1
|
Surya Krishna S, Viswanathan R, Valarmathi R, Lakshmi K, Appunu C. CRISPR/Cas-Mediated Genome Editing Approach for Improving Virus Resistance in Sugarcane. SUGAR TECH 2023; 25:735-750. [DOI: 10.1007/s12355-023-01252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 01/11/2025]
|
2
|
Nithya K, Parameswari B, Kumar S, Annadurai A, Nithyanantham R, Mahadevaswamy HK, Viswanathan R. Prospecting true ScYLV resistance in Saccharum hybrid parental population in India by symptom phenotyping and viral titre quantification. 3 Biotech 2023; 13:125. [PMID: 37041801 PMCID: PMC10082694 DOI: 10.1007/s13205-023-03541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
UNLABELLED In sugarcane (Saccharum spp. hybrids) cultivation, viral diseases pose a great challenge across the globe. Yellow leaf (YL) disease is one of the important viral diseases caused by Sugarcane yellow leaf virus (ScYLV), a positive-sense ssRNA virus, genus Polerovirus, family Solemoviridae. The disease symptoms appear in later stages of crop growth during grand growth to maturity phase with intense midrib yellowing in the abaxial leaf surface. At present, this disease is managed through tissue (meristem) culture and healthy seed nurseries in India. However, the virus-free plants are infected quickly by secondary inoculum from aphid vectors in the field, which necessitates the importance of developing YL-resistant varieties. We screened about 600-625 sugarcane parental clones to identify true YL resistance based on 0-5 disease rating scale since 2015 and categorised them as resistant, moderately resistant, moderately susceptible, susceptible and highly susceptible. Leaf samples were collected from all these categories of plants during 2018-20 for the viral titre estimation through absolute quantification method (qRT-PCR assay). The viral load was invariably high in all categories of susceptible samples that ranged from 4.40 × 102 to 8.429 × 106, whereas in YL-free asymptomatic clones, the viral load ranged from 82.35 ± 5.90 to 5.121 × 104. The results clearly indicated that highest viral titre of 105-107 copies was present in all the susceptible clones irrespective of their disease severity grades. Our results clearly established that about 22.85% of apparently resistant sugarcane clones remained free from YL symptoms with significantly low ScYLV titre although we could not find a significant correlation between virus titre and symptom expression. The identified resistant parents will serve as sources of YL resistance to develop virus resistant sugarcane varieties. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-023-03541-y.
Collapse
Affiliation(s)
- K. Nithya
- ICAR-Sugarcane Breeding Institute, Coimbatore, 641007 India
| | - B. Parameswari
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Hyderabad, 500030 India
- ICAR-Sugarcane Breeding Institute, Research Centre, Karnal, Haryana 132001 India
| | - Subham Kumar
- ICAR-Sugarcane Breeding Institute, Research Centre, Karnal, Haryana 132001 India
| | - A. Annadurai
- ICAR-Sugarcane Breeding Institute, Coimbatore, 641007 India
| | | | | | - R. Viswanathan
- ICAR-Sugarcane Breeding Institute, Coimbatore, 641007 India
| |
Collapse
|
3
|
Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics. Viruses 2022; 14:v14112481. [PMID: 36366579 PMCID: PMC9693158 DOI: 10.3390/v14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Southern tomato amalgavirus (STV) is a cryptic pathogen that is abundant in tomato production fields and intensifies the resurgence of tomato yellow stunt disease (ToYSD), together with other phytoviruses. Here, we mapped the geographical and genomic diversity, phylogenetics, and evolutionary dynamics of STV. We found that STV prevailed across China and Pakistan, with a maximum average rate of infection of 43.19% in Beijing, China, and 40.08% in Punjab, Pakistan. Subsequently, we amplified, cloned, and annotated the complete genome sequences of STV isolates from Solanum lycopersicum L. in China (OP548653 and OP548652) and Pakistan (MT066231) using Sanger and next-generation sequencing (NGS). These STV isolates displayed close evolutionary relationships with others from Asia, America, and Europe. Whole-genome-based molecular diversity analysis showed that STV populations had 33 haplotypes with a gene diversity (Hd) of 0.977 and a nucleotide diversity (π) of 0.00404. The genetic variability of RNA-dependent RNA-polymerase (RdRp) was higher than that of the putative coat protein (CP) p42. Further analysis revealed that STV isolates were likely to be recombinant but with a lower-to-moderate level of confidence. With a variable distribution pattern of positively and negatively selected sites, negative selection pressure predominantly acted on p42 and RdRp. These findings elaborated on the molecular variability and evolutionary trends among STV populations across major tomato-producing regions of the world.
Collapse
|
4
|
Umar M, Farooq T, Tegg RS, Thangavel T, Wilson CR. Genomic Characterisation of an Isolate of Brassica Yellows Virus Associated with Brassica Weed in Tasmania. PLANTS (BASEL, SWITZERLAND) 2022; 11:884. [PMID: 35406863 PMCID: PMC9003488 DOI: 10.3390/plants11070884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Brassica yellows virus (BrYV), a tentative species in the genus Polerovirus, of the Solemoviridae family, is a phloem-restricted and aphid-transmitted virus with at least three genotypes (A, B, and C). It has been found across mainland China, South Korea, and Japan. BrYV was previously undescribed in Tasmania, and its genetic variability in the state remains unknown. Here, we describe a near-complete genome sequence of BrYV (genotype A) isolated from Raphanus raphanistrum in Tasmania using next-generation sequencing and sanger sequencing of RT-PCR products. BrYV-Tas (GenBank Accession no. OM469309) possesses a genome of 5516 nucleotides (nt) and shares higher sequence identity (about 90%) with other BrYV isolates. Phylogenetic analyses showed variability in the clustering patterns of the individual genes of BrYV-Tas. Recombination analysis revealed beginning and ending breakpoints at nucleotide positions 1922 to 5234 nt, with the BrYV isolate LC428359 and BrYV isolate KY310572 identified as major and minor parents, respectively. Results of the evolutionary analysis showed that the majority of the codons for each gene are evolving under purifying selection, though a few codons were also detected to have positive selection pressure. Taken together, our findings will facilitate an understanding of the evolutionary dynamics and genetic diversity of BrYV.
Collapse
Affiliation(s)
- Muhammad Umar
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| | - Tahir Farooq
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Robert S. Tegg
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| | - Tamilarasan Thangavel
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
- Department of Agriculture and Fisheries (Queensland), Bundaberg Research Facility, 49 Ashfield Road, Bundaberg, QLD 4670, Australia
| | - Calum R. Wilson
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| |
Collapse
|
5
|
Viswanathan R. Impact of yellow leaf disease in sugarcane and its successful disease management to sustain crop production. INDIAN PHYTOPATHOLOGY 2021; 74:573-586. [DOI: 10.1007/s42360-021-00391-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
|
6
|
Holkar SK, Balasubramaniam P, Kumar A, Kadirvel N, Shingote PR, Chhabra ML, Kumar S, Kumar P, Viswanathan R, Jain RK, Pathak AD. Present Status and Future Management Strategies for Sugarcane Yellow Leaf Virus: A Major Constraint to the Global Sugarcane Production. THE PLANT PATHOLOGY JOURNAL 2020; 36:536-557. [PMID: 33312090 PMCID: PMC7721539 DOI: 10.5423/ppj.rw.09.2020.0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 02/08/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV) is a distinct member of the Polerovirus genus of the Luteoviridae family. SCYLV is the major limitation to sugarcane production worldwide and presently occurring in most of the sugarcane growing countries. SCYLV having high genetic diversity within the species and presently ten genotypes are known to occur based on the complete genome sequence information. SCYLV is present in almost all the states of India where sugarcane is grown. Virion comprises of 180 coat protein units and are 24-29 nm in diameter. The genome of SCYLV is a monopartite and comprised of single-stranded (ss) positive-sense (+) linear RNA of about 6 kb in size. Virus genome consists of six open reading frames (ORFs) that are expressed by sub-genomic RNAs. The SCYLV is phloem-limited and transmitted by sugarcane aphid Melanaphis sacchari in a circulative and non-propagative manner. The other aphid species namely, Ceratovacuna lanigera, Rhopalosiphum rufiabdominalis, and R. maidis also been reported to transmit the virus. The virus is not transmitted mechanically, therefore, its transmission by M. sacchari has been studied in different countries. SCYLV has a limited natural host range and mainly infect sugarcane (Sachharum hybrid), grain sorghum (Sorghum bicolor), and Columbus grass (Sorghum almum). Recent insights in the protein-protein interactions of Polerovirus through protein interaction reporter (PIR) technology enable us to understand viral encoded proteins during virus replication, assembly, plant defence mechanism, short and long-distance travel of the virus. This review presents the recent understandings on virus biology, diagnosis, genetic diversity, virus-vector and host-virus interactions and conventional and next generation management approaches.
Collapse
Affiliation(s)
- Somnath Kadappa Holkar
- ICAR-Indian Institute of Sugarcane Research, Biological Control Centre, Pravaranagar, Maharashtra 43 72, India
| | | | - Atul Kumar
- ICAR-Indian Institute of Sugarcane Research, Biological Control Centre, Pravaranagar, Maharashtra 43 72, India
- Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow 226 010, Uttar Pradesh, India
| | - Nithya Kadirvel
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 61 007, Tamil Nadu, India
| | | | - Manohar Lal Chhabra
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Shubham Kumar
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Praveen Kumar
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Rasappa Viswanathan
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 61 007, Tamil Nadu, India
| | - Rakesh Kumar Jain
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
| | - Ashwini Dutt Pathak
- ICAR-Indian Institute of Sugarcane Research, Lucknow 226 002, Uttar Pradesh, India
| |
Collapse
|
7
|
Wang Q, Xu FZ, An LL, Xiang HY, Zhang WH, Liu GS, Liu HB. Molecular characterization of a new recombinant brassica yellows virus infecting tobacco in China. Virus Genes 2019; 55:253-256. [PMID: 30697673 DOI: 10.1007/s11262-019-01636-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
Brassica yellows virus (BrYV), prevalently distributed throughout mainland China and South Korea while triggering serious diseases in cruciferous crops, is proposed to be a new species in the genus Polerovirus within the family Luteoviridae. There are three distinct genotypes (BrYV-A, BrYV-B and BrYV-C) reported in cabbage and radish. Here, we describe a new BrYV isolate infecting tobacco plants in the field, which was named BrYV-NtabQJ. The complete genome sequence of BrYV-NtabQJ is 5741 nt in length, and 89% of the sequence shares higher sequence identities (about 90%) with different BrYV isolates. However, it possesses a quite divergent region within ORF5, which is more close to Beet western yellows virus (BWYV), Beet mild yellowing virus (BMYV) and Beet chlorosis virus (BChV). A significant recombination event was then detected among BrYV-NtabQJ, BrYV-B Beijng isolate (BrYV-BBJ) and BWYV Leonurus sibiricus isolate (BWYV-LS). It is proposed that BrYV-NtabQJ might be an interspecific recombinant between BrYV-BBJ and BWYV-LS, and the recombination might result in the successful aphid transmission of BrYV from cruciferous crops to tobacco. And it also poses new challenges for BrYV diagnosis and the vegetable production.
Collapse
Affiliation(s)
- Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Fang-Zheng Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Lu-Lu An
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Hai-Ying Xiang
- Yunnan Academy of Tobacco Science, Kunming, 650106, People's Republic of China
| | - Wei-Hua Zhang
- Vegetable and Flower Research Institute of Shandong Academy of Agricultural Sciences, Ji'nan, 250100, People's Republic of China
| | - Guan-Shan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| | - Hao-Bao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
8
|
Pagán I. The diversity, evolution and epidemiology of plant viruses: A phylogenetic view. INFECTION GENETICS AND EVOLUTION 2018; 65:187-199. [PMID: 30055330 DOI: 10.1016/j.meegid.2018.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
During the past four decades, the scientific community has seen an exponential advance in the number, sophistication, and quality of molecular techniques and bioinformatics tools for the genetic characterization of plant virus populations. Predating these advances, the field of Phylogenetics has significantly contributed to understand important aspects of plant virus evolution. This review aims at summarizing the impact of Phylogenetics in the current knowledge on three major aspects of plant virus evolution that have benefited from the development of phylogenetic inference: (1) The identification and classification of plant virus diversity. (2) The mechanisms and forces shaping the evolution of plant virus populations. (3) The understanding of the interaction between plant virus evolution, epidemiology and ecology. The work discussed here highlights the important role of phylogenetic approaches in the study of the dynamics of plant virus populations.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain.
| |
Collapse
|
9
|
Khalil F, Yueyu X, Naiyan X, Di L, Tayyab M, Hengbo W, Islam W, Rauf S, Pinghua C. Genome characterization of Sugarcane Yellow Leaf Virus with special reference to RNAi based molecular breeding. Microb Pathog 2018; 120:187-197. [PMID: 29730517 DOI: 10.1016/j.micpath.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022]
Abstract
Sugarcane is an essential crop for sugar and biofuel. Globally, its production is severely affected by sugarcane yellow leaf disease (SCYLD) caused by Sugarcane Yellow Leaf Virus (SCYLV). Many aphid vectors are involved in the spread of the disease which reduced the effectiveness of cultural and chemical management. Empirical methods of plant breeding such as introgression from wild and cultivated germplasm were not possible or at least challenging due to the absence of resistance in cultivated and wild germplasm of sugarcane. RNA interference (RNAi) transformation is an effective method to create virus-resistant varieties. Nevertheless, limited progress has been made due to lack of comprehensive research program on SCYLV based on RNAi technique. In order to show improvement and to propose future strategies for the feasibility of the RNAi technique to cope SCYLV, genome-wide consensus sequences of SCYLV were analyzed through GenBank. The coverage rates of every consensus sequence in SCYLV isolates were calculated to evaluate their practicability. Our analysis showed that single consensus sequence from SCYLV could not work well for RNAi based sugarcane breeding programs. This may be due to high mutation rate and continuous recombination within and between various viral strains. Alternative multi-target RNAi strategy is suggested to combat several strains of the viruses and to reduce the silencing escape. The multi-target small interfering RNA (siRNA) can be used together to construct RNAi plant expression plasmid, and to transform sugarcane tissues to develop new sugarcane varieties resistant to SCYLV.
Collapse
Affiliation(s)
- Farghama Khalil
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu Yueyu
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Naiyan
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liu Di
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Muhammad Tayyab
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wang Hengbo
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Waqar Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Saeed Rauf
- University College of Agriculture, University of Sargodha, Pakistan
| | - Chen Pinghua
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; GMOs LAB of Quality Supervision Inspection &Testing Center for Sugarcane and Derived Products, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
10
|
ElSayed AI, Komor E, Boulila M, Viswanathan R, Odero DC. Biology and management of sugarcane yellow leaf virus: an historical overview. Arch Virol 2015; 160:2921-2934. [PMID: 26424197 DOI: 10.1007/s00705-015-2618-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/17/2015] [Indexed: 02/05/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV) is one of the most widespread viruses causing disease in sugarcane worldwide. The virus has been responsible for drastic economic losses in most sugarcane-growing regions and remains a major concern for sugarcane breeders. Infection with SCYLV results in intense yellowing of the midrib, which extends to the leaf blade, followed by tissue necrosis from the leaf tip towards the leaf base. Such symptomatic leaves are usually characterized by increased respiration, reduced photosynthesis, a change in the ratio of hexose to sucrose, and an increase in starch content. SCYLV infection affects carbon assimilation and metabolism in sugarcane, resulting in stunted plants in severe cases. SCYLV is mainly propagated by planting cuttings from infected stalks. Phylogenetic analysis has confirmed the worldwide distribution of at least eight SCYLV genotypes (BRA, CHN1, CHN3, CUB, HAW, IND, PER, and REU). Evidence of recombination has been found in the SCYLV genome, which contains potential recombination signals in ORF1/2 and ORF5. This shows that recombination plays an important role in the evolution of SCYLV.
Collapse
Affiliation(s)
- Abdelaleim Ismail ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519, Zagazig, Egypt.
- Everglades Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3200 East Palm Beach Road, Belle Glade, FL, 33430-4702, USA.
| | - Ewald Komor
- Plant Physiology, University Bayreuth, 95440, Bayreuth, Germany
| | - Moncef Boulila
- Institut de l'Olivier, B.P. 14, 4061, Sousse Ibn-khaldoun, Tunisia
| | - Rasappa Viswanathan
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, 641007, India
| | - Dennis C Odero
- Everglades Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3200 East Palm Beach Road, Belle Glade, FL, 33430-4702, USA
| |
Collapse
|
11
|
Bertani RP, Perera MF, Arias ME, Luque C, Funes C, González V, Cuenya MI, Ploper LD, Welin B, Castagnaro AP. A Study of the Sugarcane Yellow Leaf Disease in Argentina. PLANT DISEASE 2014; 98:1036-1042. [PMID: 30708784 DOI: 10.1094/pdis-12-13-1251-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Yellow leaf disease, caused by Sugarcane yellow leaf virus (SCYLV), is widespread around the world but very little information is available on this viral disease in Argentina. Therefore, the aims of the study were to assess the presence of SCYLV, analyze its distribution in the main sugarcane production areas of Argentina, characterize the virus, and determine histological alterations caused by its presence. For this purpose, 148 sugarcane samples with and without symptoms were collected in 2011 and 2012 from the province of Tucumán. One additional sample was collected in Salta, a different geographical, agroecological, and producing region. Results showed that SCYLV is widely distributed in commercial varieties of sugarcane throughout Tucumán in both symptomatic and asymptomatic leaves. A low but statistically significant positive correlation with virus detection and disease symptoms was found. BRA-PER was the only genotype detected by reverse-transcription polymerase chain reaction and sequence analysis of the SCYLV capsid protein gene. SCYLV-positive samples showed high starch levels in bundle sheath cells, whereas the asymptomatic ones, probably in an early stage of infection, were found to contain more chloroplasts. Symptomatic noninfected samples presented crystal formation probably associated with phytoplasma infection.
Collapse
Affiliation(s)
- R P Bertani
- Estación Experimental Agroindustrial Obispo Colombres (EEAOC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), C.P. T4101XAC, Las Talitas, Tucumán, R. Argentina
| | - M F Perera
- Estación Experimental Agroindustrial Obispo Colombres (EEAOC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), C.P. T4101XAC, Las Talitas, Tucumán, R. Argentina
| | - M E Arias
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, C.P. 4000 San Miguel de Tucumán, Tucumán, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca (UNCa), Belgrano 300, C.P. 4700, San Fernando del Valle de Catamarca, Catamarca, Argentina
| | - C Luque
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, UNT
| | | | | | | | | | - B Welin
- EEAOC-CONICET, ITANOA, Argentina
| | | |
Collapse
|
12
|
Lin YH, Gao SJ, Damaj MB, Fu HY, Chen RK, Mirkov TE. Genome characterization of sugarcane yellow leaf virus from China reveals a novel recombinant genotype. Arch Virol 2014; 159:1421-9. [DOI: 10.1007/s00705-013-1957-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
|
13
|
Chinnaraja C, Viswanathan R, Karuppaiah R, Bagyalakshmi K, Malathi P, Parameswari B. Complete genome characterization of Sugarcane yellow leaf virus from India: Evidence for RNA recombination. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2013; 135:335-349. [DOI: 10.1007/s10658-012-0090-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Gao SJ, Lin YH, Pan YB, Damaj MB, Wang QN, Mirkov TE, Chen RK. Molecular characterization and phylogenetic analysis of Sugarcane yellow leaf virus isolates from China. Virus Genes 2012; 45:340-9. [PMID: 22752564 DOI: 10.1007/s11262-012-0774-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/08/2012] [Indexed: 11/30/2022]
Abstract
Sugarcane yellow leaf virus (SCYLV) (genus Polerovirus, family Luteoviridae), the causal agent of sugarcane yellow leaf disease (YLD), was first detected in China in 2006. To assess the distribution of SCYLV in the major sugarcane-growing Chinese provinces, leaf samples from 22 sugarcane clones (Saccharum spp. hybrid) showing YLD symptoms were collected and analyzed for infection by the virus using reverse transcription PCR (RT-PCR), quantitative RT-PCR, and immunological assays. A complete genomic sequence (5,879 nt) of the Chinese SCYLV isolate CHN-FJ1 and partial genomic sequences (2,915 nt) of 13 other Chinese SCYLV isolates from this study were amplified, cloned, and sequenced. The genomic sequence of the CHN-FJ1 isolate was found to share a high identity (98.4-99.1 %) with those of the Brazilian (BRA) genotype isolates and a low identity (86.5-86.9 %) with those of the CHN1 and Cuban (CUB) genotype isolates. The genetic diversity of these 14 Chinese SCYLV isolates was assessed along with that of 29 SCYLV isolates of worldwide origin reported in the GenBank database, based on the full or partial genomic sequence. Phylogenetic analysis demonstrated that all the 14 Chinese SCYLV isolates clustered into one large group with the BRA genotype and 12 other reported SCYLV isolates. In addition, five reported Chinese SCYLV isolates were grouped with the Peruvian (PER), CHN1 and CUB genotypes. We therefore speculated that at least four SCYLV genotypes, BRA, PER, CHN1, and CUB, are associated with YLD in China. Interestingly, a 39-nt deletion was detected in the sequence of the CHN-GD3 isolate, in the middle of the ORF1 region adjacent to the overlap between ORF1 and ORF2. This location is known to be one of the recombination breakpoints in the Luteoviridae family.
Collapse
Affiliation(s)
- San-Ji Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China
| | | | | | | | | | | | | |
Collapse
|
15
|
ElSayed AI, Boulila M, Komor E, Zhu YJ. Putative recombination signature and significance of insertion/deletion events in the RNA-dependent RNA polymerase coding region of sugarcane yellow leaf virus. Biochimie 2012; 94:1764-72. [PMID: 22542996 DOI: 10.1016/j.biochi.2012.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
The 5898 nucleotide single-strand RNA genome of Sugarcane yellow leaf virus (SCYLV) contains one long open reading frame, which is translated into a 120.6 kDa polyprotein. The sequences of SCYLV isolates from the two SCYLV-susceptible cultivars from Hawaii had a deletion of 48-51 nt in ORF1. SCYLV from 12 sugarcane hybrid cultivars from different origins were tested by RT-PCR using a specific set of primers, to investigate the genome segment for this deletion. Only three cultivars were found not to have the deletion (H87-4319, JA-605 and CP52-43), while SCYLV from nine cultivars (H73-6110, H87-4094, H78-7750, GT54-9, G84-47, H78-4153, H65-7052, C1051-73, Ph-8013) along with aphid (Melanaphis sacchari), which fed on SCYLV-infected H73-6110, contained a deletion of about 50 nt. The deleted sequence was located in the overlap frameshift of ORF1 and ORF2. Thus, ORFs 1 and 2 of SCYLV are translated via ribosomal frameshift and yield the 120.6 kDa viral replicase. ORF1 plays most likely a role in the replication and is a source of large variability among the virus population. To identify possible recombination events located in the RdRp domain of the Hawaiian isolates, two programs were used: RDP v.4.3 and RECCO. It is noteworthy that according both methods Haw73-6110 was found as a potential recombinant. On the other hand, opposed to the RDP package, RECCO revealed that Haw87-4094 isolate was also a recombinant whereas Haw87-4319 was not.
Collapse
|
16
|
Singh D, Rao GP, Snehi SK, Raj SK, Karuppaiah R, Viswanathan R. Molecular detection and identification of thirteen isolates of Sugarcane yellow leaf virus associated with sugarcane yellow leaf disease in nine sugarcane growing states of India. AUSTRALASIAN PLANT PATHOLOGY 2011; 40:522-528. [DOI: 10.1007/s13313-011-0061-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Singh D, Rao G. Molecular detection of two strains ofSugarcane yellow leaf virusin India and their secondary spread in nature through aphids. ACTA ACUST UNITED AC 2011. [DOI: 10.1556/aphyt.46.2011.1.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
A novel strain of Beet western yellows virus infecting sugar beet with two distinct genotypes differing in the 5′-terminal half of genome. Virus Genes 2010; 42:141-9. [DOI: 10.1007/s11262-010-0553-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/08/2010] [Indexed: 11/26/2022]
|
19
|
Wang MQ, Zhou GH. A near-complete genome sequence of a distinct isolate of Sugarcane yellow leaf virus from China, representing a sixth new genotype. Virus Genes 2010; 41:268-72. [PMID: 20563635 DOI: 10.1007/s11262-010-0501-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/07/2010] [Indexed: 11/29/2022]
Abstract
The 5803 nt genomic sequence of a Sugarcane yellow leaf virus (SCYLV) isolate (SCYLV-chn1) from China was determined. It covered more than 98% of the complete viral genome and contained all the six ORFs and the entire intergenic untranslated region. This isolate was most closely related to SCYLV genotype CUB (isolates CUB-YL1 and CB86010) with identities of 95.2-97.4% (nt) (93.2-97.2% aa) in ORF0, ORF1, and ORF2. Sequence comparison and phylogenetic analyses supported the view that this isolate represents a new genotype; SCYLV CHN1 was suggested as the name for this new genotype.
Collapse
Affiliation(s)
- M-Q Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | | |
Collapse
|
20
|
Pagán I, Holmes EC. Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. J Virol 2010; 84:6177-87. [PMID: 20375155 PMCID: PMC2876656 DOI: 10.1128/jvi.02160-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 03/31/2010] [Indexed: 12/20/2022] Open
Abstract
Despite their importance as agents of emerging disease, the time scale and evolutionary processes that shape the appearance of new viral species are largely unknown. To address these issues, we analyzed intra- and interspecific evolutionary processes in the Luteoviridae family of plant RNA viruses. Using the coat protein gene of 12 members of the family, we determined their phylogenetic relationships, rates of nucleotide substitution, times to common ancestry, and patterns of speciation. An associated multigene analysis enabled us to infer the nature of selection pressures and the genomic distribution of recombination events. Although rates of evolutionary change and selection pressures varied among genes and species and were lower in some overlapping gene regions, all fell within the range of those seen in animal RNA viruses. Recombination breakpoints were commonly observed at gene boundaries but less so within genes. Our molecular clock analysis suggested that the origin of the currently circulating Luteoviridae species occurred within the last 4 millennia, with intraspecific genetic diversity arising within the last few hundred years. Speciation within the Luteoviridae may therefore be associated with the expansion of agricultural systems. Finally, our phylogenetic analysis suggested that viral speciation events tended to occur within the same plant host species and country of origin, as expected if speciation is largely sympatric, rather than allopatric, in nature.
Collapse
Affiliation(s)
- Israel Pagán
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
21
|
Xie Y, Wang M, Xu D, Li R, Zhou G. Simultaneous detection and identification of four sugarcane viruses by one-step RT-PCR. J Virol Methods 2009; 162:64-8. [PMID: 19646484 DOI: 10.1016/j.jviromet.2009.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/09/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
Abstract
Sugarcane mosaic disease (SMD) caused by the Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV) and Sugarcane streak mosaic virus (SCSMV) and sugarcane yellow leaf disease (SYLD) caused by the Sugarcane yellow leaf virus (SCYLV) are the two most prevalent and economically important viral diseases of sugarcane. In this study, a one-step quadruplex reverse transcription (RT)-PCR method that employed virus-specific primers was developed for the simultaneous detection and differentiation of SCMV, SrMV, SCSMV and SCYLV. Several sets of primers for each target virus were evaluated for their sensitivity and specificity by simplex and quadruplex RT-PCR. The optimum primer combinations and concentrations, RT temperature and time, and PCR annealing temperature and extension time were determined for the quadruplex RT-PCR. The assay was then validated using sugarcane samples affected with SMD and/or SYLD collected from sugarcane breeding fields and farmers' fields in southern China.
Collapse
Affiliation(s)
- Yujia Xie
- Laboratory of Plant Virology, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | |
Collapse
|
22
|
Abraham AD, Menzel W, Varrelmann M, Vetten HJ. Molecular, serological and biological variation among chickpea chlorotic stunt virus isolates from five countries of North Africa and West Asia. Arch Virol 2009; 154:791-9. [PMID: 19347243 PMCID: PMC3085786 DOI: 10.1007/s00705-009-0374-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/23/2009] [Indexed: 11/27/2022]
Abstract
Chickpea chlorotic stunt virus (CpCSV), a proposed new member of the genus Polerovirus (family Luteoviridae), has been reported only from Ethiopia. In attempts to determine the geographical distribution and variability of CpCSV, a pair of degenerate primers derived from conserved domains of the luteovirus coat protein (CP) gene was used for RT-PCR analysis of various legume samples originating from five countries and containing unidentified luteoviruses. Sequencing of the amplicons provided evidence for the occurrence of CpCSV also in Egypt, Morocco, Sudan, and Syria. Phylogenetic analysis of the CP nucleotide sequences of 18 samples from the five countries revealed the existence of two geographic groups of CpCSV isolates differing in CP sequences by 8-10%. Group I included isolates from Ethiopia and Sudan, while group II comprised those from Egypt, Morocco and Syria. For distinguishing these two groups, a simple RFLP test using HindIII and/or PvuII for cleavage of CP-gene-derived PCR products was developed. In ELISA and immunoelectron microscopy, however, isolates from these two groups could not be distinguished with rabbit antisera raised against a group-I isolate from Ethiopia (CpCSV-Eth) and a group-II isolate from Syria (CpCSV-Sy). Since none of the ten monoclonal antibodies (MAbs) that had been produced earlier against CpCSV-Eth reacted with group-II isolates, further MAbs were produced. Of the seven MAbs raised against CpCSV-Sy, two reacted only with CpCSV-Sy and two others with both CpCSV-Sy and -Eth. This indicated that there are group I- and II-specific and common (species-specific) epitopes on the CpCSV CP and that the corresponding MAbs are suitable for specific detection and discrimination of CpCSV isolates. Moreover, CpCSV-Sy (group II) caused more severe stunting and yellowing in faba bean than CpCSV-Eth (group I). In conclusion, our data indicate the existence of a geographically associated variation in the molecular, serological and presumably biological properties of CpCSV.
Collapse
Affiliation(s)
- A. D. Abraham
- Julius Kuehn Institute, Federal Research Center for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany
- Section Plant Virology, Department of Crop Sciences, University of Göttingen, Grisebachstr. 6, 37077 Göttingen, Germany
- Biotechnology Program, Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - W. Menzel
- Julius Kuehn Institute, Federal Research Center for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany
| | - M. Varrelmann
- Section Plant Virology, Department of Crop Sciences, University of Göttingen, Grisebachstr. 6, 37077 Göttingen, Germany
| | - H. Josef Vetten
- Julius Kuehn Institute, Federal Research Center for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
23
|
Viswanathan R, Balamuralikrishnan M, Karuppaiah R. Identification of three genotypes of sugarcane yellow leaf virus causing yellow leaf disease from India and their molecular characterization. Virus Genes 2008; 37:368-379. [PMID: 18751882 DOI: 10.1007/s11262-008-0277-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/08/2008] [Indexed: 02/05/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV) that causes yellow leaf disease (YLD) in sugarcane (recently reported in India) belongs to Polerovirus. Detailed studies were conducted to characterize the virus based on partial open reading frames (ORFs) 1 and 2 and complete ORFs 3 and 4 sequences in their genome. Reverse-transcriptase polymerase chain reaction (RT-PCR) was performed on 48 sugarcane leaf samples to detect the virus using a specific set of primers. Of the 48 samples, 36 samples (field samples with and without foliar symptoms) including 10 meristem culture derived plants were found to be positive to SCYLV infection. Additionally, an aphid colony collected from symptomatic sugarcane in the field was also found to be SCYLV positive. The amplicons from 22 samples were cloned, sequenced and acronymed as SCYLV-CB isolates. The nucleotide (nt) and amino acid (aa) sequence comparison showed a significant variation between SCYLV-CB and the database sequences at nt (3.7-5.1%) and aa (3.2-5.3%) sequence level in the CP coding region. However, the database sequences comprising isolates of three reported genotypes, viz., BRA, PER and REU, were observed with least nt and aa sequence dissimilarities (0.0-1.6%). The phylogenetic analyses of the overlapping ORFs (ORF 3 and ORF 4) of SCYLV encoding CP and MP determined in this study and additional sequences of 26 other isolates including an Indian isolate (SCYLV-IND) available from GenBank were distributed in four phylogenetic clusters. The SCYLV-CB isolates from this study lineated in two clusters (C1 and C2) and all the other isolates from the worldwide locations into another two clusters (C3 and C4). The sequence variation of the isolates in this study with the database isolates, even in the least variable region of the SCYLV genome, showed that the population existing in India is significantly different from rest of the world. Further, comparison of partial sequences encoding for ORFs 1 and 2 revealed that YLD in sugarcane in India is caused by at least three genotypes, viz., CUB, IND and BRA-PER, of which a majority of the samples were found infected with Cuban genotype (CUB) and lesser by IND and BRA-PER genotypes. The genotype IND was identified as a new genotype from this study, and this was found to have significant variation with the reported genotypes.
Collapse
Affiliation(s)
- R Viswanathan
- Plant Pathology Section, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, 641007, India.
| | | | | |
Collapse
|
24
|
Beuve M, Stevens M, Liu HY, Wintermantel WM, Hauser S, Lemaire O. Biological and Molecular Characterization of an American Sugar Beet-Infecting Beet western yellows virus Isolate. PLANT DISEASE 2008; 92:51-60. [PMID: 30786380 DOI: 10.1094/pdis-92-1-0051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Three aphid-transmitted viruses belonging to the Polerovirus genus, Beet mild yellowing virus (BMYV), Beet chlorosis virus (BChV), and Beet western yellows virus (BWYV), have been described as pathogens of sugar beet. We present the complete biological, serological, and molecular characterization of an American isolate of Beet western yellows virus (BWYV-USA), collected from yellow beet leaves. The biological data suggested that BWYV-USA displayed a host range similar to that of BMYV, but distinct from those of BChV and the lettuce and rape isolates of Turnip yellows virus. The complete genomic RNA sequence of BWYV-USA showed a genetic organization and expression typical of other Polerovirus members. Comparisons of deduced amino acid sequences showed that P0 and the putative replicase complex (P1-P2) of BWYV-USA are more closely related to Cucurbit aphid-borne yellows virus (CABYV) than to BMYV, whereas alignments of P3, P4, and P5 showed the highest homology with BMYV. Intraspecific and interspecific phylogenetic analyses have suggested that the BWYV-USA genome may be the result of recombination events between a CABYV-like ancestor contributing open reading frame (ORF) 0, ORF 1, and ORF 2, and a beet Polerovirus progenitor providing the 3' ORFs, with a similar mechanism of speciation occurring for BMYV in Europe. Results demonstrate that BWYV-USA is a distinct species in the Polerovirus genus, clarifying the nomenclature of this important group of viruses.
Collapse
Affiliation(s)
- Monique Beuve
- Institut National de la Recherche Agronomique (INRA), UMR Santé de la Vigne et Qualité du Vin (SVQV), Laboratoire Virologie & Vection, 68021 Colmar cedex, France, and Université L. Pasteur, 67000 Strasbourg, France
| | - Mark Stevens
- Broom's Barn Research Center, Higham, Bury St. Edmunds, Suffolk, IP28 6 NP, UK
| | - Hsing-Yeh Liu
- United States Department of Agriculture-Agricultural Research Station, Salinas, CA 93905
| | - William M Wintermantel
- United States Department of Agriculture-Agricultural Research Station, Salinas, CA 93905
| | | | | |
Collapse
|
25
|
Ahmad YA, Costet L, Daugrois JH, Nibouche S, Letourmy P, Girard JC, Rott P. Variation in Infection Capacity and in Virulence Exists Between Genotypes of Sugarcane yellow leaf virus. PLANT DISEASE 2007; 91:253-259. [PMID: 30780557 DOI: 10.1094/pdis-91-3-0253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two experiments, one in Guadeloupe and one in Réunion Island, were performed to transmit different genotypes of Sugarcane yellow leaf virus (SCYLV) to eight sugarcane cultivars differing in resistance to infection by the virus and to yellow leaf. Transmission was attempted from SCYLV-infected sugarcane plants or leaves to healthy tissue-cultured plantlets grown in vitro and with the aphid vector Melanaphis sacchari. After inoculation and elimination of insects with an insecticide, plantlets were transferred to Montpellier, France and grown in a greenhouse. Plants were tested for presence of SCYLV by tissue-blot immunoassay and reverse-transcription polymerase chain reaction after 5 to 6 months of growth. SCYLV genotypes BRA-PER, CUB, and REU were detected in 47, 62, and 39% of plants inoculated with these genotypes in Guadeloupe, respectively. SCYLV genotypes BRA-PER and REU and a mixed infection of genotypes BRA-PER and REU were detected in 56, 33, and 42% of plants inoculated with these genotypes in Réunion Island, respectively. Genotypes BRA-PER and CUB could be transmitted to all eight sugarcane cultivars, but genotype REU could never be transmitted to resistant sugarcane cvs. H78-4153 and H78-3567. SCYLV genotype REU was transmitted successfully to sugarcane cv. R570 in Guadeloupe, but not in Réunion Island. Genotypes BRA-PER and CUB induced yellow leaf symptoms in susceptible or highly susceptible sugarcane cultivars, whereas genotype REU induced very few symptoms. SCYLV was not found in several symptomatic plants, suggesting an association of disease with undetectable populations of the virus or a nonviral cause. This is the first report of variation in infection capacity and in virulence of SCYLV.
Collapse
Affiliation(s)
- Youssef Abu Ahmad
- Cirad, UMR Agro.M-Cirad-Inra Biologie et Génétique des Interactions Plante-Parasite (BGPI), Montpellier Cedex 5, F-34398 France
| | - Laurent Costet
- Cirad, UMR Cirad-Universitéde La Réunion Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Saint-Pierre, La Réunion, F-97410 France
| | | | - Samuel Nibouche
- Cirad, UMR Cirad-Université de La Réunion PVBMT, Saint Pierre, La Réunion, F-97410 France
| | - Philippe Letourmy
- Cirad, UPR Aide à la Décision et Biostatistique, Montpellier Cedex 5, F-34398, France
| | - Jean-Claude Girard
- Cirad, UMR Agro.M-Cirad-Inra BGPI, Campus International de Baillarguet, TA 41/K, Montpellier Cedex 5, F-34398 France
| | - Philippe Rott
- Cirad, UMR Agro.M-Cirad-Inra BGPI, Campus International de Baillarguet, TA 41/K, Montpellier Cedex 5, F-34398 France
| |
Collapse
|
26
|
Moury B, Desbiez C, Jacquemond M, Lecoq H. Genetic diversity of plant virus populations: towards hypothesis testing in molecular epidemiology. Adv Virus Res 2006; 67:49-87. [PMID: 17027677 DOI: 10.1016/s0065-3527(06)67002-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B Moury
- INRA Avignon, Station de Pathologie Végétale, Domaine St Maurice BP94 84143 Montfavet cedex, France
| | | | | | | |
Collapse
|
27
|
Meier M, Truve E. An attempt to identify recombinants between two sobemoviruses in doubly infected oat plants. ACTA ACUST UNITED AC 2006; 5:47-56. [PMID: 16978574 DOI: 10.1051/ebr:2006013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Recombination in RNA viruses is considered to play a major role as a driving force in virus variability to counterbalance loss in fitness that can be due to the accumulation of detrimental mutations. Studies on mixed infections are pertinent for understanding the role of recombination in virus evolution. They also provide important baseline information for studying the biosafety of plants expressing viral sequences. To investigate the possibility of RNA recombination occurrence between two sobemoviruses under little or no selection pressure, we co-infected test plants with Cocksfoot mottle virus (CfMV) and Ryegrass mottle virus (RGMoV). CfMV and RGMoV were selected because of their overlapping host range and geographical distribution. First, symptom development of both viruses in barley (Hordeum vulgare) and oat (Avena sativa) was examined. Both viruses generated quite strong infection symptoms in oat, but synergism was not detected. RGMoV was lethal for barley, whereas CfMV infection in barley was nearly symptomless. RT-PCR analysis revealed 100% infection with both viruses in oat but not in barley. Therefore, an RNA recombination study of CfMV and RGMoV was performed in oat. 105 plants were co-inoculated with both viruses and putative recombinational hot spot regions were screened for recombination events by RT-PCR analysis at a sensitivity level down to 0.1-100 pg of viral genomic RNA. No recombination events between the two sobemoviruses were detected.
Collapse
Affiliation(s)
- Merike Meier
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 19086 Tallinn, Estonia
| | | |
Collapse
|
28
|
Ahmad YA, Royer M, Daugrois JH, Costet L, Lett JM, Victoria JI, Girard JC, Rott P. Geographical Distribution of Four Sugarcane yellow leaf virus Genotypes. PLANT DISEASE 2006; 90:1156-1160. [PMID: 30781095 DOI: 10.1094/pd-90-1156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Specific primer pairs were designed to distinguish four genotypes (BRA for Brazil, CUB for Cuba, PER for Peru, and REU for Réunion Island) of Sugarcane yellow leaf virus (SCYLV) by reverse transcription-polymerase chain reaction (RT-PCR). A unique genome fragment was amplified from each genotype, with the exception of genotypes BRA and PER that are phylogenetically relatively close and were designated genotype BRA-PER. These RT-PCR primers were then used to identify the SCYLV genotype(s) present in 18 different sugarcane growing locations in the world, and 245 leaf samples infected by the virus were analyzed. Most samples were infected by only one of the three genotypes, but mixed infections occurred. Genotype BRA-PER was found in all sugarcane growing locations, whereas genotypes CUB and REU were each found in four geographical locations only. Genotypes BRA-PER, CUB, and REU were all three detected in locally bred sugarcane cultivars in Guadeloupe, indicating local transmission of these genotypes. In contrast, only genotypes BRA-PER and CUB were found in locally bred cultivars in Brazil, whereas genotype REU was detected in this country in cultivar R570 imported from Réunion. Similarly, genotypes BRA-PER and REU are both present in Réunion, but genotype BRA-PER has not, as of yet, spread on this island. Presence of several SCYLV genotypes in Brazil, Colombia, Guadeloupe, Mauritius, and Réunion suggests different virus introductions and/or different evolution histories of the virus after its introduction into a new environment.
Collapse
Affiliation(s)
- Youssef Abu Ahmad
- UMR Agro.M-CIRAD-INRA Biologie et Génétique des Interactions Plante-Parasite, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Campus International de Baillarguet, TA 41/K, 34398 Montpellier Cedex 5, France
| | - Monique Royer
- UMR Agro.M-CIRAD-INRA Biologie et Génétique des Interactions Plante-Parasite, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Campus International de Baillarguet, TA 41/K, 34398 Montpellier Cedex 5, France
| | - Jean-Henrich Daugrois
- UR Multiplication Végétative, CIRAD Département Cultures annuelles, Station de Roujol, 97170 Petit-Bourg, Guadeloupe, FWI
| | - Laurent Costet
- UMR CIRAD-Université de La Réunion, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Ligne Paradis, 97410 Saint-Pierre, La Réunion
| | - Jean-Michel Lett
- UMR CIRAD-Université de La Réunion, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Ligne Paradis, 97410 Saint-Pierre, La Réunion
| | | | - Jean-Claude Girard
- UMR Agro.M-CIRAD-INRA Biologie et Génétique des Interactions Plante-Parasite, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, TA 41/K, 34398 Montpellier Cedex 5, France
| | - Philippe Rott
- UMR Agro.M-CIRAD-INRA Biologie et Génétique des Interactions Plante-Parasite, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, TA 41/K, 34398 Montpellier Cedex 5, France
| |
Collapse
|
29
|
Abu Ahmad Y, Rassaby L, Royer M, Borg Z, Braithwaite KS, Mirkov TE, Irey MS, Perrier X, Smith GR, Rott P. Yellow leaf of sugarcane is caused by at least three different genotypes of sugarcane yellow leaf virus, one of which predominates on the Island of Réunion. Arch Virol 2006; 151:1355-71. [PMID: 16453082 DOI: 10.1007/s00705-005-0712-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
The genetic diversity of sugarcane yellow leaf virus (SCYLV) was analyzed with 43 virus isolates from Réunion Island and 17 isolates from world-wide locations. We attempted to amplify by reverse-transcription polymerase chain reaction (RT-PCR), clone, and sequence four different fragments covering 72% of the genome of these virus isolates. The number of amplified isolates and useful sequence information varied according to each fragment, whereas an amplicon was obtained with diagnostic primers for 59 out of 60 isolates (98%). Phylogenetic analyses of the sequences determined here and additional sequences of 11 other SCYLV isolates available from GenBank showed that SCYLV isolates were distributed in different phylogenetic groups or belonged to single genotypes. The majority of isolates from Réunion Island were grouped in phylogenetic clusters that did not contain any isolates from other origins. The complete six ORFs (5612 bp) of five SCYLV isolates (two from Réunion Island, one from Brazil, one from China, and one from Peru) were amplified, cloned, and sequenced. The existence of at least three distinct genotypes of SCYLV was shown by phylogenetic analysis of the sequences of these isolates and additional published sequences of three SCYLV isolates (GenBank accessions). The biological significance of these genotypes and of the origin of the distinct lineage of SCYLV in Réunion Island remains to be determined.
Collapse
Affiliation(s)
- Y Abu Ahmad
- UMR 385 AGRO.M-CIRAD-INRA Biologie et Génétique des Interactions Plante-Parasite, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Herron CM, Mirkov TE, N Solís-Gracia N, Kahlke CJ, Skaria M, da Graça JV. Severity of Citrus tristeza virus Isolates from Texas. PLANT DISEASE 2005; 89:575-580. [PMID: 30795381 DOI: 10.1094/pd-89-0575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus tristeza virus (CTV) isolates collected from the Lower Rio Grande Valley in south Texas and east Texas were characterized using citrus indicators and molecular methods. The citrus indicators were Mexican lime (Citrus aurantifolia), sour orange (C. aurantium), sweet orange (C. sinensis) grafted to sour orange, Duncan grapefruit (C. × paradisi), and Madam Vinous sweet orange, with some CTV isolates additionally indexed using the Texas commercial grapefruit cvs. Rio Red and Star Ruby, and Marrs and N-33 sweet orange. Severity ratings used 11 biotype groups or cumulative mean relative indices. Molecular characterization was carried out using poly- and monoclonal antibodies, seven strain-specific probes and single-stranded conformational polymorphism, and all were based on the CTV major coat protein or gene. All Texas CTV isolates produced vein clearing symptoms on inoculated Mexican lime plants. Over half of the CTV isolates tested were placed in biotype groups IX and X (causing decline of sweet orange on sour orange, seedling yellows on sour orange and grapefruit seedlings, and stem pitting of grapefruit or sweet orange), and one isolate was in biotype I (mild).
Collapse
Affiliation(s)
- C M Herron
- Department of Plant Pathology and Microbiology, Texas A&M University System Agricultural Experiment Station
| | - T E Mirkov
- Department of Plant Pathology and Microbiology, Texas A&M University System Agricultural Experiment Station
| | | | - C J Kahlke
- Texas A&M University-Kingsville Citrus Center, Weslaco 78596
| | - M Skaria
- Texas A&M University-Kingsville Citrus Center, Weslaco 78596
| | - J V da Graça
- Texas A&M University-Kingsville Citrus Center, Weslaco 78596
| |
Collapse
|
31
|
aus dem Siepen M, Pohl JO, Koo BJ, Wege C, Jeske H. Poinsettia latent virus is not a cryptic virus, but a natural polerovirus–sobemovirus hybrid. Virology 2005; 336:240-50. [DOI: 10.1016/j.virol.2005.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/16/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
|
32
|
Abstract
RNA viruses are the most common viruses of plants, and the evolution of these viruses has been studied both experimentally and phylogenetically. The basic molecular mechanisms for plant virus evolution are similar to those of other viruses, with some notable exceptions. Recent advances include new insights into the origins of plant viruses, analyses of quasispecies and mutation frequencies, population studies on field isolates and practical studies on the importance of virus evolution to agriculture.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73402, USA.
| |
Collapse
|