1
|
Patarca R, Haseltine WA. Potential Transcriptional Enhancers in Coronaviruses: From Infectious Bronchitis Virus to SARS-CoV-2. Int J Mol Sci 2024; 25:8012. [PMID: 39125583 PMCID: PMC11311688 DOI: 10.3390/ijms25158012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Coronaviruses constitute a global threat to human and animal health. It is essential to investigate the long-distance RNA-RNA interactions that approximate remote regulatory elements in strategies, including genome circularization, discontinuous transcription, and transcriptional enhancers, aimed at the rapid replication of their large genomes, pathogenicity, and immune evasion. Based on the primary sequences and modeled RNA-RNA interactions of two experimentally defined coronaviral enhancers, we detected via an in silico primary and secondary structural analysis potential enhancers in various coronaviruses, from the phylogenetically ancient avian infectious bronchitis virus (IBV) to the recently emerged SARS-CoV-2. These potential enhancers possess a core duplex-forming region that could transition between closed and open states, as molecular switches directed by viral or host factors. The duplex open state would pair with remote sequences in the viral genome and modulate the expression of downstream crucial genes involved in viral replication and host immune evasion. Consistently, variations in the predicted IBV enhancer region or its distant targets coincide with cases of viral attenuation, possibly driven by decreased open reading frame (ORF)3a immune evasion protein expression. If validated experimentally, the annotated enhancer sequences could inform structural prediction tools and antiviral interventions.
Collapse
Affiliation(s)
- Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
2
|
Di H, McIntyre AA, Brinton MA. New insights about the regulation of Nidovirus subgenomic mRNA synthesis. Virology 2018; 517:38-43. [PMID: 29475599 PMCID: PMC5987246 DOI: 10.1016/j.virol.2018.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 01/19/2023]
Abstract
The members of the Order Nidovirales share a similar genome organization with two overlapping nonstructural polyproteins encoded in the 5' two-thirds and the structural proteins encoded in the 3' third. They also express their 3' region proteins from a nested set of 3' co-terminal subgenomic messenger RNAs (sg mRNAs). Some but not all of the Nidovirus sg mRNAs also have a common 5' leader sequence that is acquired by a discontinuous RNA synthesis mechanism regulated by multiple 3' body transcription regulating sequences (TRSs) and the 5' leader TRS. Initial studies detected a single major body TRS for each 3' sg mRNA with a few alternative functional TRSs reported. The recent application of advanced techniques, such as next generation sequencing and ribosomal profiling, in studies of arteriviruses and coronaviruses has revealed an expanded sg mRNA transcriptome and coding capacity.
Collapse
Affiliation(s)
- Han Di
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, USA
| | - Ayisha A McIntyre
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, USA.
| |
Collapse
|
3
|
Abstract
Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primarily located in the 5'- and 3'-terminal genome regions and upstream of the open reading frames located in the 3'-proximal one-third of the genome. Here, we review our current understanding of coronavirus cis-acting RNA elements, focusing on elements required for genome replication and packaging. Recent bioinformatic, biochemical, and genetic studies suggest a previously unknown level of conservation of cis-acting RNA structures among different coronavirus genera and, in some cases, even beyond genus boundaries. Also, there is increasing evidence to suggest that individual cis-acting elements may be part of higher-order RNA structures involving long-range and dynamic RNA-RNA interactions between RNA structural elements separated by thousands of nucleotides in the viral genome. We discuss the structural and functional features of these cis-acting RNA elements and their specific functions in coronavirus RNA synthesis.
Collapse
Affiliation(s)
- R Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - M Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - M Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; FLI Leibniz Institute for Age Research, Jena, Germany
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
4
|
Madhugiri R, Fricke M, Marz M, Ziebuhr J. RNA structure analysis of alphacoronavirus terminal genome regions. Virus Res 2014; 194:76-89. [PMID: 25307890 PMCID: PMC7114417 DOI: 10.1016/j.virusres.2014.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 02/07/2023]
Abstract
Review of current knowledge of cis-acting RNA elements essential to coronavirus replication. Identification of RNA structural elements in alphacoronavirus terminal genome regions. Discussion of intra- and intergeneric conservation of genomic cis-acting RNA elements in alpha- and betacoronaviruses.
Coronavirus genome replication is mediated by a multi-subunit protein complex that is comprised of more than a dozen virally encoded and several cellular proteins. Interactions of the viral replicase complex with cis-acting RNA elements located in the 5′ and 3′-terminal genome regions ensure the specific replication of viral RNA. Over the past years, boundaries and structures of cis-acting RNA elements required for coronavirus genome replication have been extensively characterized in betacoronaviruses and, to a lesser extent, other coronavirus genera. Here, we review our current understanding of coronavirus cis-acting elements located in the terminal genome regions and use a combination of bioinformatic and RNA structure probing studies to identify and characterize putative cis-acting RNA elements in alphacoronaviruses. The study suggests significant RNA structure conservation among members of the genus Alphacoronavirus but also across genus boundaries. Overall, the conservation pattern identified for 5′ and 3′-terminal RNA structural elements in the genomes of alpha- and betacoronaviruses is in agreement with the widely used replicase polyprotein-based classification of the Coronavirinae, suggesting co-evolution of the coronavirus replication machinery with cognate cis-acting RNA elements.
Collapse
Affiliation(s)
- Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
5
|
Lin SY, Liu CL, Chang YM, Zhao J, Perlman S, Hou MH. Structural basis for the identification of the N-terminal domain of coronavirus nucleocapsid protein as an antiviral target. J Med Chem 2014; 57:2247-57. [PMID: 24564608 PMCID: PMC3983370 DOI: 10.1021/jm500089r] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Coronaviruses
(CoVs) cause numerous diseases, including Middle
East respiratory syndrome and severe acute respiratory syndrome, generating
significant health-related and economic consequences. CoVs encode
the nucleocapsid (N) protein, a major structural protein that plays
multiple roles in the virus replication cycle and forms a ribonucleoprotein
complex with the viral RNA through the N protein’s N-terminal
domain (N-NTD). Using human CoV-OC43 (HCoV-OC43) as a model for CoV,
we present the 3D structure of HCoV-OC43 N-NTD complexed with ribonucleoside
5′-monophosphates to identify a distinct ribonucleotide-binding
pocket. By targeting this pocket, we identified and developed a new
coronavirus N protein inhibitor, N-(6-oxo-5,6-dihydrophenanthridin-2-yl)(N,N-dimethylamino)acetamide hydrochloride
(PJ34), using virtual screening; this inhibitor reduced the N protein’s
RNA-binding affinity and hindered viral replication. We also determined
the crystal structure of the N-NTD–PJ34 complex. On the basis
of these findings, we propose guidelines for developing new N protein-based
antiviral agents that target CoVs.
Collapse
Affiliation(s)
- Shing-Yen Lin
- College of Life Science, ‡Institute of Genomics and Bioinformatics, and §Agriculture Biotechnology Center, National Chung Hsing University , Taichung 40254, Taiwan
| | | | | | | | | | | |
Collapse
|
6
|
Ke TY, Liao WY, Wu HY. A leaderless genome identified during persistent bovine coronavirus infection is associated with attenuation of gene expression. PLoS One 2013; 8:e82176. [PMID: 24349214 PMCID: PMC3861326 DOI: 10.1371/journal.pone.0082176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/21/2013] [Indexed: 01/22/2023] Open
Abstract
The establishment of persistent viral infection is often associated with the selection of one or more mutant viruses. For example, it has been found that an intraleader open reading frame (ORF) in genomic and subgenomic mRNA (sgmRNA) molecules is selected during bovine coronavirus (BCoV) persistence which leads to translation attenuation of the downstream ORF. Here, we report the unexpected identification of leaderless genomes, in addition to leader-containing genomes, in a cell culture persistently infected with BCoV. The discovery was made by using a head-to-tail ligation method that examines genomic 5′-terminal sequences at different times postinfection. Functional analyses of the leaderless genomic RNA in a BCoV defective interfering (DI) RNA revealed that (1) the leaderless genome was able to serve as a template for the synthesis of negative-strand genome, although it cannot perform replicative positive-strand genomic RNA synthesis, and (2) the leaderless genome retained its function in translation and transcription, although the efficiency of these processes was impaired. Therefore, this previously unidentified leaderless genome is associated with the attenuation of genome expression. Whether the leaderless genome contributes to the establishment of persistent infection remains to be determined.
Collapse
Affiliation(s)
- Ting-Yung Ke
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
| | - Wei-Yu Liao
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
| | - Hung-Yi Wu
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
- * E-mail:
| |
Collapse
|
7
|
Lu J, Gao F, Wei Z, Liu P, Liu C, Zheng H, Li Y, Lin T, Yuan S. A 5'-proximal stem-loop structure of 5' untranslated region of porcine reproductive and respiratory syndrome virus genome is key for virus replication. Virol J 2011; 8:172. [PMID: 21496223 PMCID: PMC3096946 DOI: 10.1186/1743-422x-8-172] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/15/2011] [Indexed: 11/13/2022] Open
Abstract
Background It has been well documented that the 5' untranslated region (5' UTR) of many positive-stranded RNA viruses contain key cis-acting regulatory sequences, as well as high-order structural elements. Little is known for such regulatory elements controlling porcine arterivirus replication. We investigated the roles of a conserved stem-loop 2 (SL2) that resides in the 5'UTR of the genome of a type II porcine reproductive and respiratory syndrome virus (PRRSV). Results We provided genetic evidences demonstrating that 1) the SL2 in type II PRRSV 5' UTR, N-SL2, could be structurally and functionally substituted by its counterpart in type I PRRSV, E-SL2; 2) the functionality of N-SL2 was dependent upon the G-C rich stem structure, while the ternary-loop size was irrelevant to RNA synthesis; 3) serial deletions showed that the stem integrity of N-SL2 was crucial for subgenomic mRNA synthesis; and 4) when extensive base-pairs in the stem region was deleted, an alternative N-SL2-like structure with different sequence was utilized for virus replication. Conclusion Taken together, we concluded that the phylogenetically conserved SL2 in the 5' UTR was crucial for PRRSV virus replication, subgenomic mRNA synthesis in particular.
Collapse
Affiliation(s)
- Jiaqi Lu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Parsons CJ, Stefanovic B, Seki E, Aoyama T, Latour AM, Marzluff WF, Rippe RA, Brenner DA. Mutation of the 5'-untranslated region stem-loop structure inhibits α1(I) collagen expression in vivo. J Biol Chem 2010; 286:8609-8619. [PMID: 21193410 DOI: 10.1074/jbc.m110.189118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Type I collagen is a heterotrimeric extracellular matrix protein consisting of two α1(I) chains and one α2(I) chain. During liver fibrosis, activated hepatic stellate cells (HSCs) are the major source of the type I collagen that accumulates in the damaged tissue. Expression of α1(I) and α2(I) collagen mRNA is increased 60-fold compared with quiescent stellate cells and is due predominantly to post-transcriptional message regulation. Specifically, a stem-loop structure in the 5'-untranslated region of α1(I) collagen mRNA may regulate mRNA expression in activated HSCs through its interaction with stem-loop binding proteins. The stem-loop may also be necessary for efficient production and folding of the type I collagen heterotrimer. To assess the role of the stem-loop in type I collagen expression in vivo, we generated a knock-in mouse harboring a mutation that abolished the stem-loop structure. Heterozygous and homozygous knock-in mice exhibited a normal phenotype. However, steady-state levels of α1(I) collagen mRNA decreased significantly in homozygous mutant MEFs as well as HSCs; intracellular and secreted type I collagen protein levels also decreased. Homozygous mutant mice developed less liver fibrosis. These results confirm an important role of the 5' stem-loop in regulating type I collagen mRNA and protein expression and provide a mouse model for further study of collagen-associated diseases.
Collapse
Affiliation(s)
| | - Branko Stefanovic
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300, and
| | - Ekihiro Seki
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | - Tomonori Aoyama
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | | | | | - Richard A Rippe
- the Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7080
| | - David A Brenner
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093.
| |
Collapse
|
9
|
Chen SC, Olsthoorn RCL. Group-specific structural features of the 5'-proximal sequences of coronavirus genomic RNAs. Virology 2010; 401:29-41. [PMID: 20202661 PMCID: PMC7111916 DOI: 10.1016/j.virol.2010.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/06/2010] [Accepted: 02/05/2010] [Indexed: 01/24/2023]
Abstract
Global predictions of the secondary structure of coronavirus (CoV) 5′ untranslated regions and adjacent coding sequences revealed the presence of conserved structural elements. Stem loops (SL) 1, 2, 4, and 5 were predicted in all CoVs, while the core leader transcription-regulating sequence (L-TRS) forms SL3 in only some CoVs. SL5 in group I and II CoVs, with the exception of group IIa CoVs, is characterized by the presence of a large sequence insertion capable of forming hairpins with the conserved 5′-UUYCGU-3′ loop sequence. Structure probing confirmed the existence of these hairpins in the group I Human coronavirus-229E and the group II Severe acute respiratory syndrome coronavirus (SARS-CoV). In general, the pattern of the 5′ cis-acting elements is highly related to the lineage of CoVs, including features of the conserved hairpins in SL5. The function of these conserved hairpins as a putative packaging signal is discussed.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- Leiden Institute of Chemistry, Department of Molecular Genetics, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
10
|
Huang CY, Hsu YL, Chiang WL, Hou MH. Elucidation of the stability and functional regions of the human coronavirus OC43 nucleocapsid protein. Protein Sci 2010; 18:2209-18. [PMID: 19691129 PMCID: PMC2788276 DOI: 10.1002/pro.225] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human coronavirus OC43 (HCoV-OC43) is one of the causes of the “common cold” in human during seasons of cold weather. The primary function of the HCoV-OC43 nucleocapsid protein (N protein) is to recognize viral genomic RNA, which leads to ribonucleocapsid formation. Here, we characterized the stability and identified the functional regions of the recombinant HCoV-OC43 N protein. Circular dichroism and fluorescence measurements revealed that the HCoV-OC43 N protein is more highly ordered and stabler than the SARS-CoV N protein previously studied. Surface plasmon resonance (SPR) experiments showed that the affinity of HCoV-OC43 N protein for RNA was approximately fivefold higher than that of N protein for DNA. Moreover, we found that the HCoV-OC43 N protein contains three RNA-binding regions in its N-terminal region (residues 1–173) and central-linker region (residues 174–232 and 233–300). The binding affinities of the truncated N proteins and RNA follow the order: residues 1–173–residues 233–300 > residues 174–232. SPR experiments demonstrated that the C-terminal region (residues 301–448) of HCoV-OC43 N protein lacks RNA-binding activity, while crosslinking and gel filtration analyses revealed that the C-terminal region is mainly involved in the oligomerization of the HCoV-OC43 N protein. This study may benefit the understanding of the mechanism of HCoV-OC43 nucleocapsid formation.
Collapse
Affiliation(s)
- Chun-Yu Huang
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
11
|
Liu P, Li L, Millership JJ, Kang H, Leibowitz JL, Giedroc DP. A U-turn motif-containing stem-loop in the coronavirus 5' untranslated region plays a functional role in replication. RNA (NEW YORK, N.Y.) 2007; 13:763-80. [PMID: 17353353 PMCID: PMC1852815 DOI: 10.1261/rna.261807] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 01/29/2007] [Indexed: 05/14/2023]
Abstract
The 5' untranslated region (UTR) of the mouse hepatitis virus (MHV) genome contains cis-acting sequences necessary for transcription and replication. A consensus secondary structural model of the 5' 140 nucleotides of the 5' UTRs of nine coronaviruses (CoVs) derived from all three major CoV groups is presented and characterized by three major stem-loops, SL1, SL2, and SL4. NMR spectroscopy provides structural support for SL1 and SL2 in three group 2 CoVs, including MHV, BCoV, and HCoV-OC43. SL2 is conserved in all CoVs, typically containing a pentaloop (C47-U48-U49-G50-U51 in MHV) stacked on a 5 base-pair stem, with some sequences containing an additional U 3' to U51; SL2 therefore possesses sequence features consistent with a U-turn-like conformation. The imino protons of U48 in the wild-type RNA, and G48 in the U48G SL2 mutant RNA, are significantly protected from exchange with solvent, consistent with a hydrogen bonding interaction critical to the hairpin loop architecture. SL2 is required for MHV replication; MHV genomes containing point substitutions predicted to perturb the SL2 structure (U48C, U48A) were not viable, while those that maintain the structure (U48G and U49A) were viable. The U48C MHV mutant supports both positive- and negative-sense genome-sized RNA synthesis, but fails to direct the synthesis of positive- or negative-sense subgenomic RNAs. These data support the existence of the SL2 in our models, and further suggest a critical role in coronavirus replication.
Collapse
Affiliation(s)
- Pinghua Liu
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System, College of Medicine, College Station, Texas 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
12
|
Cai Y, Liu Y, Zhang X. Suppression of coronavirus replication by inhibition of the MEK signaling pathway. J Virol 2006; 81:446-56. [PMID: 17079328 PMCID: PMC1797436 DOI: 10.1128/jvi.01705-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that infection of cultured cells with murine coronavirus mouse hepatitis virus (MHV) resulted in activation of the mitogen-activated protein kinase (Raf/MEK/ERK) signal transduction pathway (Y. Cai et al., Virology 355:152-163, 2006). Here we show that inhibition of the Raf/MEK/ERK signaling pathway by the MEK inhibitor UO126 significantly impaired MHV progeny production (a reduction of 95 to 99% in virus titer), which correlated with the phosphorylation status of ERK1/2. Moreover, knockdown of MEK1/2 and ERK1/2 by small interfering RNAs suppressed MHV replication. The inhibitory effect of UO126 on MHV production appeared to be a general phenomenon since the effect was consistently observed in all six different MHV strains and in three different cell types tested; it was likely exerted at the postentry steps of the virus life cycle because the virus titers were similarly inhibited from infected cells treated at 1 h prior to, during, or after infection. Furthermore, the treatment did not affect the virus entry, as revealed by the virus internalization assay. Metabolic labeling and reporter gene assays demonstrated that translation of cellular and viral mRNAs appeared unaffected by UO126 treatment. However, synthesis of viral genomic and subgenomic RNAs was severely suppressed by UO126 treatment, as demonstrated by a reduced incorporation of [3H]uridine and a decrease in chloramphenicol acetyltransferase (CAT) activity in a defective-interfering RNA-CAT reporter assay. These findings indicate that the Raf/MEK/ERK signaling pathway is involved in MHV RNA synthesis.
Collapse
Affiliation(s)
- Yingyun Cai
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
13
|
Wu HY, Ozdarendeli A, Brian DA. Bovine coronavirus 5'-proximal genomic acceptor hotspot for discontinuous transcription is 65 nucleotides wide. J Virol 2006; 80:2183-93. [PMID: 16474126 PMCID: PMC1395388 DOI: 10.1128/jvi.80.5.2183-2193.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 12/08/2005] [Indexed: 01/17/2023] Open
Abstract
Coronaviruses are positive-strand, RNA-dependent RNA polymerase-utilizing viruses that require a polymerase template switch, characterized as discontinuous transcription, to place a 5'-terminal genomic leader onto subgenomic mRNAs (sgmRNAs). The usually precise switch is thought to occur during the synthesis of negative-strand templates for sgmRNA production and to be directed by heptameric core donor sequences within the genome that match an acceptor core (UCUAAAC in the case of bovine coronavirus) near the 3' end of the 5'-terminal genomic leader. Here it is shown that a 22-nucleotide (nt) donor sequence engineered into a packageable bovine coronavirus defective interfering (DI) RNA and made to match a sequence within the 65-nt virus genomic leader caused a template switch yielding an sgmRNA with only a 33-nt minileader. By changing the donor sequence, acceptor sites between genomic nt 33 and 97 (identical between the DI RNA and the viral genome) could be used to generate sgmRNAs detectable by Northern analysis (approximately 2 to 32 molecules per cell) by 24 h postinfection. Whether the switch was intramolecular only was not determined since a potentially distinguishing acceptor region in the DI RNA rapidly conformed to that in the helper virus genome through a previously described template switch known as leader switching. These results show that crossover acceptor sites for discontinuous transcription (i) need not include the UCUAAAC core and (ii) rest within a surprisingly wide 5'-proximal "hotspot." Overlap of this hotspot with that for leader switching and with elements required for RNA replication suggests that it is part of a larger 5'-proximal multifunctional structure.
Collapse
Affiliation(s)
- Hung-Yi Wu
- Department of Microbiology, University of Tennessee, College of Veterinary Medicine, Knoxville, 37996-0845, USA
| | | | | |
Collapse
|
14
|
Smits SL, van Vliet ALW, Segeren K, el Azzouzi H, van Essen M, de Groot RJ. Torovirus non-discontinuous transcription: mutational analysis of a subgenomic mRNA promoter. J Virol 2005; 79:8275-81. [PMID: 15956573 PMCID: PMC1143767 DOI: 10.1128/jvi.79.13.8275-8281.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 03/08/2005] [Indexed: 11/20/2022] Open
Abstract
Toroviruses (order Nidovirales) are enveloped positive-strand RNA viruses of mammals. The prototype torovirus, equine torovirus strain Berne (Berne virus [BEV]), uses two different transcription strategies to produce a 3'-coterminal nested set of subgenomic (sg) mRNAs. Its mRNA 2 carries a leader sequence derived from the 5' end of the genome and is produced via discontinuous transcription. The remaining three sg mRNAs, 3 to 5, are colinear with the 3' end of the genome and are made via non-discontinuous RNA synthesis. Their synthesis is supposedly regulated by short conserved sequence motifs, 5'-ACN3-4CUUUAGA-3', within the noncoding intergenic regions that precede the M, HE, and N genes (A. L. van Vliet, S. L. Smits, P. J. Rottier, and R. J. de Groot, EMBO J. 21:6571-6580, 2002). We have now studied the--for nidoviruses unusual--non-discontinuous transcription mechanism in further detail by probing the role of the postulated transcription-regulating sequences (TRSs). To this end, we constructed a synthetic defective interfering (DI) RNA, carrying a 24-nucleotide segment of the intergenic region between the HE and N genes. We demonstrate that this DI RNA, when introduced into BEV-infected cells, directs the synthesis of a sg DI RNA species; in fact, a 16-nucleotide cassette containing the TRS already proved sufficient. Synthesis of this sg DI RNA, like that of mRNAs 3 to 5 of the standard virus, initiated at the 5'-most adenylate of the TRS. An extensive mutational analysis of the TRS is presented. Our results provide first and formal experimental evidence that the conserved motifs within the BEV intergenic sequences indeed drive sg RNA synthesis.
Collapse
Affiliation(s)
- Saskia L Smits
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Chen H, Gill A, Dove BK, Emmett SR, Kemp CF, Ritchie MA, Dee M, Hiscox JA. Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J Virol 2005; 79:1164-79. [PMID: 15613344 PMCID: PMC538594 DOI: 10.1128/jvi.79.2.1164-1179.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 07/05/2004] [Indexed: 12/15/2022] Open
Abstract
Phosphorylation of the coronavirus nucleoprotein (N protein) has been predicted to play a role in RNA binding. To investigate this hypothesis, we examined the kinetics of RNA binding between nonphosphorylated and phosphorylated infectious bronchitis virus N protein with nonviral and viral RNA by surface plasmon resonance (Biacore). Mass spectroscopic analysis of N protein identified phosphorylation sites that were proximal to RNA binding domains. Kinetic analysis, by surface plasmon resonance, indicated that nonphosphorylated N protein bound with the same affinity to viral RNA as phosphorylated N protein. However, phosphorylated N protein bound to viral RNA with a higher binding affinity than nonviral RNA, suggesting that phosphorylation of N protein determined the recognition of virus RNA. The data also indicated that a known N protein binding site (involved in transcriptional regulation) consisting of a conserved core sequence present near the 5' end of the genome (in the leader sequence) functioned by promoting high association rates of N protein binding. Further analysis of the leader sequence indicated that the core element was not the only binding site for N protein and that other regions functioned to promote high-affinity binding.
Collapse
Affiliation(s)
- Hongying Chen
- School of Animal and Microbial Sciences, University of Reading, Reading, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Van Den Born E, Gultyaev AP, Snijder EJ. Secondary structure and function of the 5'-proximal region of the equine arteritis virus RNA genome. RNA (NEW YORK, N.Y.) 2004; 10:424-37. [PMID: 14970388 PMCID: PMC1370938 DOI: 10.1261/rna.5174804] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 11/20/2003] [Indexed: 05/21/2023]
Abstract
Nidoviruses produce an extensive 3'-coterminal nested set of subgenomic mRNAs, which are used to express their structural proteins. In addition, arterivirus and coronavirus mRNAs contain a common 5' leader sequence, derived from the genomic 5' end. The joining of this leader sequence to different segments (mRNA bodies) from the genomic 3'-proximal region presumably involves a unique mechanism of discontinuous minus-strand RNA synthesis. Key elements in this process are the so-called transcription-regulating sequences (TRSs), which determine a base-pairing interaction between sense and antisense viral RNA that is essential for leader-to-body joining. To identify RNA structures in the 5'-proximal region of the equine arteritis virus genome that may be involved in subgenomic mRNA synthesis, a detailed secondary RNA structure model was established using bioinformatics, phylogenetic analysis, and RNA structure probing. According to this structure model, the leader TRS is located in the loop of a prominent hairpin (leader TRS hairpin; LTH). The importance of the LTH was supported by the results of a mutagenesis study using an EAV molecular clone. Besides evidence for a direct role of the LTH in subgenomic RNA synthesis, indications for a role of the LTH region in genome replication and/or translation were obtained. Similar LTH structures could be predicted for the 5'-proximal region of all arterivirus genomes and, interestingly, also for most coronaviruses. Thus, we postulate that the LTH is a key structural element in the discontinuous subgenomic RNA synthesis and is likely critical for leader TRS function.
Collapse
Affiliation(s)
- Erwin Van Den Born
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|