1
|
Gordon CJ, Walker SM, LeCher JC, Amblard F, Schinazi RF, Götte M. Mechanism of Inhibition of the Active Triphosphate Form of 2'-α-Fluoro,2'-β-bromouridine against Yellow Fever Virus RNA-Dependent RNA Polymerase. ACS Infect Dis 2025. [PMID: 40323779 DOI: 10.1021/acsinfecdis.5c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Yellow fever virus (YFV) is a deadly mosquito-borne flavivirus that infects approximately 200,000 individuals each year. YFV outbreak and infection are persistent throughout South America and Africa, demonstrating significant epidemic potential. Although an approved and effective vaccine exists, the zoonotic nature of YFV undermines any potential eradication efforts, highlighting the need for effective, direct-acting antivirals. Essential for viral replication, RNA-dependent RNA polymerase (RdRp) is a proven therapeutic target. A prominent example includes sofosbuvir, a 2'-α-fluoro,2'-β-methyluridine prodrug approved for the treatment of hepatitis C virus (HCV), that has demonstrated efficacy against YFV in vitro. A structurally similar 2'-α-fluoro, 2'-β-bromouridine prodrug has exhibited potent anti-YFV activity both in vitro and in vivo. Here, we expressed the full-length nonstructural protein 5 from YFV in insect cells to investigate the active triphosphate form of these prodrugs. Enzyme kinetics indicate that both nucleotide analogs are incorporated less efficiently than UTP. Once incorporated, the analogs inhibit RNA synthesis through immediate chain termination. Omitting the 2'-β-modification alleviates the inhibition of RNA synthesis, highlighting its role in eliciting an antiviral effect. S282T is a well-characterized mutation in motif B of HCV RdRp that confers resistance to sofosbuvir. We discovered that the analogous substitution in YFV (S603T) improved discrimination against the 2'-α-fluoro,2'-β-modified uridine analogs. Collectively, our findings explain their observed anti-YFV activity and identify a conserved mechanism of resistance. Based on its in vivo efficacy and mechanism of action, the 2'-fluoro,2'-bromouridine prodrug shows potential for future therapeutic strategies against YFV.
Collapse
Affiliation(s)
- Calvin Joel Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Simon Maximus Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Julia Christine LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Raymond Felix Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
2
|
Kumar A, Narang RK, Bhatia R. Recent advancements in NS5B inhibitors (2011-2021): Structural insights, SAR studies and clinical status. J Mol Struct 2023; 1293:136272. [DOI: 10.1016/j.molstruc.2023.136272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
3
|
Joly AC, Garcia S, Hily JM, Koechler S, Demangeat G, Garcia D, Vigne E, Lemaire O, Zuber H, Gagliardi D. An extensive survey of phytoviral RNA 3' uridylation identifies extreme variations and virus-specific patterns. PLANT PHYSIOLOGY 2023; 193:271-290. [PMID: 37177985 PMCID: PMC10469402 DOI: 10.1093/plphys/kiad278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Viral RNAs can be uridylated in eukaryotic hosts. However, our knowledge of uridylation patterns and roles remains rudimentary for phytoviruses. Here, we report global 3' terminal RNA uridylation profiles for representatives of the main families of positive single-stranded RNA phytoviruses. We detected uridylation in all 47 viral RNAs investigated here, revealing its prevalence. Yet, uridylation levels of viral RNAs varied from 0.2% to 90%. Unexpectedly, most poly(A) tails of grapevine fanleaf virus (GFLV) RNAs, including encapsidated tails, were strictly monouridylated, which corresponds to an unidentified type of viral genomic RNA extremity. This monouridylation appears beneficial for GFLV because it became dominant when plants were infected with nonuridylated GFLV transcripts. We found that GFLV RNA monouridylation is independent of the known terminal uridylyltransferases (TUTases) HEN1 SUPPRESSOR 1 (HESO1) and UTP:RNA URIDYLYLTRANSFERASE 1 (URT1) in Arabidopsis (Arabidopsis thaliana). By contrast, both TUTases can uridylate other viral RNAs like turnip crinkle virus (TCV) and turnip mosaic virus (TuMV) RNAs. Interestingly, TCV and TuMV degradation intermediates were differentially uridylated by HESO1 and URT1. Although the lack of both TUTases did not prevent viral infection, we detected degradation intermediates of TCV RNA at higher levels in an Arabidopsis heso1 urt1 mutant, suggesting that uridylation participates in clearing viral RNA. Collectively, our work unveils an extreme diversity of uridylation patterns across phytoviruses and constitutes a valuable resource to further decipher pro- and antiviral roles of uridylation.
Collapse
Affiliation(s)
- Anne Caroline Joly
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Shahinez Garcia
- UMR Santé de la Vigne et Qualité du Vin, INRAE, Université de Strasbourg, Colmar 68000, France
| | - Jean-Michel Hily
- UMR Santé de la Vigne et Qualité du Vin, INRAE, Université de Strasbourg, Colmar 68000, France
- Institut Français de la Vigne et du Vin, Le Grau-Du-Roi 30240, France
| | - Sandrine Koechler
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Gérard Demangeat
- UMR Santé de la Vigne et Qualité du Vin, INRAE, Université de Strasbourg, Colmar 68000, France
| | - Damien Garcia
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Emmanuelle Vigne
- UMR Santé de la Vigne et Qualité du Vin, INRAE, Université de Strasbourg, Colmar 68000, France
| | - Olivier Lemaire
- UMR Santé de la Vigne et Qualité du Vin, INRAE, Université de Strasbourg, Colmar 68000, France
| | - Hélène Zuber
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67084, France
| |
Collapse
|
4
|
Anderson ML, McDonald Esstman S. In vitro particle-associated uridyltransferase activity of the rotavirus VP1 polymerase. Virology 2022; 577:24-31. [PMID: 36257129 PMCID: PMC10728782 DOI: 10.1016/j.virol.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Rotaviruses are 11-segmented, double-stranded RNA (dsRNA) viruses with a unique intra-particle RNA synthesis mechanism. During genome replication, the RNA-dependent RNA polymerase (VP1) performs minus-strand RNA (-ssRNA) synthesis on positive-strand RNA (+ssRNA) templates to create dsRNA segments. Recombinant VP1 catalyzes -ssRNA synthesis using substrate NTPs in vitro, but only when the VP2 core shell protein or virus-like particles made of VP2 and VP6 (2/6-VLPs) are included in the reaction. The dsRNA product can be labeled using [α32P]-UTP and separated from the input +ssRNA template by polyacrylamide gel electrophoresis. Here, we report the generation of [α32P]-labeled rotavirus +ssRNA templates in reactions that lacked non-radiolabeled NTPs but contained catalytically-active VP1, 2/6-VLPs, and [α32P]-UTP. Non-radiolabeled UTP competed with [α32P]-UTP to decrease product levels, whereas CTP and GTP had little effect. Interesting, ATP stimulated [α32P]-labeled product production. These results suggest that rotavirus VP1 transferred [α32P]-UMP onto viral + ssRNA in vitro via a particle-associated uridyltransferase activity.
Collapse
|
5
|
Herod MR, Ward JC, Tuplin A, Harris M, Stonehouse NJ, McCormick CJ. Positive strand RNA viruses differ in the constraints they place on the folding of their negative strand. RNA (NEW YORK, N.Y.) 2022; 28:1359-1376. [PMID: 35918125 PMCID: PMC9479745 DOI: 10.1261/rna.079125.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Genome replication of positive strand RNA viruses requires the production of a complementary negative strand RNA that serves as a template for synthesis of more positive strand progeny. Structural RNA elements are important for genome replication, but while they are readily observed in the positive strand, evidence of their existence in the negative strand is more limited. We hypothesized that this was due to viruses differing in their capacity to allow this latter RNA to adopt structural folds. To investigate this, ribozymes were introduced into the negative strand of different viral constructs; the expectation being that if RNA folding occurred, negative strand cleavage and suppression of replication would be seen. Indeed, this was what happened with hepatitis C virus (HCV) and feline calicivirus (FCV) constructs. However, little or no impact was observed for chikungunya virus (CHIKV), human rhinovirus (HRV), hepatitis E virus (HEV), and yellow fever virus (YFV) constructs. Reduced cleavage in the negative strand proved to be due to duplex formation with the positive strand. Interestingly, ribozyme-containing RNAs also remained intact when produced in vitro by the HCV polymerase, again due to duplex formation. Overall, our results show that there are important differences in the conformational constraints imposed on the folding of the negative strand between different positive strand RNA viruses.
Collapse
Affiliation(s)
- Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Christopher J McCormick
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, United Kingdom
- Institute for Life Sciences, University of Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
6
|
Weber JK, Morrone JA, Bagchi S, Pabon JDE, Kang SG, Zhang L, Cornell WD. Simplified, interpretable graph convolutional neural networks for small molecule activity prediction. J Comput Aided Mol Des 2021; 36:391-404. [PMID: 34817762 PMCID: PMC9325818 DOI: 10.1007/s10822-021-00421-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022]
Abstract
We here present a streamlined, explainable graph convolutional neural network (gCNN) architecture for small molecule activity prediction. We first conduct a hyperparameter optimization across nearly 800 protein targets that produces a simplified gCNN QSAR architecture, and we observe that such a model can yield performance improvements over both standard gCNN and RF methods on difficult-to-classify test sets. Additionally, we discuss how reductions in convolutional layer dimensions potentially speak to the “anatomical” needs of gCNNs with respect to radial coarse graining of molecular substructure. We augment this simplified architecture with saliency map technology that highlights molecular substructures relevant to activity, and we perform saliency analysis on nearly 100 data-rich protein targets. We show that resultant substructural clusters are useful visualization tools for understanding substructure-activity relationships. We go on to highlight connections between our models’ saliency predictions and observations made in the medicinal chemistry literature, focusing on four case studies of past lead finding and lead optimization campaigns.
Collapse
Affiliation(s)
- Jeffrey K Weber
- IBM Thomas J Watson Research Center, Yorktown Heights, NY, USA
| | | | - Sugato Bagchi
- IBM Thomas J Watson Research Center, Yorktown Heights, NY, USA
| | | | - Seung-Gu Kang
- IBM Thomas J Watson Research Center, Yorktown Heights, NY, USA
| | - Leili Zhang
- IBM Thomas J Watson Research Center, Yorktown Heights, NY, USA
| | - Wendy D Cornell
- IBM Thomas J Watson Research Center, Yorktown Heights, NY, USA.
| |
Collapse
|
7
|
Jha V, Narjala A, Basu D, T. N. S, Pachamuthu K, Chenna S, Nair A, Shivaprasad PV. Essential role of γ-clade RNA-dependent RNA polymerases in rice development and yield-related traits is linked to their atypical polymerase activities regulating specific genomic regions. THE NEW PHYTOLOGIST 2021; 232:1674-1691. [PMID: 34449900 PMCID: PMC9290346 DOI: 10.1111/nph.17700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/14/2021] [Indexed: 05/31/2023]
Abstract
RNA-dependent RNA polymerases (RDR) generate double-stranded (ds)RNA triggers for RNA silencing across eukaryotes. Among the three clades, α-clade and β-clade members are key components of RNA silencing and mediators of stress responses across eukaryotes. However, γ-clade members are unusual in that they are represented in phylogenetically distant plants and fungi, and their functions are unknown. Using genetic, bioinformatic and biochemical methods, we show that γ-clade RDRs from Oryza sativa L. are involved in plant development as well as regulation of expression of coding and noncoding RNAs. Overexpression of γ-clade RDRs in transgenic rice and tobacco plants resulted in robust growth phenotype, whereas their silencing in rice displayed strong inhibition of growth. Small (s)RNA and RNA-seq analysis of OsRDR3 mis-expression lines suggested that it is specifically involved in the regulation of repeat-rich regions in the genome. Biochemical analysis confirmed that OsRDR3 has robust polymerase activities on both single stranded (ss)RNA and ssDNA templates similar to the activities reported for α-clade RDRs such as AtRDR6. Our results provide the first evidence of the importance of γ-clade RDRs in plant development, their atypical biochemical activities and their contribution to the regulation of gene expression.
Collapse
Affiliation(s)
- Vikram Jha
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- BIOSS Centre for Biological Signaling StudiesFaculty of BiologyAlbert‐Ludwigs‐Universität FreiburgFreiburg im Breisgau79104Germany
| | - Anushree Narjala
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- SASTRA UniversityThirumalaisamudram, Thanjavur613401India
| | - Debjani Basu
- National Centre for Biological SciencesGKVK CampusBangalore560065India
| | - Sujith T. N.
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- University of Trans‐Disciplinary Health Sciences and TechnologyBengaluru560064India
| | - Kannan Pachamuthu
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Swetha Chenna
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- SASTRA UniversityThirumalaisamudram, Thanjavur613401India
| | - Ashwin Nair
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- SASTRA UniversityThirumalaisamudram, Thanjavur613401India
| | | |
Collapse
|
8
|
Abstract
The therapeutic targeting of the nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase (RdRp) of the Hepatitis C Virus (HCV) with nucleotide analogs led to a deep understanding of this enzymes structure, function and substrate specificity. Unlike previously studied DNA polymerases including the reverse transcriptase of Human Immunodeficiency Virus, development of biochemical assays for HCV RdRp proved challenging due to low solubility of the full-length protein and inefficient acceptance of exogenous primer/templates. Despite the poor apparent specific activity, HCV RdRp was found to support rapid and processive transcription once elongation is initiated in vitro consistent with its high level of viral replication in the livers of patients. Understanding of the substrate specificity of HCV RdRp led to the discovery of the active triphosphate of sofosbuvir as a nonobligate chain-terminator of viral RNA transcripts. The ternary crystal structure of HCV RdRp, primer/template, and incoming nucleotide showed the interaction between the nucleotide analog and the 2'-hydroxyl binding pocket and how an unfit mutation of serine 282 to threonine results in resistance by interacting with the uracil base and modified 2'-position of the analog. Host polymerases mediate off-target toxicity of nucleotide analogs and the active metabolite of sofosbuvir was found to not be efficiently incorporated by host polymerases including the mitochondrial RNA polymerase (POLRMT). Knowledge from studying inhibitors of HCV RdRp serves to advance antiviral drug discovery for other emerging RNA viruses including the discovery of remdesivir as an inhibitor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the virus that causes COVID-19.
Collapse
Affiliation(s)
- Joy Y Feng
- Gilead Sciences, Inc., Foster City, CA, United States.
| | | |
Collapse
|
9
|
Dwivedy A, Mariadasse R, Ahmad M, Chakraborty S, Kar D, Tiwari S, Bhattacharyya S, Sonar S, Mani S, Tailor P, Majumdar T, Jeyakanthan J, Biswal BK. Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2. PLoS Comput Biol 2021; 17:e1009384. [PMID: 34516563 PMCID: PMC8478224 DOI: 10.1371/journal.pcbi.1009384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 09/28/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2. The on-going coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is significantly affecting the world health. Unfortunately, over 180 million cases of COVID-19 resulting in nearly 4 million deaths have been reported till June, 2021. In this study, using a combination of bioinformatics, biochemical and mass spectrometry methods, we show that the Nidovirus RdRp associated Nucleotidyl transferase (NiRAN) domain of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 exhibits a kinase like activity. Additionally, we also show that few broad spectrum anti-cancer and anti-microbial drugs dampen this kinase like activity. Of note, Sorafenib, an FDA approved anti-cancer kinase inhibiting drug significantly reduces the SARS-CoV-2 load in cell lines. Our study suggests that NiRAN domain of the SARS-CoV-2 RdRp is indispensible for the successful viral life cycle and shows that abolishing this enzymatic function of RdRp by small molecule inhibitors may open novel avenues for COVID-19 therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sudipta Sonar
- Translational Health Science and Technology Institute, Faridabad, India
| | - Shailendra Mani
- Translational Health Science and Technology Institute, Faridabad, India
| | | | - Tanmay Majumdar
- National Institute of Immunology, New Delhi, India
- * E-mail: (TM); (JJ); (BKB)
| | - Jeyaraman Jeyakanthan
- Department of Bioinformatics, Alagappa University, Tamil Nadu, India
- * E-mail: (TM); (JJ); (BKB)
| | | |
Collapse
|
10
|
Dwivedy A, Mariadasse R, Ahmad M, Chakraborty S, Kar D, Tiwari S, Bhattacharyya S, Sonar S, Mani S, Tailor P, Majumdar T, Jeyakanthan J, Biswal BK. Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2. PLoS Comput Biol 2021. [DOI: https://doi.org/10.1371/journal.pcbi.1009384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2.
Collapse
|
11
|
Levanova AA, Vainio EJ, Hantula J, Poranen MM. RNA-Dependent RNA Polymerase from Heterobasidion RNA Virus 6 Is an Active Replicase In Vitro. Viruses 2021; 13:v13091738. [PMID: 34578320 PMCID: PMC8473416 DOI: 10.3390/v13091738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2'-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (A.A.L.); (M.M.P.)
| | - Eeva J. Vainio
- Natural Resources Institute Finland, 00790 Helsinki, Finland; (E.J.V.); (J.H.)
| | - Jarkko Hantula
- Natural Resources Institute Finland, 00790 Helsinki, Finland; (E.J.V.); (J.H.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (A.A.L.); (M.M.P.)
| |
Collapse
|
12
|
Singh J, Pikaard CS. Reconstitution of siRNA Biogenesis In Vitro: Novel Reaction Mechanisms and RNA Channeling in the RNA-Directed DNA Methylation Pathway. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:195-201. [PMID: 32350049 DOI: 10.1101/sqb.2019.84.039842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotes deploy RNA-mediated gene silencing pathways to guard their genomes against selfish genetic elements, such as transposable elements and invading viruses. In plants, RNA-directed DNA methylation (RdDM) is used to silence selfish elements at the level of transcription. This process involves 24-nt short interfering RNAs (siRNAs) and longer noncoding RNAs to which the siRNAs base-pair. Recently, we showed that 24-nt siRNA biogenesis could be recapitulated in the test tube using purified enzymes, yielding biochemical answers to numerous questions left unresolved by prior genetic and genomic studies. Interestingly, each enzyme has activities that program what happens in the next step, thus channeling the RNAs within the RdDM pathway and restricting their diversion into alternative pathways. However, a similar mechanistic understanding is lacking for other important steps of the RdDM pathway. We discuss some of the steps most in need of biochemical investigation and important questions still in need of answers.
Collapse
Affiliation(s)
- Jasleen Singh
- Department of Molecular and Cellular Biochemistry and Department of Biology, Bloomington, Indiana 47405, USA
| | - Craig S Pikaard
- Department of Molecular and Cellular Biochemistry and Department of Biology, Bloomington, Indiana 47405, USA.,Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
13
|
Gupta A, Lad SB, Ghodke PP, Pradeepkumar PI, Kondabagil K. Mimivirus encodes a multifunctional primase with DNA/RNA polymerase, terminal transferase and translesion synthesis activities. Nucleic Acids Res 2019; 47:6932-6945. [PMID: 31001622 PMCID: PMC6648351 DOI: 10.1093/nar/gkz236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/04/2019] [Accepted: 04/18/2019] [Indexed: 11/24/2022] Open
Abstract
Acanthamoeba polyphaga mimivirus is an amoeba-infecting giant virus with over 1000 genes including several involved in DNA replication and repair. Here, we report the biochemical characterization of gene product 577 (gp577), a hypothetical protein (product of L537 gene) encoded by mimivirus. Sequence analysis and phylogeny suggested gp577 to be a primase-polymerase (PrimPol)-the first PrimPol to be identified in a nucleocytoplasmic large DNA virus (NCLDV). Recombinant gp577 protein purified as a homodimer and exhibited de novo RNA as well as DNA synthesis on circular and linear single-stranded DNA templates. Further, gp577 extends a DNA/RNA primer annealed to a DNA or RNA template using deoxyribonucleoties (dNTPs) or ribonucleotides (NTPs) demonstrating its DNA/RNA polymerase and reverse transcriptase activity. We also show that gp577 possesses terminal transferase activity and is capable of extending ssDNA and dsDNA with NTPs and dNTPs. Mutation of the conserved primase motif residues of gp577 resulted in the loss of primase, polymerase, reverse transcriptase and terminal transferase activities. Additionally, we show that gp577 possesses translesion synthesis (TLS) activity. Mimiviral gp577 represents the first protein from an NCLDV endowed with primase, polymerase, reverse transcriptase, terminal transferase and TLS activities.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Shailesh B Lad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Pratibha P Ghodke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
14
|
Smertina E, Urakova N, Strive T, Frese M. Calicivirus RNA-Dependent RNA Polymerases: Evolution, Structure, Protein Dynamics, and Function. Front Microbiol 2019; 10:1280. [PMID: 31244803 PMCID: PMC6563846 DOI: 10.3389/fmicb.2019.01280] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
The Caliciviridae are viruses with a positive-sense, single-stranded RNA genome that is packaged into an icosahedral, environmentally stable protein capsid. The family contains five genera (Norovirus, Nebovirus, Sapovirus, Lagovirus, and Vesivirus) that infect vertebrates including amphibians, reptiles, birds, and mammals. The RNA-dependent RNA polymerase (RdRp) replicates the genome of RNA viruses and can speed up evolution due to its error-prone nature. Studying calicivirus RdRps in the context of genuine virus replication is often hampered by a lack of suitable model systems. Enteric caliciviruses and RHDV in particular are notoriously difficult to propagate in cell culture; therefore, molecular studies of replication mechanisms are challenging. Nevertheless, research on recombinant proteins has revealed several unexpected characteristics of calicivirus RdRps. For example, the RdRps of RHDV and related lagoviruses possess the ability to expose a hydrophobic motif, to rearrange Golgi membranes, and to copy RNA at unusually high temperatures. This review is focused on the structural dynamics, biochemical properties, kinetics, and putative interaction partners of these RdRps. In addition, we discuss the possible existence of a conserved but as yet undescribed structural element that is shared amongst the RdRps of all caliciviruses.
Collapse
Affiliation(s)
- Elena Smertina
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
| | - Michael Frese
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
15
|
Identification and Characterization of a Human Coronavirus 229E Nonstructural Protein 8-Associated RNA 3'-Terminal Adenylyltransferase Activity. J Virol 2019; 93:JVI.00291-19. [PMID: 30918070 PMCID: PMC6613758 DOI: 10.1128/jvi.00291-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Previously, coronavirus nsp8 proteins were suggested to have template-dependent RNA polymerase activities resembling those of RNA primases or even canonical RNA-dependent RNA polymerases, while more recent studies have suggested an essential cofactor function of nsp8 (plus nsp7) for nsp12-mediated RNA-dependent RNA polymerase activity. In an effort to reconcile conflicting data from earlier studies, the study revisits coronavirus nsp8-associated activities using additional controls and proteins. The data obtained for three coronavirus nsp8 proteins provide evidence that the proteins share metal ion-dependent RNA 3′ polyadenylation activities that are greatly stimulated by a short oligo(U) stretch in the template strand. In contrast, nsp8 was found to be unable to select and incorporate appropriate (matching) nucleotides to produce cRNA products from heteropolymeric and other homooligomeric templates. While confirming the critical role of nsp8 in coronavirus replication, the study amends the list of activities mediated by coronavirus nsp8 proteins in the absence of other proteins. Coronavirus nonstructural protein 8 (nsp8) has been suggested to have diverse activities, including noncanonical template-dependent polymerase activities. Here, we characterized a recombinant form of the human coronavirus 229E (HCoV-229E) nsp8 and found that the protein has metal ion-dependent RNA 3′-terminal adenylyltransferase (TATase) activity, while other nucleotides were not (or very inefficiently) transferred to the 3′ ends of single-stranded and (fully) double-stranded acceptor RNAs. Using partially double-stranded RNAs, very efficient TATase activity was observed if the opposite (template) strand contained a short 5′ oligo(U) sequence, while very little (if any) activity was detected for substrates with other homopolymeric or heteropolymeric sequences in the 5′ overhang. The oligo(U)-assisted/templated TATase activity on partial-duplex RNAs was confirmed for two other coronavirus nsp8 proteins, suggesting that the activity is conserved among coronaviruses. Replacement of a conserved Lys residue with Ala abolished the in vitro RNA-binding and TATase activities of nsp8 and caused a nonviable phenotype when the corresponding mutation was introduced into the HCoV-229E genome, confirming that these activities are mediated by nsp8 and critical for viral replication. In additional experiments, we obtained evidence that nsp8 has a pronounced specificity for adenylate and is unable to incorporate guanylate into RNA products, which strongly argues against the previously proposed template-dependent RNA polymerase activity of this protein. Given the presence of an oligo(U) stretch at the 5′ end of coronavirus minus-strand RNAs, it is tempting to speculate (but remains to be confirmed) that the nsp8-mediated TATase activity is involved in the 3′ polyadenylation of viral plus-strand RNAs. IMPORTANCE Previously, coronavirus nsp8 proteins were suggested to have template-dependent RNA polymerase activities resembling those of RNA primases or even canonical RNA-dependent RNA polymerases, while more recent studies have suggested an essential cofactor function of nsp8 (plus nsp7) for nsp12-mediated RNA-dependent RNA polymerase activity. In an effort to reconcile conflicting data from earlier studies, the study revisits coronavirus nsp8-associated activities using additional controls and proteins. The data obtained for three coronavirus nsp8 proteins provide evidence that the proteins share metal ion-dependent RNA 3′ polyadenylation activities that are greatly stimulated by a short oligo(U) stretch in the template strand. In contrast, nsp8 was found to be unable to select and incorporate appropriate (matching) nucleotides to produce cRNA products from heteropolymeric and other homooligomeric templates. While confirming the critical role of nsp8 in coronavirus replication, the study amends the list of activities mediated by coronavirus nsp8 proteins in the absence of other proteins.
Collapse
|
16
|
Ebolavirus polymerase uses an unconventional genome replication mechanism. Proc Natl Acad Sci U S A 2019; 116:8535-8543. [PMID: 30962389 DOI: 10.1073/pnas.1815745116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Most nonsegmented negative strand (NNS) RNA virus genomes have complementary 3' and 5' terminal nucleotides because the promoters at the 3' ends of the genomes and antigenomes are almost identical to each other. However, according to published sequences, both ends of ebolavirus genomes show a high degree of variability, and the 3' and 5' terminal nucleotides are not complementary. If correct, this would distinguish the ebolaviruses from other NNS RNA viruses. Therefore, we investigated the terminal genomic and antigenomic nucleotides of three different ebolavirus species, Ebola (EBOV), Sudan, and Reston viruses. Whereas the 5' ends of ebolavirus RNAs are highly conserved with the sequence ACAGG-5', the 3' termini are variable and are typically 3'-GCCUGU, ACCUGU, or CCUGU. A small fraction of analyzed RNAs had extended 3' ends. The majority of 3' terminal sequences are consistent with a mechanism of nucleotide addition by hairpin formation and back-priming. Using single-round replicating EBOV minigenomes, we investigated the effect of the 3' terminal nucleotide on viral replication and found that the EBOV polymerase initiates replication opposite the 3'-CCUGU motif regardless of the identity of the 3' terminal nucleotide(s) and of the position of this motif relative to the 3' end. Deletion or mutation of the first residue of the 3'-CCUGU motif completely abolished replication initiation, suggesting a crucial role of this nucleotide in directing initiation. Together, our data show that ebolaviruses have evolved a unique replication strategy among NNS RNA viruses resulting in 3' overhangs. This could be a mechanism to avoid antiviral recognition.
Collapse
|
17
|
Vogel D, Rosenthal M, Gogrefe N, Reindl S, Günther S. Biochemical characterization of the Lassa virus L protein. J Biol Chem 2019; 294:8088-8100. [PMID: 30926610 PMCID: PMC6527160 DOI: 10.1074/jbc.ra118.006973] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/19/2019] [Indexed: 12/25/2022] Open
Abstract
The L protein of arena- and bunyaviruses is structurally and functionally related to the orthomyxovirus polymerase complex. It plays a central role in the viral life cycle, as it replicates the virus genome and generates viral mRNA via a cap-snatching mechanism. Here, we aimed to biochemically characterize the L protein of Lassa virus, a human-pathogenic arenavirus endemic in West Africa. Full-length 250-kDa L protein was expressed using a baculovirus expression system. A low-resolution structure calculated from small-angle X-ray scattering data revealed a conformation similar to that in the crystal structure of the orthomyxovirus polymerase complex. Although the L protein did not exhibit cap-snatching endonuclease activity, it synthesized RNA in vitro. RNA polymerization required manganese rather than magnesium ions, was independent of nucleotide primers, and was inhibited by viral Z protein. Maximum activity was mediated by double-stranded promoter sequences with a minimum length of 17 nucleotides, containing a nontemplated 5′-G overhang, as in the natural genome context, as well as the naturally occurring base mismatches between the complementary promoter strands. Experiments with various short primers revealed the presence of two replication initiation sites at the template strand and evidence for primer translocation as proposed by the prime-and-realign hypothesis. Overall, our findings provide the foundation for a detailed understanding of the mechanistic differences and communalities in the polymerase proteins of segmented negative-strand RNA viruses and for the search for antiviral compounds targeting the RNA polymerase of Lassa virus.
Collapse
Affiliation(s)
- Dominik Vogel
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany
| | - Maria Rosenthal
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany
| | - Nadja Gogrefe
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany
| | - Sophia Reindl
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany.
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg 20359, Germany.
| |
Collapse
|
18
|
Bernier A, Sagan SM. Beyond sites 1 and 2, miR-122 target sites in the HCV genome have negligible contributions to HCV RNA accumulation in cell culture. J Gen Virol 2019; 100:217-226. [PMID: 30652963 DOI: 10.1099/jgv.0.001217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) recruits two molecules of the liver-specific microRNA-122 (miR-122) to two adjacent sites (S1 and S2) located at the 5' end of the viral RNA genome. This interaction promotes HCV RNA accumulation by stabilising the viral RNA and resulting in alteration of the secondary structure of the viral genome. In addition to S1 and S2, the HCV genome contains several other putative miR-122 binding sites, one in the IRES region, three in the NS5B coding region, and one in the 3' UTR. We investigated and compared the relative contributions of the S1, S2, IRES, NS5B (NS5B.1, 2 and 3) and 3' UTR sites on protein expression, viral RNA accumulation, and infectious particle production by mutational analysis and supplementation with compensatory mutant miR-122 molecules. We found that mutations predicted to alter miR-122 binding at the IRES and NS5B.2 sites lead to reductions in HCV core protein expression and viral RNA accumulation; with a concomitant decrease in viral particle production for the NS5B.2 mutant. However, supplementation of miR-122 molecules with compensatory mutations did not rescue these site mutants to wild-type levels, suggesting that mutation of these sequences likely disrupts an additional interaction important to the HCV life cycle, beyond direct interactions with miR-122. Thus, S1 and S2 play a predominant role in viral RNA accumulation, while miR-122 interactions with the IRES, NS5B and 3' UTR regions have negligible contributions to viral protein expression, viral RNA accumulation, and infectious particle production.
Collapse
Affiliation(s)
- Annie Bernier
- 1Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Selena M Sagan
- 2Department of Biochemistry, McGill University, Montréal, QC, Canada.,1Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| |
Collapse
|
19
|
De Maio FA, Risso G, Iglesias NG, Shah P, Pozzi B, Gebhard LG, Mammi P, Mancini E, Yanovsky MJ, Andino R, Krogan N, Srebrow A, Gamarnik AV. The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing. PLoS Pathog 2016; 12:e1005841. [PMID: 27575636 PMCID: PMC5004807 DOI: 10.1371/journal.ppat.1005841] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/03/2016] [Indexed: 11/22/2022] Open
Abstract
Dengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns. In particular, we show that NS5 alone, or in the context of viral infection, interacts with core components of the U5 snRNP particle, CD2BP2 and DDX23, alters the inclusion/exclusion ratio of alternative splicing events, and changes mRNA isoform abundance of known antiviral factors. Interestingly, a genome wide transcriptome analysis, using recently developed bioinformatics tools, revealed an increase of intron retention upon dengue virus infection, and viral replication was improved by silencing specific U5 components. Different mechanistic studies indicate that binding of NS5 to the spliceosome reduces the efficiency of pre-mRNA processing, independently of NS5 enzymatic activities. We propose that NS5 binding to U5 snRNP proteins hijacks the splicing machinery resulting in a less restrictive environment for viral replication.
Collapse
Affiliation(s)
| | - Guillermo Risso
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | | | - Priya Shah
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Berta Pozzi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | | | - Pablo Mammi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | | | | | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Anabella Srebrow
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | | |
Collapse
|
20
|
Nutho B, Meeprasert A, Chulapa M, Kungwan N, Rungrotmongkol T. Screening of hepatitis C NS5B polymerase inhibitors containing benzothiadiazine core: a steered molecular dynamics. J Biomol Struct Dyn 2016; 35:1743-1757. [PMID: 27236925 DOI: 10.1080/07391102.2016.1193444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic C virus (HCV) is a global health problem, resulting in liver cirrhosis and inflammation that can develop to hepatocellular carcinoma and fatality. The NS5B polymerase of HCV plays an important role in viral RNA replication process, making it an attractive therapeutic target for design and development of anti-HCV drugs. To search new potent compounds against the HCV NS5B polymerase, the molecular docking and the steered molecular dynamics (SMD) simulation techniques were performed. The potential potent inhibitors of the NS5B polymerase were screened out from the ZINC database using structural similarity search and molecular docking technique. Five top-hit compounds (the ZINC compounds 49888724, 49054741, 49777239, 49793673, and 49780355) were then studied by the SMD simulations based on the hypothesis that a high rupture force relates to a high binding efficiency. The results demonstrated that the ZINC compound 49888724 had a greater maximum rupture force, reflecting a good binding strength and inhibitory potency than known inhibitors and the rest four ZINC compounds. Therefore, our finding indicated that the ZINC compound 49888724 is a potential candidate to be a novel NS5B inhibitor for further design. Besides, the van der Waals interaction could be considered as the main contribution for stabilizing the NS5B-ligand complex.
Collapse
Affiliation(s)
- Bodee Nutho
- a Program in Biotechnology, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Arthitaya Meeprasert
- b Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Methat Chulapa
- b Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Nawee Kungwan
- c Department of Chemistry, Faculty of Science , Chiang Mai University , Chiang Mai 50200 , Thailand
| | - Thanyada Rungrotmongkol
- b Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand.,d PhD Program in Bioinformatics and Computational Biology, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| |
Collapse
|
21
|
Collier AM, Lyytinen OL, Guo YR, Toh Y, Poranen MM, Tao YJ. Initiation of RNA Polymerization and Polymerase Encapsidation by a Small dsRNA Virus. PLoS Pathog 2016; 12:e1005523. [PMID: 27078841 PMCID: PMC4831847 DOI: 10.1371/journal.ppat.1005523] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/03/2016] [Indexed: 01/07/2023] Open
Abstract
During the replication cycle of double-stranded (ds) RNA viruses, the viral RNA-dependent RNA polymerase (RdRP) replicates and transcribes the viral genome from within the viral capsid. How the RdRP molecules are packaged within the virion and how they function within the confines of an intact capsid are intriguing questions with answers that most likely vary across the different dsRNA virus families. In this study, we have determined a 2.4 Å resolution structure of an RdRP from the human picobirnavirus (hPBV). In addition to the conserved polymerase fold, the hPBV RdRP possesses a highly flexible 24 amino acid loop structure located near the C-terminus of the protein that is inserted into its active site. In vitro RNA polymerization assays and site-directed mutagenesis showed that: (1) the hPBV RdRP is fully active using both ssRNA and dsRNA templates; (2) the insertion loop likely functions as an assembly platform for the priming nucleotide to allow de novo initiation; (3) RNA transcription by the hPBV RdRP proceeds in a semi-conservative manner; and (4) the preference of virus-specific RNA during transcription is dictated by the lower melting temperature associated with the terminal sequences. Co-expression of the hPBV RdRP and the capsid protein (CP) indicated that, under the conditions used, the RdRP could not be incorporated into the recombinant capsids in the absence of the viral genome. Additionally, the hPBV RdRP exhibited higher affinity towards the conserved 5'-terminal sequence of the viral RNA, suggesting that the RdRP molecules may be encapsidated through their specific binding to the viral RNAs during assembly.
Collapse
Affiliation(s)
- Aaron M. Collier
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Outi L. Lyytinen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Yusong R. Guo
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Yukimatsu Toh
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Minna M. Poranen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail: (YJT); (MMP)
| | - Yizhi J. Tao
- Department of BioSciences, Rice University, Houston, Texas, United States of America
- * E-mail: (YJT); (MMP)
| |
Collapse
|
22
|
Niyomrattanakit P, Wan KF, Chung KY, Abas SN, Seh CC, Dong H, Lim CC, Chao AT, Lee CB, Nilar S, Lescar J, Shi PY, Beer D, Lim SP. Stabilization of dengue virus polymerase in de novo initiation assay provides advantages for compound screening. Antiviral Res 2015; 119:36-46. [PMID: 25896272 DOI: 10.1016/j.antiviral.2015.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 02/06/2023]
Abstract
Dengue virus (DENV) NS5 protein comprises an N-terminal methyltransferase domain and a C-terminal RNA-dependent RNA polymerase domain (RdRp). DENV RdRp is responsible for viral RNA synthesis via a de novo initiation mechanism and represents an attractive target for anti-viral therapy. Herein we describe the characterization of its de novo initiation activities by PAGE analyses and the knowledge gained was used to develop a fluorescent-based assay. A highly processive and robust assay was achieved by addition of cysteine in the assay buffer. This stabilized the apo-enzyme, and rendered optimal de novo initiation activity while balancing its intrinsic terminal transferase activity. Steady-state kinetic parameters of the NTP and RNA substrates under these optimal conditions were determined for DENV1-4 FL NS5. Heavy metal ions such as Zn(++) and Co(++) as well as high levels of monovalent salts, suppressed DENV polymerase de novo initiation activities. This assay was validated with nucleotide chain terminators and used to screen two diverse small library sets. The screen data obtained was further compared with concurrent screens performed with a DENV polymerase elongation fluorescent assay utilizing pre-complexed enzyme-RNA. A higher hit-rate was obtained for the de novo initiation assay compared to the elongation assay (∼2% versus ∼0.1%). All the hits from the latter assay are also identified in the de novo initiation assay, indicating that the de novo initiation assay performed with the stabilized apo-enzyme has the advantage of providing additional chemical starting entities for inhibiting this enzyme.
Collapse
Affiliation(s)
- Pornwaratt Niyomrattanakit
- Novartis Institute for Tropical Diseases, Singapore; Maveta Company Limited, 26/522 Paholyothin 62/1 S, Saimai, Bangkok 10220, Thailand(1)
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, Singapore.
| | - Ka Yan Chung
- Novartis Institute for Tropical Diseases, Singapore; Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | | | | | | - Shahul Nilar
- Novartis Institute for Tropical Diseases, Singapore
| | - Julien Lescar
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore; INSERM UMRS 945 "Immunité et Infection", Centre Hospitalier Universitaire Pitié-Salpêtrière, Faculté de Médecine et Université Pierre et Marie Curie, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore
| | - David Beer
- Novartis Institute for Tropical Diseases, Singapore
| | | |
Collapse
|
23
|
The murine norovirus core subgenomic RNA promoter consists of a stable stem-loop that can direct accurate initiation of RNA synthesis. J Virol 2014; 89:1218-29. [PMID: 25392209 DOI: 10.1128/jvi.02432-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3' of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. IMPORTANCE Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase.
Collapse
|
24
|
Subissi L, Decroly E, Selisko B, Canard B, Imbert I. A closed-handed affair: positive-strand RNA virus polymerases. Future Virol 2014. [DOI: 10.2217/fvl.14.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT RNA viruses are important emerging pathogens that cause human and animal infectious diseases. Antiviral therapies have to deal with the high mutational capacity of RNA viruses, which quickly adapt to new environments. A primary target for antiviral drug development is the viral RNA-dependent RNA polymerase (RdRp), which is the central enzyme of the viral RNA replication/transcription machinery. Here, we review the current mechanistic and structural knowledge on RdRps of positive-strand RNA viruses gained through crystallography and biochemistry. In addition, we review the growing body of information on RdRp-mediated strategies, such as proofreading and genome end repair, used by positive-strand RNA viruses to maintain their genome integrity.
Collapse
Affiliation(s)
- Lorenzo Subissi
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Etienne Decroly
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Barbara Selisko
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Bruno Canard
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Isabelle Imbert
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| |
Collapse
|
25
|
Wu W, Wang Z, Xia H, Liu Y, Qiu Y, Liu Y, Hu Y, Zhou X. Flock house virus RNA polymerase initiates RNA synthesis de novo and possesses a terminal nucleotidyl transferase activity. PLoS One 2014; 9:e86876. [PMID: 24466277 PMCID: PMC3900681 DOI: 10.1371/journal.pone.0086876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/18/2013] [Indexed: 12/26/2022] Open
Abstract
Flock House virus (FHV) is a positive-stranded RNA virus with a bipartite genome of RNAs, RNA1 and RNA2, and belongs to the family Nodaviridae. As the most extensively studied nodavirus, FHV has become a well-recognized model for studying various aspects of RNA virology, particularly viral RNA replication and antiviral innate immunity. FHV RNA1 encodes protein A, which is an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for RNA replication. Although the RNA replication of FHV has been studied in considerable detail, the mechanism employed by FHV protein A to initiate RNA synthesis has not been determined. In this study, we characterized the RdRP activity of FHV protein A in detail and revealed that it can initiate RNA synthesis via a de novo (primer-independent) mechanism. Moreover, we found that FHV protein A also possesses a terminal nucleotidyl transferase (TNTase) activity, which was able to restore the nucleotide loss at the 3'-end initiation site of RNA template to rescue RNA synthesis initiation in vitro, and may function as a rescue and protection mechanism to protect the 3' initiation site, and ensure the efficiency and accuracy of viral RNA synthesis. Altogether, our study establishes the de novo initiation mechanism of RdRP and the terminal rescue mechanism of TNTase for FHV protein A, and represents an important advance toward understanding FHV RNA replication.
Collapse
Affiliation(s)
- Wenzhe Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
26
|
Replication cycle and molecular biology of the West Nile virus. Viruses 2013; 6:13-53. [PMID: 24378320 PMCID: PMC3917430 DOI: 10.3390/v6010013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is a member of the genus Flavivirus in the family Flaviviridae. Flaviviruses replicate in the cytoplasm of infected cells and modify the host cell environment. Although much has been learned about virion structure and virion-endosomal membrane fusion, the cell receptor(s) used have not been definitively identified and little is known about the early stages of the virus replication cycle. Members of the genus Flavivirus differ from members of the two other genera of the family by the lack of a genomic internal ribosomal entry sequence and the creation of invaginations in the ER membrane rather than double-membrane vesicles that are used as the sites of exponential genome synthesis. The WNV genome 3' and 5' sequences that form the long distance RNA-RNA interaction required for minus strand initiation have been identified and contact sites on the 5' RNA stem loop for NS5 have been mapped. Structures obtained for many of the viral proteins have provided information relevant to their functions. Viral nonstructural protein interactions are complex and some may occur only in infected cells. Although interactions between many cellular proteins and virus components have been identified, the functions of most of these interactions have not been delineated.
Collapse
|
27
|
Wang Z, Qiu Y, Liu Y, Qi N, Si J, Xia X, Wu D, Hu Y, Zhou X. Characterization of a nodavirus replicase revealed a de novo initiation mechanism of RNA synthesis and terminal nucleotidyltransferase activity. J Biol Chem 2013; 288:30785-801. [PMID: 24019510 DOI: 10.1074/jbc.m113.492728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nodaviruses are a family of positive-stranded RNA viruses with a bipartite genome of RNAs. In nodaviruses, genomic RNA1 encodes protein A, which is recognized as an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for its RNA replication. Although nodaviral RNA replication has been studied in considerable detail, and nodaviruses are well recognized models for investigating viral RNA replication, the mechanism(s) governing the initiation of nodaviral RNA synthesis have not been determined. In this study, we characterized the RdRP activity of Wuhan nodavirus (WhNV) protein A in detail and determined that this nodaviral protein A initiates RNA synthesis via a de novo mechanism, and this RNA synthesis initiation could be independent of other viral or cellular factors. Moreover, we uncovered that WhNV protein A contains a terminal nucleotidyltransferase (TNTase) activity, which is the first time such an activity has been identified in nodaviruses. We subsequently found that the TNTase activity could function in vitro to repair the 3' initiation site, which may be digested by cellular exonucleases, to ensure the efficiency and accuracy of viral RNA synthesis initiation. Furthermore, we determined the cis-acting elements for RdRP or TNTase activity at the 3'-end of positive or negative strand RNA1. Taken together, our data establish the de novo synthesis initiation mechanism and the TNTase activity of WhNV protein A, and this work represents an important advance toward understanding the mechanism(s) of nodaviral RNA replication.
Collapse
Affiliation(s)
- Zhaowei Wang
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Waheed Y, Bhatti A, Ashraf M. RNA dependent RNA polymerase of HCV: a potential target for the development of antiviral drugs. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2013; 14:247-257. [PMID: 23291407 DOI: 10.1016/j.meegid.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/07/2012] [Accepted: 12/11/2012] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma, cirrhosis and end stage liver disease. More than 200million people are living with HCV worldwide with high morbidity and mortality. There is no vaccine available for this virus; the approved treatment option for the majority of HCV genotypes is the combination of pegylated (Peg) interferon and ribavirin. The therapy has a different response rate on different HCV genotypes and has a number of side effects. Recently, as well as Peg interferon and ribavirin, two protease inhibitors have been introduced to treat patients with HCV genotype 1 infection. The protease inhibitors have rapid onset of resistance and are not approved for use for infections with other HCV genotypes. The HCV NS5B gene encodes RNA dependent RNA polymerase (RdRp), which is the key player in viral replication and is a promising target for the development of antiviral drugs. HCV NS5B has been studied in various biochemical assays, cell based assays and animal model systems. So far, a number of nucleoside and non-nucleoside inhibitors have been screened for effects on viral replication. This review presents a deep insight into the structure and function of HCV polymerase and the effect of various nucleoside and non-nucleoside inhibitors on viral replication.
Collapse
Affiliation(s)
- Yasir Waheed
- Atta ur Rahman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan.
| | | | | |
Collapse
|
29
|
Protein-primed terminal transferase activity of hepatitis B virus polymerase. J Virol 2012; 87:2563-76. [PMID: 23255788 DOI: 10.1128/jvi.02786-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus (HBV) replication requires reverse transcription of an RNA pregenome (pgRNA) by a multifunctional polymerase (HP). HP initiates viral DNA synthesis by using itself as a protein primer and an RNA signal on pgRNA, termed epsilon (Hε), as the obligatory template. We discovered a Mn(2+)-dependent transferase activity of HP in vitro that was independent of Hε but also used HP as a protein primer. This protein-primed transferase activity was completely dependent on the HP polymerase active site. The DNA products of the transferase reaction were linked to HP via a phosphotyrosyl bond, and replacement of the Y63 residue of HP, the priming site for templated DNA synthesis, almost completely eliminated DNA synthesis by the transferase activity, suggesting that Y63 also serves as the predominant priming site for the transferase reaction. For this transferase activity, HP could use all four deoxynucleotide substrates, but TTP was clearly favored for extensive polymerization. The transferase activity was highly distributive, leading to the synthesis of DNA homo- and hetero-oligomeric and -polymeric ladders ranging from 1 nucleotide (nt) to >100 nt in length, with single-nt increments. As with Hε-templated DNA synthesis, the protein-primed transferase reaction was characterized by an initial stage that was resistant to the pyrophosphate analog phosphonoformic acid (PFA) followed by PFA-sensitive DNA synthesis, suggestive of an HP conformational change upon the synthesis of a nascent DNA oligomer. These findings have important implications for HBV replication, pathogenesis, and therapy.
Collapse
|
30
|
Noton SL, Deflubé LR, Tremaglio CZ, Fearns R. The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter. PLoS Pathog 2012; 8:e1002980. [PMID: 23093940 PMCID: PMC3475672 DOI: 10.1371/journal.ppat.1002980] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an RNA virus in the Family Paramyxoviridae. Here, the activities performed by the RSV polymerase when it encounters the viral antigenomic promoter were examined. RSV RNA synthesis was reconstituted in vitro using recombinant, isolated polymerase and an RNA oligonucleotide template representing nucleotides 1–25 of the trailer complement (TrC) promoter. The RSV polymerase was found to have two RNA synthesis activities, initiating RNA synthesis from the +3 site on the promoter, and adding a specific sequence of nucleotides to the 3′ end of the TrC RNA using a back-priming mechanism. Examination of viral RNA isolated from RSV infected cells identified RNAs initiated at the +3 site on the TrC promoter, in addition to the expected +1 site, and showed that a significant proportion of antigenome RNAs contained specific nucleotide additions at the 3′ end, demonstrating that the observations made in vitro reflected events that occur during RSV infection. Analysis of the impact of the 3′ terminal extension on promoter activity indicated that it can inhibit RNA synthesis initiation. These findings indicate that RSV polymerase-promoter interactions are more complex than previously thought and suggest that there might be sophisticated mechanisms for regulating promoter activity during infection. Respiratory syncytial virus (RSV) is a major pathogen of infants with the potential to cause severe respiratory disease. RSV has an RNA genome and one approach to developing a drug against this virus is to gain a greater understanding of the mechanisms used by the viral polymerase to generate new RNA. In this study we developed a novel assay for examining how the RSV polymerase interacts with a specific promoter sequence at the end of an RNA template, and performed analysis of RSV RNA produced in infected cells to confirm the findings. Our experiments showed that the behavior of the polymerase on the promoter was surprisingly complex. We found that not only could the polymerase initiate synthesis of progeny genome RNA from an initiation site at the end of the template, but it could also generate another small RNA from a second initiation site. In addition, we showed that the polymerase could add additional RNA sequence to the template promoter, which affected its ability to initiate RNA synthesis. These findings extend our understanding of the functions of the promoter, and suggest a mechanism by which RNA synthesis from the promoter is regulated.
Collapse
Affiliation(s)
- Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Laure R. Deflubé
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Chadene Z. Tremaglio
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Sarin LP, Wright S, Chen Q, Degerth LH, Stuart DI, Grimes JM, Bamford DH, Poranen MM. The C-terminal priming domain is strongly associated with the main body of bacteriophage ϕ6 RNA-dependent RNA polymerase. Virology 2012; 432:184-93. [DOI: 10.1016/j.virol.2012.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/06/2012] [Accepted: 05/21/2012] [Indexed: 12/17/2022]
|
32
|
Selisko B, Potisopon S, Agred R, Priet S, Varlet I, Thillier Y, Sallamand C, Debart F, Vasseur JJ, Canard B. Molecular basis for nucleotide conservation at the ends of the dengue virus genome. PLoS Pathog 2012; 8:e1002912. [PMID: 23028313 PMCID: PMC3441707 DOI: 10.1371/journal.ppat.1002912] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/03/2012] [Indexed: 12/02/2022] Open
Abstract
The dengue virus (DV) is an important human pathogen from the Flavivirus genus, whose genome- and antigenome RNAs start with the strictly conserved sequence pppAG. The RNA-dependent RNA polymerase (RdRp), a product of the NS5 gene, initiates RNA synthesis de novo, i.e., without the use of a pre-existing primer. Very little is known about the mechanism of this de novo initiation and how conservation of the starting adenosine is achieved. The polymerase domain NS5PolDV of NS5, upon initiation on viral RNA templates, synthesizes mainly dinucleotide primers that are then elongated in a processive manner. We show here that NS5PolDV contains a specific priming site for adenosine 5′-triphosphate as the first transcribed nucleotide. Remarkably, in the absence of any RNA template the enzyme is able to selectively synthesize the dinucleotide pppAG when Mn2+ is present as catalytic ion. The T794 to A799 priming loop is essential for initiation and provides at least part of the ATP-specific priming site. The H798 loop residue is of central importance for the ATP-specific initiation step. In addition to ATP selection, NS5PolDV ensures the conservation of the 5′-adenosine by strongly discriminating against viral templates containing an erroneous 3′-end nucleotide in the presence of Mg2+. In the presence of Mn2+, NS5PolDV is remarkably able to generate and elongate the correct pppAG primer on these erroneous templates. This can be regarded as a genomic/antigenomic RNA end repair mechanism. These conservational mechanisms, mediated by the polymerase alone, may extend to other RNA virus families having RdRps initiating RNA synthesis de novo. The 5′- and 3′-ends of RNA virus genomes have evolved towards efficient replication, translation, and escape from defense mechanisms of the host cell. Little is known about how RNA viruses conserve or restore the correct ends of their genomes. The Flavivirus genus of positive-strand RNA viruses contains important human pathogens such as yellow fever virus, West Nile virus, Japanese encephalitis virus and dengue virus (DV). The Flavivirus genome ends are strictly conserved as 5′-AG…CU-3′. We demonstrate here the primary role of the DV polymerase in the conservation of the first and last genomic residue. We show that DV polymerase contains an ATP-specific priming site, which imposes a strong preference for the de novo synthesis of a dinucleotide primer starting with an ATP. Furthermore, the polymerase is able to indirectly correct erroneous sequences by producing the correct primer in the absence of template and on templates containing incorrect nucleotides at the 3′-end. The correct primer is productively elongated on either correct or incorrect templates. Our findings provide a direct demonstration of the implication of a viral RNA polymerase in the conservation and repair of genome ends. Other polymerases from other RNA virus families are likely to employ similar mechanisms.
Collapse
Affiliation(s)
- Barbara Selisko
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 163, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Takeshita D, Yamashita S, Tomita K. Mechanism for template-independent terminal adenylation activity of Qβ replicase. Structure 2012; 20:1661-9. [PMID: 22884418 DOI: 10.1016/j.str.2012.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/29/2012] [Accepted: 07/15/2012] [Indexed: 11/29/2022]
Abstract
The genomic RNA of Qβ virus is replicated by Qβ replicase, a template-dependent RNA polymerase complex. Qβ replicase has an intrinsic template-independent RNA 3'-adenylation activity, which is required for efficient viral RNA amplification in the host cells. However, the mechanism of the template-independent 3'-adenylation of RNAs by Qβ replicase has remained elusive. We determined the structure of a complex that includes Qβ replicase, a template RNA, a growing RNA complementary to the template RNA, and ATP. The structure represents the terminal stage of RNA polymerization and reveals that the shape and size of the nucleotide-binding pocket becomes available for ATP accommodation after the 3'-penultimate template-dependent C-addition. The stacking interaction between the ATP and the neighboring Watson-Crick base pair, between the 5'-G in the template and the 3'-C in the growing RNA, contributes to the nucleotide specificity. Thus, the template for the template-independent 3'-adenylation by Qβ replicase is the RNA and protein ribonucleoprotein complex.
Collapse
Affiliation(s)
- Daijiro Takeshita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
34
|
Vaughan R, Fan B, You JS, Kao CC. Identification and functional characterization of the nascent RNA contacting residues of the hepatitis C virus RNA-dependent RNA polymerase. RNA (NEW YORK, N.Y.) 2012; 18:1541-52. [PMID: 22736798 PMCID: PMC3404374 DOI: 10.1261/rna.031914.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/30/2012] [Indexed: 05/21/2023]
Abstract
Understanding how the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) interacts with nascent RNA would provide valuable insight into the virus's mechanism for RNA synthesis. Using a peptide mass fingerprinting method and affinity capture of peptides reversibly cross-linked to an alkyn-labeled nascent RNA, we identified a region below the Δ1 loop in the fingers domain of the HCV RdRp that contacts the nascent RNA. A modification protection assay was used to confirm the assignment. Several mutations within the putative nascent RNA binding region were generated and analyzed for RNA synthesis in vitro and in the HCV subgenomic replicon. All mutations tested within this region showed a decrease in primer-dependent RNA synthesis and decreased stabilization of the ternary complex. The results from this study advance our understanding of the structure and function of the HCV RdRp and the requirements for HCV RNA synthesis. In addition, a model of nascent RNA interaction is compared with results from structural studies.
Collapse
Affiliation(s)
- Robert Vaughan
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Baochang Fan
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Jin-Sam You
- Indiana University School of Medicine, IUPUI, Indianapolis, Indiana 46202, USA
| | - C. Cheng Kao
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
- Corresponding authorE-mail
| |
Collapse
|
35
|
Sheng C, Wang J, Xiao J, Xiao J, Chen Y, Jia L, Zhi Y, Li G, Xiao M. Classical swine fever virus NS5B protein suppresses the inhibitory effect of NS5A on viral translation by binding to NS5A. J Gen Virol 2012; 93:939-950. [DOI: 10.1099/vir.0.039495-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In order to investigate molecular mechanisms of internal ribosome entry site (IRES)-mediated translation in classical swine fever virus (CSFV), an important pathogen of pigs, the expression level of NS3 was evaluated in the context of genomic RNAs and reporter RNA fragments. All data showed that the NS5A protein has an inhibitory effect on IRES-mediated translation and that NS5B proteins suppress the inhibitory effect of NS5A on viral translation, but CSFV NS5B GDD mutants do not. Furthermore, glutathione S-transferase pull-down assay and immunoprecipitation analysis, associated with deletion and alanine-scanning mutations, were performed. Results showed that NS5B interacts with NS5A and that the region aa 390–414, located in the C-terminal half of NS5A, is important for binding of NS5B to NS5A. Furthermore, amino acids K399, T401, E406 and L413 in the region were found to be essential for NS5A–NS5B interaction, virus rescue and infection. The above-mentioned region and four amino acids were observed to overlap with the site responsible for inhibition of IRES-mediated translation by the NS5A protein. We also found that aa 63–72, aa 637–653 and the GDD motif of NS5B were necessary for the interaction between NS5A and NS5B. These findings suggest that the repression activity of the NS5B protein toward the role of NS5A in translation might be achieved by NS5A–NS5B interaction, for which aa 390–414 of NS5A and aa 63–72, aa 637–653 and the GDD motif of NS5B are indispensable. This is important for understanding the role of NS5A–NS5B interaction in the virus life cycle.
Collapse
Affiliation(s)
- Chun Sheng
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Jing Wang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Jing Xiao
- The First Clinical Medical College, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Xiao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Yan Chen
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Lin Jia
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Yimiao Zhi
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Guangyuan Li
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Ming Xiao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
36
|
Detergent-induced activation of the hepatitis C virus genotype 1b RNA polymerase. Gene 2012; 496:79-87. [PMID: 22306265 DOI: 10.1016/j.gene.2012.01.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/29/2011] [Accepted: 01/18/2012] [Indexed: 11/24/2022]
Abstract
Recently, we found that sphingomyelin bound and activated hepatitis C virus (HCV) 1b RNA polymerase (RdRp), thereby recruiting the HCV replication complex into lipid raft structures. Detergents are commonly used for resolving lipids and purifying proteins, including HCV RdRp. Here, we tested the effect of detergents on HCV RdRp activity in vitro and found that non-ionic (Triton X-100, NP-40, Tween 20, Tween 80, and Brij 35) and twitterionic (CHAPS) detergents activated HCV 1b RdRps by 8-16.6 folds, but did not affect 1a or 2a RdRps. The maximum effect of these detergents was observed at around their critical micelle concentrations. On the other hand, ionic detergents (SDS and DOC) completely inactivated polymerase activity at 0.01%. In the presence of Triton X-100, HCV 1b RdRp did not form oligomers, but recruited more template RNA and increased the speed of polymerization. Comparison of polymerase and RNA-binding activity between JFH1 RdRp and Triton X-100-activated 1b RdRp indicated that monomer RdRp showed high activity because JFH1 RdRp was a monomer in physiological conditions of transcription. Besides, 502H plays a key role on oligomerization of 1b RdRp, while 2a RdRps which have the amino acid S at position 502 are monomers. This oligomer formed by 502H was disrupted both by high salt and Triton X-100. On the contrary, HCV 1b RdRp completely lost fidelity in the presence of 0.02% Triton X-100, which suggests that caution should be exercised while using Triton X-100 in anti-HCV RdRp drug screening tests.
Collapse
|
37
|
Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex. Proc Natl Acad Sci U S A 2011; 108:19743-8. [PMID: 22106304 DOI: 10.1073/pnas.1112742108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Arenaviruses form a noncytolytic infection in their rodent hosts, yet can elicit severe hemorrhagic disease in humans. How arenaviruses regulate gene expression remains unclear, and further understanding may provide insight into the dichotomy of these disparate infection processes. Here we reconstitute arenavirus RNA synthesis initiation and gene expression regulation in vitro using purified components and demonstrate a direct role of the viral Z protein in controlling RNA synthesis. Our data reveal that Z forms a species-specific complex with the viral polymerase (L) and inhibits RNA synthesis initiation by impairing L catalytic activity. This Z-L complex locks the viral polymerase in a promoter-bound, catalytically inactive state and may additionally ensure polymerase packaging during virion maturation. Z modulates host factors involved in cellular translation, proliferation, and antiviral signaling. Our data defines an additional role in governing viral RNA synthesis, revealing Z as the center of a network of host and viral connections that regulates viral gene expression.
Collapse
|
38
|
Recent advances in drug discovery of benzothiadiazine and related analogs as HCV NS5B polymerase inhibitors. Bioorg Med Chem 2011; 19:4690-703. [PMID: 21798747 DOI: 10.1016/j.bmc.2011.06.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 01/27/2023]
Abstract
Hepatitis C virus (HCV) is a major health burden, with an estimated 170 million chronically infected individuals worldwide, and a leading cause of liver transplantation. Patients are at increased risk of developing liver cirrhosis, hepatocellular carcinoma and even liver failure. In the past two decades, several approaches have been adopted to inhibit non-structural viral proteins. The RNA-dependent RNA polymerase (NS5B) of HCV is one of the attractive validated targets for development of new drugs to block HCV infection. In this review, we report the recent progress made towards identifying and developing benzothiadiazines as HCV NS5B polymerase inhibitors. The substituted benzothiadiazine class was identified by HTS in 2002 as an NS5B inhibitor. Further optimization and modification of the core has improved the potency and pharmacokinetic properties of substituted benzothiadiazines. Research on palm site-binding benzothiadiazine analogs and related derivatives and analogs is discussed in this article.
Collapse
|
39
|
Lin M, Ye S, Xiong Y, Cai D, Zhang J, Hu Y. Expression and characterization of RNA-dependent RNA polymerase of Ectropis obliqua virus. BMB Rep 2010; 43:284-90. [PMID: 20423615 DOI: 10.5483/bmbrep.2010.43.4.284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication of positive-strand RNA virus is mediated by a virus- encoded RNA-dependent RNA polymerase (RdRp). To study the replication of Ectropis obliqua virus (EoV), a newly identified insect virus belonging to the family Iflaviradae, we expressed the RNA polymerase domain in Escherichia coli and purified it on a Ni-chelating HisTrap affinity column. It is demonstrated that EoV RdRp initiated RNA synthesis in a primerand poly (A)-dependent manner in vitro. Furthermore, the effect of primer concentration, temperature, metal ions (Mg2+, Mn2+, and K+) on enzymatic activity were determined. Our study represented a first step towards understanding the mechanism of EoV replication.
Collapse
Affiliation(s)
- Meijuan Lin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | | | | | | | | | | |
Collapse
|
40
|
Evidence that the polymerase of respiratory syncytial virus initiates RNA replication in a nontemplated fashion. Proc Natl Acad Sci U S A 2010; 107:10226-31. [PMID: 20479224 DOI: 10.1073/pnas.0913065107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA virus polymerases must initiate replicative RNA synthesis with extremely high accuracy to maintain their genome termini and to avoid generating defective genomes. For the single-stranded negative-sense RNA viruses, it is not known how this accuracy is achieved. To investigate this question, mutations were introduced into the 3' terminal base of a respiratory syncytial virus (RSV) template, and the RNA products were examined to determine the impact of the mutation. To perform the assay, RNA replication was reconstituted using a modified minireplicon system in which replication was limited to a single step. Importantly, this system allowed analysis of RSV RNA generated intracellularly, but from a defined template that was not subject to selection by replication. Sequence analysis of RNA products generated from templates containing 1U-C and 1U-A substitutions showed that, in both cases, replication products were initiated with a nontemplated, WT A residue, rather than a templated G or U residue, indicating that the polymerase selects the terminal NTP independently of the template. Examination of a template in which the position 1 nucleotide was deleted supported these findings. This mutant directed efficient replication at approximately 60% of WT levels, and its product was found to be initiated at the WT position (-1 relative to the template) with a WT A residue. These findings show that the RSV replicase selects ATP and initiates at the correct position, independently of the first nucleotide of the template, suggesting a mechanism by which highly accurate replication initiation is achieved.
Collapse
|
41
|
Abstract
RNA genomes are vulnerable to corruption by a range of activities, including inaccurate replication by the error-prone replicase, damage from environmental factors, and attack by nucleases and other RNA-modifying enzymes that comprise the cellular intrinsic or innate immune response. Damage to coding regions and loss of critical cis-acting signals inevitably impair genome fitness; as a consequence, RNA viruses have evolved a variety of mechanisms to protect their genome integrity. These include mechanisms to promote replicase fidelity, recombination activities that allow exchange of sequences between different RNA templates, and mechanisms to repair the genome termini. In this article, we review examples of these processes from a range of RNA viruses to showcase the diverse approaches that viruses have evolved to maintain their genome sequence integrity, focusing first on mechanisms that viruses use to protect their entire genome, and then concentrating on mechanisms that allow protection of the genome termini, which are especially vulnerable. In addition, we discuss examples in which it might be beneficial for a virus to 'lose' its genomic termini and reduce its replication efficiency.
Collapse
Affiliation(s)
- John N Barr
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
42
|
Mechanism of hepatitis C virus RNA polymerase inhibition with dihydroxypyrimidines. Antimicrob Agents Chemother 2009; 54:977-83. [PMID: 20028820 DOI: 10.1128/aac.01216-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the biochemical mechanisms associated with inhibition and resistance to a 4,5-dihydroxypyrimidine carboxylate that inhibits the hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B. On the basis of the structure of the pharmacophore, it has been suggested that these compounds may act as pyrophosphate (PP(i)) mimics. We monitored nucleotide incorporation events during the elongation phase and showed that the polymerase activity of wild-type NS5B was inhibited by the dihydroxypyrimidine at a 50% inhibitory concentration (IC(50)) of 0.73 muM. Enzymes with the G152E or P156L mutation, either of which confers resistance to this compound, showed four- to fivefold increases in IC(50)s. The inhibitor was competitive with respect to nucleotide incorporation. It was likewise effective at preventing the PP(i)-mediated excision of an incorporated chain terminator in a competitive fashion. In the absence of the dihydroxypyrimidine, the reaction was not significantly affected by the G152E or P156L mutation. These data suggest that the resistance associated with these two mutations is unlikely due to an altered interaction with the pyrophosphate-mimicking domain of the compound but, rather, is due to altered interactions with its specificity domain at a region distant from the active site. Together, our findings provide strong experimental evidence that supports the notion that the members of this class of compounds can act as PP(i) mimics that have the potential to mechanistically complement established nucleoside and nonnucleoside analogue inhibitors.
Collapse
|
43
|
Endocytic Rab proteins are required for hepatitis C virus replication complex formation. Virology 2009; 398:21-37. [PMID: 20005553 DOI: 10.1016/j.virol.2009.11.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/09/2009] [Accepted: 11/20/2009] [Indexed: 12/11/2022]
Abstract
During infection, hepatitis C virus (HCV) NS4B protein remodels host membranes to form HCV replication complexes (RC) which appear as foci under fluorescence microscopy (FM). To understand the role of Rab proteins in forming NS4B foci, cells expressing the HCV replicon were examined biochemically and via FM. First, we show that an isolated NS4B-bound subcellular fraction is competent for HCV RNA synthesis. Further, this fraction is differentially enriched in Rab1, 2, 5, 6 and 7. However, when examined via FM, NS4B foci appear to be selectively associated with Rab5 and Rab7 proteins. Additionally, dominant negative (DN) Rab6 expression impairs Rab5 recruitment into NS4B foci. Further, silencing of Rab5 or Rab7 resulted in a significant decrease in HCV genome replication. Finally, expression of DN Rab5 or Rab7 led to a reticular NS4B subcellular distribution, suggesting that endocytic proteins Rab5 and Rab7, but not Rab11, may facilitate NS4B foci formation.
Collapse
|
44
|
Teramoto T, Kohno Y, Mattoo P, Markoff L, Falgout B, Padmanabhan R. Genome 3'-end repair in dengue virus type 2. RNA (NEW YORK, N.Y.) 2008; 14:2645-56. [PMID: 18974278 PMCID: PMC2590968 DOI: 10.1261/rna.1051208] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Genomes of RNA viruses encounter a continual threat from host cellular ribonucleases. Therefore, viruses have evolved mechanisms to protect the integrity of their genomes. To study the mechanism of 3'-end repair in dengue virus-2 in mammalian cells, a series of 3'-end deletions in the genome were evaluated for virus replication by detection of viral antigen NS1 and by sequence analysis. Limited deletions did not cause any delay in the detection of NS1 within 5 d. However, deletions of 7-10 nucleotides caused a delay of 9 d in the detection of NS1. Sequence analysis of RNAs from recovered viruses showed that at early times, virus progenies evolved through RNA molecules of heterogeneous lengths and nucleotide sequences at the 3' end, suggesting a possible role for terminal nucleotidyl transferase activity of the viral polymerase (NS5). However, this diversity gradually diminished and consensus sequences emerged. Template activities of 3'-end mutants in the synthesis of negative-strand RNA in vitro by purified NS5 correlate well with the abilities of mutant RNAs to repair and produce virus progenies. Using the Mfold program for RNA structure prediction, we show that if the 3' stem-loop (3' SL) structure was abrogated by mutations, viruses eventually restored the 3' SL structure. Taken together, these results favor a two-step repair process: non-template-based nucleotide addition followed by evolutionary selection of 3'-end sequences based on the best-fit RNA structure that can support viral replication.
Collapse
Affiliation(s)
- Tadahisa Teramoto
- Laboratory of Vector-Borne Virus Diseases, Center for Biologics Evaluation and Review, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ferrari E, He Z, Palermo RE, Huang HC. Hepatitis C virus NS5B polymerase exhibits distinct nucleotide requirements for initiation and elongation. J Biol Chem 2008; 283:33893-901. [PMID: 18840605 DOI: 10.1074/jbc.m803094200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The hepatitis C virus (HCV) NS5B protein is an RNA-dependent RNA polymerase (RdRp) essential for replication of the viral RNA genome. Purified NS5B has been reported to exhibit multiple activities in vitro. Using a synthetic heteropolymeric RNA template with dideoxycytidine at its 3'-end, we examined de novo initiation and primer extension in a system devoid of self-priming and terminal nucleotide transferase activities. Products predominantly of template size and its multiples were detected. High concentrations of nucleoside triphosphates (K(app)(m) approximately 100-400 mum) corresponding to the first three incorporated nucleotides were found to be required for efficient de novo RNA synthesis. In the presence of initiating di- or trinucleotides, however, the amount of NTP needed to achieve maximal activity dropped 10(3)- to 10(4)-fold, revealing a much reduced nucleotide requirement for elongation (K(app)(m) approximately 0.03-0.09 microm). Accordingly, single round extension from an exogenous primer following preincubation of the enzyme with template and primer could also be supported by <0.1 microm levels of NTP. De novo synthesis at high NTP concentrations was shown to be preferred over primer extension. On a dideoxycytidine-blocked synthetic RNA template derived from the 3'-end of the HCV(-)UTR, the addition of the corresponding initiating trinucleotide also dramatically reduced the NTP levels needed to achieve efficient RNA synthesis. Thus, distinct nucleotide requirements exist for initiation and elongation steps catalyzed by the HCV NS5B polymerase.
Collapse
Affiliation(s)
- Eric Ferrari
- Department of Virology, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | | | |
Collapse
|
46
|
Nontemplated terminal nucleotidyltransferase activity of double-stranded RNA bacteriophage phi6 RNA-dependent RNA polymerase. J Virol 2008; 82:9254-64. [PMID: 18614640 DOI: 10.1128/jvi.01044-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The replication and transcription of double-stranded RNA (dsRNA) viruses occur within a polymerase complex particle in which the viral genome is enclosed throughout the entire life cycle of the virus. A single protein subunit in the polymerase complex is responsible for the template-dependent RNA polymerization activity. The isolated polymerase subunit of the dsRNA bacteriophage phi6 was previously shown to replicate and transcribe given RNA molecules. In this study, we show that this enzyme also catalyzes nontemplated nucleotide additions to single-stranded and double-stranded nucleic acid molecules. This terminal nucleotidyltransferase activity not only is a property of the isolated enzyme but also is detected to take place within the viral nucleocapsid. This is the first time terminal nucleotidyltransferase activity has been reported for a dsRNA virus as well as for a viral particle. The results obtained together with previous high-resolution structural data on the phi6 RNA-dependent RNA polymerase suggest a mechanism for terminal nucleotidyl addition. We propose that the activity is involved in the termination of the template-dependent RNA polymerization reaction on the linear phi6 genome.
Collapse
|
47
|
Chinnaswamy S, Yarbrough I, Palaninathan S, Kumar CTR, Vijayaraghavan V, Demeler B, Lemon SM, Sacchettini JC, Kao CC. A locking mechanism regulates RNA synthesis and host protein interaction by the hepatitis C virus polymerase. J Biol Chem 2008; 283:20535-46. [PMID: 18442978 DOI: 10.1074/jbc.m801490200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutational analysis of the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) template channel identified two residues, Trp(397) and His(428), which are required for de novo initiation but not for extension from a primer. These two residues interact with the Delta1 loop on the surface of the RdRp. A deletion within the Delta1 loop also resulted in comparable activities. The mutant proteins exhibit increased double-stranded RNA binding compared with the wild type, suggesting that the Delta1 loop serves as a flexible locking mechanism to regulate the conformations needed for de novo initiation and for elongative RNA synthesis. A similar locking motif can be found in other viral RdRps. Products associated with the open conformation of the HCV RdRp were inhibited by interaction with the retinoblastoma protein but not cyclophilin A. Different conformations of the HCV RdRp can thus affect RNA synthesis and interaction with cellular proteins.
Collapse
Affiliation(s)
- Sreedhar Chinnaswamy
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Curaba J, Chen X. Biochemical activities of Arabidopsis RNA-dependent RNA polymerase 6. J Biol Chem 2008. [PMID: 18063577 DOI: 10.1074/jbc.m708983200.biochemical] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
In Arabidopsis, genetic evidence demonstrates that RNA-dependent RNA polymerase 6 (RDR6) plays a fundamental role in at least four RNA silencing pathways whose functions range from defense against transgenes or viruses to endogene regulation in development and in stress responses. Despite its critical role in RNA silencing, the biochemical activities of RDR6 have yet to be characterized. In this study, we transiently expressed Arabidopsis RDR6 in Nicotiana benthamiana and investigated the biochemical activities of immunopurified RDR6 in vitro. We showed that RDR6 possesses terminal nucleotidyltransferase activity as well as primer-independent RNA polymerase activity on single-stranded RNAs. We found that RDR6 cannot distinguish RNAs with or without a cap or poly(A) tail. We also demonstrated that RDR6 has strong polymerase activity on single-stranded DNA. All these activities require the conserved catalytic Asp(867) residue. Our findings have important implications on the processes involving RDR6 in vivo and provide new biochemical insights into the mechanisms of RNA silencing in Arabidopsis.
Collapse
Affiliation(s)
- Julien Curaba
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521.
| |
Collapse
|
49
|
Abstract
In Arabidopsis, genetic evidence demonstrates that RNA-dependent RNA polymerase 6 (RDR6) plays a fundamental role in at least four RNA silencing pathways whose functions range from defense against transgenes or viruses to endogene regulation in development and in stress responses. Despite its critical role in RNA silencing, the biochemical activities of RDR6 have yet to be characterized. In this study, we transiently expressed Arabidopsis RDR6 in Nicotiana benthamiana and investigated the biochemical activities of immunopurified RDR6 in vitro. We showed that RDR6 possesses terminal nucleotidyltransferase activity as well as primer-independent RNA polymerase activity on single-stranded RNAs. We found that RDR6 cannot distinguish RNAs with or without a cap or poly(A) tail. We also demonstrated that RDR6 has strong polymerase activity on single-stranded DNA. All these activities require the conserved catalytic Asp(867) residue. Our findings have important implications on the processes involving RDR6 in vivo and provide new biochemical insights into the mechanisms of RNA silencing in Arabidopsis.
Collapse
Affiliation(s)
- Julien Curaba
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521.
| |
Collapse
|
50
|
Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase. BMC Mol Biol 2007; 8:59. [PMID: 17623110 PMCID: PMC1934914 DOI: 10.1186/1471-2199-8-59] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 07/11/2007] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) NS5 is a viral nonstructural protein that carries both methyltransferase and RNA-dependent RNA polymerase (RdRp) domains. It is a key component of the viral RNA replicase complex that presumably includes other viral nonstructural and cellular proteins. The biochemical properties of JEV NS5 have not been characterized due to the lack of a robust in vitro RdRp assay system, and the molecular mechanisms for the initiation of RNA synthesis by JEV NS5 remain to be elucidated. RESULTS To characterize the biochemical properties of JEV RdRp, we expressed in Escherichia coli and purified an enzymatically active full-length recombinant JEV NS5 protein with a hexahistidine tag at the N-terminus. The purified NS5 protein, but not the mutant NS5 protein with an Ala substitution at the first Asp of the RdRp-conserved GDD motif, exhibited template- and primer-dependent RNA synthesis activity using a poly(A) RNA template. The NS5 protein was able to use both plus- and minus-strand 3'-untranslated regions of the JEV genome as templates in the absence of a primer, with the latter RNA being a better template. Analysis of the RNA synthesis initiation site using the 3'-end 83 nucleotides of the JEV genome as a minimal RNA template revealed that the NS5 protein specifically initiates RNA synthesis from an internal site, U81, at the two nucleotides upstream of the 3'-end of the template. CONCLUSION As a first step toward the understanding of the molecular mechanisms for JEV RNA replication and ultimately for the in vitro reconstitution of viral RNA replicase complex, we for the first time established an in vitro JEV RdRp assay system with a functional full-length recombinant JEV NS5 protein and characterized the mechanisms of RNA synthesis from nonviral and viral RNA templates. The full-length recombinant JEV NS5 will be useful for the elucidation of the structure-function relationship of this enzyme and for the development of anti-JEV agents.
Collapse
|