprotein complexes to coordinately mediate and regulate the sequential translation and replication of poliovirus RNA.
Collapse
Affiliation(s)
- T Lyons
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
18
|
Zhao WD, Wimmer E. Genetic analysis of a poliovirus/hepatitis C virus chimera: new structure for domain II of the internal ribosomal entry site of hepatitis C virus. J Virol 2001; 75:3719-30. [PMID: 11264361 PMCID: PMC114863 DOI: 10.1128/jvi.75.8.3719-3730.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Internal ribosomal entry sites (IRESs) of certain plus-strand RNA viruses direct cap-independent initiation of protein synthesis both in vitro and in vivo, as can be shown with artificial dicistronic mRNAs or with chimeric viral genomes in which IRES elements were exchanged from one virus to another. Whereas IRESs of picornaviruses can be readily analyzed in the context of their cognate genome by genetics, the IRES of hepatitis C virus (HCV), a Hepacivirus belonging to Flaviviridae, cannot as yet be subjected to such analyses because of difficulties in propagating HCV in tissue culture or in experimental animals. This enigma has been overcome by constructing a poliovirus (PV) whose translation is controled by the HCV IRES. Within the PV/HCV chimera, the HCV IRES has been subjected to systematic 5' deletion analyses to yield a virus (P/H710-d40) whose replication kinetics match that of the parental poliovirus type 1 (Mahoney). Genetic analyses of the HCV IRES in P/H710-d40 have confirmed that the 5' border maps to domain II, thereby supporting the validity of the experimental approach applied here. Additional genetic experiments have provided evidence for a novel structural region within domain II. Arguments that the phenotypes observed with the mutant chimera relate solely to impaired genome replication rather than deficiencies in translation have been dispelled by constructing novel dicistronic poliovirus replicons with the gene order [PV]cloverleaf-[HCV]IRES-Deltacore-R-Luc-[PV]IRES-F-Luc-P2,3-3'NTR, which have allowed the measurement of HCV IRES-dependent translation independently from the replication of the replicon RNA.
Collapse
Affiliation(s)
- W D Zhao
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, New York 11794-5222, USA
| | | |
Collapse
|
19
|
Barton DJ, O’Donnell BJ, Flanegan JB. 5' cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO J 2001; 20:1439-48. [PMID: 11250909 PMCID: PMC145522 DOI: 10.1093/emboj/20.6.1439] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A cloverleaf structure at the 5' terminus of poliovirus RNA binds viral and cellular proteins. To examine the role of the cloverleaf in poliovirus replication, we determined how cloverleaf mutations affected the stability, translation and replication of poliovirus RNA in HeLa S10 translation-replication reactions. Mutations within the cloverleaf destabilized viral RNA in these reactions. Adding a 5' 7-methyl guanosine cap fully restored the stability of the mutant RNAs and had no effect on their translation. These results indicate that the 5' cloverleaf normally protects uncapped poliovirus RNA from rapid degradation by cellular nucleases. Preinitiation RNA replication complexes formed with the capped mutant RNAs were used to measure negative-strand synthesis. Although the mutant RNAs were stable and functional mRNAs, they were not active templates for negative-strand RNA synthesis. Therefore, the 5' cloverleaf is a multifunctional cis-acting replication element required for the initiation of negative-strand RNA synthesis. We propose a replication model in which the 5' and 3' ends of viral RNA interact to form a circular ribonucleoprotein complex that regulates the stability, translation and replication of poliovirus RNA.
Collapse
Affiliation(s)
- David J. Barton
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610-0245, USA Present address: Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA Corresponding author e-mail:
| | - Brian J. O’Donnell
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610-0245, USA Present address: Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA Corresponding author e-mail:
| | - James B. Flanegan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610-0245, USA Present address: Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA Corresponding author e-mail:
| |
Collapse
|