1
|
Functional Implications of Epstein-Barr Virus Lytic Genes in Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235780. [PMID: 36497262 PMCID: PMC9740547 DOI: 10.3390/cancers14235780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with a diverse range of tumors of both lymphoid and epithelial origin. Similar to other herpesviruses, EBV displays a bipartite life cycle consisting of latent and lytic phases. Current dogma indicates that the latent genes are key drivers in the pathogenesis of EBV-associated cancers, while the lytic genes are primarily responsible for viral transmission. In recent years, evidence has emerged to show that the EBV lytic phase also plays an important role in EBV tumorigenesis, and the expression of EBV lytic genes is frequently detected in tumor tissues and cell lines. The advent of next generation sequencing has allowed the comprehensive profiling of EBV gene expression, and this has revealed the consistent expression of several lytic genes across various types of EBV-associated cancers. In this review, we provide an overview of the functional implications of EBV lytic gene expression to the oncogenic process and discuss possible avenues for future investigations.
Collapse
|
2
|
The BHLF1 Locus of Epstein-Barr Virus Contributes to Viral Latency and B-Cell Immortalization. J Virol 2020; 94:JVI.01215-20. [PMID: 32581094 DOI: 10.1128/jvi.01215-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) BHLF1 gene encodes an abundant linear and several circular RNAs believed to perform noncoding functions during virus replication, although an open reading frame (ORF) is retained among an unknown percentage of EBV isolates. Evidence suggests that BHLF1 is also transcribed during latent infection, which prompted us to investigate the contribution of this locus to latency. Analysis of transcripts transiting BHLF1 revealed that its transcription is widespread among B-cell lines supporting the latency I or III program of EBV protein expression and is more complex than originally presumed. EBV-negative Burkitt lymphoma cell lines infected with either wild-type or two different BHLF1 mutant EBVs were initially indistinguishable in supporting latency III. However, cells infected with BHLF1 - virus ultimately transitioned to the more restrictive latency I program, whereas cells infected with wild-type virus either sustained latency III or transitioned more slowly to latency I. Upon infection of primary B cells, which require latency III for growth in vitro, both BHLF1 - viruses exhibited variably reduced immortalization potential relative to the wild-type virus. Finally, in transfection experiments, efficient protein expression from an intact BHLF1 ORF required the EBV posttranscriptional regulator protein SM, whose expression is limited to the replicative cycle. Thus, one way in which BHLF1 may contribute to latency is through a mechanism, possibly mediated or regulated by a long noncoding RNA, that supports latency III critical for the establishment of EBV latency and lifelong persistence within its host, whereas any retained protein-dependent function of BHLF1 may be restricted to the replication cycle.IMPORTANCE Epstein-Barr virus (EBV) has significant oncogenic potential that is linked to its latent infection of B lymphocytes, during which virus replication is not supported. The establishment of latent infection, which is lifelong and can precede tumor development by years, requires the concerted actions of nearly a dozen EBV proteins and numerous small non-protein-coding RNAs. Elucidating how these EBV products contribute to latency is crucial for understanding EBV's role in specific malignancies and, ultimately, for clinical intervention. Historically, EBV genes that contribute to virus replication have been excluded from consideration of a role in latency, primarily because of the general incompatibility between virus production and cell survival. However, here, we provide evidence that the genetic locus containing one such gene, BHLF1, indeed contributes to key aspects of EBV latency, including its ability to promote the continuous growth of B lymphocytes, thus providing significant new insight into EBV biology and oncogenic potential.
Collapse
|
3
|
Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020; 12:E1479. [PMID: 32517128 PMCID: PMC7352903 DOI: 10.3390/cancers12061479] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.
Collapse
Affiliation(s)
- Diego Germini
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Fatimata Bintou Sall
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Laboratory of Hematology, Aristide Le Dantec Hospital, Cheikh Anta Diop University, Dakar 12900, Senegal
| | - Anna Shmakova
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Joëlle Wiels
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Emmanuel Drouet
- CIBB-IBS UMR 5075 Université Grenoble Alpes, 38044 Grenoble, France;
| | - Yegor Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
4
|
Bencun M, Klinke O, Hotz-Wagenblatt A, Klaus S, Tsai MH, Poirey R, Delecluse HJ. Translational profiling of B cells infected with the Epstein-Barr virus reveals 5' leader ribosome recruitment through upstream open reading frames. Nucleic Acids Res 2019. [PMID: 29529302 PMCID: PMC5887285 DOI: 10.1093/nar/gky129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Epstein-Barr virus (EBV) genome encodes several hundred transcripts. We have used ribosome profiling to characterize viral translation in infected cells and map new translation initiation sites. We show here that EBV transcripts are translated with highly variable efficiency, owing to variable transcription and translation rates, variable ribosome recruitment to the leader region and coverage by monosomes versus polysomes. Some transcripts were hardly translated, others mainly carried monosomes, showed ribosome accumulation in leader regions and most likely represent non-coding RNAs. A similar process was visible for a subset of lytic genes including the key transactivators BZLF1 and BRLF1 in cells infected with weakly replicating EBV strains. This suggests that ribosome trapping, particularly in the leader region, represents a new checkpoint for the repression of lytic replication. We could identify 25 upstream open reading frames (uORFs) located upstream of coding transcripts that displayed 5′ leader ribosome trapping, six of which were located in the leader region shared by many latent transcripts. These uORFs repressed viral translation and are likely to play an important role in the regulation of EBV translation.
Collapse
Affiliation(s)
- Maja Bencun
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Olaf Klinke
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center (DKFZ), Core Facility Genomics & Proteomics, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Severina Klaus
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Ming-Han Tsai
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Remy Poirey
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Cai YL, Li J, Lu AY, Zheng YM, Zhong WM, Wang W, Gao JQ, Zeng H, Cheng JR, Tang MZ. Diagnostic significance of combined detection of Epstein-Barr virus antibodies, VCA/IgA, EA/IgA, Rta/IgG and EBNA1/IgA for nasopharyngeal carcinoma. Asian Pac J Cancer Prev 2014; 15:2001-6. [PMID: 24716925 DOI: 10.7314/apjcp.2014.15.5.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The objective of this study was to investigate the diagnostic significance of EBV antibody combined detection for nasopharyngeal carcinoma (NPC) in a high incidence region of southern China. Two hundred and eleven untreated NPC patients, 203 non-NPC ENT patients, and 210 healthy controls were recruited for the study. The titers of VCA/IgA and EA/IgA were assessed by immunoenzyme assay, and the levels of Rta/IgG and EBNA1/IgA were determined by enzyme-linked immunosorbent assay. The levels of VCA/IgA, EA/IgA, Rta/IgG and EBNA1/ IgA demonstrated no association with gender or age (p>0.05). The receiver operating characteristic curve and the area under the curve were used to evaluate the diagnostic value. The sensitivity of VCA/IgA (98.1%) and the specificity of EA/IgA (98.5%) were the highest. When a logistic regression model was used to combine the results from multiple antibodies to increase the accuracy, the combination of VCA/IgA+Rta/IgG, whose area under the curve was 0.99, had the highest diagnostic efficiency, and its sensitivity, specificity and Youden index were 94.8%, 98.0% and 0.93 respectively. The data suggest that the combination of VCA/IgA+Rta/IgG may be most suitable for NPC serodiagnosis.
Collapse
Affiliation(s)
- Yong-Lin Cai
- Wuzhou Health System Key Laboratory for Nasopharyngeal Carcinoma Etiology and Molecular Mechanism, Wuzhou, Guangxi Province, China E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tan PH, Tyrrell HEJ, Gao L, Xu D, Quan J, Gill D, Rai L, Ding Y, Plant G, Chen Y, Xue JZ, Handa AI, Greenall MJ, Walsh K, Xue SA. Adiponectin receptor signaling on dendritic cells blunts antitumor immunity. Cancer Res 2014; 74:5711-22. [PMID: 25261236 DOI: 10.1158/0008-5472.can-13-1397] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immune escape is a fundamental trait of cancer. Dendritic cells (DC) that interact with T cells represent a crucial site for the development of tolerance to tumor antigens, but there remains incomplete knowledge about how DC-tolerizing signals evolve during tumorigenesis. In this study, we show that DCs isolated from patients with metastatic or locally advanced breast cancer express high levels of the adiponectin receptors AdipoR1 and AdipoR2, which are sufficient to blunt antitumor immunity. Mechanistic investigations of ligand-receptor interactions on DCs revealed novel signaling pathways for each receptor. AdipoR1 stimulated IL10 production by activating the AMPK and MAPKp38 pathways, whereas AdipoR2 modified inflammatory processes by activating the COX-2 and PPARγ pathways. Stimulation of these pathways was sufficient to block activation of NF-κB in DC, thereby attenuating their ability to stimulate antigen-specific T-cell responses. Together, our findings reveal novel insights into how DC-tolerizing signals evolve in cancer to promote immune escape. Furthermore, by defining a critical role for adiponectin signaling in this process, our work suggests new and broadly applicable strategies for immunometabolic therapy in patients with cancer.
Collapse
Affiliation(s)
- Peng H Tan
- Genetic Engineering Laboratory, College of Biotechnology, Xi'An University, Xian, P.R. China. Nuffield Department of Surgical Sciences, Oxford University, Oxford, United Kingdom. Oxford Breast Unit, Oxford Radcliffe Hospitals NHS Trust, John Radcliffe Hospital, Headley Way, Oxford, United Kingdom.
| | - Helen E J Tyrrell
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, United Kingdom
| | - Liquan Gao
- Department of Immunology, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Danmei Xu
- Department of Haematology, Tongji Medical College, Huazhong University of Science and Technology, Tongji Hospital, Hubei, P.R. China
| | - Jianchao Quan
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, United Kingdom
| | - Dipender Gill
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, United Kingdom
| | - Lena Rai
- Department of Haematology, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Yunchuan Ding
- Division of Internal Medicine, Department of Endocrinology, Tongji Medical College, Huazhong University of Science and Technology, Tongji Hospital, Hubei, P.R. China
| | - Gareth Plant
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, United Kingdom
| | - Yuan Chen
- Department of Immunology, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - John Z Xue
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, New York
| | - Ashok I Handa
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, United Kingdom
| | - Michael J Greenall
- Oxford Breast Unit, Oxford Radcliffe Hospitals NHS Trust, John Radcliffe Hospital, Headley Way, Oxford, United Kingdom
| | - Kenneth Walsh
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Shao-An Xue
- Genetic Engineering Laboratory, College of Biotechnology, Xi'An University, Xian, P.R. China. Department of Immunology, University College London Medical School, Royal Free Hospital, London, United Kingdom.
| |
Collapse
|
7
|
Abstract
OBJECTIVE We investigated the presence of the Epstein-Barr virus (EBV) and human papillomavirus (HPV) in patients with vulvar lichen sclerosus (LS). MATERIALS AND METHODS We investigated the presence of HPV and EBV from 34 vulvar biopsies of patients with LS who had had no previous treatment and from 17 normal vulvar brushings used as controls. We used polymerase chain reaction to amplify DNA sequences of these viruses. Human papillomavirus and EBV DNA detection was carried out using MY09/MY11 and TC67/TC69 consensus primers, respectively. The amplified polymerase chain reaction products were analyzed by 10% polyacrylamide gel. RESULTS The mean age of the patients was 57 years old, with the majority postmenopausal. Human papillomavirus DNA was not found in the LS samples studied, but it was found in 23.2% (4/17) of the controls. However, EBV DNA was found in 26.5% (9/34) of the LS samples analyzed, and it was not found in the controls. CONCLUSIONS Our results showed no relationship between HPV and LS. This result is in accordance with the literature. We have found 26.5% of EBV in our samples. This is a preliminary study, and the follow-up of these patients will elucidate whether EBV could play a role in cases of LS.
Collapse
|
8
|
Guenther JF, Cameron JE, Nguyen HT, Wang Y, Sullivan DE, Shan B, Lasky JA, Flemington EK, Morris GF. Modulation of lung inflammation by the Epstein-Barr virus protein Zta. Am J Physiol Lung Cell Mol Physiol 2010; 299:L771-84. [PMID: 20817778 PMCID: PMC3006272 DOI: 10.1152/ajplung.00408.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 09/01/2010] [Indexed: 01/31/2023] Open
Abstract
Several studies have implicated gamma-herpesviruses, particularly Epstein-Barr virus (EBV), in the progression of idiopathic pulmonary fibrosis. The data presented here examine the possible role that EBV plays in the potentiation of this disease by evaluating the pulmonary response to expression of the EBV lytic transactivator protein Zta. Expression of Zta in the lungs of mice via adenovirus-mediated delivery (Adv-Zta) produced profibrogenic inflammation that appeared most pronounced by day 7 postexposure. Relative to mice exposed to control GFP-expressing adenovirus (Adv-GFP), mice exposed to Adv-Zta displayed evidence of lung injury and a large increase in inflammatory cells, predominantly neutrophils, recovered by bronchoalveolar lavage (BAL). Cytokine and mRNA profiling of the BAL fluid and cells recovered from Adv-Zta-treated mice revealed a Th2 and Th17 bias. mRNA profiles from Adv-Zta-infected lung epithelial cells revealed consistent induction of mRNAs encoding Th2 cytokines. Coexpression in transient assays of wild-type Zta, but not a DNA-binding-defective mutant Zta, activated expression of the IL-13 promoter in lung epithelial cells, and detection of IL-13 in Adv-Zta-treated mice correlated with expression of Zta. Induction of Th2 cytokines in Zta-expressing mice corresponded with alternative activation of macrophages. In cell culture and in mice, Zta repressed lung epithelial cell markers. Despite the profibrogenic character at day 7, the inflammation resolves by 28 days postexposure to Adv-Zta without evidence of fibrosis. These observations indicate that the EBV lytic transactivator protein Zta displays activity consistent with a pathogenic role in pulmonary fibrosis associated with herpesvirus infection.
Collapse
Affiliation(s)
- James F Guenther
- Dept. of Pathology, Tulane Univ. Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Points of recombination in Epstein-Barr virus (EBV) strain P3HR-1-derived heterogeneous DNA as indexes to EBV DNA recombinogenic events in vivo. J Virol 2008; 82:11516-25. [PMID: 18818321 DOI: 10.1128/jvi.01036-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deletions and rearrangements in the genome of Epstein-Barr virus (EBV) strain P3HR-1 generate subgenomic infectious particles that, unlike defective interfering particles in other viral systems, enhance rather than restrict EBV replication in vitro. Reports of comparable heterogeneous (het) DNA in EBV-linked human diseases, based on detection of an abnormal juxtaposition of EBV DNA fragments BamHI W and BamHI Z that disrupts viral latency, prompted us to determine at the nucleotide level all remaining recombination joints formed by the four constituent segments of P3HR-1-derived het DNA. Guided by endonuclease restriction maps, we chose PCR primer pairs that approximated and framed junctions creating the unique BamHI M/B1 and E/S fusion fragments. Sequencing of PCR products revealed points of recombination that lacked regions of extensive homology between constituent fragments. Identical recombination junctions were detected by PCR in EBV-positive salivary samples from human immunodeficiency virus-infected donors, although the W/Z rearrangement that induces EBV reactivation was frequently found in the absence of the other two. In vitro infection of lymphoid cells similarly indicated that not all three het DNA rearrangements need to reside on a composite molecule. These results connote a precision in the recombination process that dictates both composition and regulation of gene segments altered by genomic rearrangement. Moreover, the apparent frequency of het DNA at sites of EBV replication in vivo is consistent with a likely contribution to the pathogenesis of EBV reactivation.
Collapse
|
10
|
Lattario F, Furtado YL, Fonseca R, Silveira FA, do Val IC, Almeida G, Carvalho MGC. Analysis of human papillomavirus and Epstein-Barr virus infection and aberrant death-associated protein kinase methylation in high-grade squamous intraepithelial lesions. Int J Gynecol Cancer 2007; 18:785-9. [PMID: 17868341 DOI: 10.1111/j.1525-1438.2007.01060.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
This study was conducted to investigate the presence of Epstein-Barr virus (EBV) and human papillomavirus (HPV) and the promoter methylation status of the death-associated protein kinase (DAPK) gene in high-grade intraepithelial lesions. Viral infection was analyzed using polymerase chain reaction (PCR), and promoter methylation status was evaluated using chemical modification by sodium bisulfite followed by PCR. A total of 24 samples were studied. HPV was detected in 16.6%, EBV in 16.6%, and HPV/EBV coinfection in 16.6%. No virus infection was detected in 50% of the samples studied. DAPK promoter methylation was observed in 29.2% of the analyzed samples. There was no significant correlation between DAPK methylation and viral infection. DAPK methylation was detected in 28% of HPV-positive lesions, in 28% of HPV- and EBV-positive lesions, and in 44% (3/7) of the samples without viral infection. There was no observed methylation in samples with isolated EBV infection. In DAPK unmethylated samples, HPV infection was found in 12%, EBV infection in 23%, HPV/EBV coinfection in 12%, and an absence of HPV and EBV infection in 53%. The promoter methylation of the DAPK gene is an important event during carcinogenesis and may have potential clinical application as a marker for the progression and prognosis of cancer.
Collapse
Affiliation(s)
- F Lattario
- Gene Expression Control Laboratory, Carlos Chagas Filho Institute of Biophysics and Institute of Gynecology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | |
Collapse
|
11
|
Tan PH, Xue SA, Wei B, Holler A, Voss RH, George AJT. Changing viral tropism using immunoliposomes alters the stability of gene expression: implications for viral vector design. Mol Med 2007. [PMID: 17592557 DOI: 10.2119/2006-00052.tan] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many strategies for redirecting the tropism of murine Moloney leukemia virus (MMLV) have been described. Preformed virion-liposome complexes, termed virosomes, have been reported to be relatively stable. Virosomes mediate envelope-independent transduction that allows efficient superinfection of resistant cell lines; however, virosome-mediated transduction behaves in a non-target-specific manner. We developed a novel method using antibodies to direct MMLV to vascular endothelium. We have given the term immunovirosomes to the complexes formed between viruses, liposomes, and antibodies. These immunovirosomes improve the transduction efficiency of the viruses and alter their tropism. We have shown improved transduction when immunovirosomes were targeted at the endocytic receptors CD71 and CD62E/P and rather less good delivery when targeted at CD106. The enhancement of the transduction efficiency was transient, however, suggesting that rerouting the entry pathway of viruses alters the expression properties of the viruses.
Collapse
Affiliation(s)
- Peng H Tan
- Department of Immunology, Division of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Tan PH, Xue SA, Wei B, Holler A, Voss RH, George AJT. Changing viral tropism using immunoliposomes alters the stability of gene expression: implications for viral vector design. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:216-26. [PMID: 17592557 PMCID: PMC1892767 DOI: 10.2119/2006–00052.tan] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Accepted: 02/05/2007] [Indexed: 11/06/2022]
Abstract
Many strategies for redirecting the tropism of murine Moloney leukemia virus (MMLV) have been described. Preformed virion-liposome complexes, termed virosomes, have been reported to be relatively stable. Virosomes mediate envelope-independent transduction that allows efficient superinfection of resistant cell lines; however, virosome-mediated transduction behaves in a non-target-specific manner. We developed a novel method using antibodies to direct MMLV to vascular endothelium. We have given the term immunovirosomes to the complexes formed between viruses, liposomes, and antibodies. These immunovirosomes improve the transduction efficiency of the viruses and alter their tropism. We have shown improved transduction when immunovirosomes were targeted at the endocytic receptors CD71 and CD62E/P and rather less good delivery when targeted at CD106. The enhancement of the transduction efficiency was transient, however, suggesting that rerouting the entry pathway of viruses alters the expression properties of the viruses.
Collapse
Affiliation(s)
- Peng H Tan
- Department of Immunology, Division of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Xue SA, Griffin BE. Complexities associated with expression of Epstein-Barr virus (EBV) lytic origins of DNA replication. Nucleic Acids Res 2007; 35:3391-406. [PMID: 17478522 PMCID: PMC1904260 DOI: 10.1093/nar/gkm170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
EBV has two lytic origins (oriLyt) of DNA replication lying at divergent sites on the viral genome within a duplicated sequence (DS). The latter contains potential hairpin loops, ‘hinge’ elements and the promoters for transcripts from viral genes BHLF1 and LF3. These genes themselves consist largely of 125 and 102 bp repetitive sequences, respectively, and encode basic proteins. We have examined these genomic regions in detail in attempts to understand why lytic replication—necessary for virus survival—is so inefficient, and to identify controlling elements. Our studies uncovered a diverse family of promoters (P) for BHLF1 and LF3, only one pair of which (P1) proved sensitive to chemical inducing agents. The others (P2–P3/4), abutting the replication ‘core’ origin elements in DS and extending into 5′-unique sequences, may play roles in the maintenance of viral latency. We further identified a family of overlapping small complementary-strand RNAs that transverse the replication ‘core’ origin elements in a manner suggesting a role for them as ‘antisense’ species and/or DNA replication primers. Our data are discussed in terms of alternative lytic replication models. We suggest our findings might prove useful in seeking better control over viral lytic replication and devising strategies for therapy.
Collapse
MESH Headings
- Animals
- Cell Line
- DNA Replication
- DNA, Viral/biosynthesis
- Gene Expression Regulation, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Herpesvirus 4, Human/physiology
- Humans
- Nuclease Protection Assays
- Promoter Regions, Genetic
- RNA, Antisense/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- Replication Origin
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Initiation Site
- Transcription, Genetic
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Virus Replication
Collapse
Affiliation(s)
| | - Beverly E. Griffin
- *To whom correspondence should be addressed. Tel: +44-207-594-3670; Fax: +44-207-410-1037;
| |
Collapse
|
14
|
Xue SA, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A, Apperley J, Engels B, Uckert W, Morris E, Stauss H. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 2005; 106:3062-7. [PMID: 16020516 DOI: 10.1182/blood-2005-01-0146] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) specific for an HLA-A2-presented peptide epitope of the Wilms tumor antigen-1 (WT1) can selectively kill immature human leukemia progenitor and stem cells in vitro. In this study we have used retroviral gene transfer to introduce a WT1-specific T-cell receptor (TCR) into T lymphocytes obtained from patients with leukemia and from healthy donors. TCR-transduced T cells kill leukemia cells in vitro and display WT1-specific cytokine production. Intravenous injection of TCR-transduced T cells into nonobese diabetic-severe combined immunodeficiency (NOD/SCID) mice harboring human leukemia cells resulted in leukemia elimination, whereas transfer of control T cells transduced with an irrelevant TCR was ineffective. The data suggest that adoptive immunotherapy with WT1-TCR gene-modified patient T cells should be considered for the treatment of leukemia.
Collapse
Affiliation(s)
- Shao-An Xue
- Department of Immunology and Molecular Pathology, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tan PH, Beutelspacher SC, Xue SA, Wang YH, Mitchell P, McAlister JC, Larkin DFP, McClure MO, Stauss HJ, Ritter MA, Lombardi G, George AJT. Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood 2005; 105:3824-32. [PMID: 15671441 DOI: 10.1182/blood-2004-10-3880] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AbstractGenetic modification of dendritic-cell (DC) function is an attractive approach to treat disease, either using mature DCs (mDCs) to immunize patients, or immature DCs (iDCs) to induce tolerance. Viral vectors are efficient at transducing DCs, and we have investigated the effect of transduction with a variety of viral vectors on the phenotype and function of DCs. Adenovirus (Ad), human immunodeficiency virus (HIV), equine anemia virus (EIAV), and Moloney murine leukemia virus (MMLV) all up-regulate costimulatory molecules and major histocompatibility complex (MHC) class II expression on DCs, as well as, in the case of Ad and lentiviral vectors, inducing production of Th1 and proinflammatory cytokines. Following transduction there is activation of double-stranded (ds) RNA-triggered pathways resulting in interferon (IFN) α/β production. In addition, the function of virally infected DCs is altered; iDCs have an increased, and mDCs a decreased, ability to stimulate a mixed lymphocyte reaction (MLR). Viral transduction of mDCs results in up-regulation of the indoleamine 2,3-dioxygenase (IDO) enzyme, which down-regulates T-cell responsiveness. Inhibition of IDO restores the ability of mDCs to stimulate an MLR, indicating that IDO is responsible for the modulation of mDC function. These data have important implications for the use of viral vectors in the transduction of DCs.
Collapse
Affiliation(s)
- Peng H Tan
- Department of Immunology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 ONN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Xue SA, Hallden G, Francis J, Yuan M, Griffin BE, Lemoine NR. Virus-associated RNA I-deleted adenovirus, a potential oncolytic agent targeting EBV-associated tumors. Cancer Res 2005; 65:1523-31. [PMID: 15735041 DOI: 10.1158/0008-5472.can-04-3113] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Given the growing number of tumor types recognizably associated with EBV infection, it is critically important that therapeutic strategies are developed to treat such tumors. Replication-selective oncolytic adenoviruses represent a promising new platform for anticancer therapy. Virus-associated I (VAI) RNAs of adenoviruses are required for efficient translation of viral mRNAs. When the VAI gene is deleted, adenovirus replication is impeded in most cells (including HEK 293 cells). EBV-encoded small RNA1 is uniformly expressed in most EBV-associated human tumors and can functionally substitute for the VAI RNAs of adenovirus. It enables replication to proceed through complementation of VAI-deletion mutants. We hypothesized that VAI-deleted adenovirus would selectively replicate in EBV-positive tumor cells due to the presence of EBV-encoded small RNA1 with no (or poor) replication in normal or EBV-negative tumor cells. In this report, we show that high levels of replication occurred in the VAI-deleted mutant in the EBV-positive tumor cells compared with low (or negligible) levels in EBV-negative and normal human primary cells. Correspondingly, high toxicity levels were observed in EBV-positive tumor cells but not in EBV-negative tumor or normal human primary cells. In vivo, VAI-deleted adenovirus showed superior antitumoral efficacy to wild-type adenovirus in EBV-positive tumor xenografts, with lower hepatotoxicity than wild-type adenovirus. Our data suggest that VAI-deleted adenovirus is a promising replication-selective oncolytic virus with targeting specificity for EBV-associated tumors.
Collapse
Affiliation(s)
- Yaohe Wang
- Cancer Research UK Molecular Oncology Unit, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Tan PH, Chan C, Xue SA, Dong R, Ananthesayanan B, Manunta M, Kerouedan C, Cheshire NJW, Wolfe JH, Haskard DO, Taylor KM, George AJT. Phenotypic and functional differences between human saphenous vein (HSVEC) and umbilical vein (HUVEC) endothelial cells. Atherosclerosis 2004; 173:171-83. [PMID: 15064090 DOI: 10.1016/j.atherosclerosis.2003.12.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 11/06/2003] [Accepted: 12/08/2003] [Indexed: 11/24/2022]
Abstract
The vascular endothelial cell (EC) plays an essential role in the pathogenesis of inflammation, transplant rejection and tumour metastasis. Most research on vascular ECs uses human umbilical vein endothelial cells (HUVECs). However, HUVECs are derived from immune-naive foetal tissue, and show significant functional differences from adult vascular endothelium. In this paper, we characterise an alternative model based on human saphenous vein ECs (HSVECs), describe their culture conditions and provide a detailed functional comparison with HUVECs. Compared with HUVECs, HSVECs show an increased sensitivity to ox-LDL and a reduced response to cytokines, as indicated by adhesion molecule expression as well as leukocyte adhesion and transmigration. With respect to their ability to present antigen, HSVECs have a higher level of HLA-DR, CD40 and ICOS-L following cytokine stimulation. In addition, HSVECs upregulate the costimulatory ligand CD80 (B7.1) following CD40 ligation, and support allogeneic T cell proliferation, while HUVECs fail to express CD80. Due to differential expression of adhesion molecules, poorly differentiated tumour cell lines also showed more adhesion to HSVECs than to HUVECs. These results indicate that HSVECs have advantages over HUVECs for studying adult vascular endothelial pathology in vitro.
Collapse
Affiliation(s)
- P H Tan
- Department of Immunology, Division of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xue SA, Lampert IA, Haldane JS, Bridger JE, Griffin BE. Epstein-Barr virus gene expression in human breast cancer: protagonist or passenger? Br J Cancer 2003; 89:113-9. [PMID: 12838311 PMCID: PMC2394222 DOI: 10.1038/sj.bjc.6601027] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Revised: 03/20/2003] [Accepted: 03/25/2003] [Indexed: 01/22/2023] Open
Abstract
The presence and transcriptional expression of Epstein-Barr virus (EBV)-encoded genes, oestrogen receptor (ER) status and degree of lymphocyte infiltration were evaluated in 15 mastectomy-removed breast cancer samples, mostly of ductal origin. With regard to these parameters, the tumours were heterogeneous. Viral genes, including EBNA1 - a universal EBV marker - and others, selected in part on the basis of expression in other EBV-associated carcinomas and/or presence in an epithelial cell immortalising subfragment p31 of viral DNA, were detected in up to 40% of the breast malignancies. The small viral RNAs, EBERs, were not observed. In culture, p31 EBV DNA, alone among EBV fragments, stimulated the growth of human breast-milk epithelial cells. There was no correlation between viral and ER expression and tumours were heterogeneous with regard to their invasive lymphocytes: of three studied in detail, one contained none, another had (mainly) T-lymphocyte aggregates on the tumour periphery, and a third (BC 12) was infiltrated with both T- and B-lymphocytes. BC 12 differed in several aspects from other malignancies in expressing a transcriptional activator (BZLF1) associated with overcoming virus latency, and failing to express a viral oncogene, BARF1. Arguments are given for EBV as a protagonist cocarcinogen in some breast malignancies.
Collapse
Affiliation(s)
- S A Xue
- Viral Oncology Unit, Division of Medicine, Imperial College Faculty of Medicine at St Mary's, Norfolk Place, London W2 1PG, UK
- College of Life Sciences, Shaanxi Normal University, Xian 710062, People's Republic of China
| | - I A Lampert
- Department of Histopathology, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | - J S Haldane
- Department of Histopathology, New Cross Hospital, Wolverhampton, UK
| | - J E Bridger
- Department of Histopathology, New Cross Hospital, Wolverhampton, UK
| | - B E Griffin
- Viral Oncology Unit, Division of Medicine, Imperial College Faculty of Medicine at St Mary's, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
19
|
Xue SA, Jones MD, Lu QL, Middeldorp JM, Griffin BE. Genetic diversity: frameshift mechanisms alter coding of a gene (Epstein-Barr virus LF3 gene) that contains multiple 102-base-pair direct sequence repeats. Mol Cell Biol 2003; 23:2192-201. [PMID: 12612089 PMCID: PMC149476 DOI: 10.1128/mcb.23.6.2192-2201.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frameshift mutations provide recognized mechanisms for changing the coding potential of an organism. Here, multiple frameshifts are identified in repetitive sequences within an Epstein-Barr virus unspliced early gene, LF3, which is associated with the viral replicative cycle and also transcriptionally expressed in many virally associated tumors. On the DNA strand encoding LF3, there are three open reading frames, only one of which contains an initiation codon. Most (>95%) of the gene consists of numerous (>20, varying with cell source) GC-rich copies of a 102-bp direct repeat (called IR 4) flanked by small unique sequences. LF3 may express a protein if its initiation and termination codons reside in the same reading frame, but this is not always the case. Frameshifting events, occurring in short runs of pyrimidines (mainly C residues) in the repeats, give rise to mutations which may provide a mechanism for escape of an LF3 function from host surveillance. Sequence studies link these frameshifts to DNA replication errors. Notably, the number of sites in LF3 at which such mutations can occur permits a very large amount of diversity in this gene. Our data also suggest a second degeneracy mechanism within the protein itself, which influences its stability and may reflect a host defense mechanism. LF3 thus provides a potentially important model for studying the quest for supremacy between a virus and its host.
Collapse
Affiliation(s)
- Shao-An Xue
- Viral Oncology Unit, Division of Medicine, Wright-Fleming Institute, Imperial College of Science, Technology and Medicine at St. Mary's, Norfolk Place, London W2 1PG, UK
| | | | | | | | | |
Collapse
|
20
|
Xue SA, Labrecque LG, Lu QL, Ong SK, Lampert IA, Kazembe P, Molyneux E, Broadhead RL, Borgstein E, Griffin BE. Promiscuous expression of Epstein-Barr virus genes in Burkitt's lymphoma from the central African country Malawi. Int J Cancer 2002; 99:635-43. [PMID: 12115495 DOI: 10.1002/ijc.10372] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Primary BL in Malawian children has a very high frequency association, approaching 100%, with the human herpesvirus EBV. A detailed study carried out on viral gene expression in these tumours, using both fresh material and methanol-fixed FNAs, showed, contrary to prediction, that most belong to a variant "class II" latency category, with lytic cycle-related genes also expressed. That is, in addition to EBNA1 expression, membrane proteins (LMP1/2A), immediate early (BZLF1) and early (IR2 and IR4) genes, a putative viral oncogene (BARF1), CST (BART) antisense transcripts and the viral bcl-2 homologue are expressed in a high proportion of the BLs. Most, but not all, express the small viral (EBER) RNAs. Two other significant observations were made: (i) in addition to expression of cellular cytokine (IL-10) transcripts in all tumours investigated, the normally silent viral IL-10 homologue was expressed in some tumours; (ii) whereas EBNA1 expression from its restricted Qp promoter was generally observed, the nonrestricted Cp/Wp promoter was also active in some tumours. Viral gene expression in the Malawian [endemic (e)] BLs appears to be more promiscuous than predicted from other studies, but expression accords with the cytopathologic picture of eBLs as a rapidly proliferating cell population accompanied by considerable necrosis, and a clinically diverse disease. A small-scale study of relapse Malawian BLs revealed a different picture of viral association, more akin to systemic BL than eBL, where EBV appears to be absent or present only at very low levels. The significance of these findings is considered.
Collapse
Affiliation(s)
- Shao-an Xue
- Viral Oncology Unit, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gao Y, Lu YJ, Xue SA, Chen H, Wedderburn N, Griffin BE. Hypothesis: a novel route for immortalization of epithelial cells by Epstein-Barr virus. Oncogene 2002; 21:825-35. [PMID: 11850810 DOI: 10.1038/sj.onc.1205130] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2001] [Revised: 10/30/2001] [Accepted: 10/31/2001] [Indexed: 11/09/2022]
Abstract
Transfection of primate tissue explants with a specific sub-fragment (p31) of EBV DNA results in epithelial (but no other) cells proliferating indefinitely (becoming 'immortalized') without evidence of a 'growth crisis'. Molecular evidence supports integration of viral information into the host chromosome, and an early genotypic alteration involving specific amplification of a sub-component (IR1) of p31 DNA, followed by apparent loss of viral DNA from chromosomes, consistent with a 'hit and run' mechanism. However, analysis at the individual cell level during long-term culture, by FISH techniques, reveals chromosomal alterations, and viral sequences surviving within double minute (DM) bodies. Changing growth patterns occurring at different stages during propagation (>a year in culture) may be explained by sporadic reintegration of surviving viral DNA into the host chromosome. Notably, throughout culture, telomere lengths in chromosomal DNAs do not alter but rather retain the length observed in the primary cell populations. Introduction of a growth stimulating function of EBV, BARF1, into the immortalized, non-clonable epithelial cells under conditions which permit overexpression, allows clonal populations to be derived. Based on the data, mechanisms of immortalization, in the absence of a proven viral oncogene in p31 DNA, and possible genes involved, are considered.
Collapse
Affiliation(s)
- Yanning Gao
- Viral Oncology Unit, Department of Medicine, Imperial College of Science, Technology and Medicine, Norfolk Place, London W2 1PG, UK
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Epstein-Barr virus (EBV) encodes a family of related transcripts, the complementary strand transcripts (CSTs) or BARTs (Bam A rightward transcripts). These are present in all types of EBV infection but are expressed to particularly high levels in nasopharyngeal carcinomas. Although convincing demonstration of protein expression from these transcripts is still subject to some debate, potential proteins encoded by them have been shown to modify Notch signalling pathways.
Collapse
MESH Headings
- Gene Expression Regulation, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Humans
- Membrane Proteins/metabolism
- Nasopharyngeal Neoplasms/virology
- Neoplasm Proteins
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- RNA, Complementary/chemistry
- RNA, Complementary/genetics
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Notch
- Transcription, Genetic/genetics
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- P Smith
- Institute for Cancer Genetics and Pharmacogenomics, Department of Biology, Brunel University, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
23
|
Ong SK, Xue SA, Molyneux E, Broadhead RL, Borgstein E, Ng MH, Griffin BE. African Burkitt's lymphoma: a new perspective. Trans R Soc Trop Med Hyg 2001; 95:93-6. [PMID: 11280077 DOI: 10.1016/s0035-9203(01)90348-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
High titres of antibody to Epstein-Barr virus (EBV) late genes identify individuals at risk of developing endemic Burkitt's lymphoma (eBL). Viral lytic cycle early and intermediate-early gene expression in BL is associated with a favourable tumour response to chemotherapy. Our study investigated whether serological data identifying antibody expression to zta, a viral function that activates lytic-cycle gene expression, correlate with expression of its gene in tumours, and could have prognostic value. Studies on 10 Malawian patients, with presumed BL on clinical grounds, showed good correlations, suggesting that serum antibody responses might predict treatment responsiveness. The results with 1 patient were particularly striking. When admitted in January 1998, prognosis was poor as he was unable to walk, and had tumour cells, characteristic of stage IV disease, in his bone marrow. Laboratory investigations showed particularly high levels both of serum zta antibodies and of gene expression in his tumour. Follow-up confirmed him alive 6 months after hospital discharge. Among the EBV-positive cases, 2 were ultimately diagnosed as rhabdomyosarcoma, a tumour not previously associated with this virus. The findings from this small study, if confirmed, should have value for future BL management in resource-poor parts of the world.
Collapse
Affiliation(s)
- S K Ong
- Viral Oncology Unit, Division of Medicine, Imperial College School of Medicine at St Mary's, Norfolk Place, London W2 1PG, UK
| | | | | | | | | | | | | |
Collapse
|