1
|
Strang BL. Toward inhibition of human cytomegalovirus replication with compounds targeting cellular proteins. J Gen Virol 2022; 103. [PMID: 36215160 DOI: 10.1099/jgv.0.001795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antiviral therapy for human cytomegalovirus (HCMV) currently relies upon direct-acting antiviral drugs. However, it is now well known that these drugs have shortcomings, which limit their use. Here I review the identification and investigation of compounds targeting cellular proteins that have anti-HCMV activity and could supersede those anti-HCMV drugs currently in use. This includes discussion of drug repurposing, for example the use of artemisinin compounds, and discussion of new directions to identify compounds that target cellular factors in HCMV-infected cells, for example screening of kinase inhibitors. In addition, I highlight developing areas such as the use of machine learning and emphasize how interaction with fields outside virology will be critical for development of anti-HCMV compounds.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
2
|
The Human Cytomegalovirus Protein UL116 Interacts with the Viral Endoplasmic-Reticulum-Resident Glycoprotein UL148 and Promotes the Incorporation of gH/gL Complexes into Virions. J Virol 2021; 95:e0220720. [PMID: 34011552 DOI: 10.1128/jvi.02207-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heterodimers of glycoproteins H (gH) and L (gL) comprise a basal element of the viral membrane fusion machinery conserved across herpesviruses. In human cytomegalovirus (HCMV), the glycoprotein UL116 assembles onto gH at a position similar to that occupied by gL, forming a heterodimer that is incorporated into virions. Here, we show that UL116 promotes the expression of gH/gL complexes and is required for the efficient production of infectious cell-free virions. UL116-null mutants show a 10-fold defect in production of infectious cell-free virions from infected fibroblasts and epithelial cells. This defect is accompanied by reduced expression of two disulfide-linked gH/gL complexes that play crucial roles in viral entry: the heterotrimer of gH/gL with glycoprotein O (gO) and the pentameric complex of gH/gL with UL128, UL130, and UL131. Kifunensine, a mannosidase inhibitor that interferes with endoplasmic reticulum (ER)-associated degradation (ERAD) of terminally misfolded glycoproteins, restored levels of gH, gL, and gO in UL116-null-infected cells, indicating that constituents of HCMV gH complexes are unstable in the absence of UL116. Further, we find that gH/UL116 complexes are abundant in virions, since a major gH species not covalently linked to other glycoproteins, which has long been observed in the literature, is detected from wild-type but not UL116-null virions. Interestingly, UL116 coimmunoprecipitates with UL148, a viral ER-resident glycoprotein that attenuates ERAD of gO, and we observe elevated levels of UL116 in UL148-null virions. Collectively, our findings argue that UL116 is a chaperone for gH that supports the assembly, maturation, and incorporation of gH/gL complexes into virions. IMPORTANCE HCMV is a betaherpesvirus that causes dangerous opportunistic infections in immunocompromised patients as well as in the immune-naive fetus and preterm infants. The potential of the virus to enter new host cells is governed in large part by two alternative viral glycoprotein H (gH)/glycoprotein L (gL) complexes that play important roles in entry: gH/gL/gO and gH/gL/UL128-131. A recently identified virion gH complex, comprised of gH bound to UL116, adds a new layer of complexity to the mechanisms that contribute to HCMV infectivity. Here, we show that UL116 promotes the expression of gH/gL complexes and that UL116 interacts with the viral ER-resident glycoprotein UL148, a factor that supports the expression of gH/gL/gO. Overall, our results suggest that UL116 is a chaperone for gH. These findings have important implications for understanding HCMV cell tropism as well as for the development of vaccines against the virus.
Collapse
|
3
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
4
|
Tripathi V, Chatterjee KS, Das R. Casein kinase-2-mediated phosphorylation increases the SUMO-dependent activity of the cytomegalovirus transactivator IE2. J Biol Chem 2019; 294:14546-14561. [PMID: 31371453 DOI: 10.1074/jbc.ra119.009601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Indexed: 11/06/2022] Open
Abstract
Many viral factors manipulate the host post-translational modification (PTM) machinery for efficient viral replication. In particular, phosphorylation and SUMOylation can distinctly regulate the activity of the human cytomegalovirus (HCMV) transactivator immediate early 2 (IE2). However, the molecular mechanism of this process is unknown. Using various structural, biochemical, and cell-based approaches, here we uncovered that IE2 exploits a cross-talk between phosphorylation and SUMOylation. A scan for small ubiquitin-like modifier (SUMO)-interacting motifs (SIMs) revealed two SIMs in IE2, and a real-time SUMOylation assay indicated that the N-terminal SIM (IE2-SIM1) enhances IE2 SUMOylation up to 4-fold. Kinetic analysis and structural studies disclosed that IE2 is a SUMO cis-E3 ligase. We also found that two putative casein kinase 2 (CK2) sites adjacent to IE2-SIM1 are phosphorylated in vitro and in cells. The phosphorylation drastically increased IE2-SUMO affinity, IE2 SUMOylation, and cis-E3 activity of IE2. Additional salt bridges between the phosphoserines and SUMO accounted for the increased IE2-SUMO affinity. Phosphorylation also enhanced the SUMO-dependent transactivation activity and auto-repression activity of IE2. Together, our findings highlight a novel mechanism whereby SUMOylation and phosphorylation of the viral cis-E3 ligase and transactivator protein IE2 work in tandem to enable transcriptional regulation of viral gene.
Collapse
Affiliation(s)
- Vasvi Tripathi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| | - Kiran Sankar Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| |
Collapse
|
5
|
Strang BL. RO0504985 is an inhibitor of CMGC kinase proteins and has anti-human cytomegalovirus activity. Antiviral Res 2017; 144:21-26. [DOI: 10.1016/j.antiviral.2017.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
|
6
|
McKinney C, Yu D, Mohr I. A new role for the cellular PABP repressor Paip2 as an innate restriction factor capable of limiting productive cytomegalovirus replication. Genes Dev 2013; 27:1809-20. [PMID: 23964095 PMCID: PMC3759697 DOI: 10.1101/gad.221341.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, Mohr and colleagues establish a role for the poly(A)-binding protein (PABP) repressor Paip2 in viral infection. The investigators find that human cytomegalovirus (HCMV) infection causes the up-regulation of Paip2 as well as PABP. The data indicate that Paip2 accumulation represents an innate host response to counteract the virus-induced increase in PABP abundance, limit the assembly of translation initiation factor complexes, and restrict viral growth. Paip2 thus plays a significant role in an innate defense mechanism to restrict viral protein synthesis and replication. The capacity of polyadenylate-binding protein PABPC1 (PABP1) to stimulate translation is regulated by its repressor, Paip2. Paradoxically, while PABP accumulation promotes human cytomegalovirus (HCMV) protein synthesis, we show that this is accompanied by an analogous increase in the abundance of Paip2 and EDD1, an E3 ubiquitin ligase that destabilizes Paip2. Coordinate control of PABP1, Paip2, and EDD1 required the virus-encoded UL38 mTORC1 activator and resulted in augmented Paip2 synthesis, stability, and association with PABP1. Paip2 synthesis also increased following serum stimulation of uninfected normal fibroblasts, suggesting that this coregulation may play a role in how uninfected cells respond to stress. Significantly, Paip2 accumulation was dependent on PABP accrual, as preventing PABP1 accumulation suppressed viral replication and inhibited the corresponding Paip2 increase. Furthermore, depleting Paip2 restored the ability of infected cells to assemble the translation initiation factor eIF4F, promoting viral protein synthesis and replication without increasing PABP1. This establishes a new role for the cellular PABP1 inhibitor Paip2 as an innate defense that restricts viral protein synthesis and replication. Moreover, it illustrates how a stress-induced rise in PABP1 triggered by virus infection can counter and surpass a corresponding increase in Paip2 abundance and stability.
Collapse
Affiliation(s)
- Caleb McKinney
- Department of Microbiology, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
7
|
PKR-like endoplasmic reticulum kinase is necessary for lipogenic activation during HCMV infection. PLoS Pathog 2013; 9:e1003266. [PMID: 23592989 PMCID: PMC3617203 DOI: 10.1371/journal.ppat.1003266] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022] Open
Abstract
PKR-like endoplasmic reticulum (ER) kinase (PERK) is an ER-associated stress sensor protein which phosphorylates eukaryotic initiation factor 2α (eIF2α) to induce translation attenuation in response to ER stress. PERK is also a regulator of lipogenesis during adipocyte differentiation through activation of the cleavage of sterol regulatory element binding protein 1 (SREBP1), resulting in the upregulation of lipogenic enzymes. Our recent studies have shown that human cytomegalovirus (HCMV) infection in human fibroblasts (HF) induces adipocyte-like lipogenesis through the activation of SREBP1. Here, we report that PERK expression is highly increased in HCMV-infected cells and is necessary for HCMV growth. Depletion of PERK, using short hairpin RNA (shRNA), resulted in attenuation of HCMV growth, inhibition of lipid synthesis and reduction of lipogenic gene expression. Examination of the cleavage of SREBP proteins showed PERK depletion inhibited the cleavage of SREBP1, but not SREBP2, in HCMV-infected cells, suggesting different cleavage regulatory mechanisms for SREBP1 and 2. Further studies showed that the depletion of SREBP1, but not SREBP2, reduced lipid synthesis in HCMV infection, suggesting that activation of SREBP1 is sufficient to induce lipogenesis in HCMV infection. The reduction of lipid synthesis by PERK depletion can be partially restored by expressing a Flag-tagged nuclear form of SREBP1a. Our studies also suggest that the induction of PERK in HCMV-infected cells stimulates SREBP1 cleavage by reducing levels of Insig1 (Insulin inducible gene 1) protein; this occurs independent of the phosphorylation of eIF2α. Introduction of an exogenous Insig1-Myc into HCMV infected cells significantly reduced HCMV growth and lipid synthesis. Our data demonstrate that the induction of PERK during HCMV infection is necessary for full activation of lipogenesis; this effect appears to be mediated by limiting the levels of Insig1 thus freeing SREBP1-SCAP complexes for SREBP1 processing.
Collapse
|
8
|
Gardner TJ, Bolovan-Fritts C, Teng MW, Redmann V, Kraus TA, Sperling R, Moran T, Britt W, Weinberger LS, Tortorella D. Development of a high-throughput assay to measure the neutralization capability of anti-cytomegalovirus antibodies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:540-50. [PMID: 23389931 PMCID: PMC3623408 DOI: 10.1128/cvi.00644-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/30/2013] [Indexed: 11/20/2022]
Abstract
Infection by human cytomegalovirus (CMV) elicits a strong humoral immune response and robust anti-CMV antibody production. Diagnosis of virus infection can be carried out by using a variety of serological assays; however, quantification of serum antibodies against CMV may not present an accurate measure of a patient's ability to control a virus infection. CMV strains that express green fluorescent protein (GFP) fusion proteins can be used as screening tools for evaluating characteristics of CMV infection in vitro. In this study, we employed a CMV virus strain, AD169, that ectopically expresses a yellow fluorescent protein (YFP) fused to the immediate-early 2 (IE2) protein product (AD169IE2-YFP) to quantify a CMV infection in human cells. We created a high-throughput cell-based assay that requires minimal amounts of material and provides a platform for rapid analysis of the initial phase of virus infection, including virus attachment, fusion, and immediate-early viral gene expression. The AD169IE2-YFP cell infection system was utilized to develop a neutralization assay with a monoclonal antibody against the viral surface glycoprotein gH. The high-throughput assay was extended to measure the neutralization capacity of serum from CMV-positive subjects. These findings describe a sensitive and specific assay for the quantification of a key immunological response that plays a role in limiting CMV dissemination and transmission. Collectively, we have demonstrated that a robust high-throughput infection assay can analyze the early steps of the CMV life cycle and quantify the potency of biological reagents to attenuate a virus infection.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| | | | | | - Veronika Redmann
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| | - Thomas A. Kraus
- Department of Obstetrics, Gynecology and Reproductive Medicine
| | - Rhoda Sperling
- Department of Obstetrics, Gynecology and Reproductive Medicine
| | - Thomas Moran
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| | - William Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Leor S. Weinberger
- Gladstone Institutes, San Francisco, California, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Domenico Tortorella
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| |
Collapse
|
9
|
Isomura H, Stinski MF. Coordination of late gene transcription of human cytomegalovirus with viral DNA synthesis: recombinant viruses as potential therapeutic vaccine candidates. Expert Opin Ther Targets 2012; 17:157-66. [PMID: 23231449 DOI: 10.1517/14728222.2013.740460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION During productive infection, human cytomegalovirus (HCMV) genes are expressed in a temporal cascade, with temporal phases designated as immediate-early (IE), early, and late. The major IE (MIE) genes, UL123 and UL122 (IE1/IE2), play a critical role in subsequent viral gene expression and the efficiency of viral replication. The early viral genes encode proteins necessary for viral DNA replication. Following viral DNA replication, delayed-early and late viral genes are expressed which encode structural proteins for the virion. The late genes can be divided into two broad classes. At early times the gamma-1 or leaky-late class are expressed at low levels after infection and are dramatically upregulated at late times. In contrast, the gamma-2 or 'true' late genes are expressed exclusively after viral DNA replication. Expression of true late (gamma-2 class) viral genes is completely prevented by inhibition of viral DNA synthesis. AREAS COVERED This review addresses the viral genes required for HCMV late gene transcription. Recombinant viruses that are defective for late gene transcription allow for early viral gene expression and viral DNA synthesis, but not infectious virus production. Since current HCMV prophylaxis is limited by several shortcomings, the use of defective recombinant viruses to induce HCMV cell-mediated and humoral immunity is discussed. EXPERT OPINION HCMV DNA replication and late gene transcription are not completely linked. Viral-encoded trans-acting factors are required. Recombinant viruses proficient in MIE and early viral gene expression and defective in late gene expression may be an alternative therapeutic vaccine candidates for the induction of cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Hiroki Isomura
- Gunma University Graduate School of Medicine, Department of Virology and Preventive Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | |
Collapse
|
10
|
Functional properties of the human cytomegalovirus IE86 protein required for transcriptional regulation and virus replication. J Virol 2010; 84:8839-48. [PMID: 20554773 DOI: 10.1128/jvi.00327-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE86 protein is essential for HCMV replication due to its ability to transactivate critical viral early promoters. In the current study, we performed a comprehensive mutational analysis between amino acids (aa) 535 and 545 of IE86 and assessed the impact of these mutations on IE86-mediated transcriptional activation. Using transient assays and complementing analysis with recombinant HCMV clones, we show that single amino acid mutations differentially impair the ability of IE86 to mediate transactivation of essential early gene promoters. The conserved tyrosine at amino acid 544 is critical for activation of the UL54 promoter in vitro and in the context of the viral genome. In contrast, mutation of the proline at position 535 disrupted activation of the UL54 promoter in transient assays but displayed activity similar to that of wild-type (WT) IE86 when assessed in the genomic context. To examine the underlying mechanism of this differential effect, glutathione S-transferase (GST) pulldown assays were performed, revealing that Y544 is critical for binding to the TATA binding protein (TBP), suggesting that this interaction is likely necessary for the ability of IE86 to activate the UL54 promoter. In contrast, mutation of either P535 or Y544 disrupted activation of the UL112-113 promoter both in vitro and in vivo, suggesting that interaction with TBP is not sufficient for IE86-mediated activation of this early promoter. Together, these studies demonstrate that IE86 activates early promoters by distinct mechanisms.
Collapse
|
11
|
Straschewski S, Warmer M, Frascaroli G, Hohenberg H, Mertens T, Winkler M. Human cytomegaloviruses expressing yellow fluorescent fusion proteins--characterization and use in antiviral screening. PLoS One 2010; 5:e9174. [PMID: 20161802 PMCID: PMC2820100 DOI: 10.1371/journal.pone.0009174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 01/02/2010] [Indexed: 01/21/2023] Open
Abstract
Recombinant viruses labelled with fluorescent proteins are useful tools in molecular virology with multiple applications (e.g., studies on intracellular trafficking, protein localization, or gene activity). We generated by homologous recombination three recombinant cytomegaloviruses carrying the enhanced yellow fluorescent protein (EYFP) fused with the viral proteins IE-2, ppUL32 (pp150), and ppUL83 (pp65). In growth kinetics, the three viruses behaved all like wild type, even at low multiplicity of infection (MOI). The expression of all three fusion proteins was detected, and their respective localizations were the same as for the unmodified proteins in wild-type virus-infected cells. We established the in vivo measurement of fluorescence intensity and used the recombinant viruses to measure inhibition of viral replication by neutralizing antibodies or antiviral substances. The use of these viruses in a pilot screen based on fluorescence intensity and high-content analysis identified cellular kinase inhibitors that block viral replication. In summary, these viruses with individually EYFP-tagged proteins will be useful to study antiviral substances and the dynamics of viral infection in cell culture.
Collapse
Affiliation(s)
| | - Martin Warmer
- Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | | | - Heinrich Hohenberg
- Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | - Thomas Mertens
- Institute of Virology, Ulm University Hospital, Ulm, Germany
| | - Michael Winkler
- Institute of Virology, Ulm University Hospital, Ulm, Germany
- Institute for Infection Medicine, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
12
|
Kudchodkar SB, Yu Y, Maguire TG, Alwine JC. Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes. Proc Natl Acad Sci U S A 2006; 103:14182-7. [PMID: 16959881 PMCID: PMC1599931 DOI: 10.1073/pnas.0605825103] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Signaling mediated by the mammalian target of rapamycin kinase (mTOR) is activated during human cytomegalovirus (HCMV) infection. mTOR is found in two complexes differing by the binding partner, rictor or raptor. Activated mTOR-raptor promotes cap-dependent translation through the hyperphosphorylation of the eIF4E-binding protein (4E-BP). This activity of the raptor complex is normally inhibited by cell stress responses or the drug rapamycin. However, we previously showed that this inhibition of mTOR signaling can be circumvented during HCMV infection such that hyperphosphorylation of 4E-BP is maintained. Here we show that HCMV infection also activates the rictor complex, as indicated by increased phosphorylation of Akt S473; this phosphorylation is insensitive to rapamycin but sensitive to caffeine in both uninfected and infected cells. By using short-hairpin RNAs to deplete rictor and raptor, we find that rictor is more significant than raptor for the viral infection. Surprisingly, the inhibitory effects of rapamycin on viral growth are primarily due to the presence of rictor, not raptor. Raptor and rictor depletion experiments show that in HCMV-infected cells, both raptor- and rictor-containing complexes can mediate the hyperphosphorylation of 4E-BP and the phosphorylation of p70S6 kinase. Under these conditions, the rictor complex is rapamycin-sensitive for the hyperphosphorylation of 4E-BP, but the raptor complex is not. These data suggest that, during HCMV infection, the rictor- and raptor-containing complexes are modified such that their substrate specificities and rapamycin sensitivities are altered. Our data also suggest that the present understanding of rapamycin's inhibitory effects is incomplete.
Collapse
Affiliation(s)
- Sagar B. Kudchodkar
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| | - Yongjun Yu
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| | - Tobi G. Maguire
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| | - James C. Alwine
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Isler JA, Maguire TG, Alwine JC. Production of infectious human cytomegalovirus virions is inhibited by drugs that disrupt calcium homeostasis in the endoplasmic reticulum. J Virol 2006; 79:15388-97. [PMID: 16306610 PMCID: PMC1316032 DOI: 10.1128/jvi.79.24.15388-15397.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously reported that human cytomegalovirus (HCMV) infection induces endoplasmic reticulum (ER) stress, resulting in activation of the unfolded protein response (UPR). Although some normal consequences of UPR activation (e.g., translation attenuation) are detrimental to viral infection, we have previously shown that HCMV infection adapts the UPR to benefit the viral infection (14). For example, UPR-induced translation attenuation is inhibited by viral infection, while potentially beneficial aspects of the UPR are maintained. In the present work, we tested the ability of HCMV to overcome a robust induction of the UPR by the drugs thapsigargin and clotrimazole (CLT), which disrupt ER calcium homeostasis. A 24-h treatment with these drugs beginning at 48, 72, or 96 h postinfection (hpi) completely inhibited further production of infectious virions. HCMV could not overcome the inhibition of global translation by CLT; however, between 48 and 72 hpi, HCMV overcame translational inhibition caused by thapsigargin. Despite the restoration of translation in thapsigargin, the accumulation of immediate-early and early gene products was modestly retarded (50% or less), whereas the accumulation of an early-late and late gene product was significantly retarded. Electron microscopic analysis shows that the drugs severely disrupt the maturation of HCMV virions. This can be accounted for by both the retarded accumulation of late gene products and the drug-induced depletion of ER calcium, which disrupts critical cellular functions needed for maturation.
Collapse
Affiliation(s)
- Jennifer A Isler
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
14
|
Barrasa MI, Harel NY, Alwine JC. The phosphorylation status of the serine-rich region of the human cytomegalovirus 86-kilodalton major immediate-early protein IE2/IEP86 affects temporal viral gene expression. J Virol 2005; 79:1428-37. [PMID: 15650169 PMCID: PMC544087 DOI: 10.1128/jvi.79.3.1428-1437.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The 86-kDa major immediate-early protein (IE2/IEP86) of human cytomegalovirus (HCMV) contains a serine-rich region (amino acids 258 to 275) with several consensus casein kinase II (CKII) sites. We performed extensive mutational analysis of this region, changing serines to alternating alanines and glycines. Mutation of the serines between amino acids 266 and 275 eliminated in vitro phosphorylation by CKII. In vitro CKII phosphorylation of the serines between amino acids 266 and 269 or between amino acids 271 and 275 inhibited the ability of IE2/IEP86 to bind to TATA-binding protein. Correspondingly, nonphosphorylatable mutants in these regions showed increased activation of specific HCMV gene promoters in transfection studies. Viruses containing mutations of the serines throughout the entire region (amino acids 258 to 275) or the second half (amino acids 266 to 275) of the region showed delayed expression of all viral proteins tested and, correspondingly, delayed growth compared to wild-type HCMV. Mutation of the serines in the first half of the serine-rich region (amino acids 258 to 264) or between amino acids 266 and 269 propagated very slowly and has not been further studied. In contrast, mutation of the serines between amino acids 271 and 275 resulted in accelerated virus growth and accelerated temporal expression of viral proteins. These results suggest that the serine-rich region is structurally complex, possibly affecting multiple functions of IE2/IEP86. The data show that the phosphorylation state of the serine-rich region, particularly between amino acids 271 and 275, modulates the temporal expression of viral genes.
Collapse
Affiliation(s)
- M Inmaculada Barrasa
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142, USA
| | | | | |
Collapse
|
15
|
Kudchodkar SB, Yu Y, Maguire TG, Alwine JC. Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase. J Virol 2004; 78:11030-9. [PMID: 15452223 PMCID: PMC521827 DOI: 10.1128/jvi.78.20.11030-11039.2004] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 05/25/2004] [Indexed: 12/31/2022] Open
Abstract
Signaling mediated by the cellular kinase mammalian target of rapamycin (mTOR) activates cap-dependent translation under normal (nonstressed) conditions. However, translation is inhibited by cellular stress responses or rapamycin treatment, which inhibit mTOR kinase activity. We show that during human cytomegalovirus (HCMV) infection, viral protein synthesis and virus production proceed relatively normally when mTOR kinase activity is inhibited due to hypoxic stress or rapamycin treatment. Using rapamycin inhibition of mTOR, we show that HCMV infection induces phosphorylation of two mTOR effectors, eucaryotic initiation factor 4E (eIF4E) binding protein (4E-BP) and eIF4G. The virally induced phosphorylation of eIF4G is both mTOR and phosphatidylinositol 3-kinase (PI3K) independent, whereas the phosphorylation of 4E-BP is mTOR independent, but PI3K dependent. HCMV infection does not induce mTOR-independent phosphorylation of a third mTOR effector, p70S6 kinase (p70S6K). We show that the HCMV-induced phosphorylation of eIF4G and 4E-BP correlates with the association of eIF4E, the cap binding protein, with eIF4G in the eIF4F translation initiation complex. Thus, HCMV induces mechanisms to maintain the integrity of the eIF4F complex even when mTOR signaling is inhibited.
Collapse
Affiliation(s)
- Sagar B Kudchodkar
- Department of Cancer Biology, Abramson Family Cancer Research Institute, 421 Curie Blvd., University of Pennsylvania, Philadelphia, PA 19104-6142, USA
| | | | | | | |
Collapse
|