1
|
Dekker JG, Klaver B, Berkhout B, Das AT. HIV-1 3'-Polypurine Tract Mutations Confer Dolutegravir Resistance by Switching to an Integration-Independent Replication Mechanism via 1-LTR Circles. J Virol 2023; 97:e0036123. [PMID: 37125907 PMCID: PMC10231180 DOI: 10.1128/jvi.00361-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
Several recent studies indicate that mutations in the human immunodeficiency virus type 1 (HIV-1) 3'polypurine tract (3'PPT) motif can reduce sensitivity to the integrase inhibitor dolutegravir (DTG). Using an in vivo systematic evolution of ligands by exponential enrichment (SELEX) approach, we discovered that multiple different mutations in this viral RNA element can confer DTG resistance, suggesting that the inactivation of this critical reverse transcription element causes resistance. An analysis of the viral DNA products formed upon infection by these 3'PPT mutants revealed that they replicate without integration into the host cell genome, concomitant with an increased production of 1-LTR circles. As the replication of these virus variants is activated by the human T-lymphotropic virus 1 (HTLV-1) Tax protein, a factor that reverses epigenetic silencing of episomal HIV DNA, these data indicate that the 3'PPT-mutated viruses escape from the integrase inhibitor DTG by switching to an integration-independent replication mechanism. IMPORTANCE The integrase inhibitor DTG is a potent inhibitor of HIV replication and is currently recommended in drug regimens for people living with HIV. Whereas HIV normally escapes from antiviral drugs by the acquisition of specific mutations in the gene that encodes the targeted enzyme, mutational inactivation of the viral 3'PPT sequence, an RNA element that has a crucial role in the viral reverse transcription process, was found to allow HIV replication in the presence of DTG in cell culture experiments. While the integration of the viral DNA into the cellular genome is considered one of the hallmarks of retroviruses, including HIV, 3'PPT inactivation caused integration-independent replication, which can explain the reduced DTG sensitivity. Whether this exotic escape route can also contribute to viral escape in HIV-infected persons remains to be determined, but our results indicate that screening for 3'PPT mutations in patients that fail on DTG therapy should be considered.
Collapse
Affiliation(s)
- José G. Dekker
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| | - Bep Klaver
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| | - Ben Berkhout
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| | - Atze T. Das
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Li F, Lee M, Esnault C, Wendover K, Guo Y, Atkins P, Zaratiegui M, Levin HL. Identification of an integrase-independent pathway of retrotransposition. SCIENCE ADVANCES 2022; 8:eabm9390. [PMID: 35767609 DOI: 10.1126/sciadv.abm9390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Retroviruses and long terminal repeat retrotransposons rely on integrase (IN) to insert their complementary DNA (cDNA) into the genome of host cells. Nevertheless, in the absence of IN, retroelements can retain notable levels of insertion activity. We have characterized the IN-independent pathway of Tf1 and found that insertion sites had homology to the primers of reverse transcription, which form single-stranded DNAs at the termini of the cDNA. In the absence of IN activity, a similar bias was observed with HIV-1. Our studies showed that the Tf1 insertions result from single-strand annealing, a noncanonical form of homologous recombination mediated by Rad52. By expanding our analysis of insertions to include repeat sequences, we found most formed tandem elements by inserting at preexisting copies of a related transposable element. Unexpectedly, we found that wild-type Tf1 uses the IN-independent pathway as an alternative mode of insertion.
Collapse
Affiliation(s)
- Feng Li
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Lee
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katie Wendover
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yabin Guo
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Atkins
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mikel Zaratiegui
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson Biological Laboratories A133, 604 Allison Rd., Piscataway, NJ 08854, USA
| | - Henry L Levin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Bueno MTD, Reyes D, Llano M. LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends. Viruses 2017; 9:v9090259. [PMID: 28914817 PMCID: PMC5618025 DOI: 10.3390/v9090259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 11/17/2022] Open
Abstract
Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3′ processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3′ processed linear HIV-1 cDNA from exonucleolytic degradation.
Collapse
Affiliation(s)
- Murilo T D Bueno
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| | - Daniel Reyes
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| |
Collapse
|
4
|
The fourth central polypurine tract guides the synthesis of prototype foamy virus plus-strand DNA. Virus Genes 2017; 53:259-265. [PMID: 28185138 DOI: 10.1007/s11262-016-1425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022]
Abstract
Foamy virus (FV) is a nonpathogenic retrovirus that has the potential to serve as a gene therapy vector. In retroviral replication, the central polypurine tract (cPPT) is used as a primer to synthesize plus-strand DNA. The cPPT is subsequently degraded to produce a single-stranded gap in the double-stranded viral DNA molecule. In the prototype foamy virus (PFV), four cPPT-like motifs have been previously identified, in which there is a gap with uncertain terminals. In this study, we determined the length of the PFV gap varying from 144 to 731 bp. The 3' terminus of the cleavage sites is located between 6272 bp and 6274 bp from the first base of PFV genome, while the 5' terminus is located within a 465 bp range. The start and terminal nucleotides of the gap are located on either side of the fourth cPPT element. Deletion, mutation, and replacement of the fourth cPPT with the Human immunodeficiency virus 1 (HIV-1) cPPT resulted in a significant reduction in modified PFV virions, indicating that the fourth cPPT ought to be the primer that guides the synthesis of PFV plus-strand DNA. These results improve the theoretical basis for understanding FVs replication and will help construct new FV vectors with simple genome sequences containing only the necessary cis elements.
Collapse
|
5
|
Rausch JW, Tian M, Li Y, Angelova L, Bagaya BS, Krebs KC, Qian F, Zhu C, Arts EJ, Le Grice SFJ, Gao Y. SiRNA-induced mutation in HIV-1 polypurine tract region and its influence on viral fitness. PLoS One 2015; 10:e0122953. [PMID: 25860884 PMCID: PMC4393142 DOI: 10.1371/journal.pone.0122953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/16/2015] [Indexed: 02/06/2023] Open
Abstract
Converting single-stranded viral RNA into double stranded DNA for integration is an essential step in HIV-1 replication. Initial polymerization of minus-strand DNA is primed from a host derived tRNA, whereas subsequent plus-strand synthesis requires viral primers derived from the 3' and central polypurine tracts (3' and cPPTs). The 5' and 3' termini of these conserved RNA sequence elements are precisely cleaved by RT-associated RNase H to generate specific primers that are used to initiate plus-strand DNA synthesis. In this study, siRNA wad used to produce a replicative HIV-1 variant contained G(-1)A and T(-16)A substitutions within/adjacent to the 3'PPT sequence. Introducing either or both mutations into the 3'PPT region or only the G(-1)A substitution in the cPPT region of NL4-3 produced infectious virus with decreased fitness relative to the wild-type virus. In contrast, introducing the T(-16)A or both mutations into the cPPT rendered the virus(es) incapable of replication, most likely due to the F185L integrase mutation produced by this nucleotide substitution. Finally, the effects of G(-1)A and T(-16)A mutations on cleavage of the 3'PPT were examined using an in vitro RNase H cleavage assay. Substrate containing both mutations was mis-cleaved to a greater extent than either wild-type substrate or substrate containing the T(-16)A mutation alone, which is consistent with the observed effects of the equivalent nucleotide substitutions on the replication fitness of NL4-3 virus. In conclusion, siRNA targeting of the HIV-1 3'PPT region can substantially suppress virus replication, and this selective pressure can be used to generate infectious virus containing mutations within or near the HIV-1 PPT. Moreover, in-depth analysis of the resistance mutations demonstrates that although virus containing a G(-1)A mutation within the 3'PPT is capable of replication, this nucleotide substitution shifts the 3'-terminal cleavage site in the 3'PPT by one nucleotide (nt) and significantly reduces viral fitness.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Meijuan Tian
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yuejin Li
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lora Angelova
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bernard S. Bagaya
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kendall C. Krebs
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Feng Qian
- Suzhou Fifth People’s Hospital, Suzhou, Jiangsu, China
| | - Chuanwu Zhu
- Suzhou Fifth People’s Hospital, Suzhou, Jiangsu, China
| | - Eric J. Arts
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Stuart F. J. Le Grice
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Yong Gao
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Iyidogan P, Anderson KS. Recent findings on the mechanisms involved in tenofovir resistance. Antivir Chem Chemother 2014; 23:217-22. [PMID: 23744599 DOI: 10.3851/imp2628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2013] [Indexed: 12/14/2022] Open
Abstract
Since its approval for clinical use in 2001, tenofovir (TFV) has become one of the most frequently prescribed nucleotide analogues used in combination with other antiretroviral agents against HIV-1 infection. Although reverse transcriptase inhibitors (RTIs) including TFV have been shown to be highly potent with reasonable safety profiles in the clinic, drug resistance hinders the effectiveness of current therapies and even causes treatment failure. Therefore, understanding the resistance mechanisms of RT and exploring the potential antiviral synergy between the different RTIs in combination therapies against the resistance mechanisms would greatly improve the long-term efficacy of existing and future regimens. We have studied the pyrophosphorolytic removal of TFV, a major resistance mechanism that RT utilizes, from two different viral sequences and observed interesting outcomes associated with the sequence context. Furthermore, addition of efavirenz, a non-nucleoside RTI, inhibits this removal process confirming the synergistic antiviral effects. This article highlights our recently published work on the viral sequence context contributing to the study of anti-HIV drug resistance in conjunction with the benefits of combining various RTIs that may have been neglected previously.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA
| | | |
Collapse
|
7
|
Multiple nucleotide preferences determine cleavage-site recognition by the HIV-1 and M-MuLV RNases H. J Mol Biol 2010; 397:161-78. [PMID: 20122939 DOI: 10.1016/j.jmb.2010.01.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 01/20/2010] [Accepted: 01/26/2010] [Indexed: 11/21/2022]
Abstract
The RNase H activity of reverse transcriptase is required during retroviral replication and represents a potential target in antiviral drug therapies. Sequence features flanking a cleavage site influence the three types of retroviral RNase H activity: internal, DNA 3'-end-directed, and RNA 5'-end-directed. Using the reverse transcriptases of HIV-1 (human immunodeficiency virus type 1) and Moloney murine leukemia virus (M-MuLV), we evaluated how individual base preferences at a cleavage site direct retroviral RNase H specificity. Strong test cleavage sites (designated as between nucleotide positions -1 and +1) for the HIV-1 and M-MuLV enzymes were introduced into model hybrid substrates designed to assay internal or DNA 3'-end-directed cleavage, and base substitutions were tested at specific nucleotide positions. For internal cleavage, positions +1, -2, -4, -5, -10, and -14 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV significantly affected RNase H cleavage efficiency, while positions -7 and -12 for HIV-1 and positions -4, -9, and -11 for M-MuLV had more modest effects. DNA 3'-end-directed cleavage was influenced substantially by positions +1, -2, -4, and -5 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV. Cleavage-site distance from the recessed end did not affect sequence preferences for M-MuLV reverse transcriptase. Based on the identified sequence preferences, a cleavage site recognized by both HIV-1 and M-MuLV enzymes was introduced into a sequence that was otherwise resistant to RNase H. The isolated RNase H domain of M-MuLV reverse transcriptase retained sequence preferences at positions +1 and -2 despite prolific cleavage in the absence of the polymerase domain. The sequence preferences of retroviral RNase H likely reflect structural features in the substrate that favor cleavage and represent a novel specificity determinant to consider in drug design.
Collapse
|
8
|
Integration of rous sarcoma virus DNA: a CA dinucleotide is not required for integration of the U3 end of viral DNA. J Virol 2008; 82:11480-3. [PMID: 18768972 DOI: 10.1128/jvi.01353-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The two ends of RSV linear DNA are independently inserted into host DNA by integrase in vivo. We previously showed that the range of U3 sequences that are acceptable substrates for integrase appeared to be greater than the range of acceptable U5 sequences in vivo. We have done additional experiments to determine which U3 sequences are good integrase substrates. On the U3 end, there does not appear to be a stringent requirement for the canonical CA, integrase can efficiently remove three nucleotides, and six nucleotides are sufficient to allow integration with reasonable, albeit reduced, efficiency.
Collapse
|
9
|
The effects of alternate polypurine tracts (PPTs) and mutations of sequences adjacent to the PPT on viral replication and cleavage specificity of the Rous sarcoma virus reverse transcriptase. J Virol 2008; 82:8592-604. [PMID: 18562520 DOI: 10.1128/jvi.00499-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We previously reported that a mutant Rous sarcoma virus (RSV) with an alternate polypurine tract (PPT), DuckHepBFlipPPT, had unexpectedly high titers and that the PPT was miscleaved primarily at one position following a GA dinucleotide by the RNase H of reverse transcriptase (RT). This miscleavage resulted in a portion of the 3' end of the PPT (5'-ATGTA) being added to the end of U3 of the linear viral DNA. To better understand the RNase H cleavage by RSV RT, we made a number of mutations within the DuckHepBFlipPPT and in the sequences adjacent to the PPT. Deleting the entire ATGTA sequence from the DuckHepBFlipPPT increased the relative titer to wild-type levels, while point mutations within the ATGTA sequence reduced the relative titer but had minimal effects on the cleavage specificity. However, mutating a sequence 5' of ATGTA affected the relative titer of the virus and caused the RNase H of RSV RT to lose the ability to cleave the PPT specifically. In addition, although mutations in the conserved stretch of thymidine residues upstream of the PPT did not affect the relative titer or cleavage specificity, the mutation of some of the nucleotides immediately upstream of the PPT did affect the titer and cleavage specificity. Taken together, our studies show that the structure of the PPT in the context of the cognate RT, rather than a specific sequence, is important for the proper cleavage by RSV RT.
Collapse
|
10
|
Schultz SJ, Champoux JJ. RNase H activity: structure, specificity, and function in reverse transcription. Virus Res 2008; 134:86-103. [PMID: 18261820 PMCID: PMC2464458 DOI: 10.1016/j.virusres.2007.12.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/20/2023]
Abstract
This review compares the well-studied RNase H activities of human immunodeficiency virus, type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) reverse transcriptases. The RNase H domains of HIV-1 and MoMLV are structurally very similar, with functions assigned to conserved subregions like the RNase H primer grip and the connection subdomain, as well as to distinct features like the C-helix and loop in MoMLV RNase H. Like cellular RNases H, catalysis by the retroviral enzymes appears to involve a two-metal ion mechanism. Unlike cellular RNases H, the retroviral RNases H display three different modes of cleavage: internal, DNA 3' end-directed, and RNA 5' end-directed. All three modes of cleavage appear to have roles in reverse transcription. Nucleotide sequence is an important determinant of cleavage specificity with both enzymes exhibiting a preference for specific nucleotides at discrete positions flanking an internal cleavage site as well as during tRNA primer removal and plus-strand primer generation. RNA 5' end-directed and DNA 3' end-directed cleavages show similar sequence preferences at the positions closest to a cleavage site. A model for how RNase H selects cleavage sites is presented that incorporates both sequence preferences and the concept of a defined window for allowable cleavage from a recessed end. Finally, the RNase H activity of HIV-1 is considered as a target for anti-virals as well as a participant in drug resistance.
Collapse
Affiliation(s)
- Sharon J. Schultz
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, Washington 98195, USA
| | - James J. Champoux
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
11
|
McWilliams MJ, Julias JG, Hughes SH. Mutations in the human immunodeficiency virus type 1 polypurine tract (PPT) reduce the rate of PPT cleavage and plus-strand DNA synthesis. J Virol 2008; 82:5104-8. [PMID: 18321979 PMCID: PMC2346737 DOI: 10.1128/jvi.01897-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 02/21/2008] [Indexed: 01/01/2023] Open
Abstract
Previously, we analyzed the effects of point mutations in the human immunodeficiency virus type 1 (HIV-1) polypurine tract (PPT) and found that some mutations affected both titer and cleavage specificity. We used HIV-1 vectors containing two PPTs and the D116N integrase active-site mutation in a cell-based assay to measure differences in the relative rates of PPT processing and utilization. The relative rates were measured by determining which of the two PPTs in the vector is used to synthesize viral DNA. The results indicate that mutations that have subtle effects on titer and cleavage specificity can have dramatic effects on rates of PPT generation and utilization.
Collapse
Affiliation(s)
- M J McWilliams
- HIV Drug Resistance Program, NCI at Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
12
|
Oh J, Chang KW, Hughes SH. Mutations in the U5 sequences adjacent to the primer binding site do not affect tRNA cleavage by rous sarcoma virus RNase H but do cause aberrant integrations in vivo. J Virol 2007; 80:451-9. [PMID: 16352569 PMCID: PMC1317513 DOI: 10.1128/jvi.80.1.451-459.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In most retroviruses, the first nucleotide added to the tRNA primer becomes the right end of the U5 region in the right long terminal repeat (LTR); the removal of this tRNA primer by RNase H defines the right end of the linear double-stranded DNA. Most retroviruses have two nucleotides between the 5' end of the primer binding site (PBS) and the CA dinucleotide that will become the end of the integrated provirus. However, human immunodeficiency virus type 1 (HIV-1) has only one nucleotide at this position, and HIV-2 has three nucleotides. We changed the two nucleotides (TT) between the PBS and the CA dinucleotide of the Rous sarcoma virus (RSV)-derived vector RSVP(A)Z to match the HIV-1 sequence (G) and the HIV-2 sequence (GGT), and we changed the CA dinucleotide to TC. In all three mutants, RNase H removes the entire tRNA primer. Sequence analysis of RSVP(HIV2) proviruses suggests that RSV integrase can remove three nucleotides from the U5 LTR terminus of the linear viral DNA during integration, although this mutation significantly reduced virus titer, suggesting that removing three nucleotides is inefficient. However, the results obtained with RSVP(HIV1) and RSVP(CATC) show that RSV integrase can process and integrate the normal U3 LTR terminus of a linear DNA independently of an aberrant U5 LTR terminus. The aberrant end can then be joined to the host DNA by unusual processes that do not involve the conserved CA dinucleotide. These unusual events generate either large duplications or, less frequently, deletions in the host genomic DNA instead of the normal 5- to 6-base duplications.
Collapse
Affiliation(s)
- Jangsuk Oh
- HIV Drug Resistance Program, NCI at Frederick, P.O. Box B, Bldg. 539, Rm. 130A, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
13
|
Rausch JW, Le Grice SFJ. Purine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis. Nucleic Acids Res 2006; 35:256-68. [PMID: 17164285 PMCID: PMC1802577 DOI: 10.1093/nar/gkl909] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite extensive study, the mechanism by which retroviral reverse transciptases (RTs) specifically utilize polypurine tract (PPT) RNA for initiation of plus-strand DNA synthesis remains unclear. Three sequence motifs within or adjacent to the purine-rich elements are highly conserved, namely, a rU:dA tract region immediately 5′ to the PPT, an rA:dT-rich sequence constituting the upstream portion of the PPT and a downstream rG:dC tract. Using an in vitro HIV-1 model system, we determined that the former two elements define the 5′ terminus of the (+)-strand primer, whereas the rG:dC tract serves as the primary determinant of initiation specificity. Subsequent analysis demonstrated that G→A or A→G substitution at PPT positions −2, −4 and +1 (relative to the scissile phosphate) substantially reduces (+)-strand priming. We explored this observation further using PPT substrates substituted with a variety of nucleoside analogs [inosine (I), purine riboside (PR), 2-aminopurine (2-AP), 2,6-diaminopurine (2,6-DAP), isoguanine (iG)], or one of the naturally occurring bases at these positions. Our results demonstrate that for PPT positions −2 or +1, substituting position 2 of the purine was an important determinant of cleavage specificity. In addition, cleavage specificity was greatly affected by substituting −4G with an analog containing a 6-NH2 moiety.
Collapse
Affiliation(s)
| | - Stuart F. J. Le Grice
- To whom correspondence should be addressed. Tel: +1 301 846 5256; Fax: +1 301 846 6013;
| |
Collapse
|
14
|
Oh J, Chang KW, Alvord WG, Hughes SH. Alternate polypurine tracts affect rous sarcoma virus integration in vivo. J Virol 2006; 80:10281-4. [PMID: 17005708 PMCID: PMC1617299 DOI: 10.1128/jvi.00361-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When the endogenous polypurine tract (PPT) of the Rous sarcoma virus (RSV)-derived vector RSVP(A)Z was replaced with alternate retroviral PPTs, the fraction of unintegrated viral DNA with the normal consensus ends significantly decreased and the retention of part of the PPT significantly increased. If the terminus of the U3 long terminal repeat (LTR) is aberrant, RSV integrase can correctly process and integrate the normal U5 LTR into the host genome. However, the canonical CA is not involved in joining the aberrant U3 LTR to the host DNA, generating either large duplications or deletions of the host sequences instead of the normal 5- or 6-bp duplication.
Collapse
Affiliation(s)
- Jangsuk Oh
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
15
|
McWilliams MJ, Julias JG, Sarafianos SG, Alvord WG, Arnold E, Hughes SH. Combining mutations in HIV-1 reverse transcriptase with mutations in the HIV-1 polypurine tract affects RNase H cleavages involved in PPT utilization. Virology 2006; 348:378-88. [PMID: 16473384 DOI: 10.1016/j.virol.2005.12.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 09/29/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
The RNase H cleavages that generate and remove the polypurine tract (PPT) primer during retroviral reverse transcription must be specific to generate linear viral DNAs that are suitable substrates for the viral integrase. To determine if specific contacts between reverse transcriptase (RT) and the PPT are a critical factor in determining the cleavage specificity of RNase H, we made HIV-1 viruses containing mutations in RT and the PPT at the locations of critical contacts between the protein and the nucleic acid. The effects on titer and RNase H cleavage suggest that combining mutations in RT with mutations in the PPT affect the structure of the protein of the RT/nucleic acid complex in ways that affect the specificity and the rate of PPT cleavage. In contrast, the mutations in the PPT (alone) and RT (alone) affect the specificity of PPT cleavage but have much less effect on the overall rate of cleavage.
Collapse
|
16
|
Chang KW, Julias JG, Alvord WG, Oh J, Hughes SH. Alternate polypurine tracts (PPTs) affect the rous sarcoma virus RNase H cleavage specificity and reveal a preferential cleavage following a GA dinucleotide sequence at the PPT-U3 junction. J Virol 2005; 79:13694-704. [PMID: 16227289 PMCID: PMC1262584 DOI: 10.1128/jvi.79.21.13694-13704.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 08/03/2005] [Indexed: 11/20/2022] Open
Abstract
Retroviral polypurine tracts (PPTs) serve as primers for plus-strand DNA synthesis during reverse transcription. The generation and removal of the PPT primer requires specific cleavages by the RNase H activity of reverse transcriptases; removal of the PPT primer defines the left end of the linear viral DNA. We replaced the endogenous PPT from RSVP(A)Z, a replication-competent shuttle vector based on Rous sarcoma virus (RSV), with alternate retroviral PPTs and the duck hepatitis B virus "PPT." Viruses in which the endogenous RSV PPT was replaced with alternate PPTs had lower relative titers than the wild-type virus. 2-LTR circle junction analysis showed that the alternate PPTs caused significant decreases in the fraction of viral DNAs with complete (consensus) ends and significant increases in the insertion of part or all of the PPT at the 2-LTR circle junctions. The last two nucleotides in the 3' end of the RSV PPT are GA. Examination of the (mis)cleavages of the alternate PPTs revealed preferential cleavages after GA dinucleotide sequences. Replacement of the terminal 3' A of the RSV PPT with G caused a preferential miscleavage at a GA sequence spanning the PPT-U3 boundary, resulting in the deletion of the terminal adenine normally present at the 5' end of the U3. A reciprocal G-to-A substitution at the 3' end of the murine leukemia virus PPT increased the relative titer of the chimeric RSV-based virus and the fraction of consensus 2-LTR circle junctions.
Collapse
Affiliation(s)
- Kevin W Chang
- HIV Drug Resistance Program, NCI-Frederick, P.O. Box B, Bldg. 539, Rm. 130A, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
17
|
Miles LR, Agresta BE, Khan MB, Tang S, Levin JG, Powell MD. Effect of polypurine tract (PPT) mutations on human immunodeficiency virus type 1 replication: a virus with a completely randomized PPT retains low infectivity. J Virol 2005; 79:6859-67. [PMID: 15890925 PMCID: PMC1112125 DOI: 10.1128/jvi.79.11.6859-6867.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 01/20/2005] [Indexed: 12/22/2022] Open
Abstract
We introduced polypurine tract (PPT) mutations, which we had previously tested in an in vitro assay, into the viral clone NL4-3KFSdelta nef. Each mutant was tested for single-round infectivity and virion production. All of the PPT mutations had an effect on replication; however, mutation of the 5' end appeared to have less of an effect on infectivity than mutation of the 3' end of the PPT sequence. Curiously, a mutation in which the entire PPT sequence was randomized (PPTSUB) retained 12% of the infectivity of the wild type (WT) in a multinuclear activation of galactosidase indicator assay. Supernatants from these infections contained viral particles, as evidenced by the presence of p24 antigen. Two-long terminal repeat (2-LTR) circle junction analysis following PPTSUB infection revealed that the mutant could form a high percentage of normal junctions. Quantification of the 2-LTR circles using real-time PCR revealed that number of 2-LTR circles from cells infected with the PPTSUB mutant was 3.5 logs greater than 2-LTR circles from cells infected with WT virus. To determine whether the progeny virions from a PPTSUB infection could undergo further rounds of replication, we introduced the PPTSUB mutation into a replication-competent virus. Our results show that the mutant virus is able to replicate and that the infectivity of the progeny virions increases with each passage, quickly reverting to a WT PPT sequence. Together, these experiments confirm that the 3' end of the PPT is important for plus-strand priming and that a virus that completely lacks a PPT can replicate at a low level.
Collapse
Affiliation(s)
- Lesa R Miles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. S. W., Atlanta, GA 30310, USA
| | | | | | | | | | | |
Collapse
|
18
|
Julias JG, McWilliams MJ, Sarafianos SG, Alvord WG, Arnold E, Hughes SH. Effects of mutations in the G tract of the human immunodeficiency virus type 1 polypurine tract on virus replication and RNase H cleavage. J Virol 2004; 78:13315-24. [PMID: 15542682 PMCID: PMC524982 DOI: 10.1128/jvi.78.23.13315-13324.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The RNase H cleavages that generate and remove the polypurine tract (PPT) primer during retroviral reverse transcription must be specific in order to create a linear viral DNA that is suitable for integration. Lentiviruses contain a highly conserved sequence consisting of six guanine residues at the 3' end of the PPT (hereafter referred to as the G tract). We introduced mutations into the G tract of a human immunodeficiency virus type 1-based vector and determined the effects on the virus titer and RNase H cleavage specificity. Most mutations in the G tract had little or no effect on the virus titer. Mutations at the second and fifth positions of the G tract increased the proportion of two-long-terminal-repeat (2-LTR) circle junctions with one or two nucleotide insertions. The second and fifth positions of the G tract make specific contacts with amino acids in the RNase H domain that are important for RNase H cleavage specificity. These complementary data define protein-nucleic acid interactions that help control the specificity of RNase H cleavage. When the G-tract mutants were analyzed in a viral background that was deficient in integrase, in most cases the proportion of consensus 2-LTR circle junctions increased. However, in the case of a mutant with Ts at the second and fifth positions of the G tract, the proportion of 2-LTR circle junctions containing the one-nucleotide insertion increased, suggesting that linear viral DNAs containing an extra base are substrates for integration. This result is consistent with the idea that the 3' end-processing reactions of retroviral integrases may help to generate defined ends from a heterogenous population of linear viral DNAs.
Collapse
Affiliation(s)
- John G Julias
- HIV Drug Resistance Program, NCI-Frederick, P.O. Box B, Building 539, Room 130A, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
19
|
Dash C, Yi-Brunozzi HY, Le Grice SFJ. Two modes of HIV-1 polypurine tract cleavage are affected by introducing locked nucleic acid analogs into the (-) DNA template. J Biol Chem 2004; 279:37095-102. [PMID: 15220330 DOI: 10.1074/jbc.m403306200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Unusual base-pairing in a co-crystal of reverse transcriptase (RT) and a human immunodeficiency virus type 1 (HIV-1) polypurine tract (PPT)-containing RNA/DNA hybrid suggests local nucleic acid flexibility mediates selection of the plus-strand primer. Structural elements of HIV-1 RT potentially participating in recognition of this duplex include the thumb subdomain and the ribonuclease H (RNase H) primer grip, the latter comprising elements of the connection subdomain and RNase H domain. To investigate how stabilizing HIV-1 PPT structure influences its recognition, we modified the (-) DNA template by inserting overlapping locked nucleic acid (LNA) doublets and triplets. Modified RNA/DNA hybrids were evaluated for cleavage at the PPT/U3 junction. Altered specificity was observed when the homopolymeric dA.rU tract immediately 5' of the PPT was modified, whereas PPT/U3 cleavage was lost after substitutions in the adjacent dT.rA tract. In contrast, the "unzipped" portion of the PPT was moderately insensitive to LNA insertions. Although a portion of the dC.rG and neighboring dT.rA tract were minimally affected by LNA insertion, RNase H activity was highly sensitive to altering the junction between these structural elements. Using 3'-end-labeled PPT RNA primers, we also identified novel cleavage sites ahead (+5/+6) of the PPT/U3 junction. Differential cleavage at the PPT/U3 junction and U3 + 5/+6 site in response to LNA-induced template modification suggests two binding modes for HIV-1 RT, both of which may be controlled by the interaction of its thumb subdomain (potentially via the minor groove binding track) at either site of the unzipped region.
Collapse
Affiliation(s)
- Chandravanu Dash
- Resistance Mechanisms Laboratory, HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | |
Collapse
|